JP2000130108A - Starting method for combined cycle power plant - Google Patents

Starting method for combined cycle power plant

Info

Publication number
JP2000130108A
JP2000130108A JP10306489A JP30648998A JP2000130108A JP 2000130108 A JP2000130108 A JP 2000130108A JP 10306489 A JP10306489 A JP 10306489A JP 30648998 A JP30648998 A JP 30648998A JP 2000130108 A JP2000130108 A JP 2000130108A
Authority
JP
Japan
Prior art keywords
steam
temperature
turbine
heat recovery
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10306489A
Other languages
Japanese (ja)
Inventor
Hanako Hasegawa
華子 長谷川
Akira Kubo
晃 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10306489A priority Critical patent/JP2000130108A/en
Publication of JP2000130108A publication Critical patent/JP2000130108A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform starting of a steam turbine of steam cycle in a short time when the independent operation of gas cycle is shifted to the combined cycle operation including a steam cycle. SOLUTION: An air ejecting pipe 21 for guiding air from a compressor 1 to an exhaust gas duct 9 while bypassing a combustor 2 and a gas turbine 3 and provided with a temperature adjusting valve 22 is connected to the exhaust gas duct 9 for connecting the gas turbine 3 and an exhaust heat recovery boiler 10 to each other. A temperature reducing unit 26 is provided on a steam path extending from the exhaust heat recovery boiler 10 to a steam turbine 5 and a temperature adjusting valve 28 is provided on a spray water pipe 27. In starting of a steam cycle, the opening of the temperature adjusting valve 22 is controlled to inject compressed gas into exhaust gas after the ventilating condition is met, the opening of the temperature adjusting valve 28 is controlled to inject spray water into steam, and the main steam temperature is kept to the temperature for satisfying the metal matching condition, and the steam is introduced to the steam turbine 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複合サイクル発電プ
ラントに係り、特にガスサイクル単独運転から蒸気サイ
クルを含む複合サイクル運転に移行する際に蒸気タービ
ンに流入する主蒸気温度を過大な熱応力をもたらさな
い、望ましい温度に保持するのに好適な起動方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power generation plant, and more particularly to a method in which the temperature of a main steam flowing into a steam turbine is excessively increased when a transition is made from a single gas cycle operation to a combined cycle operation including a steam cycle. And a suitable starting method for maintaining a desired temperature.

【0002】[0002]

【従来の技術】複合サイクル発電プラントは、近年、火
力発電プラントと比べてエネルギの無駄を省くことので
きる有利な発電方式として広範に採用されている。この
複合サイクル発電プラントには機器配置からみて特徴づ
けられる2つの形式がある。一つは一軸型と呼ばれるも
ので、この形式ではガスタービン、発電機、蒸気タービ
ンが共通の軸で直結されている。他の一つは多軸型とし
て呼ばれるもので、ガスタービンおよび蒸気タービンは
個別の軸に設けられ、それぞれのタービンが発電機を備
えている。この多軸型複合サイクル発電プラントではガ
スタービンと蒸気タービンとが共通の軸で結ばれてな
く、ガスタービンが単独に運転することが可能である。
2. Description of the Related Art In recent years, a combined cycle power plant has been widely adopted as an advantageous power generation system capable of reducing waste of energy as compared with a thermal power plant. There are two types of this combined cycle power plant that are characterized in terms of equipment layout. One is a single-shaft type, in which a gas turbine, a generator, and a steam turbine are directly connected by a common shaft. The other is referred to as a multi-shaft type, in which the gas turbine and the steam turbine are provided on separate shafts, and each turbine has a generator. In this multi-shaft combined cycle power plant, the gas turbine and the steam turbine are not connected by a common shaft, and the gas turbine can operate independently.

【0003】従来の多軸型複合サイクル発電プラントの
一例を図5に示している。複合サイクルの一方のガスサ
イクルはガスタービンユニットを構成する圧縮機1、燃
焼機2およびスタービン3が備えられる。また、ガスタ
ービン3の軸に電気出力を得るための発電機4が結ばれ
ている。また、他方の蒸気サイクルには蒸気タービン
5、復水器6、復水ポンプ7が備えられ、蒸気タービン
5の軸に発電機8が結ばれている。
FIG. 5 shows an example of a conventional multi-shaft combined cycle power plant. One gas cycle of the combined cycle includes a compressor 1, a combustor 2, and a turbine 3, which constitute a gas turbine unit. Further, a generator 4 for obtaining an electric output is connected to a shaft of the gas turbine 3. The other steam cycle includes a steam turbine 5, a condenser 6, and a condensate pump 7, and a generator 8 is connected to a shaft of the steam turbine 5.

【0004】ガスサイクルからの排ガスを蒸気タービン
の加熱媒体として導くためにガスタービン3の排気口と
結ぶ排ガスダクト9が設けられる。この排ガスダクト9
の終端に近い経路に排熱回収ボイラ10が設けられてい
る。排熱回収ボイラ10は過熱器11、蒸発器12、節
炭器13および蒸気ドラム14を備えている。
[0004] An exhaust gas duct 9 connected to an exhaust port of the gas turbine 3 is provided to guide exhaust gas from the gas cycle as a heating medium for the steam turbine. This exhaust gas duct 9
The exhaust heat recovery boiler 10 is provided in a path near the end of the boiler. The exhaust heat recovery boiler 10 includes a superheater 11, an evaporator 12, a economizer 13, and a steam drum 14.

【0005】さらに、燃焼器2と結ぶ燃料系統には燃料
流量を調節するための燃料調節弁15が設けられる。ま
た、排ガスダクト9はバイパススタック16と接続する
部分にダイバータ17を備えている。さらに、排ガスダ
クト9は排熱回収ボイラ10の入口にダンパ18を有す
る。なお、図中、符号19は蒸気加減弁、符号20はタ
ービンバイパス弁を示している。
Further, a fuel control valve 15 for controlling a fuel flow rate is provided in a fuel system connected to the combustor 2. Further, the exhaust gas duct 9 is provided with a diverter 17 at a portion connected to the bypass stack 16. Further, the exhaust gas duct 9 has a damper 18 at the entrance of the exhaust heat recovery boiler 10. In the drawings, reference numeral 19 denotes a steam control valve, and reference numeral 20 denotes a turbine bypass valve.

【0006】圧縮機1に吸入された空気は軸方向に流動
しつつ圧縮され、燃焼用空気として燃焼器2に送られ
る。ここで、燃焼用空気に燃料が混合され、高温の燃焼
ガスが発生する。燃焼ガスはガスタービン3に供給さ
れ、内部で膨張しつつ、仕事を行う。この仕事により発
電機4が回転し、電気出力が発生する。さらに、ガスタ
ービン3からの高温の排ガスは排ガスダクト9を通して
排熱回収ボイラ10に導かれる。排熱回収ボイラ10内
を流動する排ガスは過熱器11、蒸発器12および節炭
器13内を流れる蒸気および給水と熱交換することによ
り温度が降下し、図示しない煙突から大気中に放出され
る。
The air sucked into the compressor 1 is compressed while flowing in the axial direction, and is sent to the combustor 2 as combustion air. Here, the fuel is mixed with the combustion air to generate high-temperature combustion gas. The combustion gas is supplied to the gas turbine 3 and performs work while expanding inside. This work causes the generator 4 to rotate and generate an electrical output. Further, high-temperature exhaust gas from the gas turbine 3 is guided to an exhaust heat recovery boiler 10 through an exhaust gas duct 9. Exhaust gas flowing in the exhaust heat recovery boiler 10 exchanges heat with steam and feed water flowing in the superheater 11, the evaporator 12, and the economizer 13 to lower the temperature, and is discharged into the atmosphere from a chimney (not shown). .

【0007】一方、復水器6から抽出される復水は復水
ポンプ7で昇圧され、給水として節炭器13に供給され
る。給水は節炭器13内を流動してこの間に排ガスで温
められ、蒸気ドラム14に送られる。さらに、蒸気ドラ
ムから抽出される給水は蒸発器12に流動し、この間に
排ガスによって加熱されて蒸気となる。蒸気は蒸気ドラ
ム14から過熱器11に流れ、この間に排ガスによって
加熱され、過熱蒸気となる。
On the other hand, the condensate extracted from the condenser 6 is pressurized by the condensate pump 7 and supplied to the economizer 13 as water supply. The feedwater flows through the economizer 13, is heated by the exhaust gas during this time, and is sent to the steam drum 14. Further, the feed water extracted from the steam drum flows to the evaporator 12, during which the water is heated by the exhaust gas to become steam. The steam flows from the steam drum 14 to the superheater 11, during which the steam is heated by the exhaust gas to become superheated steam.

【0008】この蒸気は蒸気タービン5の入口に流れ、
内部で膨張しつつ、仕事を行う。この仕事により発電機
8が回転し、電気出力が発生する。仕事を終えた蒸気は
復水器6に排出され、冷却系統(図示せず)を通して送
られる冷却水によって冷却され、復水となる。
This steam flows to the inlet of the steam turbine 5,
Work while expanding inside. This work causes the generator 8 to rotate, producing an electrical output. After the work is completed, the steam is discharged to the condenser 6 and is cooled by cooling water sent through a cooling system (not shown) to be condensed.

【0009】この複合サイクル発電プラントにおいて、
たとえばガスタービン3の単独運転を行うとき、排ガス
ダクト9のダンパ18およびダイバータ17を全閉に保
ち、排熱回収ボイラ10への排ガスの流れを遮断し、排
ガスをバイパススタック16から系外に逃がすようにし
ている。
In this combined cycle power plant,
For example, when the gas turbine 3 is operated alone, the damper 18 and the diverter 17 of the exhaust gas duct 9 are fully closed, the flow of the exhaust gas to the exhaust heat recovery boiler 10 is shut off, and the exhaust gas is discharged from the bypass stack 16 to the outside of the system. Like that.

【0010】また、ガスタービン3の単独運転から蒸気
サイクルを起動するとき、排ガスダクト9のダンパ18
およびダイバータ17を全開し、バイパススタック16
へ向かう排ガスの流れを遮断し、ガスタービン3からの
高温の排ガスを排熱回収ボイラ10へ導くようにする。
When the steam cycle is started from the gas turbine 3 alone operation, the damper 18 of the exhaust gas duct 9
And the diverter 17 is fully opened and the bypass stack 16
The flow of the exhaust gas toward the exhaust gas is shut off, and the high-temperature exhaust gas from the gas turbine 3 is guided to the exhaust heat recovery boiler 10.

【0011】[0011]

【発明が解決しようとする課題】上述した複合サイクル
発電プラントの起動ではガスサイクルについてはガスタ
ービン3の特徴を活かした迅速な起動操作により速やか
に発電機4を電力系統に併入し、需要の増加に応える運
転が可能である。一方、蒸気サイクルについては起動か
ら蒸気タービン5が定格負荷を担うまでに制約を負う過
程が幾つかあり、蒸気サイクルの起動に要する時間が長
くなって電力系統に併入するまでに多くの時間を費やす
ことになる。
In the start-up of the combined cycle power plant described above, the generator 4 is quickly incorporated into the power system by a quick start-up operation utilizing the characteristics of the gas turbine 3 for the gas cycle, and the demand is reduced. Driving in response to the increase is possible. On the other hand, in the steam cycle, there are some processes that impose restrictions from the start to the time when the steam turbine 5 bears the rated load, and the time required for the start of the steam cycle becomes longer, and much time is required before the steam cycle is incorporated into the power system. Will spend.

【0012】蒸気サイクルが負う制約で問題なのは蒸気
タービン5へ導く主蒸気の温度が適切に制御できないこ
とにより構成部材に過大な熱応力が生じかねない点であ
る。こうした懸念はメタルマッチング条件、すなわち蒸
気温度とタービンメタル温度との差が十分小さな値とな
り、熱応力の発生が許容値以下になると予想される条件
を順守することで解消できるが、主蒸気温度を望ましい
温度に保つにはこの目的を果たす何らかの手段が必要
で、現状の起動方法によっては容易でない。メタルマッ
チング条件を満たす通気条件の成立を待ち、またメタル
マッチングを取りつつ、負荷上昇を図る過程など幾つか
の場面で蒸気サイクルには無駄な時間を費やす可能性が
あり、複合サイクル発電プラントの起動に要する時間が
長引いてしまう。
The problem with the restrictions imposed by the steam cycle is that the temperature of the main steam guided to the steam turbine 5 cannot be properly controlled, so that excessive thermal stress may occur in the components. These concerns can be solved by observing the metal matching conditions, that is, the conditions where the difference between the steam temperature and the turbine metal temperature is sufficiently small and the occurrence of thermal stress is expected to be below the allowable value. Maintaining the desired temperature requires some means of accomplishing this purpose and is not easy with current start-up methods. In some situations, such as in the process of increasing the load while waiting for the establishment of ventilation conditions that meet the metal matching conditions, and in the process of increasing the load while performing metal matching, there is a possibility that wasted time may be spent on the steam cycle. The time required for it is prolonged.

【0013】本発明の目的はガスサイクルの単独運転か
ら蒸気サイクルを含む複合サイクル運転に移行する際に
蒸気サイクルの蒸気タービンの起動を短時間のうちに果
たすことのできる複合サイクル発電プラントの起動方法
を提供することにある。
An object of the present invention is to provide a method for starting a combined cycle power plant that can start a steam turbine of a steam cycle in a short time when shifting from a single operation of a gas cycle to a combined cycle operation including a steam cycle. Is to provide.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に請求項1に係る発明はガスタービンと排熱回収ボイラ
と結ぶ排ガスダクトに圧縮機からの圧縮空気を燃焼器お
よびガスタービンをバイパスとして排ガスダクトに導
く、排ガス温度調節弁を備えた空気抽出管を接続し、排
熱回収ボイラの蒸気ドラムから蒸気タービンにかけての
蒸気経路にそこを通る蒸気にスプレー水を注入する減温
器を設けると共に、減温器と結ぶスプレー水管に主蒸気
温度調節弁を設け、しかして蒸気サイクルの起動にあた
り、通気条件の成立する前、排ガス温度調節弁を制御せ
ずに排熱回収ボイラへの排ガスを高温に保持し、このと
き発生蒸気を蒸気タービンをバイパスして復水器に逃が
し、通気条件の成立した後、排ガス温度調節弁の開度を
制御して低温の圧縮空気を排ガス中に注入し、さらに主
蒸気温度調節弁の開度を制御して低温のスプレー水を発
生蒸気中に注入して主蒸気温度をメタルマッチング条件
を満たす、望ましい温度に保って蒸気タービンに導入す
るようにしたものである。
According to a first aspect of the present invention, there is provided an exhaust gas duct connecting a gas turbine and an exhaust heat recovery boiler with compressed air from a compressor being used as a bypass for the combustor and the gas turbine. An air extraction pipe equipped with an exhaust gas temperature control valve, which leads to the exhaust gas duct, is connected to the steam path from the steam drum of the exhaust heat recovery boiler to the steam turbine. In addition, a main steam temperature control valve is installed in the spray water pipe connected to the temperature reducer, and when starting the steam cycle, the exhaust gas to the exhaust heat recovery boiler is heated without controlling the exhaust gas temperature control valve before the ventilation conditions are satisfied. At this time, the generated steam bypasses the steam turbine and escapes to the condenser, and after the ventilation conditions are established, the opening of the exhaust gas temperature control valve is controlled to control the low-temperature compression. Steam into the exhaust gas, control the opening of the main steam temperature control valve, and inject low-temperature spray water into the generated steam to maintain the main steam temperature at the desired temperature. Is introduced.

【0015】このような起動方法によれば排ガス温度を
蒸気サイクルにとって望ましい温度に保ちながら、主蒸
気温度調節弁を制御することで、スプレー水量をタービ
ンメタル温度の変化に合わせて調節し、主蒸気温度を構
成部材に過大な熱応力が生じない、望ましい温度に保つ
ことが可能になる。これにより蒸気タービンを短時間で
定格負荷まで上昇することができ、複合サイクル発電プ
ラントの起動に要する時間を短縮することが可能にな
る。
According to such a starting method, by controlling the main steam temperature control valve while maintaining the exhaust gas temperature at a desired temperature for the steam cycle, the spray water amount is adjusted in accordance with the change in the turbine metal temperature, and the main steam temperature is controlled. The temperature can be maintained at a desired temperature at which no excessive thermal stress occurs in the components. As a result, the steam turbine can be raised to the rated load in a short time, and the time required for starting the combined cycle power plant can be reduced.

【0016】また、請求項2に係る発明はガスタービン
と排熱回収ボイラとを結ぶ排ガスダクトにダイバータを
備えたバイパスタックを接続し、排熱回収ボイラの蒸気
ドラムから蒸気タービンにかけての蒸気経路にそこを通
る蒸気にスプレー水を注入する減温器を設けると共に、
減温器と結ぶスプレー水管に主蒸気温度調節弁を設け、
しかして蒸気サイクルの起動にあたり、通気条件の成立
する前、ダイバータを制御せずに排熱回収ボイラへの排
ガスを高温に保持し、このとき発生蒸気を蒸気タービン
をバイパスして復水器に逃がし、通気条件の成立した
後、ダイバータの開度を制御して流量の調節された排ガ
スを排熱回収ボイラに導き、さらに主蒸気温度調節弁の
開度を制御して低温のスプレー水を発生蒸気中に注入し
て主蒸気温度をメタルマッチング条件を満たす、望まし
い温度に保って蒸気タービンに導入するようにしたもの
である。
According to a second aspect of the present invention, a bypass stack having a diverter is connected to an exhaust gas duct connecting a gas turbine and an exhaust heat recovery boiler, and the exhaust gas duct is connected to a steam path from a steam drum to a steam turbine of the exhaust heat recovery boiler. In addition to installing a cooler that injects spray water into the steam passing there,
A main steam temperature control valve is installed in the spray water pipe connected to the temperature reducer,
Before starting the steam cycle, the exhaust gas to the exhaust heat recovery boiler was maintained at a high temperature without controlling the diverter before the ventilation conditions were established.At this time, the generated steam bypassed the steam turbine and escaped to the condenser. After the aeration conditions are established, the opening of the divertor is controlled to guide the exhaust gas whose flow rate is adjusted to the exhaust heat recovery boiler, and the opening of the main steam temperature control valve is controlled to generate low-temperature spray water. The main steam is injected into the steam turbine so that the main steam temperature is maintained at a desired temperature that satisfies the metal matching condition.

【0017】このような起動方法によれば、排ガス温度
を蒸気サイクルにとって望ましい温度に保ちながら、主
蒸気温度調節弁を制御することで、スプレー水量をター
ビンメタル温度の変化に合わせて調節し、主蒸気温度を
構成部材に過大な熱応力が生じない、望ましい温度に保
つことが可能になる。これにより蒸気タービンを短時間
で定格負荷まで上昇することができ、複合サイクル発電
プラントの起動に要する時間を短縮することが可能にな
る。
According to such a starting method, by controlling the main steam temperature control valve while maintaining the exhaust gas temperature at a temperature desired for the steam cycle, the spray water amount is adjusted according to the change in the turbine metal temperature, and the main steam temperature is controlled. The steam temperature can be maintained at a desired temperature at which no excessive thermal stress occurs in the components. As a result, the steam turbine can be raised to the rated load in a short time, and the time required for starting the combined cycle power plant can be reduced.

【0018】さらに、請求項3に係る発明は蒸気サイク
ルの起動にあたり、通気条件の成立する前、ガスタービ
ンユニットの燃料調節弁をガスサイクルの運転条件から
決められる燃料要求に従い制御し、このとき排熱回収ボ
イラの発生蒸気を蒸気タービンをバイパスして復水器に
逃がし、通気条件の成立した後、燃料調節弁をタービン
メタル温度に基づいて決められる出力パターンに合う燃
料要求に従い制御し、主蒸気温度をメタルマッチング条
件を満たす、望ましい温度に保って蒸気タービンに導入
するようにしたものである。
Further, in the invention according to claim 3, when starting the steam cycle, the fuel control valve of the gas turbine unit is controlled in accordance with the fuel requirement determined from the operating condition of the gas cycle before the ventilation condition is satisfied, and at this time, the exhaust is controlled. After the steam generated by the heat recovery boiler is escaped to the condenser by bypassing the steam turbine and the ventilation condition is established, the fuel control valve is controlled according to the fuel demand that matches the output pattern determined based on the turbine metal temperature, and the main steam is The temperature is maintained at a desired temperature that satisfies the metal matching condition and is introduced into the steam turbine.

【0019】このような起動方法によれば、排ガス温度
をタービンメタル温度に基づいて決められる出力パター
ンに合う燃料要求に従い調節することで、主蒸気温度を
構成部材に過大な熱応力が生じない、望ましい温度に保
持することができる。これにより蒸気タービンを短時間
で定格負荷まで上昇することができ、複合サイクル発電
プラントの起動に要する時間を短縮することが可能にな
る。
According to such a starting method, by adjusting the exhaust gas temperature in accordance with the fuel demand that matches the output pattern determined based on the turbine metal temperature, the main steam temperature does not cause excessive thermal stress in the constituent members. The desired temperature can be maintained. As a result, the steam turbine can be raised to the rated load in a short time, and the time required for starting the combined cycle power plant can be reduced.

【0020】また、請求項4に係る発明は蒸気サイクル
の起動にあたり、通気条件の成立する前、ガスタービン
ユニットの燃料調節弁をガスサイクルの運転条件から決
められる燃料要求に従い制御し、このとき排熱回収ボイ
ラの発生蒸気を蒸気タービンをバイパスして復水器に逃
がし、通気条件の成立した後、燃料調節弁を過熱器出口
蒸気温度およびタービンメタル温度に基づいて算出する
熱応力から得る燃料要求に従い制御し、主蒸気温度をメ
タルマッチング条件を満たす、望ましい温度に保って蒸
気タービンに導入するようにしたものである。
Further, in the invention according to claim 4, in starting the steam cycle, before the ventilation condition is satisfied, the fuel control valve of the gas turbine unit is controlled in accordance with the fuel requirement determined from the operating condition of the gas cycle. After the steam generated by the heat recovery boiler is released to the condenser bypassing the steam turbine and the ventilation conditions are established, the fuel demand obtained from the thermal stress calculated from the superheater outlet steam temperature and the turbine metal temperature through the fuel control valve is established. The main steam temperature is maintained at a desired temperature that satisfies the metal matching condition and is introduced into the steam turbine.

【0021】このような起動方法によれば、排ガス温度
をそのときの過熱器出口蒸気温度およびタービンメタル
温度に基づいて算出する熱応力から得る燃料要求に従い
調節することで、主蒸気温度を構成部材に過大な熱応力
が生じない、望ましい温度に保つことができる。これに
より蒸気タービンを短時間で定格負荷まで上昇すること
ができ、複合サイクル発電プラントの起動に要する時間
を短縮することが可能になる。
According to such a starting method, the main steam temperature is adjusted by adjusting the exhaust gas temperature in accordance with the fuel demand obtained from the thermal stress calculated based on the superheater outlet steam temperature and the turbine metal temperature at that time. At a desired temperature at which no excessive thermal stress occurs. As a result, the steam turbine can be raised to the rated load in a short time, and the time required for starting the combined cycle power plant can be reduced.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1において、ガスタービンユニ
ットは圧縮機1の出口から燃焼器2およびガスタービン
3をバイパスして排ガスダクト9に結ぶ空気抽出管21
を有する。この空気抽出管21の経路に排熱回収ボイラ
10への排ガス温度を調節する排ガス温度調節弁22が
設けられている。この排ガス温度調節弁22はそれの開
度を制御する制御装置23を備えており、この制御装置
23に空気抽出管21内を流れる圧縮空気の温度を検出
する温度検出器24から温度信号が入力されると共に、
排ガスダクト9内を流れる排ガスの温度を検出する温度
検出器25から温度信号が入力されている。また、この
制御装置23には後記の過熱器11の出口蒸気温度を検
出する温度検出器から温度信号が与えられる。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a gas turbine unit is an air extraction pipe 21 connected to an exhaust gas duct 9 by bypassing a combustor 2 and a gas turbine 3 from an outlet of a compressor 1.
Having. An exhaust gas temperature control valve 22 for adjusting the temperature of exhaust gas to the exhaust heat recovery boiler 10 is provided in the path of the air extraction pipe 21. The exhaust gas temperature control valve 22 has a control device 23 for controlling the opening degree of the exhaust gas temperature control valve 22. A temperature signal is input to the control device 23 from a temperature detector 24 for detecting the temperature of the compressed air flowing through the air extraction pipe 21. As well as
A temperature signal is input from a temperature detector 25 that detects the temperature of the exhaust gas flowing in the exhaust gas duct 9. In addition, a temperature signal is given to the control device 23 from a temperature detector that detects the steam temperature at the outlet of the superheater 11 described later.

【0023】さらに、排熱回収ボイラ10は蒸気ドラム
14から過熱器11にかけての蒸気経路に減温器26を
有する。この減温器26と結ぶスプレー水管27に蒸気
タービン5への主蒸気温度を調節するための主蒸気温度
調節弁28が介装されている。この主蒸気温度調節弁2
8はそれの開度を制御する制御装置29を備えており、
この制御装置29に過熱器11の出口蒸気温度を検出す
る温度検出器30から温度信号が入力され、また蒸気タ
ービン5のタービンメタル温度を検出する温度検出器3
1から温度信号が入力されるようになっている。
Further, the exhaust heat recovery boiler 10 has a temperature reducer 26 in a steam path from the steam drum 14 to the superheater 11. A main steam temperature control valve 28 for controlling the main steam temperature to the steam turbine 5 is interposed in the spray water pipe 27 connected to the temperature reducer 26. This main steam temperature control valve 2
8 is provided with a control device 29 for controlling the opening degree thereof,
A temperature signal is input from the temperature detector 30 for detecting the outlet steam temperature of the superheater 11 to the control device 29, and the temperature detector 3 for detecting the turbine metal temperature of the steam turbine 5
1, a temperature signal is input.

【0024】次に、蒸気サイクルの起動手順を説明す
る。ガスタービン3を先行して起動し、発電機4を電力
系統に併入する。このとき、ガスタービン3の排ガスは
ダンパー18およびダイバータ17が全閉状態にあるこ
とから、バイパススタック16から系外に流出する。
Next, the starting procedure of the steam cycle will be described. The gas turbine 3 is started first and the generator 4 is connected to the power system. At this time, the exhaust gas of the gas turbine 3 flows out of the system from the bypass stack 16 because the damper 18 and the diverter 17 are in the fully closed state.

【0025】次に、蒸気サイクルの蒸気を発生する排熱
回収ボイラ10を始動する。ダンパー18およびダイバ
ータ17を全開して排ガスダクト9から排熱回収ボイラ
10に排ガスを導く。起動の初期段階では排熱回収ボイ
ラ10で発生する蒸気の温度が低く、蒸気サイクルの要
求を満たす蒸気は発生しない。このとき、発生蒸気は蒸
気加減弁19が閉じたまま、蒸気タービン5には向かわ
ないで、開放されているタービンバイパス弁20を通っ
て復水器6にかけて流出する。
Next, the exhaust heat recovery boiler 10 for generating steam in the steam cycle is started. The exhaust gas is guided from the exhaust gas duct 9 to the exhaust heat recovery boiler 10 by fully opening the damper 18 and the diverter 17. In the initial stage of the start-up, the temperature of the steam generated in the exhaust heat recovery boiler 10 is low, and no steam meeting the requirements of the steam cycle is generated. At this time, the generated steam flows out to the condenser 6 through the opened turbine bypass valve 20 without going to the steam turbine 5 while the steam control valve 19 is closed.

【0026】通気条件を下まわる蒸気が発生する間、過
熱器出口蒸気温度を検出する温度検出器30から温度信
号が制御装置23に入力されるが、蒸気温度が低いまま
なので、排ガス温度の調節のために注入する圧縮ガスは
必要とせず、制御装置23からの排ガス温度調節弁22
に開度指令が出力されず、全閉に保たれる。一方、同じ
温度信号が制御装置29に入力されるが、蒸気温度が低
いまま推移するので、主蒸気温度の調節のために注入す
るスプレー水は必要としない。このため、制御装置29
から主蒸気温度調節弁28に対して開度指令は出され
ず、全閉に保持される。
While the steam below the aeration condition is generated, a temperature signal is input from the temperature detector 30 for detecting the steam temperature at the superheater outlet to the control device 23. However, since the steam temperature remains low, the temperature of the exhaust gas is regulated. Does not require compressed gas to be injected for the exhaust gas temperature control valve 22 from the controller 23.
Is not output, and is kept fully closed. On the other hand, the same temperature signal is input to the control device 29, but since the steam temperature remains low, spray water to be injected for adjusting the main steam temperature is not required. Therefore, the control device 29
Does not issue an opening command to the main steam temperature control valve 28 and is kept fully closed.

【0027】さらに、排ガスボイラ10に高温の排ガス
の流入が続くと、発生蒸気の温度が高くなり、メタルマ
ッチング条件を満たす通気条件が成立する。制御装置2
3、29にこの温度信号が与えられ、排ガス温度調節弁
22および主蒸気温度調節弁28により排ガス温度およ
び主蒸気温度がそれぞれ調節される。
Further, when the high-temperature exhaust gas continues to flow into the exhaust gas boiler 10, the temperature of the generated steam increases, and the ventilation conditions satisfying the metal matching conditions are established. Control device 2
The temperature signals are given to the exhaust gas temperature control valve 22 and the main steam temperature control valve 28 to control the exhaust gas temperature and the main steam temperature, respectively.

【0028】また、通気条件の成立に合わせて蒸気加減
弁19が開かれる。この蒸気加減弁19の開放で排熱回
収ボイラ10の発生蒸気が蒸気タービン5に流入し、蒸
気タービン5が起動する。決められた運動モードに従っ
て定格回転数まで昇速し、初負荷を取る。
The steam control valve 19 is opened in accordance with the establishment of the ventilation condition. When the steam control valve 19 is opened, the steam generated by the exhaust heat recovery boiler 10 flows into the steam turbine 5, and the steam turbine 5 is started. Accelerate to the rated speed according to the determined motion mode and take the initial load.

【0029】このとき、制御装置23において排ガス温
度を検出する温度検出器25からの温度信号と設定値と
の偏差に応じ、これに温度検出器24の検出温度信号に
よる補正値を加えた流量要求信号に基づく開度指令がつ
くられる。この開度指令が排ガス温度調節弁22に出力
され、圧縮空気が空気抽出管21を通して排ガスダクト
9内を流れる排ガス中に注入される。この圧縮空気の注
入により排熱回収ボイラ10に向かう排ガス温度が変化
し、結果として過熱器出口蒸気温度もその変化に応じて
変わる。
At this time, according to the deviation between the set value and the temperature signal from the temperature detector 25 for detecting the temperature of the exhaust gas in the control device 23, a flow rate request obtained by adding a correction value based on the detected temperature signal of the temperature detector 24 thereto. An opening command is generated based on the signal. This opening degree command is output to the exhaust gas temperature control valve 22, and compressed air is injected into the exhaust gas flowing through the exhaust gas duct 9 through the air extraction pipe 21. The injection of the compressed air changes the exhaust gas temperature toward the exhaust heat recovery boiler 10, and as a result, the superheater outlet steam temperature also changes according to the change.

【0030】すなわち、排ガス温度調節弁22により蒸
気サイクルにとって望ましい排ガス温度に保ち、それ単
独で過熱器出口蒸気温度を変化させることができる。し
かし、より直接的で、素早い主蒸気温度制御のためには
主蒸気調節弁28を用いて過熱器出口蒸気温度を調節す
る。主蒸気温度の急激な上昇は蒸気タービン5の構成部
材に過大な熱応力をもたらし好ましくない。
That is, the exhaust gas temperature control valve 22 can maintain the exhaust gas temperature desired for the steam cycle, and can independently change the superheater outlet steam temperature. However, for more direct and quick main steam temperature control, the main steam control valve 28 is used to adjust the superheater outlet steam temperature. A sudden rise in the main steam temperature is not preferable because it causes excessive thermal stress on the components of the steam turbine 5.

【0031】タービンメタル温度を検出する温度検出器
31からの温度信号と設定値との偏差に応じた流量要求
信号に基づく開度指令が制御装置29から主蒸気温度調
節弁29に出力される。この開度指令で主蒸気温度調節
弁28が開き、スプレー水管27からのスプレー水が減
温器26から蒸気中に注入される。これにより過度に主
蒸気温度が上昇するのを抑えることができ、タービン構
成部材に過大な熱応力が生じるのを防ぐことが可能にな
る。
An opening command based on a flow rate request signal corresponding to the difference between the temperature signal from the temperature detector 31 for detecting the turbine metal temperature and the set value is output from the control device 29 to the main steam temperature control valve 29. The opening degree command opens the main steam temperature control valve 28, and the spray water from the spray water pipe 27 is injected into the steam from the desuperheater 26. As a result, an excessive rise in the main steam temperature can be suppressed, and it is possible to prevent excessive thermal stress from occurring in the turbine components.

【0032】また、この負荷上昇中、蒸気タービン5の
タービンメタル温度が高くなるのに従い追値制御により
注入されるスプレー水量を調節し、適正な主蒸気温度を
保持する。この後、蒸気加減弁19を圧力制御にしてタ
ービンバイパス弁20を徐々に閉止する。このとき、主
蒸気はすべて蒸気加減弁19から蒸気タービン5に流入
し、蒸気サイクルの起動が完了する。
During this load increase, as the turbine metal temperature of the steam turbine 5 increases, the amount of spray water injected by the additional value control is adjusted to maintain an appropriate main steam temperature. Thereafter, the steam control valve 19 is pressure-controlled, and the turbine bypass valve 20 is gradually closed. At this time, all the main steam flows from the steam control valve 19 into the steam turbine 5, and the start of the steam cycle is completed.

【0033】このように蒸気サイクルの蒸気タービン5
の起動において、排熱回収ボイラ10への排ガス温度を
蒸気サイクルにとって望ましい温度に保ちながら、主蒸
気温度調節弁29を制御することで、スプレー水量をタ
ービンメタル温度の変化に合わせて調節し、主蒸気温度
を構成部材に過大な熱応力が生じない、望ましい温度に
保持することができ、蒸気タービン5を短時間で定格負
荷まで上昇することが可能になる。
As described above, the steam turbine 5 of the steam cycle
By controlling the main steam temperature control valve 29 while maintaining the exhaust gas temperature to the exhaust heat recovery boiler 10 at a temperature desired for the steam cycle, the spray water amount is adjusted according to the change in the turbine metal temperature. The steam temperature can be maintained at a desired temperature at which no excessive thermal stress occurs in the components, and the steam turbine 5 can be raised to the rated load in a short time.

【0034】したがって、ガスサイクルの起動した後に
蒸気サイクルの蒸気タービン5の起動を短時間のうちに
果たすことができ、複合サイクル発電プラントの起動に
要する時間を短縮することが可能になる。
Therefore, the start of the steam turbine 5 of the steam cycle can be accomplished within a short time after the start of the gas cycle, and the time required for starting the combined cycle power plant can be shortened.

【0035】さらに、本発明の異なる実施の形態を説明
する。図2において、排ガスダクト9に接続するバイパ
ススタック16の入口にダイバータ17が備えられる。
このダイバータ17は開度調節するための駆動装置32
と連結されている。駆動装置32は制御装置33を備え
ており、この制御装置33に排ガスダクト9内を流れる
排ガスの温度を検出する温度検出器25、34から温度
信号が入力されるようになっている。また、この制御装
置33には過熱器11の出口蒸気温度を検出する温度検
出器30から温度信号が与えられる。
Further, different embodiments of the present invention will be described. In FIG. 2, a diverter 17 is provided at the entrance of the bypass stack 16 connected to the exhaust gas duct 9.
The diverter 17 is provided with a driving device 32 for adjusting the opening.
Is linked to The drive device 32 includes a control device 33, and temperature signals are input to the control device 33 from temperature detectors 25 and 34 that detect the temperature of the exhaust gas flowing in the exhaust gas duct 9. Further, a temperature signal is given to the control device 33 from the temperature detector 30 which detects the outlet steam temperature of the superheater 11.

【0036】さらに、排熱回収ボイラ10は蒸気ドラム
14から過熱器11にかけての蒸気経路に減温器26を
有する。この減温器26と結ぶスプレー水管27に蒸気
タービン5への主蒸気温度を調節するための主蒸気温度
調節弁28が介装されている。この主蒸気温度調節弁2
8はそれの開度を制御する制御装置27を備えており、
この制御装置29に過熱器11の出口蒸気温度を検出す
る温度検出器30から温度信号が入力されると共に、蒸
気タービン5のタービンメタル温度を検出する温度検出
器31から温度信号が入力されるようになっている。
Further, the exhaust heat recovery boiler 10 has a temperature reducer 26 in a steam path from the steam drum 14 to the superheater 11. A main steam temperature control valve 28 for adjusting the main steam temperature to the steam turbine 5 is interposed in a spray water pipe 27 connected to the temperature reducer 26. This main steam temperature control valve 2
8 is provided with a control device 27 for controlling the opening degree thereof,
A temperature signal is input from the temperature detector 30 that detects the outlet steam temperature of the superheater 11 to the controller 29, and a temperature signal is input from the temperature detector 31 that detects the turbine metal temperature of the steam turbine 5 to the controller 29. It has become.

【0037】本実施の形態による蒸気サイクルの起動手
順は上述した手順と同一手順で進み、通気条件の成立に
合わせて蒸気加減弁19が開かれる。このとき、排熱回
収ボイラ10の発生蒸気が蒸気タービン5に流入し、蒸
気タービン5が起動する。さらに、定格回転数まで上昇
し、初負荷を取る。
The starting procedure of the steam cycle according to the present embodiment proceeds in the same manner as the above-described procedure, and the steam control valve 19 is opened in accordance with establishment of the ventilation condition. At this time, the steam generated by the exhaust heat recovery boiler 10 flows into the steam turbine 5, and the steam turbine 5 starts. Furthermore, it rises to the rated speed and takes the initial load.

【0038】また、制御装置33からの開閉指令がダイ
バータ17に備えられる駆動装置32に与えられる。こ
のとき、起動装置32と直結されるダイバータ17の開
度が全開位置から排ガス流動方向に対して傾いた微閉位
置に変化する。排熱回収ボイラ10に向かう排ガスの一
部は微閉位置にあるダイバータ17によってバイパスス
タック16に流入し、系外に流出する。
An opening / closing command from the control device 33 is given to a drive device 32 provided in the diverter 17. At this time, the opening degree of the diverter 17 directly connected to the activation device 32 changes from the fully open position to the slightly closed position inclined with respect to the exhaust gas flow direction. Part of the exhaust gas flowing toward the exhaust heat recovery boiler 10 flows into the bypass stack 16 by the diverter 17 at the slightly closed position, and flows out of the system.

【0039】この排ガスの系外の流出により排熱回収ボ
イラ10に流入する排ガス流量が変化し、このとき過熱
器出口蒸気温度も流量の変化に見合って変わる。すなわ
ち、全開から全閉位置に変位するダイバータ17により
蒸気サイクルにとって望ましい排ガス温度に保ち、それ
単独で過熱器出口蒸気を変化させることができる。しか
し、より直接的で素早い主蒸気温度制御のためには主蒸
気温度調節弁28を用いて過熱器出口蒸気温度を調節す
る。以後の起動手順については上記実施の形態によるも
のと同じである。
The flow rate of the exhaust gas flowing into the exhaust heat recovery boiler 10 changes due to the outflow of the exhaust gas outside the system. At this time, the temperature of the steam at the superheater outlet also changes according to the change in the flow rate. That is, the exhaust gas temperature desired for the steam cycle is maintained by the diverter 17 which is displaced from the fully open position to the fully closed position, and the steam at the outlet of the superheater can be independently changed. However, for more direct and quick main steam temperature control, the main steam temperature control valve 28 is used to adjust the superheater outlet steam temperature. Subsequent activation procedures are the same as those in the above embodiment.

【0040】かくして、本起動方法においても、蒸気サ
イクルの蒸気タービン5の起動において、排熱回収ボイ
ラ10への排ガス温度を蒸気サイクルにとって望ましい
温度に保ちながら、主蒸気温度調節弁29を制御するこ
とで、スプレー水量をタービンメタル温度の変化に合わ
せて調節し、主蒸気温度を構成部材に過大な熱応力が生
じない、望ましい温度に保持することができ、蒸気ター
ビン5を短時間で定格負荷まで上昇することが可能にな
る。
Thus, also in the present starting method, in starting the steam turbine 5 in the steam cycle, the main steam temperature control valve 29 is controlled while maintaining the exhaust gas temperature to the exhaust heat recovery boiler 10 at a temperature desired for the steam cycle. Thus, the amount of spray water can be adjusted in accordance with the change in the temperature of the turbine metal, and the main steam temperature can be maintained at a desired temperature at which no excessive thermal stress occurs in the constituent members. It is possible to rise.

【0041】したがって、ガスサイクルの起動した後に
蒸気サイクルの蒸気タービン5の起動を短時間のうちに
果たすことができ、複合サイクル発電プラントの起動に
要する時間を短縮することが可能になる。
Therefore, the start of the steam turbine 5 of the steam cycle can be accomplished within a short time after the start of the gas cycle, and the time required for starting the combined cycle power plant can be reduced.

【0042】さらに、本発明の異なる実施の形態を説明
する。図3において、燃料調節弁15はそれの開度を制
御する制御装置35を備えている。この制御装置35に
排ガスダクト9内を流れる排ガスの温度を検出する温度
検出器25から温度信号が入力される。さらに、過熱器
11の出口蒸気温度を検出する温度信号が入力されると
共に、蒸気タービン5のタービンメタル温度を検出する
温度検出器31から温度信号が入力されるようになって
いる。
Further, different embodiments of the present invention will be described. In FIG. 3, the fuel control valve 15 has a control device 35 for controlling the opening thereof. A temperature signal is input to the control device 35 from a temperature detector 25 that detects the temperature of the exhaust gas flowing in the exhaust gas duct 9. Further, a temperature signal for detecting the outlet steam temperature of the superheater 11 is input, and a temperature signal is input from a temperature detector 31 for detecting a turbine metal temperature of the steam turbine 5.

【0043】本実施の形態による蒸気サイクルの起動手
順は上述した手順と同一手順で進むが、通気条件の成立
する前、燃料調節弁15が制御装置35からのガスサイ
クルの運転条件から決められる燃料要求流量信号に従う
開度指令により制御される。このため、排ガス温度は高
温を保って排熱回収ボイラ10に流入する。通気条件の
成立に合わせて蒸気加減弁19が開かれ、このとき、排
熱回収ボイラ10の発生蒸気が蒸気タービン5に流入
し、蒸気タービン5が起動する。さらに、蒸気タービン
5を定格回転数まで上昇し、初負荷を取る。
The start-up procedure of the steam cycle according to the present embodiment proceeds in the same procedure as described above, but before the ventilating condition is satisfied, the fuel control valve 15 controls the fuel determined by the control unit 35 from the operating condition of the gas cycle. It is controlled by an opening command according to the required flow signal. For this reason, the exhaust gas temperature flows into the exhaust heat recovery boiler 10 while maintaining a high temperature. The steam control valve 19 is opened in accordance with establishment of the ventilation condition. At this time, the steam generated by the exhaust heat recovery boiler 10 flows into the steam turbine 5, and the steam turbine 5 starts. Further, the steam turbine 5 is raised to the rated speed, and the initial load is taken.

【0044】このとき、制御装置35において温度検出
器31からのメタル温度信号に基づいて決められる出力
パターンに合う燃料流量要求信号が作られ、これに従う
開度指令が燃料調節弁15に出力される。これにより燃
焼器2に流入する燃料量が増減し、ガスタービン3から
排出される排ガス温度が変化することで、結果として過
熱器出口蒸気温度もその変化に応じて変わる。すなわ
ち、タービン負荷上昇中、過度に主蒸気温度が上昇する
のを抑えることができ、タービン構成部材に過大な熱応
力が生じるのを防ぐことが可能になる。
At this time, the control unit 35 generates a fuel flow rate request signal that matches the output pattern determined based on the metal temperature signal from the temperature detector 31, and outputs an opening command to the fuel control valve 15 according to the signal. . As a result, the amount of fuel flowing into the combustor 2 increases and decreases, and the temperature of the exhaust gas discharged from the gas turbine 3 changes. As a result, the superheater outlet steam temperature also changes according to the change. That is, it is possible to suppress an excessive rise in the main steam temperature during an increase in the turbine load, and to prevent an excessive thermal stress from being generated in the turbine components.

【0045】この後、蒸気加減弁19を圧力制御してタ
ービンバイパス弁20を徐々に閉止する。このとき、主
蒸気は全量が蒸気加減弁19から蒸気タービン5に流入
し、蒸気サイクルの起動が完了する。
Thereafter, the pressure of the steam control valve 19 is controlled, and the turbine bypass valve 20 is gradually closed. At this time, all of the main steam flows from the steam control valve 19 into the steam turbine 5, and the start of the steam cycle is completed.

【0046】かくして、蒸気サイクルの蒸気タービン5
の起動において、排熱回収ボイラ10への排ガス温度を
タービンメタル温度に基づいて決められる出力パターン
に合う燃料要求に従い調節することで、主蒸気温度を構
成部材に過大な熱応力が生じない、望ましい温度に保持
することができ、蒸気タービン5を短時間で定格負荷ま
で上昇することが可能になる。
Thus, the steam turbine 5 of the steam cycle
It is desirable that the temperature of the exhaust gas to the exhaust heat recovery boiler 10 is adjusted in accordance with the fuel demand that matches the output pattern determined based on the turbine metal temperature, so that the main steam temperature does not cause excessive thermal stress in the components. The temperature can be maintained, and the steam turbine 5 can be raised to the rated load in a short time.

【0047】したがって、ガスサイクルの起動した後に
蒸気サイクルの蒸気タービン5の起動を短時間のうちに
果たすことができ、複合サイクル発電プラントの起動に
要する時間を短縮することが可能になる。
Therefore, the start of the steam turbine 5 in the steam cycle can be accomplished within a short time after the start of the gas cycle, and the time required for starting the combined cycle power plant can be reduced.

【0048】さらに、本発明の異なる実施の形態を説明
する。図4において、燃料調節弁15は開度を制御する
制御装置36を備えている。この制御装置35に排ガス
ダクト9内を流れる排ガスの温度を検出する温度検出器
25から温度信号が入力される。さらに、過熱器11の
出口蒸気温度を検出する温度信号が入力されると共に、
蒸気タービン5のタービンメタル温度を検出する温度検
出器31から温度信号が入力されるようになっている。
Further, different embodiments of the present invention will be described. In FIG. 4, the fuel control valve 15 includes a control device 36 for controlling the opening. A temperature signal is input to the control device 35 from a temperature detector 25 that detects the temperature of the exhaust gas flowing in the exhaust gas duct 9. Further, a temperature signal for detecting the outlet steam temperature of the superheater 11 is input, and
A temperature signal is input from a temperature detector 31 that detects a turbine metal temperature of the steam turbine 5.

【0049】本実施の形態による蒸気サイクルの起動手
順は上述した手順と同一手順で進むが通気条件の成立す
る前、燃料調節弁15が制御装置36からの運転条件か
ら決められる燃料要求流量信号に従う開度指令により制
御される。このため、排ガス温度は高温を保って排熱回
収ボイラ10に流入する。通気条件の成立に合わせて蒸
気加減弁19が開かれ、このとき、排熱回収ボイラ10
の発生蒸気が蒸気タービン5に流入し、蒸気タービン5
が起動する。
The start-up procedure of the steam cycle according to the present embodiment proceeds in the same procedure as described above, but before the ventilating condition is satisfied, the fuel control valve 15 follows the fuel demand flow rate signal determined from the operating condition from the controller 36. It is controlled by the opening command. For this reason, the exhaust gas temperature flows into the exhaust heat recovery boiler 10 while maintaining a high temperature. The steam control valve 19 is opened in accordance with establishment of the ventilation condition, and at this time, the exhaust heat recovery boiler 10 is opened.
Generated steam flows into the steam turbine 5, and the steam turbine 5
Starts.

【0050】さらに、蒸気タービン5を定格回転数まで
上昇し、初負荷を取る。このとき、制御装置36におい
て温度検出器30からの過熱器出口蒸気温度信号および
温度検出器31からのタービンメタル温度信号に基づい
て熱応力が算出され、構成材料からみて許容できる範囲
内に収まる蒸気温度が決められ、これに見合う主蒸気温
度が得られる燃料流量要求信号がつくられ、これに従う
開度指令が燃料調節弁15に出力される。これにより燃
焼器2に流入する燃料量が増減し、ガスタービン3から
排出される排ガス温度が変化することで、結果として過
熱器出口蒸気もその変化に応じて変わる。すなわち、タ
ービン負荷上昇中、過度に主蒸気が上昇するのを抑える
ことができ、タービン構成部材に過大な熱応力が生じる
のを防ぐことが可能になる。
Further, the steam turbine 5 is raised to the rated speed and the initial load is taken. At this time, the thermal stress is calculated in the control device 36 based on the superheater outlet steam temperature signal from the temperature detector 30 and the turbine metal temperature signal from the temperature detector 31, and the steam within the allowable range as viewed from the constituent materials is calculated. A temperature is determined, a fuel flow rate request signal is obtained to obtain a main steam temperature commensurate with the temperature, and an opening command in accordance with the signal is output to the fuel control valve 15. As a result, the amount of fuel flowing into the combustor 2 increases and decreases, and the temperature of the exhaust gas discharged from the gas turbine 3 changes. As a result, the superheater outlet steam also changes according to the change. That is, it is possible to prevent the main steam from rising excessively during the increase in the turbine load, and to prevent the occurrence of excessive thermal stress in the turbine components.

【0051】この後、蒸気加減弁19を圧力制御にして
タービンバイパス弁20を徐々に閉止する。このとき、
主蒸気はすべて蒸気加減弁19から蒸気タービン5に流
入し、蒸気サイクルの起動が完了する。
Thereafter, the steam control valve 19 is pressure-controlled, and the turbine bypass valve 20 is gradually closed. At this time,
All the main steam flows into the steam turbine 5 from the steam control valve 19, and the start of the steam cycle is completed.

【0052】かくして、蒸気サイクルの蒸気タービン5
の起動において、排熱回収ボイラ10への排ガス温度を
そのときの過熱器出口蒸気温度およびタービンメタル温
度に基づいて算出する熱応力から得る燃料要求に従い調
節することで、主蒸気温度を構成部材に過大な熱応力が
生じない、望ましい温度に保持することができ、蒸気タ
ービン5を短時間で定格負荷まで上昇することが可能に
なる。
Thus, the steam turbine 5 of the steam cycle
In the startup of the exhaust gas, the exhaust gas temperature to the exhaust heat recovery boiler 10 is adjusted according to the fuel demand obtained from the thermal stress calculated based on the superheater outlet steam temperature and the turbine metal temperature at that time, so that the main steam temperature is set to It is possible to maintain a desired temperature at which no excessive thermal stress occurs, and it is possible to raise the steam turbine 5 to the rated load in a short time.

【0053】したがって、ガスサイクルの起動した後に
蒸気サイクルの蒸気タービン5の起動を短時間のうちに
果たすことができ、複合サイクル発電プラントの起動に
要する時間を短縮することが可能になる。
Therefore, the start of the steam turbine 5 of the steam cycle can be accomplished within a short time after the start of the gas cycle, and the time required for starting the combined cycle power plant can be reduced.

【0054】[0054]

【発明の効果】本発明によれば、ガスサイクルの単独運
転から蒸気サイクルを含む複合サイクル運転に移行する
際に蒸気サイクルの蒸気タービンの起動を短時間のうち
に果たすことができ、複合サイクル発電プラントの起動
に要する時間を短縮することが可能になる。
According to the present invention, the start of the steam turbine of the steam cycle can be accomplished in a short time when the operation is shifted from the single operation of the gas cycle to the combined cycle operation including the steam cycle. It is possible to reduce the time required for starting the plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による起動方法のための手段を有する複
合サイクル発電プラントの系統図。
FIG. 1 is a system diagram of a combined cycle power plant having means for a start-up method according to the present invention.

【図2】本発明の他の起動方法(その1)のための手段
を有する複合サイクル発電プラントの系統図。
FIG. 2 is a system diagram of a combined cycle power plant having means for another start-up method (part 1) of the present invention.

【図3】本発明の他の起動方法(その2)のための手段
を有する複合サイクル発電プラントの系統図。
FIG. 3 is a system diagram of a combined cycle power plant having means for another start-up method (part 2) of the present invention.

【図4】本発明の他の起動方法(その3)のための手段
を有する複合サイクル発電プラントの系統図。
FIG. 4 is a system diagram of a combined cycle power plant having means for another start-up method (part 3) of the present invention.

【図5】従来の複合サイクル発電プラントの一例を示す
系統図。
FIG. 5 is a system diagram showing an example of a conventional combined cycle power plant.

【符号の説明】[Explanation of symbols]

3 ガスタービン 5 蒸気タービン 9 排ガスダクト 10 排熱回収ボイラ 15 燃料調節弁 17 ダイバータ 22 排ガス温度調節弁 23、29、33、35、36 制御装置 24、25、30、31 温度検出器 26 減温器 28 主蒸気温度調節弁 Reference Signs List 3 Gas turbine 5 Steam turbine 9 Exhaust gas duct 10 Exhaust heat recovery boiler 15 Fuel control valve 17 Divertor 22 Exhaust gas temperature control valve 23, 29, 33, 35, 36 Control device 24, 25, 30, 31 Temperature detector 26 Temperature reducer 28 Main steam temperature control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 7/26 F02C 7/26 D F22B 1/18 F22B 1/18 C Fターム(参考) 3G071 AB01 BA00 CA01 DA11 EA02 FA06 GA00 HA05 JA02 3G081 BA01 BA02 BA11 BB00 BC07 BD03 DA01 DA22 3L021 AA03 BA03 CA01 DA38 FA05 FA08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 7/26 F02C 7/26 D F22B 1/18 F22B 1/18 C F-term (Reference) 3G071 AB01 BA00 CA01 DA11 EA02 FA06 GA00 HA05 JA02 3G081 BA01 BA02 BA11 BB00 BC07 BD03 DA01 DA22 3L021 AA03 BA03 CA01 DA38 FA05 FA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、燃焼器およびガスタービンから
なるガスタービンユニットと、前記ガスタービンからの
排ガスを熱源媒体として取り入れ、蒸気を発生する排熱
回収ボイラと、前記排熱回収ボイラからの蒸気を作動媒
体として取り入れ、動力を生じる蒸気タービンとを備え
てなる複合サイクル発電プラントの起動方法において、
前記ガスタービンと前記排熱回収ボイラと結ぶ排ガスダ
クトに前記圧縮機からの圧縮空気を該燃焼器およびガス
タービンをバイパスとして該排ガスダクトに導く、排ガ
ス温度調節弁を備えた空気抽出管を接続し、前記排熱回
収ボイラの蒸気ドラムから前記蒸気タービンにかけての
蒸気経路にそこを通る蒸気にスプレー水を注入する減温
器を設けると共に、該減温器と結ぶスプレー水管に主蒸
気温度調節弁を設け、しかして蒸気サイクルの起動にあ
たり、通気条件の成立する前、前記排ガス温度調節弁を
制御せずに該排熱回収ボイラへの排ガスを高温に保持
し、このとき発生蒸気を該蒸気タービンをバイパスして
復水器に逃がし、通気条件の成立した後、前記排ガス温
度調節弁の開度を制御して低温の圧縮空気を排ガス中に
注入し、さらに前記主蒸気温度調節弁の開度を制御して
低温のスプレー水を発生蒸気中に注入して主蒸気温度を
メタルマッチング条件を満たす、望ましい温度に保って
前記蒸気タービンに導入するようにした複合サイクル発
電プラントの起動方法。
1. A gas turbine unit including a compressor, a combustor, and a gas turbine, an exhaust heat recovery boiler that takes in exhaust gas from the gas turbine as a heat source medium and generates steam, and a steam from the exhaust heat recovery boiler. In the method of starting a combined cycle power plant comprising:
An air extraction pipe having an exhaust gas temperature control valve is connected to an exhaust gas duct that connects the gas turbine and the exhaust heat recovery boiler, and guides compressed air from the compressor to the exhaust gas duct by bypassing the combustor and the gas turbine. A steam path from the steam drum of the exhaust heat recovery boiler to the steam turbine is provided with a temperature reducer for injecting spray water into steam passing therethrough, and a main steam temperature control valve is provided in a spray water pipe connected to the temperature reducer. Before starting the steam cycle, the exhaust gas to the exhaust heat recovery boiler is maintained at a high temperature without controlling the exhaust gas temperature control valve before the aeration condition is satisfied. Bypassed to the condenser, after the aeration conditions are satisfied, the opening degree of the exhaust gas temperature control valve is controlled to inject low-temperature compressed air into the exhaust gas, and Combined cycle power generation that controls the opening of the steam temperature control valve and injects low-temperature spray water into the generated steam so that the main steam temperature satisfies the metal matching condition and is introduced into the steam turbine at a desired temperature. How to start the plant.
【請求項2】 圧縮機、燃焼器およびガスタービンから
なるガスタービンユニットと、前記ガスタービンからの
排ガスを熱源媒体として取り入れ、蒸気を発生する排熱
回収ボイラと、前記排熱回収ボイラからの蒸気を作動媒
体として取り入れ、動力を生じる蒸気タービンとを備え
てなる複合サイクル発電プラントの起動方法において、
前記ガスタービンと前記排熱回収ボイラとを結ぶ排ガス
ダクトにダイバータを備えたバイパスタックを接続し、
前記排熱回収ボイラの蒸気ドラムから前記蒸気タービン
にかけての蒸気経路にそこを通る蒸気にスプレー水を注
入する減温器を設けると共に、該減温器と結ぶスプレー
水管に主蒸気温度調節弁を設け、しかして蒸気サイクル
の起動にあたり、通気条件の成立する前、前記ダイバー
タを制御せずに該排熱回収ボイラへの排ガスを高温に保
持し、このとき発生蒸気を該蒸気タービンをバイパスし
て復水器に逃がし、通気条件の成立した後、前記ダイバ
ータの開度を制御して流量の調節された排ガスを該排熱
回収ボイラに導き、さらに前記主蒸気温度調節弁の開度
を制御して低温のスプレー水を発生蒸気中に注入して主
蒸気温度をメタルマッチング条件を満たす、望ましい温
度に保って前記蒸気タービンに導入するようにした複合
サイクル発電プラントの起動方法。
2. A gas turbine unit including a compressor, a combustor, and a gas turbine, an exhaust heat recovery boiler that generates exhaust steam by taking exhaust gas from the gas turbine as a heat source medium, and a steam from the exhaust heat recovery boiler. In the method of starting a combined cycle power plant comprising:
A bypass stack having a diverter is connected to an exhaust gas duct connecting the gas turbine and the exhaust heat recovery boiler,
In the steam path from the steam drum of the exhaust heat recovery boiler to the steam turbine, a temperature reducer for injecting spray water into steam passing therethrough is provided, and a main steam temperature control valve is provided in a spray water pipe connected to the temperature reducer. However, before starting the steam cycle, before the ventilation conditions are satisfied, the exhaust gas to the exhaust heat recovery boiler is maintained at a high temperature without controlling the diverter, and at this time, the generated steam bypasses the steam turbine and is restored. Escape to the water heater, after the aeration conditions are satisfied, control the opening degree of the diverter to guide the exhaust gas whose flow rate is adjusted to the exhaust heat recovery boiler, and further control the opening degree of the main steam temperature control valve. A combined cycle power generation pump in which low-temperature spray water is injected into the generated steam to maintain the main steam temperature at a desired temperature that satisfies the metal matching condition and is introduced into the steam turbine. Theft of how to start.
【請求項3】 圧縮機、燃焼器およびガスタービンから
なるガスタービンユニットと、前記ガスタービンからの
排ガスを熱源媒体として取り入れ、蒸気を発生する排熱
回収ボイラと、前記排熱回収ボイラからの蒸気を作動媒
体として取り入れ、動力を生じる蒸気タービンとを備え
てなる複合サイクル発電プラントの起動方法において、
蒸気サイクルの起動にあたり、通気条件の成立する前、
該ガスタービンユニットの燃料調節弁をガスサイクルの
運転条件から決められる燃料要求に従い制御し、このと
き該排熱回収ボイラの発生蒸気を前記蒸気タービンをバ
イパスして復水器に逃がし、通気条件の成立した後、前
記燃料調節弁をタービンメタル温度に基づいて決められ
る出力パターンに合う燃料要求に従い制御し、主蒸気温
度をメタルマッチング条件を満たす、望ましい温度に保
って前記蒸気タービンに導入するようにした複合サイク
ル発電プラントの起動方法。
3. A gas turbine unit including a compressor, a combustor, and a gas turbine, an exhaust heat recovery boiler that takes in exhaust gas from the gas turbine as a heat source medium to generate steam, and a steam from the exhaust heat recovery boiler. In the method of starting a combined cycle power plant comprising:
Before starting the steam cycle, before the ventilation conditions are satisfied,
The fuel control valve of the gas turbine unit is controlled in accordance with a fuel demand determined from the operating conditions of the gas cycle. At this time, the steam generated from the exhaust heat recovery boiler is bypassed to the steam turbine to escape to the condenser, and After being established, the fuel control valve is controlled in accordance with a fuel demand that matches an output pattern determined based on the turbine metal temperature, so that the main steam temperature satisfies the metal matching condition and is introduced into the steam turbine while maintaining a desired temperature. To start a combined cycle power plant.
【請求項4】 圧縮機、燃焼器およびガスタービンから
なるガスタービンユニットと、前記ガスタービンからの
排ガスを熱源媒体として取り入れ、蒸気を発生する排熱
回収ボイラと、前記排熱回収ボイラからの蒸気を作動媒
体として取り入れ、動力を生じる蒸気タービンとを備え
てなる複合サイクル発電プラントの起動方法において、
蒸気サイクルの起動にあたり、通気条件の成立する前、
該ガスタービンユニットの燃料調節弁をガスサイクルの
運転条件から決められる燃料要求に従い制御し、このと
き該排熱回収ボイラの発生蒸気を前記蒸気タービンをバ
イパスして復水器に逃がし、通気条件の成立した後、前
記燃料調節弁を過熱器出口蒸気温度およびタービンメタ
ル温度に基づいて算出する熱応力から得る燃料要求に従
い制御し、主蒸気温度をメタルマッチング条件を満た
す、望ましい温度に保って前記蒸気タービンに導入する
ようにした複合サイクル発電プラントの起動方法。
4. A gas turbine unit including a compressor, a combustor, and a gas turbine, an exhaust heat recovery boiler that takes in exhaust gas from the gas turbine as a heat source medium and generates steam, and a steam from the exhaust heat recovery boiler. In the method of starting a combined cycle power plant comprising:
Before starting the steam cycle, before the ventilation conditions are satisfied,
The fuel control valve of the gas turbine unit is controlled in accordance with a fuel demand determined from the operating conditions of the gas cycle. At this time, the steam generated from the exhaust heat recovery boiler is bypassed to the steam turbine to escape to the condenser, and After being established, the fuel control valve is controlled in accordance with a fuel demand obtained from a thermal stress calculated based on a superheater outlet steam temperature and a turbine metal temperature, and the main steam temperature is maintained at a desired temperature satisfying a metal matching condition. A method for starting a combined cycle power plant to be introduced into a turbine.
JP10306489A 1998-10-28 1998-10-28 Starting method for combined cycle power plant Pending JP2000130108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10306489A JP2000130108A (en) 1998-10-28 1998-10-28 Starting method for combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10306489A JP2000130108A (en) 1998-10-28 1998-10-28 Starting method for combined cycle power plant

Publications (1)

Publication Number Publication Date
JP2000130108A true JP2000130108A (en) 2000-05-09

Family

ID=17957644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10306489A Pending JP2000130108A (en) 1998-10-28 1998-10-28 Starting method for combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2000130108A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327661A (en) * 2006-06-06 2007-12-20 Babcock Hitachi Kk Exhaust heat recovery boiler
JP2009057976A (en) * 2007-08-31 2009-03-19 General Electric Co <Ge> Power generation system including exhaust gas temperature adjusting device and method for controlling temperature of exhaust gas
JP2009156033A (en) * 2007-12-25 2009-07-16 Tokyo Electric Power Co Inc:The Combined cycle power generation plant and its operation method
JP2013540229A (en) * 2010-10-05 2013-10-31 アルストム テクノロジー リミテッド Combined cycle power plant with CO2 capture and method of operating the same
JP2015190441A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Multi-shaft combined cycle plant, and control device and control method thereof
JP2016205313A (en) * 2015-04-27 2016-12-08 株式会社東芝 Temperature control device, temperature control method, and power-generating plant
KR20170076565A (en) * 2015-12-24 2017-07-04 가부시끼가이샤 도시바 Plant control apparatus, plant control method and power generating plant
JP2017150807A (en) * 2016-02-25 2017-08-31 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH System and method for preheating heat recovery steam generator
JP2020023941A (en) * 2018-08-08 2020-02-13 川崎重工業株式会社 Combined cycle power generation plant
KR20210011017A (en) * 2018-06-29 2021-01-29 미츠비시 파워 가부시키가이샤 Combined power generation facility and its operation method
KR20210033517A (en) * 2018-08-08 2021-03-26 카와사키 주코교 카부시키 카이샤 Combined Cycle Power Plant
CN113565593A (en) * 2021-07-15 2021-10-29 广东惠州天然气发电有限公司 Load self-adaptive control system of split-shaft combined cycle unit in starting stage
WO2022070960A1 (en) * 2020-09-30 2022-04-07 三菱パワー株式会社 Combined cycle plant, method for starting up same, and start-up control program for executing said method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327661A (en) * 2006-06-06 2007-12-20 Babcock Hitachi Kk Exhaust heat recovery boiler
JP2009057976A (en) * 2007-08-31 2009-03-19 General Electric Co <Ge> Power generation system including exhaust gas temperature adjusting device and method for controlling temperature of exhaust gas
JP2009156033A (en) * 2007-12-25 2009-07-16 Tokyo Electric Power Co Inc:The Combined cycle power generation plant and its operation method
JP2013540229A (en) * 2010-10-05 2013-10-31 アルストム テクノロジー リミテッド Combined cycle power plant with CO2 capture and method of operating the same
JP2015190441A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Multi-shaft combined cycle plant, and control device and control method thereof
JP2016205313A (en) * 2015-04-27 2016-12-08 株式会社東芝 Temperature control device, temperature control method, and power-generating plant
KR20170076565A (en) * 2015-12-24 2017-07-04 가부시끼가이샤 도시바 Plant control apparatus, plant control method and power generating plant
KR101944285B1 (en) * 2015-12-24 2019-01-31 가부시끼가이샤 도시바 Plant control apparatus, plant control method and power generating plant
US10450900B2 (en) 2015-12-24 2019-10-22 Kabushiki Kaisha Toshiba Plant control apparatus, plant control method and power generating plant
JP2017150807A (en) * 2016-02-25 2017-08-31 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH System and method for preheating heat recovery steam generator
CN107120632A (en) * 2016-02-25 2017-09-01 通用电器技术有限公司 System and method for preheating waste heat recovery steam generator
KR20210011017A (en) * 2018-06-29 2021-01-29 미츠비시 파워 가부시키가이샤 Combined power generation facility and its operation method
KR102400461B1 (en) * 2018-06-29 2022-05-20 미츠비시 파워 가부시키가이샤 Combined cycle power plant and its operation method
CN112334636A (en) * 2018-06-29 2021-02-05 三菱动力株式会社 Composite power generation facility and method for operating same
CN112334636B (en) * 2018-06-29 2022-10-28 三菱重工业株式会社 Composite power generation facility and method for operating same
JP7137397B2 (en) 2018-08-08 2022-09-14 川崎重工業株式会社 Combined cycle power plant
KR20210033516A (en) * 2018-08-08 2021-03-26 카와사키 주코교 카부시키 카이샤 Combined Cycle Power Plant
KR20210033517A (en) * 2018-08-08 2021-03-26 카와사키 주코교 카부시키 카이샤 Combined Cycle Power Plant
KR102420538B1 (en) 2018-08-08 2022-07-13 카와사키 주코교 카부시키 카이샤 Combined Cycle Power Plant
JP2020023941A (en) * 2018-08-08 2020-02-13 川崎重工業株式会社 Combined cycle power generation plant
KR102457172B1 (en) * 2018-08-08 2022-10-20 카와사키 주코교 카부시키 카이샤 Combined Cycle Power Plant
CN112534121A (en) * 2018-08-08 2021-03-19 川崎重工业株式会社 Combined cycle power plant
WO2022070960A1 (en) * 2020-09-30 2022-04-07 三菱パワー株式会社 Combined cycle plant, method for starting up same, and start-up control program for executing said method
US11933197B2 (en) 2020-09-30 2024-03-19 Mitsubishi Heavy Industries, Ltd. Combined cycle plant, method for starting up same, and start-up control program for executing said method
JP7519858B2 (en) 2020-09-30 2024-07-22 三菱重工業株式会社 Combined cycle plant, start-up method thereof, and start-up control program for carrying out the method
CN113565593A (en) * 2021-07-15 2021-10-29 广东惠州天然气发电有限公司 Load self-adaptive control system of split-shaft combined cycle unit in starting stage
CN113565593B (en) * 2021-07-15 2023-08-15 广东惠州天然气发电有限公司 Load self-adaptive control system for starting stage of split-shaft combined cycle unit

Similar Documents

Publication Publication Date Title
JP4337960B2 (en) Apparatus and method for supplying auxiliary steam in a combined cycle system
US6782703B2 (en) Apparatus for starting a combined cycle power plant
JP5221443B2 (en) Method for starting single-shaft combined cycle power plant and single-shaft combined cycle power plant
JP3481983B2 (en) How to start a steam turbine
KR100268611B1 (en) Combined cycle power plant and supplying method of coolant therof
US7509794B2 (en) Waste heat steam generator
JPH08240105A (en) Combined cycle power plant and steam turbine warming method
JPH04159402A (en) Combined cycle generating plant
RU2731144C2 (en) Compressor driven by heat recycling unit with organic rankine cycle and control method
JP2000130108A (en) Starting method for combined cycle power plant
US11473445B2 (en) Steam turbine plant and cooling method for same
KR20070120172A (en) Method for starting a gas and steam turbine system
US6161385A (en) Turbomachine and method of use
KR102400461B1 (en) Combined cycle power plant and its operation method
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP3919966B2 (en) Operation method of combined cycle power plant
JP2002021509A (en) Combined cycle power plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPH03908A (en) Starting method for combined cycle plant
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JP2003343213A (en) Combined plant constructed with closed steam cooling gas turbine
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050324