JP2558855B2 - Method of operating steam-gas combined cycle power plant and its power plant - Google Patents

Method of operating steam-gas combined cycle power plant and its power plant

Info

Publication number
JP2558855B2
JP2558855B2 JP63320100A JP32010088A JP2558855B2 JP 2558855 B2 JP2558855 B2 JP 2558855B2 JP 63320100 A JP63320100 A JP 63320100A JP 32010088 A JP32010088 A JP 32010088A JP 2558855 B2 JP2558855 B2 JP 2558855B2
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure
low
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63320100A
Other languages
Japanese (ja)
Other versions
JPH02140405A (en
Inventor
悦一 羽田野
浩平 斉藤
正好 柿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP63320100A priority Critical patent/JP2558855B2/en
Publication of JPH02140405A publication Critical patent/JPH02140405A/en
Application granted granted Critical
Publication of JP2558855B2 publication Critical patent/JP2558855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、再熱器を有する排熱回収ボイラと蒸気ター
ビンとを組み合わせた蒸気−ガス複合サイクル発電プラ
ントの運転方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a method for operating a steam-gas combined cycle power plant in which an exhaust heat recovery boiler having a reheater and a steam turbine are combined, and Regarding the device.

(従来の技術) 蒸気−ガス複合サイクル発電プラントは、近年有力な
高効率発電技術として建設される数が増加しており、一
方、さらに高効率化を図るためガスタービン入口の高温
化、蒸気サイクルの再熱化などの対応が検討されてい
る。
(Prior Art) In recent years, the number of steam-gas combined cycle power generation plants constructed as a leading high-efficiency power generation technology is increasing, and on the other hand, in order to further improve the efficiency, the temperature of the gas turbine inlet is increased and the steam cycle is increased. Measures such as reheat of are being considered.

すなわち、第3図は上記蒸気−ガス複合サイクル発電
プラントの典型例を示す系統図であって、空気圧縮機1
で昇圧された空気は、燃料制御弁2を介して供給される
燃料とともに燃焼器3に供給され、そこで燃焼して高温
高圧燃焼ガスとなる。この燃焼ガスはガスタービン4に
導入され、そこで膨張して仕事を行ない、排気ガスとし
て排熱回収ボイラ5に送られる。
That is, FIG. 3 is a system diagram showing a typical example of the above steam-gas combined cycle power generation plant, and the air compressor 1
The air whose pressure has been increased by is supplied to the combustor 3 together with the fuel supplied through the fuel control valve 2, and is burned there to become high-temperature high-pressure combustion gas. This combustion gas is introduced into the gas turbine 4, expanded there to perform work, and is sent to the exhaust heat recovery boiler 5 as exhaust gas.

この排気ガスは十分高温であり、それぞれ排熱回収ボ
イラ5内に設置されている過熱器6、再熱器7、高圧蒸
気発生器8、高圧エコノマイザ9、中圧蒸気発生器10、
中圧エコノマイザ11、低圧蒸気発生器12および低圧エコ
ノマイザ13を加熱しながら排気され、ガスサイクルを形
成する。
The exhaust gas has a sufficiently high temperature, and the superheater 6, the reheater 7, the high-pressure steam generator 8, the high-pressure economizer 9, the medium-pressure steam generator 10, which are respectively installed in the exhaust heat recovery boiler 5,
The medium-pressure economizer 11, the low-pressure steam generator 12 and the low-pressure economizer 13 are heated and exhausted to form a gas cycle.

一方、高圧蒸気発生器8で発生した蒸気は、過熱器6
を経由し主蒸気管14を通り、主蒸気止め弁15、主蒸気加
減弁16を介して高圧タービン17に送られ、そこで膨張し
て仕事を行ない、その排気は逆止弁18を経て低温再熱管
19を通って再熱器7に送られる。上記高圧タービン17か
らの排気は再熱器7で加熱され、高温の再熱蒸気となっ
て高温再熱管20を通って再熱蒸気止め弁21および再熱蒸
気制御弁22を介して中圧タービン23に導かれ、中圧ター
ビン23および低圧タービン24内で膨張して仕事を行な
い、その後復水器25で循環水ポンプ26により送られる冷
却水と熱交換して復水となる。
On the other hand, the steam generated by the high-pressure steam generator 8 is the superheater 6
Through the main steam pipe 14 and the main steam stop valve 15 and the main steam control valve 16 to the high-pressure turbine 17, where it expands and performs work. Heat tube
It is sent to the reheater 7 through 19. The exhaust gas from the high-pressure turbine 17 is heated by the reheater 7, becomes high-temperature reheat steam, passes through the high-temperature reheat pipe 20, and passes through the reheat steam stop valve 21 and the reheat steam control valve 22 to generate the intermediate pressure turbine. After being guided to 23, it expands and performs work in the intermediate-pressure turbine 23 and the low-pressure turbine 24, and then in the condenser 25, it exchanges heat with the cooling water sent by the circulating water pump 26 to become condensed water.

上記復水器25で復水となった復水は、復水ポンプ27に
より排熱回収ボイラ5の低圧エコノマイザ13に送られ、
そこで加熱された後、低圧蒸気発生器12に戻される。こ
の低圧蒸気発生器12で発生した低圧蒸気は低圧蒸気管28
を通って低圧蒸気止め弁29および低圧蒸気制御弁30を介
して、前記中圧タービン23からの排気とともに低圧ター
ビン24に送られる。
The condensate that has been condensed by the condenser 25 is sent to the low pressure economizer 13 of the exhaust heat recovery boiler 5 by the condensate pump 27,
After being heated there, it is returned to the low pressure steam generator 12. The low-pressure steam generated by this low-pressure steam generator 12 is the low-pressure steam pipe 28.
Through the low pressure steam stop valve 29 and the low pressure steam control valve 30 and is sent to the low pressure turbine 24 together with the exhaust gas from the intermediate pressure turbine 23.

ところで、前記低圧蒸気発生器12内に残った缶水は、
昇圧ポンプ31で昇圧され、昇圧ポンプ31の途中の一部の
缶水は中圧エコノマイザ11で加熱された後中圧蒸気発生
器10へ送られ、残りは高圧エコノマイザ9で加熱され高
圧蒸気発生器8へ送られる。中圧蒸気発生器10で発生し
た中圧蒸気は、中圧蒸気管32を通って逆止弁33を経て前
記低温再熱管19に送られ高圧タービン排気と混合され
る。
By the way, the can water remaining in the low-pressure steam generator 12 is
The booster pump 31 boosts the pressure, and part of the water in the middle of the booster pump 31 is heated by the medium-pressure economizer 11 and then sent to the medium-pressure steam generator 10. The rest is heated by the high-pressure economizer 9 and is heated by the high-pressure steam generator 9. Sent to 8. The intermediate-pressure steam generated by the intermediate-pressure steam generator 10 passes through the intermediate-pressure steam pipe 32, the check valve 33 and the low-temperature reheat pipe 19, and is mixed with the high-pressure turbine exhaust.

なお、前記主蒸気管14には、タービンバイパス弁34を
介して復水器25へ分岐するタービンバイパス管35が分岐
されており、低温再熱管19の途中には、他ユニット或は
プラント補助蒸気などに使用するために、抽気弁36を介
して抽気可能なラインが接続されている。また、主蒸気
管14にはドレン弁37、中圧蒸気管32にはドレン弁38、低
圧蒸気管28にはドレン弁39、高圧再熱管20にはドレン管
40がそれぞれ設けられている。このようにして、水−蒸
気系に関する一つのサイクルが構成されている。
A turbine bypass pipe 35 that branches to a condenser 25 via a turbine bypass valve 34 is branched to the main steam pipe 14, and another unit or a plant auxiliary steam is provided in the middle of the low temperature reheat pipe 19. A line capable of being bleed is connected via a bleed valve 36 for use in such as. Further, a drain valve 37 for the main steam pipe 14, a drain valve 38 for the medium-pressure steam pipe 32, a drain valve 39 for the low-pressure steam pipe 28, and a drain pipe for the high-pressure reheat pipe 20.
40 are provided respectively. In this way, one cycle for the water-steam system is constructed.

一方、ガスタービン4、空気圧縮機1、高圧タービン
17、中圧タービン23、低圧タービン24は一軸でパワート
レイン系を構成し、その軸に発電機41および起動電動機
42が連結されている。
On the other hand, gas turbine 4, air compressor 1, high pressure turbine
17, the medium-pressure turbine 23, and the low-pressure turbine 24 constitute a power train system with a single shaft, and the generator 41 and the starter motor are arranged on the shaft.
42 are connected.

ところで、上記構成による蒸気−ガス複合サイクル発
電プラントの起動においては、停止中に燃料が万一漏洩
してガスタービン本体に流れ込んだ状態や、ガスタービ
ン着火失敗で流出した未燃焼燃料が残留した状態で着火
を行なうと、爆発や火災を招く危険性があり、これを防
止するためにガスタービン着火前には必ずガスタービン
系を安全な空気に置換する必要がある。
By the way, in the start-up of the steam-gas combined cycle power generation plant having the above-mentioned configuration, a state in which the fuel should leak and flow into the gas turbine body during a stop, or a state in which the unburned fuel that has flowed out due to the gas turbine ignition failure remains There is a danger of causing an explosion or a fire if ignited by, and in order to prevent this, it is necessary to replace the gas turbine system with safe air before igniting the gas turbine.

このため、プラント起動時には、起動発電機42によっ
てパワートレイン系を回転上昇させ、略30%の回転速度
を保持することで空気圧縮機1からの空気によって燃焼
器3およびガスタービン4の内部の空気を置換する。こ
のような空気の置換操作をパージ運転という。そして、
このパージ運転完了後は、燃焼器3に点火しガスタービ
ン4を着火し、再び起動電動機42によりパワートレイン
系を昇速して略50%の回転速度を保持する。
Therefore, when the plant is started up, the power train system is rotated and raised by the start-up generator 42 and the rotation speed of approximately 30% is maintained, so that the air from the air compressor 1 causes the air inside the combustor 3 and the gas turbine 4 to rise. Replace. Such an air replacement operation is called a purge operation. And
After the completion of the purge operation, the combustor 3 is ignited, the gas turbine 4 is ignited, and the power train system is accelerated again by the starting electric motor 42 to maintain the rotation speed of about 50%.

上記回転速度の保持によって、排熱回収ボイラ5はガ
スタービン排ガスによって暖められ、高圧蒸気発生器
8、中圧蒸気発生器10、低圧蒸気発生器12の各々におい
て蒸気が発生するようになるが、これらの蒸気の各々は
蒸気タービンに使用可能な圧力条件となるまでは高圧、
中圧、低圧の各蒸気管14,32,28で発生するドレンを各ド
レン弁37,38,39から排出しながら各蒸気管の暖管作用を
行なう。
By maintaining the rotation speed, the exhaust heat recovery boiler 5 is warmed by the gas turbine exhaust gas, and steam is generated in each of the high pressure steam generator 8, the intermediate pressure steam generator 10, and the low pressure steam generator 12, Each of these steams is at high pressure until pressure conditions are available for the steam turbine,
The drain generated in the medium-pressure and low-pressure steam pipes 14, 32, 28 is discharged from the drain valves 37, 38, 39 to warm the steam pipes.

その後、低圧蒸気発生器12の蒸気が所定圧力まで上昇
すると、ドレン弁39が閉じられ低圧タービン24の冷却用
として低圧蒸気制御弁30を介して低圧タービン24に導か
れる。同様に中圧蒸気発生器10の蒸気が所定圧力まで上
昇した時点で、ドレン弁38が閉じられ、再熱器7の冷却
用として逆止弁33を介して低温再熱管19に導かれる。こ
の時、高圧タービン排気側の逆止弁18は全閉し、再熱蒸
気止め弁21および再熱蒸気制御弁22は全開状態にあるの
で、通常中圧蒸気発生器10の蒸気圧力を所定圧力に制御
するために別途圧力調整装置(図示せず)が設けられて
いる。一方、高圧蒸気発生器8からの蒸気が所定圧力ま
で上昇した時点で、ドレン弁37が閉じられ、上記高圧蒸
気発生器8からの蒸気がタービンバイパス弁34を介して
復水器25に導かれる。
After that, when the steam of the low-pressure steam generator 12 rises to a predetermined pressure, the drain valve 39 is closed and guided to the low-pressure turbine 24 via the low-pressure steam control valve 30 for cooling the low-pressure turbine 24. Similarly, when the steam of the medium-pressure steam generator 10 has risen to a predetermined pressure, the drain valve 38 is closed, and is guided to the low temperature reheat pipe 19 via the check valve 33 for cooling the reheater 7. At this time, the check valve 18 on the high-pressure turbine exhaust side is fully closed, and the reheat steam stop valve 21 and the reheat steam control valve 22 are in the fully open state. A pressure adjusting device (not shown) is separately provided for controlling the temperature. On the other hand, when the steam from the high-pressure steam generator 8 rises to a predetermined pressure, the drain valve 37 is closed and the steam from the high-pressure steam generator 8 is guided to the condenser 25 via the turbine bypass valve 34. .

そこで、この間ガスタービン4への燃料供給量を増加
させつつパワートレイン系を昇速し、略70%速度に到達
すると、空気圧縮機1から送られる空気で燃焼した燃焼
ガスによるガスタービン4の作動によってパワートレイ
ン系の回転速度が維持できるようになるので、起動電動
機42が停止される。しかして、これに引き続いて燃料を
増加してガスタービン4によりパワートレイン系を昇速
し、定格速度において発電機41を併入して初負荷をと
る。さらにガスタービン4による負荷上昇を続行し、高
圧蒸気発生器8からの蒸気が高圧タービン17のロータ温
度に対して適する温度に達すると、タービンバイパス弁
34が閉じられ、その蒸気が蒸気加減弁16を介して高圧タ
ービン17に導かれ、その後は、ガスタービン4と高圧タ
ービン17の負荷を上昇しながらプラントの負荷上昇を行
なっていく。
Therefore, during this time, when the power train system is accelerated while increasing the fuel supply amount to the gas turbine 4 and reaches approximately 70% speed, the operation of the gas turbine 4 by the combustion gas burned by the air sent from the air compressor 1 As a result, the rotation speed of the power train system can be maintained, so that the starting electric motor 42 is stopped. Then, subsequently to this, the fuel is increased to accelerate the power train system by the gas turbine 4, and the generator 41 is inserted at the rated speed to take the initial load. When the load from the gas turbine 4 is further increased and the steam from the high-pressure steam generator 8 reaches a temperature suitable for the rotor temperature of the high-pressure turbine 17, the turbine bypass valve
34 is closed, the steam is guided to the high pressure turbine 17 through the steam control valve 16, and thereafter, the load of the plant is increased while increasing the loads of the gas turbine 4 and the high pressure turbine 17.

(発明が解決しようとする課題) ところが、このような起動においては、パワートレイ
ン系の最初の回転上昇時から低圧蒸気発生器12よりの蒸
気が低圧タービン24に導入されるまでの間、長翼を有す
る低圧タービン24が空回り状態となり、回転による摩擦
エネルギーのために高温となり、低圧タービン24に使用
される部品にとって好ましくない状態に置かれることに
なる等の問題がある。また、ガスタービン着火後、中圧
蒸気発生器10からの蒸気が低温再熱管19に導かれるまで
の間、再熱器7には蒸気が流れていない状態でガスター
ビン4の排ガスによって加熱され続けることになり、再
熱器7の加熱管の燃損を招くような状態が予想される。
(Problems to be Solved by the Invention) However, in such a start-up, from the time when the power train system first rises until the steam from the low-pressure steam generator 12 is introduced into the low-pressure turbine 24, However, there is a problem that the low-pressure turbine 24 having the above condition becomes idle and becomes high in temperature due to frictional energy due to rotation, and is placed in a state unfavorable for parts used in the low-pressure turbine 24. Further, after the gas turbine is ignited, until the steam from the medium pressure steam generator 10 is guided to the low temperature reheat pipe 19, the steam is continuously heated by the exhaust gas of the gas turbine 4 while the steam is not flowing to the reheater 7. Therefore, it is expected that the heating pipe of the reheater 7 will be burned.

また、上述の如き蒸気−ガス複合サイクル発電プラン
トの運転中には、低温再熱管19の圧力は中圧タービン23
の入口蒸気流量に略比例して変化する。このため他ユニ
ット或はプラント補助蒸気などに使用するために抽気弁
36を介して抽気する時には、低温再熱管内圧力は通常運
転中の圧力より低下することになる。この場合、抽気量
が中圧タービン入口蒸気流量に対して少ない場合には問
題ないが、例えば略20%を超えるような多量の場合には
低温再熱管内の圧力降下が大きくなる。
Further, during the operation of the steam-gas combined cycle power plant as described above, the pressure of the low temperature reheat pipe 19 is set to the intermediate pressure turbine 23.
Changes substantially in proportion to the inlet steam flow rate. For this reason, the bleed valve should be used for other units or for plant auxiliary steam.
When bleeding through 36, the pressure in the low temperature reheat pipe will be lower than the pressure during normal operation. In this case, there is no problem when the extraction amount is small with respect to the medium-pressure turbine inlet steam flow rate, but when the extraction amount is large, for example, more than approximately 20%, the pressure drop in the low temperature reheat pipe becomes large.

このような状態においては、排熱回収ボイラ5の高
圧、中圧、低圧の各蒸気発生器での収熱バランスがそれ
ぞれの計画条件と大きく異なり、発生蒸気量が計画値と
大きくずれて性能低下を助長するだけでなく、高圧ター
ビン最終段羽根に過大な応力を発生させることになる等
の問題がある。
In such a state, the heat collection balance in each of the high-pressure, medium-pressure, and low-pressure steam generators of the exhaust heat recovery boiler 5 is greatly different from each planned condition, and the generated steam amount largely deviates from the planned value, resulting in performance deterioration. There is a problem that not only the above-mentioned problem is promoted but also excessive stress is generated in the last stage blade of the high pressure turbine.

本発明はこのような点に鑑み、プラント起動時に、低
圧タービンおよび再熱器の過熱を防止する蒸気−ガス複
合サイクル発電プラントの運転方法およびその装置を得
ることを目的とする。また、本発明の別の目的は、プラ
ント運転時に低温再熱管より抽気する場合に、性能低下
を極力減らし、しかも高圧タービン最終段羽根に過大な
応力を発生させることがないようにした蒸気−ガス複合
サイクル発電プラントの運転方法およびその装置を得る
ことにある。
In view of such a point, the present invention has an object to obtain a method for operating a steam-gas combined cycle power plant that prevents overheating of a low-pressure turbine and a reheater at the time of plant startup, and an apparatus thereof. Further, another object of the present invention is to reduce the performance deterioration as much as possible when extracting air from the low temperature reheat pipe during plant operation, and to prevent excessive stress from being generated in the final stage blades of the high pressure turbine. (EN) A method of operating a combined cycle power plant and an apparatus therefor.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 本発明は、ガスタービンおよび空気圧縮機、そのガス
タービンからの排熱によって発生する蒸気によって作動
する高圧側タービンおよび低圧側タービンからなる蒸気
タービン、並びに発電機を各々同一軸上に配置構成し
た、パワートレイン系を有する蒸気−ガス複合サイクル
発電プラントの運転方法において、プラント起動用蒸気
供給装置からの蒸気を再熱器を経て低圧側タービンに導
きパワートレイン系を昇速し、次にその速度を保持して
空気圧縮機からの空気でガスタービン設備内の空気を置
換し、その後ガスタービンを着火するとともに、引き続
いてプラント起動用蒸気供給装置からの蒸気によってパ
ワートレイン系を昇速し、ガスタービンが自立できる回
転速度到達後には、プラント起動用蒸気供給装置からの
蒸気は再熱器および低圧側タービンの冷却用として確保
するとともに、再熱蒸気制御弁の制御によって低圧側タ
ービンの入口蒸気圧力を一定に制御しながら、燃料制御
弁によってパワートレイン系の昇速制御を行うことを特
徴とする。
(Means for Solving the Problems) The present invention provides a gas turbine and an air compressor, a steam turbine including a high-pressure side turbine and a low-pressure side turbine that are operated by steam generated by exhaust heat from the gas turbine, and a generator. In a method of operating a steam-gas combined cycle power plant having a power train system, each of which is arranged on the same axis, the steam from the plant start steam supply device is introduced to the low pressure side turbine through the reheater, and the power train system is provided. The speed is increased, and then the speed is maintained to replace the air in the gas turbine equipment with the air from the air compressor, after which the gas turbine is ignited and the power from the plant start steam supply device is subsequently used to power the steam. After accelerating the train system and reaching the rotation speed at which the gas turbine can be self-sustaining, start the steam supply system for plant The steam from the plant is secured for cooling the reheater and the low-pressure side turbine, and while controlling the inlet steam pressure of the low-pressure side turbine by the control of the reheat steam control valve, the fuel control valve controls the power train system. It is characterized by performing speed-up control.

また、冷機起動時においては再熱器が十分に暖まって
おらず、起動用蒸気を再熱器に通すと蒸気が冷やされて
過ぎて低圧側タービン入口部の起動状態に対してかえっ
て好ましくないことになるため、このような場合には起
動用蒸気を再熱器の下流側の高温再熱管に導いて起動で
きるようにしたことを特徴とする。
Also, at the time of cold start, the reheater is not sufficiently warm, and when the starting steam is passed through the reheater, the steam is cooled too much, which is not preferable for the starting state of the low pressure side turbine inlet. Therefore, in such a case, it is characterized in that the starting steam is guided to the high temperature reheat pipe on the downstream side of the reheater so as to be started.

さらに、本発明は排熱回収ボイラからの蒸気が高圧側
タービンに導入されるようになった後は、低圧側タービ
ン入口圧力を発電機の負荷を介して再熱蒸気制御弁によ
って制御するようにしてもよい。
Further, in the present invention, after the steam from the exhaust heat recovery boiler is introduced into the high pressure side turbine, the low pressure side turbine inlet pressure is controlled by the reheat steam control valve via the load of the generator. May be.

また、本発明に係わる装置は、ガスタービンおよび空
気圧縮機、そのガスタービンからの排熱によって発生す
る蒸気によって作動する高圧側タービン、低圧側タービ
ンからなる蒸気タービン、並びに発電機を各々同一軸上
に配置構成したパワートレイン系を有する蒸気−ガス複
合サイクル発電プラントにおいて、高圧側タービンの排
気側の低温再熱管に起動用蒸気供給装置を接続したこと
を特徴とするものである。
Further, the apparatus according to the present invention includes a gas turbine and an air compressor, a high-pressure side turbine operated by steam generated by exhaust heat from the gas turbine, a steam turbine including a low-pressure side turbine, and a generator on the same axis. In the steam-gas combined cycle power generation plant having the power train system arranged as described above, the starting steam supply device is connected to the low temperature reheat pipe on the exhaust side of the high pressure side turbine.

(作用) プラント起動過程においては起動用蒸気供給装置から
蒸気を低温再熱管に導入し、その蒸気によって低圧側タ
ービンを駆動し、それによってガスタービンの起動を行
なう。したがって、パワートレイン系の回転中は低温再
熱管を通して常に再熱器ならびに低圧側タービンに蒸気
が流れ、ガスタービンの排ガスによって再熱器の加熱管
が損傷に至るほど加熱されることがなく、また風損によ
って低圧側タービンが高温となることがない。また、再
熱器が十分暖まっていない場合には、高温再熱管を通し
て低圧側タービンに蒸気を切替え送給するので、低圧側
タービンが低温蒸気で作動されることもない。
(Operation) In the plant starting process, steam is introduced from the starting steam supply device to the low temperature reheat pipe, and the low pressure side turbine is driven by the steam, thereby starting the gas turbine. Therefore, during the rotation of the powertrain system, the steam always flows through the low temperature reheat pipe to the reheater and the low pressure side turbine, and the exhaust pipe of the gas turbine does not heat the heating pipe of the reheater to the extent that it is damaged. The low pressure turbine does not become hot due to wind loss. Further, when the reheater is not sufficiently warmed, steam is switched and sent to the low pressure side turbine through the high temperature reheat pipe, so that the low pressure side turbine is not operated by the low temperature steam.

また、排熱回収ボイラからの蒸気が高圧側タービンに
導入されるようになった後は、低圧側タービン入口圧力
を発電機の負荷を介して再熱蒸気制御弁によって制御す
る。したがって、プラント運転中に他ユニット或はプラ
ント補助蒸気などに抽気しても、低温再熱管内圧力が通
常運転中発電機負荷に応じて変化する圧力より低下する
ことはない。そのため、中圧蒸気発生器での収熱バラン
スが発電機の負荷に応じて安定に変化し、中圧発生蒸気
量はほぼ計画値通りに得ることができ、さらに高圧ター
ビン最終段羽根にかかる蒸気負荷すなわち応力は計画値
に対して過大になることはなく、プラント運転中の性能
および高圧タービン最終段羽根にかかる応力がほぼ計画
値通りに維持されることになる。
Further, after the steam from the exhaust heat recovery boiler is introduced into the high pressure side turbine, the low pressure side turbine inlet pressure is controlled by the reheat steam control valve via the load of the generator. Therefore, even when the other unit or the plant auxiliary steam is extracted during the operation of the plant, the low temperature reheat pipe internal pressure does not drop below the pressure that changes according to the generator load during the normal operation. Therefore, the heat collection balance in the medium-pressure steam generator changes stably according to the load on the generator, and the amount of medium-pressure generated steam can be obtained almost as planned. The load or stress does not become excessive with respect to the planned value, and the performance during the plant operation and the stress applied to the final stage blades of the high-pressure turbine are maintained almost as planned.

(実施例) 以下、添付図面を参照して本発明の実施例について説
明する。なお、第1図中第3図と同一部分には同一符号
を付しその詳細な説明は省略する。
Embodiments Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, the same parts as those in FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted.

第1図において、高圧タービン17の排気側に接続され
た低温再熱管19には、弁43を介して起動用蒸気供給装置
44が接続されている。また、上記起動用蒸気供給装置44
は弁45を介して再熱器7の下流側の高温再熱管20にも接
続されている。
In FIG. 1, a low-temperature reheat pipe 19 connected to the exhaust side of the high-pressure turbine 17 is provided with a starting steam supply device via a valve 43.
44 is connected. In addition, the starting steam supply device 44
Is also connected via a valve 45 to a high temperature reheat pipe 20 downstream of the reheater 7.

しかして、プラントの起動に際しては、まず逆止弁1
8,33および再熱蒸気制御弁22が全閉の状態で、弁43を開
き起動用蒸気供給装置44から起動用蒸気を低温再熱管19
に導入する。するとこの蒸気によって低温再熱管19、再
熱器7、高温再熱管20からなる再熱ラインが徐々に暖め
られ、この間に発生するドレンはドレン弁40から排出さ
れる。また、起動用蒸気を再熱器7を通さずに起動する
場合には、弁43を閉じた状態で弁45を開き、起動用蒸気
供給装置からの起動用蒸気を高温再熱管20に導入する。
Then, when starting the plant, first check valve 1
8,33 and the reheat steam control valve 22 are fully closed, the valve 43 is opened and the start steam is supplied from the start steam supply device 44 to the low temperature reheat pipe 19
To be introduced. Then, this steam gradually warms the reheat line consisting of the low temperature reheat pipe 19, the reheater 7, and the high temperature reheat pipe 20, and the drain generated during this time is discharged from the drain valve 40. Moreover, when starting steam without passing through the reheater 7, the valve 45 is opened with the valve 43 closed, and the starting steam from the starting steam supply device is introduced into the high temperature reheat pipe 20. .

ドレンの発生がなくなり再熱ライン内の蒸気圧力が所
定の圧力となったら、再熱蒸気制御弁22を微開して蒸気
を中圧タービンに導き、その後上記再熱蒸気制御弁22に
よってパワートレイン系の回転速度を一定に制御する。
When drainage is eliminated and the steam pressure in the reheat line reaches the specified pressure, the reheat steam control valve 22 is slightly opened to guide the steam to the intermediate pressure turbine, and then the reheat steam control valve 22 is used to power train. The rotation speed of the system is controlled to be constant.

そこで、上記パワートレイン系の回転速度を30%の回
転速度に保持して、ガスタービン設備のパージ運転を行
ない、このパージ運転の完了後一旦パワートレイン系の
回転速度を略16%まで下げてガスタービンを着火する。
その後再び起動用蒸気供給装置44からの蒸気によりパワ
ートレイン系を昇速して略50%の回転速度に保持する。
この間、再熱器7および低圧タービン24等は起動用蒸気
供給装置44から供給される蒸気によってその冷却が維持
され、排熱回収ボイラ5はガスタービン排ガスによって
暖められる。そして、高圧蒸気発生器8、中圧蒸気発生
器10、および低圧蒸気発生器12において発生する蒸気が
それぞれ蒸気タービンに使用可能な圧力条件となるまで
は、高圧蒸気管14、中圧蒸気管32、および低圧蒸気管28
の各々で発生するドレンを各ドレン弁37,38,39より排出
しながら各蒸気管の暖管操作を行なう。
Therefore, the rotational speed of the powertrain system is maintained at 30% to carry out the purge operation of the gas turbine equipment, and after the completion of the purge operation, the rotational speed of the powertrain system is temporarily reduced to about 16% and the gas is cooled. Ignite the turbine.
After that, the power train system is accelerated again by the steam from the starting steam supply device 44 to maintain the rotation speed at about 50%.
During this time, the reheater 7, the low-pressure turbine 24, etc. are kept cooled by the steam supplied from the starting steam supply device 44, and the exhaust heat recovery boiler 5 is warmed by the gas turbine exhaust gas. The high-pressure steam pipe 14, the medium-pressure steam pipe 32, and the medium-pressure steam generator 10 until the steam generated in the low-pressure steam generator 12 and the low-pressure steam generator 12 reach the pressure conditions that can be used in the steam turbine. , And low-pressure steam pipe 28
The drain pipe 37, 38, 39 discharges the drain generated in each of the above, while warming up the steam pipe.

その後、低圧蒸気発生器12の蒸気が所定圧力まで上昇
すると、ドレン弁39が閉じられるとともにその蒸気が低
圧蒸気制御弁30を介して低圧タービン24に導かれ熱回収
される。同様に、中圧蒸気発生器10の蒸気が所定圧力ま
で上昇すると、ドレン弁38が閉じられ、上記中圧蒸気発
生器10からの蒸気が逆止弁33を介して低温再熱管19に導
かれ熱回収される。また、高圧蒸気発生器8の蒸気も、
所定圧力まで上昇すると、ドレン弁37が閉じられタービ
ンバイパス弁34を介して復水器25に導かれる。
After that, when the steam of the low-pressure steam generator 12 rises to a predetermined pressure, the drain valve 39 is closed and the steam is guided to the low-pressure turbine 24 via the low-pressure steam control valve 30 and heat is recovered. Similarly, when the steam of the medium pressure steam generator 10 rises to a predetermined pressure, the drain valve 38 is closed and the steam from the medium pressure steam generator 10 is guided to the low temperature reheat pipe 19 via the check valve 33. Heat is recovered. Also, the steam of the high-pressure steam generator 8
When the pressure rises to a predetermined pressure, the drain valve 37 is closed and the water is guided to the condenser 25 via the turbine bypass valve 34.

一方、この間、ガスタービン4への燃料供給量を増加
させながらパワートレイン系を昇速し、略70%速度に到
達すると、空気圧縮機1から送られる空気で燃焼した燃
焼ガスがガスタービン4で仕事をしてパワートレイン系
の回転速度を維持できるようになるので、この後は起動
用蒸気供給装置44からの蒸気は再熱蒸気制御弁22によっ
て中圧タービンの入口圧力を一定にするように制御され
る。そこで、引き続き燃料制御弁2によって燃料を増加
してガスタービン4によりパワートレイン系を昇速し、
その後定格速度において発電機41を併入して初負荷をと
る。
On the other hand, during this period, when the power train system is accelerated while increasing the fuel supply amount to the gas turbine 4 and reaches approximately 70% speed, the combustion gas burned by the air sent from the air compressor 1 is generated in the gas turbine 4. Since it becomes possible to work and maintain the rotation speed of the powertrain system, after that, the steam from the starting steam supply device 44 is controlled by the reheat steam control valve 22 so that the inlet pressure of the intermediate pressure turbine becomes constant. Controlled. Therefore, the fuel is continuously increased by the fuel control valve 2 and the power train system is accelerated by the gas turbine 4,
After that, the generator 41 is inserted at the rated speed to take the initial load.

さらに、ガスタービン4による負荷上昇を続行し、高
圧蒸気発生器8からの蒸気が高圧タービン17のロータ温
度に対して適する温度になったら、主蒸気止め弁15を全
開し、主蒸気加減弁16を介してこの蒸気を高圧タービン
17に導く。同時にタービンバイパス弁34は閉じられる。
Further, the load increase by the gas turbine 4 is continued, and when the steam from the high pressure steam generator 8 reaches a temperature suitable for the rotor temperature of the high pressure turbine 17, the main steam stop valve 15 is fully opened and the main steam control valve 16 is opened. This steam through a high pressure turbine
Lead to 17. At the same time, the turbine bypass valve 34 is closed.

この後は、ガスタービン4と高圧タービン17の負荷を
上昇しながらプラントの負荷上昇を行なうとともに、中
圧タービンの入口圧力は発電機の負荷を介して再熱蒸気
制御弁22によって制御するようにする。
After that, the load of the plant is increased while increasing the loads of the gas turbine 4 and the high pressure turbine 17, and the inlet pressure of the intermediate pressure turbine is controlled by the reheat steam control valve 22 via the load of the generator. To do.

第2図は、中圧タービン入口圧力と発電機負荷の関係
の一例を示す図であって、プラント起動時からパワート
レイン系の回転速度が略70%速度に到達するまでは、再
熱蒸気制御弁22を速度制御するため、この制御によって
決まる中圧タービン入口圧力となる。その後は再熱蒸気
制御弁22が中圧タービン入口圧力の一定圧力制御に用い
られる。そして、高圧蒸気発生器の蒸気が高圧タービン
に導入されるようになると、中圧タービンの入口圧力は
発電機の負荷上昇とともに上昇する。
FIG. 2 is a diagram showing an example of the relationship between the intermediate pressure turbine inlet pressure and the generator load. From the start of the plant until the rotational speed of the powertrain system reaches approximately 70% speed, reheat steam control is performed. Since the speed of the valve 22 is controlled, the medium pressure turbine inlet pressure is determined by this control. After that, the reheat steam control valve 22 is used for constant pressure control of the intermediate pressure turbine inlet pressure. Then, when the steam of the high-pressure steam generator is introduced into the high-pressure turbine, the inlet pressure of the intermediate-pressure turbine rises as the load on the generator rises.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明においてはプラント起動
を起動用蒸気供給装置から送給される起動用蒸気による
蒸気タービンによって行なうようにしたので、再熱器お
よび低圧タービンに常に冷却蒸気を確保することがで
き、再熱器の加熱管の損傷を招いたり、或は低圧タービ
ンの異常高温による不都合を防止することができる。ま
た、低圧側タービンの入口圧力を発電機の負荷に応じて
制御するようにした場合には、プラント運転中の性能お
よび高圧タービン最終段羽根にかかる応力をほぼ計画値
通りに維持しながら他ユニット或はプラント補助蒸気な
どに抽気することができる。
As described above, in the present invention, the plant is started by the steam turbine using the starting steam fed from the starting steam supply device, so that the cooling steam is always secured in the reheater and the low pressure turbine. Therefore, it is possible to prevent damage to the heating pipe of the reheater, or to prevent inconvenience caused by abnormally high temperature of the low-pressure turbine. When the inlet pressure of the low-pressure side turbine is controlled according to the load of the generator, the performance of the plant and the stress on the last stage blades of the high-pressure turbine are maintained almost as planned while other units. Alternatively, it can be extracted into plant auxiliary steam.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の蒸気−ガス複合サイクル発電プラント
の系統図、第2図は本発明方法における中圧タービン入
口圧力と発電機負荷の関係を示す説明図、第3図は従来
の蒸気−ガス複合サイクル発電プラントの系統図であ
る。 1…空気圧縮機、3…燃焼器、4…ガスタービン、5…
排熱回収ボイラ、7…再熱器、8…高圧蒸気発生器、10
…中圧蒸気発生器、12…低圧蒸気発生器、16…主蒸気加
減弁、17…高圧タービン、19…低温再熱管、22…再熱蒸
気制御弁、23…中圧タービン、24…低圧タービン、34…
タービンバイパス弁、44…起動用蒸気供給装置。
FIG. 1 is a system diagram of a steam-gas combined cycle power plant of the present invention, FIG. 2 is an explanatory diagram showing a relationship between an intermediate pressure turbine inlet pressure and a generator load in the method of the present invention, and FIG. 3 is a conventional steam- It is a system diagram of a gas combined cycle power generation plant. 1 ... Air compressor, 3 ... Combustor, 4 ... Gas turbine, 5 ...
Exhaust heat recovery boiler, 7 ... Reheater, 8 ... High pressure steam generator, 10
... Medium pressure steam generator, 12 ... Low pressure steam generator, 16 ... Main steam control valve, 17 ... High pressure turbine, 19 ... Low temperature reheat pipe, 22 ... Reheat steam control valve, 23 ... Medium pressure turbine, 24 ... Low pressure turbine , 34 ...
Turbine bypass valve, 44 ... Steam supply device for starting.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガスタービンおよび空気圧縮機、ガスター
ビンからの排熱によって発生する蒸気によって作動する
高圧側タービンおよび低圧側タービンからなる蒸気ター
ビン、並びに発電機を各々同一軸上に配置構成したパワ
ートレイン系を有する蒸気−ガス複合サイクル発電プラ
ントの運転方法において、プラント起動用蒸気供給装置
からの蒸気を再熱器を経て低圧側タービンに導きパワー
トレイン系を昇速し、次にその速度を保持して空気圧縮
機からの空気でガスタービン設備内の空気を置換し、そ
の後ガスタービンを着火するとともに、引き続いてプラ
ント起動用蒸気供給装置からの蒸気によってパワートレ
イン系を昇速し、ガスタービンが自立できる回転速度到
達後には、プラント起動用蒸気供給装置からの蒸気は再
熱器および低圧側タービンの冷却用として確保するとと
もに、再熱蒸気制御弁の制御によって低圧側タービンの
入口蒸気圧力を一定に制御しながら、燃料制御弁によっ
てパワートレイン系の昇速制御を行なうことを特徴とす
る、蒸気−ガス複合サイクル発電プラントの運転方法。
1. A power system in which a gas turbine and an air compressor, a steam turbine including a high-pressure side turbine and a low-pressure side turbine which are operated by steam generated by exhaust heat from the gas turbine, and a generator are arranged on the same shaft. In a method of operating a steam-gas combined cycle power plant having a train system, steam from a plant start steam supply device is introduced to a low pressure side turbine through a reheater to accelerate a power train system and then maintain the speed. Then, the air in the gas turbine equipment is replaced with the air from the air compressor, and then the gas turbine is ignited, and then the power train system is accelerated by the steam from the steam supply device for starting the plant. After reaching the self-sustaining rotation speed, the steam from the plant start steam supply unit is reheated and the low pressure side. It is ensured for cooling of the turbine, and while controlling the inlet steam pressure of the low pressure side turbine by the control of the reheat steam control valve, the fuel control valve controls the speedup of the power train system. A method of operating a steam-gas combined cycle power plant.
【請求項2】排熱回収ボイラからの蒸気が高圧側タービ
ンに導入されるようになった後は、低圧側タービン入口
圧力を発電機の負荷を介して再熱蒸気制御弁によって制
御するようにした、請求項1記載の蒸気−ガス複合サイ
クル発電プラントの運転方法。
2. After the steam from the exhaust heat recovery boiler is introduced into the high pressure side turbine, the low pressure side turbine inlet pressure is controlled by the reheat steam control valve via the load of the generator. The method of operating a steam-gas combined cycle power plant according to claim 1.
【請求項3】プラント起動用蒸気供給装置からの蒸気
を、再熱器が暖機状態にある時は再熱器を経て低圧側タ
ービンに導き、再熱器が冷機状態にある時は再熱器を経
ずに直接低圧側タービンに導くようにしたことを特徴と
する請求項1記載の蒸気−ガス複合サイクル発電プラン
トの運転方法。
3. The steam from the steam supply device for starting the plant is led to the low-pressure side turbine through the reheater when the reheater is in the warm state, and reheated when the reheater is in the cold state. The method of operating a steam-gas combined cycle power plant according to claim 1, characterized in that the steam-gas combined cycle power plant is directly led to the low-pressure side turbine without passing through the reactor.
【請求項4】ガスタービンおよび空気圧縮機、そのガス
タービンからの排熱によって発生する蒸気によって作動
する高圧側タービンおよび低圧側タービンからなる蒸気
タービン、並びに発電機を各々同一軸上に配置構成した
パワートレイン系を有する蒸気−ガス複合サイクル発電
プラントにおいて、高圧側タービンの排気側の低温再熱
管に起動用蒸気供給装置を接続したことを特徴とする、
蒸気−ガス複合サイクル発電プラント。
4. A gas turbine and an air compressor, a steam turbine including a high-pressure side turbine and a low-pressure side turbine operated by steam generated by exhaust heat from the gas turbine, and a generator are arranged on the same shaft. In a steam-gas combined cycle power plant having a power train system, a starting steam supply device is connected to a low temperature reheat pipe on an exhaust side of a high pressure side turbine,
Steam-gas combined cycle power plant.
【請求項5】起動用蒸気供給装置を再熱器の下流側の高
温再熱管に接続して、低温再熱管への接続ラインとの切
替を可能としたことを特徴とする、請求項4記載の蒸気
−ガス複合サイクル発電プラント。
5. The steam supply device for start-up is connected to a high temperature reheat pipe on the downstream side of the reheater to enable switching to a connection line to the low temperature reheat pipe. Steam-gas combined cycle power plant.
JP63320100A 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant Expired - Lifetime JP2558855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320100A JP2558855B2 (en) 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-209077 1988-08-23
JP20907788 1988-08-23
JP63320100A JP2558855B2 (en) 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant

Publications (2)

Publication Number Publication Date
JPH02140405A JPH02140405A (en) 1990-05-30
JP2558855B2 true JP2558855B2 (en) 1996-11-27

Family

ID=26517206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320100A Expired - Lifetime JP2558855B2 (en) 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant

Country Status (1)

Country Link
JP (1) JP2558855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422747B2 (en) * 2010-09-30 2014-02-19 株式会社日立製作所 Solar-powered combined cycle plant

Also Published As

Publication number Publication date
JPH02140405A (en) 1990-05-30

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
CN106089341B (en) Method for enhancing cold steam turbine startup in a multi-gas turbine combined cycle plant
JPH08240105A (en) Combined cycle power plant and steam turbine warming method
JP3068925B2 (en) Combined cycle power plant
EP3450705B1 (en) Gas turbine combined cycle system equipped with control device and its control method
JP2008534860A (en) Start-up method of gas / steam combined turbine equipment
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPH0763010A (en) Starting method for single type combined cycle power generating facility
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH06323162A (en) Steam-cooled gas turbine power plant
JP2602951B2 (en) How to start a combined cycle plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JP2004169625A (en) Co-generation plant and its starting method
JP2002021508A (en) Condensate supply system
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH02259301A (en) Waste heat recovery boiler
JP3641030B2 (en) Safety valve operation test method for combined cycle power plant
JP4090584B2 (en) Combined cycle power plant
JP4209060B2 (en) Steam cooling rapid start system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPH0734810A (en) Method for starting of single-shaft type combined cycle generating equipment
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
JP2019173696A (en) Combined cycle power generation plant, and operation method of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13