JP2002021508A - Condensate supply system - Google Patents

Condensate supply system

Info

Publication number
JP2002021508A
JP2002021508A JP2000207261A JP2000207261A JP2002021508A JP 2002021508 A JP2002021508 A JP 2002021508A JP 2000207261 A JP2000207261 A JP 2000207261A JP 2000207261 A JP2000207261 A JP 2000207261A JP 2002021508 A JP2002021508 A JP 2002021508A
Authority
JP
Japan
Prior art keywords
heat exchanger
condensate
line
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000207261A
Other languages
Japanese (ja)
Inventor
Hiroshi Mishima
浩史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000207261A priority Critical patent/JP2002021508A/en
Publication of JP2002021508A publication Critical patent/JP2002021508A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the corrosion by sulfuric acid in a low temperature part of a steam generator while minimizing the reduction of power generation efficiency when using fuel containing sulfur. SOLUTION: When combustion gas as a heating fluid contains sulfur oxide, a part of condensate from a condensate pump 40 is supplied to a deaerator 28 by bypassing a preheater 26 of an exhaust gas boiler 14 by a bypass pipe passage 54, and condensate circulates into a heat exchanger inlet pipe passage 46 from a heat exchanger outlet pipe passage 47 through a circulation pipe passage 52 so that an inlet temperature to the preheater 26 for condensation is above a predetermined temperature determined by taking a dew point temperature of sulfur oxide into account.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気タービンを含
む発電設備における復水器から蒸気発生器へ復水を供給
するための復水供給システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensate supply system for supplying condensate from a condenser to a steam generator in a power generation facility including a steam turbine.

【0002】[0002]

【従来の技術】硫黄分を含有する燃料、典型的には軽油
を燃焼させると燃焼ガスには酸化硫黄が含まれているた
めに、こうした燃料を熱源とする蒸気発生器では、蒸気
発生器内で最も低温となる部分、つまり、復水の流入す
る最初の熱交換器において燃焼ガスの温度が露点温度ま
で低下して、この部分で所謂硫酸腐食を発生する。これ
を防止するために従来技術では、硫黄分を含有する燃料
を用いる場合に最も低温となる熱交換器への復水の流入
を遮断するようにしている。
2. Description of the Related Art When a fuel containing sulfur, typically light oil, is burned, the combustion gas contains sulfur oxides. The temperature of the combustion gas is reduced to the dew point in the portion having the lowest temperature, that is, the first heat exchanger into which the condensate flows, and so-called sulfuric acid corrosion occurs in this portion. In order to prevent this, in the prior art, when a fuel containing sulfur is used, the inflow of condensate into the heat exchanger, which has the lowest temperature, is shut off.

【0003】[0003]

【発明が解決しようとする課題】然しながら、こうした
構成では、加熱流体としての排ガスの蒸気発生器出口温
度が必要以上に高くなり発電効率が低くなる問題があ
る。本発明は、こうした従来技術の問題点を解決するこ
とを技術課題としており、硫黄分を含有する燃料を用い
る場合に、蒸気発生器の低温部での硫酸腐食を防止する
と共に、発電効率の低下を可及的に防止した復水供給シ
ステムを提供することを目的としている。
However, in such a configuration, there is a problem that the temperature of the steam generator outlet of the exhaust gas as the heating fluid becomes higher than necessary and the power generation efficiency is lowered. The present invention has a technical problem of solving the problems of the conventional technology. When using a fuel containing sulfur, it is possible to prevent sulfuric acid corrosion in a low-temperature portion of a steam generator and to reduce power generation efficiency. The purpose of the present invention is to provide a condensate supply system that prevents as much as possible.

【0004】[0004]

【課題を解決するための手段】請求項1に記載の本発明
は、加熱流体の流れ方向に複数の熱交換器を順次に直列
的に配置して成る蒸気発生器へ蒸気タービンの復水器か
ら復水を復水ポンプにより昇圧、供給する復水供給シス
テムにおいて、前記復水ポンプ出口からの復水を前記蒸
気発生器において燃焼ガスの流れ方向に最も下流に配置
された第1段熱交換器に導入する熱交換器入口管路と、
前記第1段熱交換器と脱気器との間に設けられ前記第1
段熱交換器からの復水を前記脱気器に導入する熱交換器
出口管路と、前記熱交換器入口管路と前記熱交換器出口
管路との間に設けられ前記復水ポンプからの復水を前記
第1段熱交換器を迂回して前記脱気器に導入するバイパ
ス管路と、前記熱交換器出口管路と前記熱交換器入口管
路との間に設けられ、前記熱交換器出口管路から前記熱
交換器入口管路へ復水を循環させる循環管路とを具備
し、前記加熱流体が酸化硫黄を含む場合に、前記復水ポ
ンプからの復水の一部を前記バイパス管路により前記第
1段熱交換器を迂回させて前記脱気器へ供給すると共
に、前記循環管路を介して前記熱交換器出口管路から前
記熱交換器入口管路へ復水を循環させることにより、復
水の前記第1段熱交換器への入口温度を前記酸化硫黄の
露点温度を考慮して決定した所定温度以上となるように
した復水供給システムを要旨とする。
According to the present invention, a condenser for a steam turbine is provided to a steam generator comprising a plurality of heat exchangers arranged in series in the flow direction of a heating fluid. In the condensate supply system, the condensate from the condensate pump outlet is provided at the most downstream in the flow direction of the combustion gas in the steam generator. A heat exchanger inlet line to be introduced into the vessel;
The first stage provided between the first stage heat exchanger and the deaerator
A heat exchanger outlet line for introducing condensate from the stage heat exchanger to the deaerator, and a heat exchanger outlet line provided between the heat exchanger inlet line and the heat exchanger outlet line. A bypass pipe for introducing condensate into the deaerator bypassing the first-stage heat exchanger, and provided between the heat exchanger outlet pipe and the heat exchanger inlet pipe; A circulation line for circulating condensed water from a heat exchanger outlet line to the heat exchanger inlet line, wherein a part of the condensate from the condensate pump when the heating fluid contains sulfur oxide. Is supplied to the deaerator by bypassing the first stage heat exchanger by the bypass line, and is returned from the heat exchanger outlet line to the heat exchanger inlet line via the circulation line. By circulating the water, the inlet temperature of the condensate to the first-stage heat exchanger is determined in consideration of the dew point temperature of the sulfur oxide. And gist condensate supply system was set at a predetermined temperature or higher was.

【0005】前記発電設備は、ガスタービンと蒸気ター
ビンとを含む複合発電設備とすることができる、この場
合、前記蒸気発生器は、加熱流体としての前記ガスター
ビンからの排ガスとの熱交換により蒸気を発生する排ガ
スボイラであり、前記第1段熱交換器が前記排ガスボイ
ラのプレヒータである。また、前記発電設備は、廃棄物
焼却炉と蒸気タービンとを含む発電設備としてもよい。
この場合は、前記蒸気発生器が、加熱流体としての前記
廃棄物焼却炉からの排ガスとの熱交換により蒸気を発生
する排ガスボイラであり、前記第1段熱交換器が前記排
ガスボイラのプレヒータである。
[0005] The power generation equipment may be a combined power generation equipment including a gas turbine and a steam turbine. In this case, the steam generator generates steam by heat exchange with exhaust gas from the gas turbine as a heating fluid. And the first-stage heat exchanger is a preheater of the exhaust gas boiler. Further, the power generation facility may be a power generation facility including a waste incinerator and a steam turbine.
In this case, the steam generator is an exhaust gas boiler that generates steam by heat exchange with exhaust gas from the waste incinerator as a heating fluid, and the first-stage heat exchanger is a preheater of the exhaust gas boiler. is there.

【0006】[0006]

【発明の実施の形態】以下、図1、2を参照して本発明
の好ましい実施形態を説明する。先ず、図2を参照する
と、本発明による復水供給システムを適用可能な発電設
備の一例としてガスタービンと蒸気タービンとを含む複
合発電設備10(以下、単に発電設備10と記載する)
の略示系統図が図示されている。発電設備10は、圧縮
機12a、膨張機12b、発電機12cを一軸に連結し
て成るガスタービン12と、ガスタービン12の下流に
配置された蒸気発生器としての排ガスボイラ14と、排
ガスボイラ14で生成した蒸気により駆動される高圧蒸
気タービン30、中圧蒸気タービン32、低圧蒸気ター
ビン34から成る蒸気タービンと、該蒸気タービンに連
結された発電機36とを具備している。ガスタービン1
2の発電機12cと蒸気タービン30、32、34の発
電機36は同一の発電機であってもよい。つまり、本発
明ではガスタービンと蒸気タービンとは一軸構成であっ
てもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. First, referring to FIG. 2, as an example of a power generation facility to which the condensate supply system according to the present invention can be applied, a combined power generation facility 10 including a gas turbine and a steam turbine (hereinafter simply referred to as a power generation facility 10).
Is shown in the schematic system diagram of FIG. The power generation equipment 10 includes a gas turbine 12 having a compressor 12a, an expander 12b, and a generator 12c connected in a single shaft, an exhaust gas boiler 14 as a steam generator disposed downstream of the gas turbine 12, and an exhaust gas boiler 14 The steam turbine includes a high-pressure steam turbine 30, a medium-pressure steam turbine 32, and a low-pressure steam turbine 34, which are driven by the steam generated in the above, and a generator 36 connected to the steam turbine. Gas turbine 1
The second generator 12c and the generator 36 of the steam turbines 30, 32, 34 may be the same generator. That is, in the present invention, the gas turbine and the steam turbine may have a single-shaft configuration.

【0007】排ガスボイラ14は、再熱器16、過熱器
18、高圧蒸気ドラム20aを有する高圧蒸気発生器2
0、中圧蒸気ドラム22aを有する中圧蒸気発生器2
2、低圧蒸気ドラム24aを有する低圧蒸気発生器2
4、プレヒータ26を含む複数の熱交換器を有してい
る。これらの複数の熱交換器16〜26は、排ガスボイ
ラ14内において、ガスタービン12からの加熱流体と
しての排ガスの流れ方向に対して上流から下流へ順次に
直列的に配置されている。本実施形態では、プレヒータ
26が、排ガスボイラ14内において加熱流体の流れ方
向に対して最も下流に配置された第1段熱交換器を構成
する。
The exhaust gas boiler 14 includes a reheater 16, a superheater 18, and a high-pressure steam generator 2 having a high-pressure steam drum 20a.
0, medium-pressure steam generator 2 having medium-pressure steam drum 22a
2. Low-pressure steam generator 2 having low-pressure steam drum 24a
4. It has a plurality of heat exchangers including a preheater 26. The plurality of heat exchangers 16 to 26 are arranged in series in the exhaust gas boiler 14 from upstream to downstream in the flow direction of the exhaust gas as the heating fluid from the gas turbine 12. In the present embodiment, the pre-heater 26 constitutes a first-stage heat exchanger disposed at the most downstream in the flow direction of the heating fluid in the exhaust gas boiler 14.

【0008】低圧蒸気タービン34の出口には復水器3
8が配設されており、復水器38の出口には復水ポンプ
40が配設されている。復水ポンプ40は熱交換器入口
管路46を介してプレヒータ26に接続され、更に、プ
レヒータ26は熱交換器出口管路47を介して脱気器2
8に接続されている。
A condenser 3 is provided at the outlet of the low-pressure steam turbine 34.
8 is provided, and a condenser pump 40 is provided at an outlet of the condenser 38. The condensate pump 40 is connected to the preheater 26 via a heat exchanger inlet line 46, and the preheater 26 is connected to the deaerator 2 via a heat exchanger outlet line 47.
8 is connected.

【0009】次に、図1を参照して、本実施形態による
復水供給システムをより詳細に説明する。熱交換器入口
管路46と熱交換器出口管路47との間には、復水ポン
プ40からの復水をプレヒータ26を迂回して脱気器2
8に導入するバイパス管路54が設けられており、該バ
イパス管路54には流量センサ58と、該流量センサ5
8の測定値に従いバイパス管路54を流通する復水の流
量を所定値に制御する流調弁56が配設されている。一
方、熱交換器出口管路47と熱交換器入口管路46との
間には、熱交換器出口管路47から熱交換器入口管路4
6へ復水を循環させる循環管路52が設けられており、
該循環管路52には、循環ポンプ60が配設されてい
る。また、発電設備10の運転条件によりプレヒータ2
6における熱交換のみによって脱気器28内の蒸気圧力
または蒸気温度(つまり復水温度)を所定値に維持でき
ない場合に、低圧蒸気タービン34への低圧蒸気または
低温再熱蒸気を補助蒸気として脱気器28へ供給するた
めの補助蒸気管48が設けられている。
Next, the condensate supply system according to this embodiment will be described in more detail with reference to FIG. Between the heat exchanger inlet line 46 and the heat exchanger outlet line 47, the condensate from the condensate pump 40 bypasses the preheater 26 and is connected to the deaerator 2.
8 is provided with a flow path sensor 58 and a flow path sensor 5.
A flow regulating valve 56 for controlling the flow rate of the condensate flowing through the bypass conduit 54 to a predetermined value according to the measurement value of 8 is provided. On the other hand, between the heat exchanger outlet pipe 47 and the heat exchanger inlet pipe 46, the heat exchanger outlet pipe 47 is connected to the heat exchanger inlet pipe 4.
A circulation line 52 for circulating the condensate to 6 is provided,
A circulation pump 60 is provided in the circulation line 52. Also, depending on the operating conditions of the power generation equipment 10, the preheater 2
When the steam pressure or steam temperature (that is, condensate temperature) in the deaerator 28 cannot be maintained at a predetermined value only by the heat exchange in Step 6, the low-pressure steam or low-temperature reheat steam to the low-pressure steam turbine 34 is removed as auxiliary steam. An auxiliary steam pipe 48 for supplying to the gasifier 28 is provided.

【0010】以下、本実施形態の作用を説明する。圧縮
機12aにより圧縮された空気は、ガスタービン12の
燃焼器12dにおいて燃料供給源(図示せず)からの燃
料と混合、燃焼して高温、高圧の燃焼ガスとなり膨張機
12bへ供給される。前記燃料供給源は、硫黄成分を含
有する燃料、例えば軽油を供給可能な装置または設備を
少なくとも含んでいる。本実施形態では、軽油タンク、
軽油加熱装置、軽油供給ポンプ等を含む軽油供給源と、
液化天然ガス貯蔵タンク、液化天然ガス蒸発器、液化天
然ガス供給ポンプ等を含む液化天然ガス供給源と、の組
み合わせから成る。
Hereinafter, the operation of the present embodiment will be described. The air compressed by the compressor 12a is mixed and burned with fuel from a fuel supply source (not shown) in a combustor 12d of the gas turbine 12 to be a high-temperature, high-pressure combustion gas, which is supplied to an expander 12b. The fuel supply source includes at least a device or equipment capable of supplying a fuel containing a sulfur component, for example, light oil. In the present embodiment, a light oil tank,
A light oil supply source including a light oil heating device, a light oil supply pump, etc.,
And a liquefied natural gas supply source including a liquefied natural gas storage tank, a liquefied natural gas evaporator, and a liquefied natural gas supply pump.

【0011】膨張機12bへ供給された燃焼ガスは、該
膨張機12bにおいて概ね大気圧まで膨張する間に発電
機12cを駆動し、この膨張行程を通じて温度、圧力が
低下して排気される。この排ガスは、膨張機12bと排
ガスボイラ14との間のダクト13を介して加熱流体と
して排ガスボイラ14へ供給される。排ガスボイラ14
へ供給された排ガスは、熱交換器16〜26との熱交換
を通じて漸次温度を低下して煙突から大気中へ放出され
る。
The combustion gas supplied to the expander 12b drives the generator 12c while expanding to approximately atmospheric pressure in the expander 12b, and the exhaust gas is exhausted at a reduced temperature and pressure throughout the expansion process. This exhaust gas is supplied to the exhaust gas boiler 14 as a heating fluid via the duct 13 between the expander 12b and the exhaust gas boiler 14. Exhaust gas boiler 14
The exhaust gas supplied to the heat exchanger gradually lowers the temperature through heat exchange with the heat exchangers 16 to 26 and is discharged into the atmosphere from the chimney.

【0012】復水ポンプ40で昇圧された復水は、熱交
換器入口管路46を通じてプレヒータ26へ供給され、
排ガスとの熱交換を通じてその温度が上昇して脱気器2
8へ供給される。脱気器28において脱気処理された復
水の一部は、脱気器28の出口側に配設された低圧ボイ
ラ給水ポンプ42により所定圧力に昇圧されて低圧ボイ
ラ給水として低圧蒸気発生器24の低圧蒸気ドラム24
aに供給される。脱気器28において脱気処理された復
水の残りの一部は、高圧ボイラ給水ポンプ44により所
定圧力に昇圧され、高圧ボイラ給水として高圧蒸気発生
器20の高圧蒸気ドラム20aに供給される。本実施形
態では、中圧蒸気発生器22へ供給される中圧ボイラ給
水は高圧ボイラ給水ポンプ44の中間段から抽出して中
圧蒸気ドラム22aへ供給するようになっている。中圧
ボイラ給水ポンプ(図示せず)を別途を設けてもよいこ
とは言うまでもない。
The condensate condensed by the condensate pump 40 is supplied to the preheater 26 through a heat exchanger inlet line 46,
The temperature rises through heat exchange with the exhaust gas and deaerator 2
8. A part of the condensed water deaerated in the deaerator 28 is boosted to a predetermined pressure by a low-pressure boiler feed pump 42 disposed on the outlet side of the deaerator 28, and is supplied as a low-pressure boiler feed to the low-pressure steam generator 24 Low pressure steam drum 24
a. The remaining part of the condensed water deaerated in the deaerator 28 is pressurized to a predetermined pressure by the high-pressure boiler feedwater pump 44 and supplied to the high-pressure steam drum 20a of the high-pressure steam generator 20 as high-pressure boiler feedwater. In the present embodiment, the intermediate-pressure boiler feedwater supplied to the intermediate-pressure steam generator 22 is extracted from an intermediate stage of the high-pressure boiler feedwater pump 44 and supplied to the intermediate-pressure steam drum 22a. It goes without saying that a medium-pressure boiler feed pump (not shown) may be separately provided.

【0013】低圧蒸気発生器24で生成された低圧蒸気
は、例えば中圧蒸気タービン32と低圧蒸気タービン3
4との間の連絡管31を介して低圧蒸気タービン34へ
供給される。低圧蒸気ドラム24aからの前記低圧蒸気
は、低圧蒸気タービン34へ供給される前に排ガスボイ
ラ14内に別途設けられた不図示の熱交換器により過熱
蒸気としてもよい。中圧蒸気発生器22で生成された中
圧蒸気は、例えば低温再熱蒸気管15へ供給し高圧蒸気
タービン30の排気と混合して再熱器16へ供給するよ
うにできる。再熱器16において過熱蒸気となった中圧
蒸気は高温再熱蒸気管17を介して中圧蒸気タービン3
2へ供給される。また、中圧蒸気ドラム22aからの前
記中圧蒸気は、低温再熱蒸気管15へ供給される前に排
ガスボイラ14内に別途設けられた不図示の熱交換器に
より過熱蒸気としてもよい。高圧蒸気発生器20で生成
された高圧蒸気は、高圧蒸気ドラム20aから過熱器1
8を経て高圧蒸気タービン30へ供給される。
The low-pressure steam generated by the low-pressure steam generator 24 is, for example, a medium-pressure steam turbine 32 and a low-pressure steam turbine 3.
The low-pressure steam turbine 34 is supplied to the low-pressure steam turbine 34 through the connecting pipe 31 between the low-pressure steam turbine 3 and the low-pressure steam turbine 34. The low-pressure steam from the low-pressure steam drum 24 a may be converted into superheated steam before being supplied to the low-pressure steam turbine 34 by a heat exchanger (not shown) provided separately in the exhaust gas boiler 14. The medium-pressure steam generated by the medium-pressure steam generator 22 can be supplied to, for example, the low-temperature reheat steam pipe 15, mixed with the exhaust gas of the high-pressure steam turbine 30, and supplied to the reheater 16. The medium-pressure steam that has become superheated steam in the reheater 16 is passed through the high-temperature reheat steam pipe 17 to the medium-pressure steam turbine 3.
2. The intermediate-pressure steam from the intermediate-pressure steam drum 22a may be converted into superheated steam before being supplied to the low-temperature reheat steam pipe 15 by a heat exchanger (not shown) separately provided in the exhaust gas boiler 14. The high-pressure steam generated by the high-pressure steam generator 20 is supplied from the high-pressure steam drum 20a to the superheater 1
8, and supplied to the high-pressure steam turbine 30.

【0014】硫黄分を含有する燃料、典型的には軽油を
燃焼させると燃焼ガスには酸化硫黄が含まれることとな
る。この燃焼ガスを本実施形態の如く排ガスボイラ14
の加熱流体として用いると、排ガスボイラ14内におい
て加熱流体の流れ方向に最も下流に配置されたプレヒー
タ26の温度が低い場合に、プレヒータ26外表面にお
いて加熱流体の温度が露点温度まで低下し硫酸腐食を発
生する。これを防止するために従来技術では、プレヒー
タ26に接続された熱交換器入口管路46および熱交換
器出口管路47に遮断弁(図示せず)設けて、復水ポン
プ40からの復水の全量をプレヒータ26を迂回させて
直接脱気器28へ供給するようにしている。然しなが
ら、こうした構成では、排ガスボイラ14出口における
排ガスの温度が必要以上に高くなり発電効率が低くなる
問題がある。
When a fuel containing sulfur, typically light oil, is burned, the combustion gas contains sulfur oxides. This combustion gas is supplied to the exhaust gas boiler 14 as in this embodiment.
When the temperature of the preheater 26 disposed at the most downstream in the flow direction of the heating fluid in the exhaust gas boiler 14 is low, the temperature of the heating fluid on the outer surface of the preheater 26 decreases to the dew point temperature, and the sulfuric acid corrosion occurs. Occurs. In order to prevent this, in the prior art, a shutoff valve (not shown) is provided in the heat exchanger inlet line 46 and the heat exchanger outlet line 47 connected to the preheater 26, and condensate from the condensate pump 40 is provided. Is supplied directly to the deaerator 28 bypassing the preheater 26. However, such a configuration has a problem that the temperature of the exhaust gas at the outlet of the exhaust gas boiler 14 becomes unnecessarily high, and the power generation efficiency decreases.

【0015】一方、燃焼ガスのプレヒータ26への入口
温度と、復水のプレヒータ26への入口温度を決定すれ
ば、プレヒータ26の外表面温度は経験式から求めるこ
とができる。従って、プレヒータ26の外表面温度を酸
化硫黄を含む燃焼ガスの露点温度を考慮して適宜決定す
れば、その温度を維持するために必要な復水の最低プレ
ヒータ入口温度を決定することでき、これに基づいて発
電設備10のある運転条件においてバイパス管路26を
流通させるべきバイパス流量をヒートマスバランスの計
算により予め決定することができる。既述したように、
本実施形態では、バイパス管路56には流量センサ58
と、該流量センサ58の測定値に従いバイパス管路54
を流通する復水の流量を所定値に制御する流調弁56が
配設されており、加熱流体としての燃焼ガスが酸化硫黄
を含む場合に、流調弁56と流量センサ58によりバイ
パス管路54を流通する復水流量(バイパス流量)を上
記計算値に基づき適宜決定すると共に、循環管路52を
介して熱交換器出口管路47から熱交換器入口管路46
へ復水を循環させることにより、復水のプレヒータ26
への入口温度を高めて硫酸腐食を防止している。
On the other hand, if the inlet temperature of the combustion gas to the preheater 26 and the inlet temperature of the condensate to the preheater 26 are determined, the outer surface temperature of the preheater 26 can be obtained from an empirical formula. Therefore, if the outer surface temperature of the preheater 26 is appropriately determined in consideration of the dew point temperature of the combustion gas containing sulfur oxide, the minimum preheater inlet temperature of the condensate required to maintain the temperature can be determined. The bypass flow rate to be circulated through the bypass pipe 26 under certain operating conditions of the power generation facility 10 can be determined in advance by calculation of the heat mass balance based on the above. As already mentioned,
In the present embodiment, a flow sensor 58 is connected to the bypass conduit 56.
And the bypass line 54 according to the measurement value of the flow sensor 58.
A flow control valve 56 for controlling the flow rate of the condensate flowing through the gas to a predetermined value is provided. When the combustion gas as the heating fluid contains sulfur oxide, the flow control valve 56 and the flow rate sensor 58 control the bypass pipe line. The condensate flow rate (bypass flow rate) flowing through the heat exchanger 54 is appropriately determined based on the above calculated value, and the heat exchanger outlet pipe 47 is connected to the heat exchanger inlet pipe 46 via the circulation pipe 52.
By circulating the condensate to the preheater 26
To prevent sulfuric acid corrosion.

【0016】また、図1に示すように、熱交換器入口管
路46において循環管路52との接続点の下流側に温度
センサ64を配設する共に、該温度センサ64の測定値
に基づき制御可能な流調弁62を循環管路52の循環ポ
ンプ60の出口側に配設して、復水のプレヒータ入口温
度が上述のように決定された所望温度以上となるように
流調弁62の開度を制御してもよい。
As shown in FIG. 1, a temperature sensor 64 is provided in the heat exchanger inlet line 46 on the downstream side of the connection point with the circulation line 52, and based on the measured value of the temperature sensor 64. A controllable flow regulating valve 62 is disposed at the outlet side of the circulation pump 60 in the circulation line 52 so that the inlet temperature of the preheater of the condensate is equal to or higher than the desired temperature determined as described above. May be controlled.

【0017】一方、液化天然ガスのように硫黄成分を含
有しない燃料をガスタービン12の燃料として用いる場
合には、上述した硫酸腐食が問題とならないので、復水
はプレヒータ26をバイパスさせる必要はないので、バ
イパス管路54の流調弁56を閉じる或いは最小流量開
度とする。このように、本実施形態による発電設備10
では、燃焼が硫黄分を含んでいる場合と含んでいない場
合とに応じて適切な設備運用が可能となる。
On the other hand, when a fuel that does not contain a sulfur component such as liquefied natural gas is used as the fuel for the gas turbine 12, the above-mentioned sulfuric acid corrosion does not pose a problem, and condensate does not need to bypass the preheater 26. Therefore, the flow regulating valve 56 of the bypass conduit 54 is closed or the minimum flow opening is set. Thus, the power generation facility 10 according to the present embodiment
Thus, appropriate equipment operation can be performed depending on whether the combustion contains sulfur or not.

【0018】本発明の好ましい実施形態を説明したが、
本発明がこれに限定されず種々の変形と修正が可能であ
ることは当業者の当然とするところである。既述の実施
形態では、発電設備10はガスタービン12と蒸気ター
ビン30、32、34を含む複合発電設備であったが、
本発明は他の形式の発電設備、例えば廃棄物を燃焼処理
する廃棄物焼却炉と、該焼却炉で発生する燃焼ガスを熱
源とする蒸気タービンとを含むような発電設備であって
もよい。こうした廃棄物処理用の焼却炉では、燃焼処理
すべき廃棄物の成分は一定しておらず、その種類によっ
ては硫黄分を含んでいることもある。こうした場合に、
本発明は特に有利に適用することができる。
Having described the preferred embodiment of the invention,
It is obvious to those skilled in the art that the present invention is not limited to this, and various changes and modifications are possible. In the above-described embodiment, the power generation facility 10 is a combined power generation facility including the gas turbine 12 and the steam turbines 30, 32, and 34.
The present invention may be another type of power generation equipment, for example, a power generation equipment including a waste incinerator for burning waste and a steam turbine using a combustion gas generated in the incinerator as a heat source. In such incinerators for waste treatment, the components of the waste to be burned are not constant, and may contain sulfur depending on the type. In these cases,
The invention can be applied particularly advantageously.

【0019】既述の実施形態では、第1段熱交換器とし
て排ガスボイラ14のプレヒータ26を一例として説明
したが、本発明の第1段熱交換器は、一般的にプレヒー
タ、節炭器、エコノマイザ、復水予熱器等の呼称にて参
照されることがあり、これらは全て本発明の範囲に包含
されうる。要は、第1段熱交換器は、蒸気発生器内で加
熱流体の流れ方向に最も下流に配置されて最も温度が低
くなる熱交換器である。
In the above-described embodiment, the preheater 26 of the exhaust gas boiler 14 has been described as an example of the first stage heat exchanger. However, the first stage heat exchanger of the present invention generally includes a preheater, a economizer, It may be referred to by the name of economizer, condensate preheater, etc., all of which can be included in the scope of the present invention. In short, the first-stage heat exchanger is a heat exchanger that is arranged at the most downstream in the flow direction of the heating fluid in the steam generator and has the lowest temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の復水供給システムの好ましい実施形態
を示す系統図である。
FIG. 1 is a system diagram showing a preferred embodiment of a condensate supply system of the present invention.

【図2】本発明の復水供給システムを適用する発電プラ
ントの一例を示す系統図である。
FIG. 2 is a system diagram showing an example of a power plant to which the condensate supply system of the present invention is applied.

【符号の説明】[Explanation of symbols]

10…発電設備 12…ガスタービン 14…排ガスボイラ 26…プレヒータ 40…復水ポンプ 46…熱交換器入口管路 47…熱交換器出口管路 52…循環管路 54…バイパス管路 56…バイパス管路流調弁 60…循環ポンプ DESCRIPTION OF SYMBOLS 10 ... Power generation equipment 12 ... Gas turbine 14 ... Exhaust gas boiler 26 ... Preheater 40 ... Condenser pump 46 ... Heat exchanger inlet pipe 47 ... Heat exchanger outlet pipe 52 ... Circulation pipe 54 ... Bypass pipe 56 ... Bypass pipe Road flow regulating valve 60: Circulation pump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸気タービンと、加熱流体の流れ方向に
複数の熱交換器を順次に直列的に配置して成る蒸気発生
器とを含む発電設備の前記蒸気発生器へ前記蒸気タービ
ンの復水器から復水を復水ポンプにより昇圧、供給する
復水供給システムにおいて、 前記復水ポンプ出口からの復水を前記蒸気発生器におい
て加熱流体の流れ方向に最も下流に配置された第1段熱
交換器に導入する熱交換器入口管路と、 前記第1段熱交換器と脱気器との間に設けられ前記第1
段熱交換器からの復水を前記脱気器に導入する熱交換器
出口管路と、 前記熱交換器入口管路と前記熱交換器出口管路との間に
設けられ前記復水ポンプからの復水を前記第1段熱交換
器を迂回して前記脱気器に導入するバイパス管路と、 前記熱交換器出口管路と前記熱交換器入口管路との間に
設けられ、前記熱交換器出口管路から前記熱交換器入口
管路へ復水を循環させる循環管路とを具備し、 前記加熱流体が酸化硫黄を含む場合に、前記復水ポンプ
からの復水の一部を前記バイパス管路により前記第1段
熱交換器を迂回させて前記脱気器へ供給すると共に、前
記循環管路を介して前記熱交換器出口管路から前記熱交
換器入口管路へ復水を循環させることにより、復水の前
記第1段熱交換器への入口温度を前記酸化硫黄の露点温
度を考慮して決定した所定温度以上となるようにした復
水供給システム。
Condensation of the steam turbine to the steam generator of a power generation facility including a steam turbine and a steam generator in which a plurality of heat exchangers are sequentially arranged in series in a flow direction of a heating fluid. In the condensate supply system, the condensate is supplied from a condensate pump by a condensate pump, and the condensate from the condensate pump outlet is disposed in the steam generator at the first stage located at the most downstream in the flow direction of the heating fluid. A heat exchanger inlet line to be introduced into the exchanger; and a first heat exchanger provided between the first stage heat exchanger and the deaerator.
A heat exchanger outlet line for introducing condensate from the stage heat exchanger to the deaerator; and a heat exchanger outlet line provided between the heat exchanger inlet line and the heat exchanger outlet line. A bypass line for introducing condensate to the deaerator, bypassing the first-stage heat exchanger, and provided between the heat exchanger outlet line and the heat exchanger inlet line; A circulation line for circulating condensed water from a heat exchanger outlet line to the heat exchanger inlet line, wherein when the heating fluid contains sulfur oxide, a part of the condensate from the condensate pump Is supplied to the deaerator by bypassing the first stage heat exchanger by the bypass line, and is returned from the heat exchanger outlet line to the heat exchanger inlet line via the circulation line. By circulating water, the inlet temperature of the condensate to the first-stage heat exchanger is determined in consideration of the dew point temperature of the sulfur oxide. Boss was condensate supply system was set at a predetermined temperature or higher.
【請求項2】 前記バイパス管路には流量センサと、該
流量センサの測定値に従いバイパス管路を流通する復水
の流量を所定値に制御する流調弁とが配設されており、 前記発電設備の運転条件に対して前記バイパス管路へ流
通させるべき復水流量をヒートマスバランスから予め演
算して、前記流量センサの測定値が前記演算結果に一致
するように前記流調弁の開度を制御するようにした請求
項1に記載の復水供給システム。
2. A flow rate sensor, and a flow regulating valve for controlling a flow rate of condensate flowing through the bypass line to a predetermined value in accordance with a measurement value of the flow rate sensor, are provided in the bypass line. The condensate flow to be circulated through the bypass pipe is calculated in advance from the heat mass balance with respect to the operating conditions of the power generation equipment, and the flow control valve is opened so that the measured value of the flow sensor matches the calculation result. The condensate supply system according to claim 1, wherein the degree is controlled.
【請求項3】 前記循環管路には前記熱交換器出口管路
から前記熱交換器入口管路へ復水を循環させるための循
環ポンプと、該循環ポンプの出口に設けられた流調弁と
が設けられ、前記熱交換器入口管路において前記循環管
路との接続部の下流には温度センサが配設されており、
前記温度センサの測定値により復水の前記第1段熱交換
器への入口温度を前記酸化硫黄の露点温度を考慮して決
定した所定温度以上となるようにした請求項1または2
に記載の復水供給システム。
3. A circulation pump for circulating condensate from the heat exchanger outlet line to the heat exchanger inlet line in the circulation line, and a flow regulating valve provided at an outlet of the circulation pump. Is provided, a temperature sensor is disposed downstream of a connection portion with the circulation pipeline in the heat exchanger inlet pipeline,
3. The temperature of the inlet of the condensate to the first-stage heat exchanger based on a measurement value of the temperature sensor is set to be equal to or higher than a predetermined temperature determined in consideration of a dew point temperature of the sulfur oxide.
3. The condensate supply system according to 1.
【請求項4】 前記発電設備がガスタービンと蒸気ター
ビンとを含む複合発電設備であり、前記蒸気発生器が、
加熱流体としての前記ガスタービンからの排ガスとの熱
交換により蒸気を発生する排ガスボイラであり、前記第
1段熱交換器が前記排ガスボイラのプレヒータである請
求項1から3の何れか1項に記載の復水供給システム。
4. The power generation facility is a combined power generation facility including a gas turbine and a steam turbine, and the steam generator includes:
An exhaust gas boiler that generates steam by heat exchange with exhaust gas from the gas turbine as a heating fluid, and wherein the first-stage heat exchanger is a preheater of the exhaust gas boiler. Condensate supply system as described.
【請求項5】 前記発電設備が廃棄物焼却炉と蒸気ター
ビンとを含む発電設備であり、前記蒸気発生器が、加熱
流体としての前記廃棄物焼却炉からの排ガスとの熱交換
により蒸気を発生する排ガスボイラであり、前記第1段
熱交換器が前記排ガスボイラのプレヒータである請求項
1から3の何れか1項に記載の復水供給システム。
5. The power generation facility comprising a waste incinerator and a steam turbine, wherein the steam generator generates steam by heat exchange with exhaust gas from the waste incinerator as a heating fluid. 4. The condensate supply system according to claim 1, wherein the first-stage heat exchanger is a pre-heater of the exhaust gas boiler. 5.
JP2000207261A 2000-07-07 2000-07-07 Condensate supply system Withdrawn JP2002021508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207261A JP2002021508A (en) 2000-07-07 2000-07-07 Condensate supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207261A JP2002021508A (en) 2000-07-07 2000-07-07 Condensate supply system

Publications (1)

Publication Number Publication Date
JP2002021508A true JP2002021508A (en) 2002-01-23

Family

ID=18704048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207261A Withdrawn JP2002021508A (en) 2000-07-07 2000-07-07 Condensate supply system

Country Status (1)

Country Link
JP (1) JP2002021508A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535904A (en) * 2012-09-27 2015-12-17 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method of operating gas turbine / steam turbine combined facility having degassing device for partial feed water flow
JP2016507688A (en) * 2012-12-19 2016-03-10 マック トラックス インコーポレイテッド Series parallel waste heat recovery system
WO2016140018A1 (en) * 2015-03-05 2016-09-09 富士電機株式会社 Binary power generation system, control device, and program
JP2017089570A (en) * 2015-11-13 2017-05-25 三菱日立パワーシステムズ株式会社 Combined cycle plant, its control device and operational method
CN108119198A (en) * 2018-01-31 2018-06-05 福建省东锅节能科技有限公司 The new complementary energy waste heat recovery generating system of steel plant and its method of work
CN108167028A (en) * 2018-01-02 2018-06-15 武汉都市环保工程技术股份有限公司 A kind of waste incineration and generating electricity system
CN109268094A (en) * 2017-07-17 2019-01-25 斗山重工业建设有限公司 Prevent the supercritical carbon dioxide electricity generation system of low-temperature corrosion
US11008897B2 (en) 2016-06-17 2021-05-18 Siemens Energy Global GmbH & Co. KG Condensate recirculation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535904A (en) * 2012-09-27 2015-12-17 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method of operating gas turbine / steam turbine combined facility having degassing device for partial feed water flow
JP2016507688A (en) * 2012-12-19 2016-03-10 マック トラックス インコーポレイテッド Series parallel waste heat recovery system
WO2016140018A1 (en) * 2015-03-05 2016-09-09 富士電機株式会社 Binary power generation system, control device, and program
US11105225B2 (en) 2015-03-05 2021-08-31 Fuji Electric Co., Ltd. Binary power generation system and control apparatus
JP2017089570A (en) * 2015-11-13 2017-05-25 三菱日立パワーシステムズ株式会社 Combined cycle plant, its control device and operational method
US11008897B2 (en) 2016-06-17 2021-05-18 Siemens Energy Global GmbH & Co. KG Condensate recirculation
CN109268094A (en) * 2017-07-17 2019-01-25 斗山重工业建设有限公司 Prevent the supercritical carbon dioxide electricity generation system of low-temperature corrosion
CN108167028A (en) * 2018-01-02 2018-06-15 武汉都市环保工程技术股份有限公司 A kind of waste incineration and generating electricity system
CN108167028B (en) * 2018-01-02 2024-04-26 中冶南方都市环保工程技术股份有限公司 Garbage incineration power generation system
CN108119198A (en) * 2018-01-31 2018-06-05 福建省东锅节能科技有限公司 The new complementary energy waste heat recovery generating system of steel plant and its method of work
WO2019148553A1 (en) * 2018-01-31 2019-08-08 福建省东锅节能科技有限公司 Novel waste energy and waste heat recovery power generation system for iron and steel plant and working method therefor
CN108119198B (en) * 2018-01-31 2019-09-20 福建省东锅节能科技有限公司 Steel plant's complementary energy waste heat recovery generating system and its working method

Similar Documents

Publication Publication Date Title
US7107774B2 (en) Method and apparatus for combined cycle power plant operation
US6393822B2 (en) Cooling steam supply method of a combined cycle power generation plant
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US6422022B2 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US6363711B2 (en) Combined-cycle power plant with feed-water preheater bypass
JP4540472B2 (en) Waste heat steam generator
JP3032005B2 (en) Gas / steam turbine combined facility
US6604354B2 (en) Combined cycle power plant
JPH0339166B2 (en)
CN101881220A (en) Be used to heat the system and method for the fuel that is used for gas turbine
JP2002021508A (en) Condensate supply system
JP4208397B2 (en) Start-up control device for combined cycle power plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JP2002256816A (en) Combined cycle generating plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH02259301A (en) Waste heat recovery boiler
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP4209060B2 (en) Steam cooling rapid start system
JPS6149486B2 (en)
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JPH0610619A (en) Supply water heating device
JPS59101513A (en) Combined cycle generating plant
JP2000018010A (en) Combined power generation plant for exhaust re- combustion

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060315

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002