JPH04246244A - Pressurizing fluidized bed combined plant and partial load operation control and device therefor - Google Patents

Pressurizing fluidized bed combined plant and partial load operation control and device therefor

Info

Publication number
JPH04246244A
JPH04246244A JP1092291A JP1092291A JPH04246244A JP H04246244 A JPH04246244 A JP H04246244A JP 1092291 A JP1092291 A JP 1092291A JP 1092291 A JP1092291 A JP 1092291A JP H04246244 A JPH04246244 A JP H04246244A
Authority
JP
Japan
Prior art keywords
gas turbine
steam
fluidized bed
pressurized fluidized
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1092291A
Other languages
Japanese (ja)
Other versions
JP2908884B2 (en
Inventor
Takashi Mao
孝志 麻尾
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP3010922A priority Critical patent/JP2908884B2/en
Publication of JPH04246244A publication Critical patent/JPH04246244A/en
Application granted granted Critical
Publication of JP2908884B2 publication Critical patent/JP2908884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/061Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed
    • F01K23/062Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed the combustion bed being pressurised

Abstract

PURPOSE:To permit the self sustaining of a gas turbine in the low load operation, in order to spread the operation load region by permitting the partial load operation, in a pressurizing fluidized bed combined plant equipped with a single axis type gas turbine equipment. CONSTITUTION:If, in the low load operation, a gas turbine 2 can not sufficiently drive an air compressor 1 by only the combustion gas 23, and the sufficient compressed air cannot be supplied into a pressurized fluidized bed boiler 4, the supplied steam to a high pressure turbine 5, exhaust steam, reheated steam, and high pressure supplied-water to a high pressure turbine, and the steam supplied from other steam generation, etc., are supplied into the gas turbine 2, and the driving energy for the gas turbine is supplemented by the energy of the supplied steam, etc., and the power for an air compressor 1 is secured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、加圧流動床コンバイン
ドプラントに係り、特に、低負荷等の部分負荷運転時に
ガスタービンを自立運転させるに好適な部分負荷運転制
御方法及びその制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized bed combined plant, and more particularly to a partial load operation control method suitable for self-sustaining a gas turbine during partial load operation such as low load, and a control device therefor.

【0002】0002

【従来の技術】通常のコンバインドプラントは、ガスタ
ービン設備による発電がメインで、ガスタービンの排熱
を回収して行う蒸気タービン設備による発電はサブとな
る。このため、燃料としてはLNG等の火力の強い燃料
が用いられ、燃焼器にて燃焼させガスタービンに供給さ
れる燃焼ガスの温度が100%負荷時に摂氏1100度
〜1200度になるようにしている。これに対し、石炭
を燃料とする加圧流動床コンバインドプラントでは、加
圧流動床ボイラからガスタービンに供給される燃焼ガス
の温度は100%負荷時でも摂氏860度程度のため、
ガスタービンによる発電はサブとなり、ガスタービンの
排熱及び加圧流動床ボイラで発生させた蒸気による蒸気
タービンの発電がメインとなる。つまり、加圧流動床コ
ンバインドプラントにおけるガスタービンは、発電より
も、空気圧縮機を駆動して加圧流動床ボイラで必要とす
る圧縮空気を送り込む仕事の方が重要となる。尚、加圧
流動床コンバインドプラントに関連するものとして、特
開昭64−41606号等がある。
2. Description of the Related Art In a typical combined plant, power generation is mainly performed by gas turbine equipment, and power generation by steam turbine equipment, which is performed by recovering exhaust heat from the gas turbine, is secondary. For this reason, a fuel with strong thermal power such as LNG is used as fuel, and the temperature of the combustion gas that is combusted in the combustor and supplied to the gas turbine is 1100 degrees Celsius to 1200 degrees Celsius at 100% load. . On the other hand, in a pressurized fluidized bed combined plant that uses coal as fuel, the temperature of the combustion gas supplied from the pressurized fluidized bed boiler to the gas turbine is approximately 860 degrees Celsius even at 100% load.
Power generation by the gas turbine will be secondary, and power generation by the steam turbine will be the main power generation using the exhaust heat of the gas turbine and the steam generated by the pressurized fluidized bed boiler. In other words, for the gas turbine in a pressurized fluidized bed combined plant, the work of driving an air compressor to feed the compressed air required by the pressurized fluidized bed boiler is more important than power generation. Incidentally, as related to the pressurized fluidized bed combined plant, there are JP-A-64-41606 and the like.

【0003】0003

【発明が解決しようとする課題】加圧流動床コンバイン
ドプラントに使用するガスタービン設備には、二軸型と
一軸型のものがある。二軸型のものは、部分負荷運転を
行う場合、空気圧縮機の回転数を変化させることで吐出
空気流量及び加圧流動床ボイラ内の圧力を可変とし、プ
ラントの部分負荷運転を可能としている。これに対し、
ガスタービンと空気圧縮機とが一軸に機械的に連結され
たものは、ガスタービン側と空気圧縮機側との回転数が
常に等しいので、部分負荷運転時には、図9に示す様に
、圧縮機吐出圧力はボイラが要求する圧力,流量特性に
従って降下し、圧縮機入口案内翼の角度を制御したり圧
縮機入口絞り弁等を制御することでボイラへ供給する空
気の圧力と流量を制御しても、ボイラでの燃焼状態を安
定に維持することは困難になる。
There are two types of gas turbine equipment used in pressurized fluidized bed combined plants: two-shaft type and one-shaft type. When performing partial load operation, the two-shaft type allows the discharge air flow rate and the pressure inside the pressurized fluidized bed boiler to be varied by changing the rotational speed of the air compressor, enabling partial load operation of the plant. . In contrast,
In a system where the gas turbine and air compressor are mechanically connected to one shaft, the rotational speeds of the gas turbine side and the air compressor side are always the same, so during partial load operation, the compressor The discharge pressure decreases according to the pressure and flow characteristics required by the boiler, and the pressure and flow rate of air supplied to the boiler is controlled by controlling the angle of the compressor inlet guide vanes and the compressor inlet throttle valve. However, it becomes difficult to maintain stable combustion conditions in the boiler.

【0004】低負荷時等の部分負荷時には、ボイラから
排出されガスタービンに導入される燃焼ガスの温度が、
図6に示される様に、定格時の温度より降下する。一方
、図7に示す様に、ガスタービン圧縮機の吐出圧力は部
分負荷時には低下し、この圧力低下によりガスタービン
出口の排ガス温度は図6に示す様に上昇してしまう。 つまり、部分負荷時にはガスタービンの出入口での熱落
差が小さくなる。この結果、ガスタービンの出力は圧縮
機の動力以下に下がり、図8に示す様に、ガスタービン
発電機出力は、プラントの所定部分負荷以下でマイナス
となってしまう。つまり、このプラント所定部分負荷以
下では、ガスタービンは自立運転が不可能となってしま
う。
[0004] During partial loads such as low loads, the temperature of the combustion gas discharged from the boiler and introduced into the gas turbine is
As shown in Figure 6, the temperature drops below the rated temperature. On the other hand, as shown in FIG. 7, the discharge pressure of the gas turbine compressor decreases during partial load, and this pressure drop causes the exhaust gas temperature at the gas turbine outlet to rise as shown in FIG. 6. In other words, during partial load, the heat drop at the inlet and outlet of the gas turbine becomes smaller. As a result, the output of the gas turbine falls below the power of the compressor, and as shown in FIG. 8, the output of the gas turbine generator becomes negative below a predetermined partial load of the plant. In other words, the gas turbine cannot operate independently below this plant predetermined partial load.

【0005】このことは、一軸型のガスタービン設備を
用いる加圧流動床コンバインドプラントが、ガスタービ
ンの仕様により運転の制限を受けてしまうという問題と
、近年のように変動の激しい電力需要に柔軟に対応でき
ないという問題がある。
[0005] This problem arises from the problem that pressurized fluidized bed combined plants using single-shaft gas turbine equipment are subject to operational restrictions due to the specifications of the gas turbine, and to the problem that they cannot be flexibly adapted to the rapidly fluctuating power demand that has been occurring in recent years. The problem is that it is not possible to respond to

【0006】本発明は、一軸型のガスタービンを用いる
加圧流動床コンバインドプラントで部分負荷運転を可能
にすることを目的とする。
The object of the present invention is to enable partial load operation in a pressurized fluidized bed combined plant using a single-shaft gas turbine.

【0007】[0007]

【課題を解決するための手段】上記目的は、プラントを
部分負荷運転する場合には、ガスタービンに、加圧流動
床ボイラから燃焼ガスを供給する他、高圧蒸気あるいは
高圧給水を注入することで、達成される。高圧蒸気(給
水)としては、加圧流動床ボイラから蒸気タービンへ供
給する蒸気の一部や、該加圧流動床ボイラへの給水の一
部(高圧であるためにガスタービンに供給したとき蒸気
になる。)や、他の蒸気発生器からの蒸気等を用いる。 又、高圧蒸気のガスタービンへの注入量は、ガスタービ
ン発電機の出力、加圧流動床ボイラからガスタービンへ
供給する燃焼ガスの温度、ガスタービンの排気ガスの温
度、注入する高圧蒸気(給水)の圧力や温度から注入す
る高圧蒸気のエネルギを計算し、ガスタービン出力が目
標設定値となるように制御する。
[Means for solving the problem] The above objective is to supply combustion gas from a pressurized fluidized bed boiler to the gas turbine, as well as inject high pressure steam or high pressure feed water when operating the plant at partial load. , achieved. High-pressure steam (feed water) includes a part of the steam supplied from the pressurized fluidized bed boiler to the steam turbine, and a part of the water supplied to the pressurized fluidized bed boiler (due to its high pressure, when supplied to the gas turbine, the steam ) or steam from other steam generators. In addition, the amount of high-pressure steam injected into the gas turbine depends on the output of the gas turbine generator, the temperature of the combustion gas supplied from the pressurized fluidized bed boiler to the gas turbine, the temperature of the gas turbine exhaust gas, and the high-pressure steam to be injected (feed water). ) The energy of the high-pressure steam to be injected is calculated based on the pressure and temperature of the gas turbine, and the gas turbine output is controlled to meet the target set value.

【0008】[0008]

【作用】ガスタービンの出力が、燃焼ガスの供給だけで
は低下してしまい負になる場合は、高圧蒸気にてガスタ
ービンを回転させ、図8の例で説明すれば、発電機出力
が負になる領域でのガスタービン出力つまり発電機出力
を高圧蒸気にて補い、負とならないように制御する。こ
れにより、ガスタービンは自立運転され、プラントの部
分負荷運転が可能となる。
[Operation] If the output of the gas turbine decreases and becomes negative due to the supply of combustion gas alone, by rotating the gas turbine with high-pressure steam and using the example in Figure 8, the generator output will become negative. The gas turbine output, that is, the generator output, in this region is supplemented with high-pressure steam and controlled so that it does not become negative. This allows the gas turbine to operate independently and allows the plant to operate at partial load.

【0009】[0009]

【実施例】以下、本発明の好適な実施例を図面を参照し
て説明する。図1は、本発明の第1実施例に係る加圧流
動床コンバインドプラントの系統図である。この加圧流
動床コンバインドプラントは、加圧流動床ボイラ設備と
、一軸型のガスタービン設備と、蒸気タービン設備と、
発電機設備とを備える。ガスタービン2の回転により駆
動される空気圧縮機1は、空気21を吸入し圧縮するこ
とで高圧空気とする。この高圧空気22は加圧流動床ボ
イラ4に導入される。加圧流動床ボイラ4には燃料であ
る石炭が供給されており、この石炭が高圧空気22のも
とで燃焼し、高温,高圧となった燃焼ガス23がガスタ
ービン2に供給される。高温,高圧の燃焼ガスはガスタ
ービン2にて膨張し仕事をし、これにより、ガスタービ
ン2が回転駆動されて、空気圧縮機1を回転駆動すると
共にガスタービン発電機3を駆動して発電を行う。 ガスタービン2の排気ガス24は、給水加熱器10に導
入され、ここで給水36と熱交換し、最終的に低温とな
って大気に放出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a pressurized fluidized bed combined plant according to a first embodiment of the present invention. This pressurized fluidized bed combined plant includes pressurized fluidized bed boiler equipment, single-shaft gas turbine equipment, steam turbine equipment,
Equipped with generator equipment. The air compressor 1 driven by the rotation of the gas turbine 2 takes in air 21 and compresses it into high-pressure air. This high pressure air 22 is introduced into the pressurized fluidized bed boiler 4. The pressurized fluidized bed boiler 4 is supplied with coal as fuel, which is combusted under high-pressure air 22 and high-temperature, high-pressure combustion gas 23 is supplied to the gas turbine 2 . The high-temperature, high-pressure combustion gas expands and performs work in the gas turbine 2, which rotationally drives the gas turbine 2, which rotates the air compressor 1 and drives the gas turbine generator 3 to generate electricity. conduct. The exhaust gas 24 of the gas turbine 2 is introduced into the feed water heater 10, where it exchanges heat with the feed water 36, and is finally cooled down and released into the atmosphere.

【0010】給水加熱器10にて加熱された給水37は
、加圧流動床ボイラ4内の配管を通ることで、該ボイラ
4内の石炭の燃焼により高温,高圧の蒸気31となる。 この蒸気31は高圧タービン5に供給され、ここで膨張
し該高圧タービン5を回転駆動する。高圧タービン5か
ら排気された蒸気32は、再びボイラ4にて再熱されて
から再熱蒸気タービン6に供給され、該再熱蒸気タービ
ン6を回転駆動する。これらのタービン5,6の回転に
より発電機7が駆動され、発電が行われる。
[0010] Feed water 37 heated by the feed water heater 10 passes through piping within the pressurized fluidized bed boiler 4 and becomes high temperature, high pressure steam 31 by combustion of coal within the boiler 4 . This steam 31 is supplied to the high-pressure turbine 5, expands here, and drives the high-pressure turbine 5 to rotate. The steam 32 exhausted from the high-pressure turbine 5 is reheated again in the boiler 4 and then supplied to the reheat steam turbine 6 to rotationally drive the reheat steam turbine 6. The rotation of these turbines 5 and 6 drives a generator 7 to generate electricity.

【0011】再熱蒸気タービン6から排気された低温,
低圧の蒸気34は、復水器8にて海水35と熱交換され
、凝縮して水に戻り、復水器8内に溜められる。この復
水器8内の復水は、復水器8の出口に設置された高圧給
水ポンプ9にて昇圧され給水加熱器10に送水され、前
述したようにガスタービン2の排気ガス24と熱交換さ
れる。
[0011] The low temperature exhausted from the reheat steam turbine 6,
The low-pressure steam 34 exchanges heat with seawater 35 in the condenser 8, condenses and returns to water, and is stored in the condenser 8. The condensate in the condenser 8 is pressurized by the high-pressure water pump 9 installed at the outlet of the condenser 8, and is sent to the feed water heater 10, where it is heated with the exhaust gas 24 of the gas turbine 2 as described above. be exchanged.

【0012】以上が、一軸型のガスタービン設備を備え
た加圧流動床コンバインドプラントの構成であり、本実
施例では更にこの構成に加え、部分負荷運転制御装置を
設けてある。この部分負荷運転制御装置は、ボイラ4か
ら高圧タービン5に供給される高温,高圧蒸気31を途
中で抽気しガスタービン2に供給する配管51と、該配
管51の途中に設けられ抽気量を調節する制御弁42と
、該制御弁42を制御する制御装置41と、各種センサ
からなる。本実施例では、センサとして、抽気する蒸気
31の圧力を検出する圧力センサ43と、該蒸気31の
温度を検出する温度センサ44と、ボイラ4からガスタ
ービン2に供給される燃焼ガス23の温度を検出する温
度センサ45と、ガスタービン2の排気ガス24の温度
を検出する温度センサ46と、ガスタービン発電機3の
出力を検出するセンサ47とを用い、制御装置41は、
これら各センサ43〜47の検出信号を取り込んでガス
タービン2に投入する抽気蒸気の単位エネルギを計算し
、ガスタービン2への投入エネルギが目標設定値となる
ように抽気蒸気量つまりガスタービン2への投入蒸気量
と前記目標設定値との偏差が零となるように制御弁42
の開弁量を制御するようになっている。
The above is the configuration of a pressurized fluidized bed combined plant equipped with single-shaft gas turbine equipment, and in this embodiment, in addition to this configuration, a partial load operation control device is provided. This partial load operation control device includes a pipe 51 that bleeds high-temperature, high-pressure steam 31 supplied from the boiler 4 to the high-pressure turbine 5 midway and supplies it to the gas turbine 2, and a pipe 51 provided midway through the pipe 51 to adjust the amount of extracted air. The control valve 42 includes a control valve 42, a control device 41 that controls the control valve 42, and various sensors. In this embodiment, the sensors include a pressure sensor 43 that detects the pressure of the steam 31 to be extracted, a temperature sensor 44 that detects the temperature of the steam 31, and a temperature sensor 44 that detects the temperature of the combustion gas 23 supplied from the boiler 4 to the gas turbine 2. The control device 41 uses a temperature sensor 45 that detects the temperature of the exhaust gas 24 of the gas turbine 2, a temperature sensor 46 that detects the temperature of the exhaust gas 24 of the gas turbine 2, and a sensor 47 that detects the output of the gas turbine generator 3.
The detection signals of these sensors 43 to 47 are taken in to calculate the unit energy of the extracted steam to be input to the gas turbine 2, and the amount of extracted steam, that is, the amount of extracted steam to the gas turbine 2 is adjusted so that the input energy to the gas turbine 2 becomes the target set value. control valve 42 so that the deviation between the input steam amount and the target set value becomes zero.
The opening amount of the valve is controlled.

【0013】今、図8に示す所定部分負荷より低い負荷
割合から所定部分負荷までの負荷範囲でプラント負荷を
上昇させ或いは降下させる運転を行う場合、空気圧縮機
1の動力に対しガスタービン2の出力が上回りガスター
ビン発電機3の出力が負とならないような投入エネルギ
の目標値を設定しておく。制御装置41は、各種センサ
43〜47の検出値を取り込み、制御弁42の開弁量を
制御することで、ボイラ4からガスタービン2に供給さ
れる燃焼ガスだけでは足りない分のエネルギを持った抽
気蒸気量がガスタービン2に供給される。これにより、
ガスタービン2は、燃焼ガスだけでは空気圧縮機1を十
分に動作させるだけの動力が得られなくなっても、不足
分を抽気蒸気から得ることができ、ボイラ4が必要とす
る圧縮空気量が空気圧縮機1からボイラ4に供給される
。この結果、本実施例の加圧流動床コンバインドプラン
トのガスタービン発電端出力とプラント負荷との関係は
、図8において、所定部分負荷以下が発電機出力0の軸
と一致するようになり、発電機出力が負となってガスタ
ービンが自立運転できなくなるということはない。つま
り、一軸型のガスタービンを用いた場合でも、所定部分
負荷以下の低負荷でプラントを運転することが可能とな
る。
Now, when the plant load is increased or decreased in the load range from a load ratio lower than the predetermined partial load to the predetermined partial load shown in FIG. A target value of input energy is set so that the output exceeds the output and the output of the gas turbine generator 3 does not become negative. The control device 41 takes in the detection values of the various sensors 43 to 47 and controls the opening amount of the control valve 42 so that the combustion gas supplied from the boiler 4 to the gas turbine 2 alone has enough energy. The extracted steam amount is supplied to the gas turbine 2. This results in
Even if the gas turbine 2 is unable to obtain enough power to operate the air compressor 1 from combustion gas alone, the insufficient power can be obtained from extracted steam, and the amount of compressed air required by the boiler 4 can be It is supplied from the compressor 1 to the boiler 4. As a result, the relationship between the gas turbine power generation end output and the plant load in the pressurized fluidized bed combined plant of this example is such that in FIG. The gas turbine will not be unable to operate independently due to the negative mechanical output. In other words, even when a single-shaft gas turbine is used, the plant can be operated at a low load below a predetermined partial load.

【0014】図2は、本発明の第2実施例に係る加圧流
動床コンバインドプラントの系統図である。第1実施例
では、ガスタービン1の動力の不足分を補うための投入
蒸気をボイラ4から高圧タービン5へ供給される蒸気3
1を抽気して得ていたのに対し、本実施例では、蒸気3
1の代わりに、高圧タービン5からの排気蒸気32を抽
気して用いている。このため、配管51を排気蒸気32
を取り込んでガスタービン2に供給する位置に設置し、
センサ43,44は排気蒸気32の圧力,温度を検出し
制御装置41に出力するようになっている。排気蒸気3
2は、蒸気31に比べて低温,低圧であるが、ガスター
ビン2内に投入されると膨張しガスタービン2を回転駆
動するには十分なエネルギを持っており、本実施例でも
第1実施例と同様の効果が得られる。
FIG. 2 is a system diagram of a pressurized fluidized bed combined plant according to a second embodiment of the present invention. In the first embodiment, steam 3 is supplied from the boiler 4 to the high-pressure turbine 5 as input steam to compensate for the power shortage of the gas turbine 1.
1 was obtained by extracting steam, whereas in this example, steam 3
1, exhaust steam 32 from the high-pressure turbine 5 is extracted and used. For this reason, the pipe 51 is connected to the exhaust steam 32.
installed at a position where it takes in and supplies it to the gas turbine 2,
The sensors 43 and 44 detect the pressure and temperature of the exhaust steam 32 and output them to the control device 41. exhaust steam 3
The steam 2 has a lower temperature and lower pressure than the steam 31, but when it is introduced into the gas turbine 2, it expands and has enough energy to rotate the gas turbine 2. The same effect as in the example can be obtained.

【0015】図3は、本発明の第3実施例に係る加圧流
動床コンバインドプラントの系統図である。第2実施例
では、高圧タービン5の排気蒸気32を用いたが、本実
施例では、再熱蒸気33を抽気しこれをガスタービン2
に投入するようにしている。このため、センサ43,4
4は、再熱蒸気33の圧力,温度を検出し制御装置41
に出力するようになっている。再熱蒸気33は、排気蒸
気32よりも高温,高圧でエネルギも高いので、本実施
例は第2実施例よりもより効果的にプラントの部分負荷
運転を可能にする。
FIG. 3 is a system diagram of a pressurized fluidized bed combined plant according to a third embodiment of the present invention. In the second embodiment, the exhaust steam 32 of the high-pressure turbine 5 was used, but in this embodiment, the reheated steam 33 is extracted and transferred to the gas turbine 5.
I am trying to invest in it. For this reason, the sensors 43, 4
4 is a control device 41 that detects the pressure and temperature of the reheated steam 33;
It is designed to output to . Since the reheated steam 33 has a higher temperature, higher pressure, and higher energy than the exhaust steam 32, this embodiment enables the plant to operate at partial load more effectively than the second embodiment.

【0016】図4は、本発明の第4実施例に係る加圧流
動床コンバインドプラントの系統図である。本実施例で
は、給水加熱器10からボイラ4に送水される高圧,高
温の給水37の一部を抽水しガスタービン2に投入され
るようになっている。このため、センサ43,44はこ
の給水37の圧力,温度を検出し制御装置41に出力す
るようになっている。給水37は液体であるが、高温,
高圧であるために、ガスタービン2に投入された途端に
蒸発して膨張し高温,高圧の蒸気となってガスタービン
2を駆動する。本実施例でも前述した各実施例と同様の
効果を得ることができる。
FIG. 4 is a system diagram of a pressurized fluidized bed combined plant according to a fourth embodiment of the present invention. In this embodiment, a portion of the high-pressure, high-temperature feed water 37 sent from the feed water heater 10 to the boiler 4 is extracted and introduced into the gas turbine 2. Therefore, the sensors 43 and 44 detect the pressure and temperature of this water supply 37 and output them to the control device 41. The water supply 37 is liquid, but at high temperature,
Because of its high pressure, it evaporates and expands as soon as it is introduced into the gas turbine 2, becoming high-temperature, high-pressure steam that drives the gas turbine 2. This embodiment can also provide the same effects as those of the embodiments described above.

【0017】図5は、本発明の第5実施例に係る加圧流
動床コンバインドプラントの系統図である。上述した各
実施例が、ガスタービン2に投入する蒸気あるいは給水
を自己の系統のから得ていたのに対し、本実施例では、
他の蒸気発生器48から配管38を介して得ている。こ
のため、センサ43,44はこの蒸気発生器48で発生
した蒸気の圧力,温度を検出し制御装置41に出力する
ようになっている。本実施例でも他の実施例と同様の効
果を得ることができる。
FIG. 5 is a system diagram of a pressurized fluidized bed combined plant according to a fifth embodiment of the present invention. While each of the above-mentioned embodiments obtained the steam or feed water to be input to the gas turbine 2 from its own system, in this embodiment,
It is obtained via piping 38 from another steam generator 48 . Therefore, the sensors 43 and 44 detect the pressure and temperature of the steam generated by the steam generator 48 and output them to the control device 41. In this embodiment, the same effects as in the other embodiments can be obtained.

【0018】[0018]

【発明の効果】本発明によれば、一軸型のガスタービン
を使用した加圧流動床コンバインドプラントでも、部分
負荷運転時にもガスタービンの自立運転を可能にしたの
で、プラントを低負荷でも運転することが可能となり、
プラントの運用負荷範囲が広がり変動する電力需要に容
易に対応することができる。
[Effects of the Invention] According to the present invention, even in a pressurized fluidized bed combined plant using a single-shaft gas turbine, the gas turbine can operate independently even during partial load operation, so the plant can be operated even at low load. It becomes possible to
The operating load range of the plant expands, making it easier to respond to fluctuating power demand.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例に係る加圧流動床コンバイ
ンドプラントの系統図である。
FIG. 1 is a system diagram of a pressurized fluidized bed combined plant according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る加圧流動床コンバイ
ンドプラントの系統図である。
FIG. 2 is a system diagram of a pressurized fluidized bed combined plant according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る加圧流動床コンバイ
ンドプラントの系統図である。
FIG. 3 is a system diagram of a pressurized fluidized bed combined plant according to a third embodiment of the present invention.

【図4】本発明の第4実施例に係る加圧流動床コンバイ
ンドプラントの系統図である。
FIG. 4 is a system diagram of a pressurized fluidized bed combined plant according to a fourth embodiment of the present invention.

【図5】本発明の第5実施例に係る加圧流動床コンバイ
ンドプラントの系統図である。
FIG. 5 is a system diagram of a pressurized fluidized bed combined plant according to a fifth embodiment of the present invention.

【図6】ガスタービン出入口ガス温度の部分負荷特性を
示すグラフである。
FIG. 6 is a graph showing partial load characteristics of gas turbine inlet and outlet gas temperatures.

【図7】空気圧縮機吐出圧力の部分負荷特性を示すグラ
フである。
FIG. 7 is a graph showing partial load characteristics of air compressor discharge pressure.

【図8】ガスタービン発電端出力の部分負荷特性を示す
グラフである。
FIG. 8 is a graph showing partial load characteristics of the gas turbine generating end output.

【図9】加圧流動床ボイラへの供給空気量,圧力の部分
負荷特性を示すグラフである。
FIG. 9 is a graph showing the partial load characteristics of the air amount and pressure supplied to the pressurized fluidized bed boiler.

【符号の説明】[Explanation of symbols]

1…空気圧縮機、2…ガスタービン、3…ガスタービン
発電機、4…加圧流動床ボイラ、5…高圧タービン、6
…再熱タービン、7…蒸気タービン発電機、8…復水器
、9…給水ポンプ、10…給水加熱器、19…加圧流動
床ボイラバイパス流量調整弁、21…空気、22…高圧
空気、23…燃焼ガス、24…ガスタービン排ガス、3
1…高圧タービンへの供給蒸気、32…高圧タービン排
気蒸気、33…再熱蒸気、37…ボイラへの給水、38
,51…投入蒸気(抽気蒸気,給水)用の配管、41…
投入エネルギ制御装置、42…投入エネルギ制御弁、4
3…圧力センサ、44,45,46…温度センサ、47
…発電機出力センサ、48…他の蒸気発生器。
1... Air compressor, 2... Gas turbine, 3... Gas turbine generator, 4... Pressurized fluidized bed boiler, 5... High pressure turbine, 6
... Reheat turbine, 7... Steam turbine generator, 8... Condenser, 9... Feed water pump, 10... Feed water heater, 19... Pressurized fluidized bed boiler bypass flow control valve, 21... Air, 22... High pressure air, 23... Combustion gas, 24... Gas turbine exhaust gas, 3
1... Steam supplied to the high pressure turbine, 32... High pressure turbine exhaust steam, 33... Reheat steam, 37... Water supplied to the boiler, 38
, 51... Piping for input steam (extracted steam, water supply), 41...
input energy control device, 42... input energy control valve, 4
3...Pressure sensor, 44, 45, 46...Temperature sensor, 47
... Generator output sensor, 48... Other steam generators.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】  ガスタービン及び該ガスタービンに一
軸に連結され該ガスタービンにより駆動される空気圧縮
機を有するガスタービン設備と、燃料としての石炭と前
記空気圧縮機からの圧縮空気が供給され前記石炭を前記
圧縮空気にて燃焼し燃焼ガスを前記ガスタービンに供給
し該ガスタービンを駆動させる加圧流動床ボイラと、該
加圧流動床ボイラを通すことで発生された蒸気にて駆動
される蒸気タービンと、前記ガスタービンにて発電され
るガスタービン発電機及び前記蒸気タービンにて発電さ
れる蒸気タービン発電機とを備える加圧流動床コンバイ
ンドプラントにおいて、前記ガスタービンを前記燃焼ガ
スのみで駆動したとき前記ガスタービン発電機の出力が
負となるプラント運転負荷範囲で、前記ガスタービンに
高温,高圧蒸気あるいは給水を前記燃焼ガスと共に供給
し該燃焼ガスによるエネルギの不足分を補充して前記ガ
スタービン発電機の出力が負とならないように制御する
ことを特徴とする加圧流動床コンバインドプラントの部
分負荷運転制御方法。
1. A gas turbine facility comprising a gas turbine and an air compressor that is uniaxially connected to the gas turbine and driven by the gas turbine, and a gas turbine that is supplied with coal as a fuel and compressed air from the air compressor. A pressurized fluidized bed boiler that burns coal with the compressed air and supplies combustion gas to the gas turbine to drive the gas turbine; and a pressurized fluidized bed boiler that is driven by steam generated by passing through the pressurized fluidized bed boiler. In a pressurized fluidized bed combined plant comprising a steam turbine, a gas turbine generator that generates electricity with the gas turbine, and a steam turbine generator that generates electricity with the steam turbine, the gas turbine is driven only by the combustion gas. In the plant operating load range where the output of the gas turbine generator becomes negative, high-temperature, high-pressure steam or feed water is supplied to the gas turbine together with the combustion gas to replenish the energy deficit caused by the combustion gas, and the gas A partial load operation control method for a pressurized fluidized bed combined plant, characterized in that the output of a turbine generator is controlled so as not to become negative.
【請求項2】  ガスタービン及び該ガスタービンに一
軸に連結され該ガスタービンにより駆動される空気圧縮
機を有するガスタービン設備と、燃料としての石炭と前
記空気圧縮機からの圧縮空気が供給され前記石炭を前記
圧縮空気にて燃焼し燃焼ガスを前記ガスタービンに供給
し該ガスタービンを駆動させる加圧流動床ボイラと、該
加圧流動床ボイラを通すことで発生された蒸気にて駆動
される蒸気タービンと、前記ガスタービンにて発電され
るガスタービン発電機及び前記蒸気タービンにて発電さ
れる蒸気タービン発電機とを備える加圧流動床コンバイ
ンドプラントにおいて、プラントを部分負荷運転する時
、前記加圧流動床ボイラが必要とする圧縮空気を、前記
空気圧縮機が該加圧流動床ボイラに供給するに十分な動
力を前記ガスタービンが前記燃焼ガスの仕事だけで前記
空気圧縮機に与えることができないとき、高圧,高温の
蒸気あるいは給水を前記ガスタービンに供給し該蒸気あ
るいは給水によるエネルギで前記燃焼ガスのエネルギ不
足を補うことをことを特徴とする加圧流動床コンバイン
ドプラントの部分負荷運転制御方法。
2. A gas turbine facility comprising a gas turbine and an air compressor uniaxially connected to the gas turbine and driven by the gas turbine; A pressurized fluidized bed boiler that burns coal with the compressed air and supplies combustion gas to the gas turbine to drive the gas turbine; and a pressurized fluidized bed boiler that is driven by steam generated by passing through the pressurized fluidized bed boiler. In a pressurized fluidized bed combined plant that includes a steam turbine, a gas turbine generator that generates electricity with the gas turbine, and a steam turbine generator that generates electricity with the steam turbine, when the plant is operated at partial load, the The gas turbine can provide sufficient power to the air compressor using only the work of the combustion gas for the air compressor to supply the compressed air required by the compressed fluidized bed boiler to the compressed fluidized bed boiler. Partial load operation control of a pressurized fluidized bed combined plant, characterized in that when this is not possible, high-pressure, high-temperature steam or feed water is supplied to the gas turbine, and the energy from the steam or feed water is used to compensate for the lack of energy in the combustion gas. Method.
【請求項3】  ガスタービン及び該ガスタービンに一
軸に連結され該ガスタービンにより駆動される空気圧縮
機を有するガスタービン設備と、燃料としての石炭と前
記空気圧縮機からの圧縮空気が供給され前記石炭を前記
圧縮空気にて燃焼し燃焼ガスを前記ガスタービンに供給
し該ガスタービンを駆動させる加圧流動床ボイラと、該
加圧流動床ボイラを通すことで発生された蒸気にて駆動
される蒸気タービンと、前記ガスタービンにて発電され
るガスタービン発電機及び前記蒸気タービンにて発電さ
れる蒸気タービン発電機とを備える加圧流動床コンバイ
ンドプラントにおいて、前記ガスタービンに供給する高
温,高圧の蒸気あるいは給水を用意すると共に該蒸気あ
るいは給水のエネルギを算出し、前記ガスタービンに供
給される燃焼ガスのエネルギだけでは前記ガスタービン
設備を自立運転させることが不可能な場合に自立運転に
不足するエネルギに見合う前記蒸気あるいは給水の量を
求め該蒸気あるいは給水を前記ガスタービンに供給する
ことを特徴とする加圧流動床コンバインドプラントの部
分負荷運転制御方法。
3. Gas turbine equipment comprising a gas turbine and an air compressor that is uniaxially connected to the gas turbine and driven by the gas turbine, and a gas turbine that is supplied with coal as a fuel and compressed air from the air compressor; A pressurized fluidized bed boiler that burns coal with the compressed air and supplies combustion gas to the gas turbine to drive the gas turbine; and a pressurized fluidized bed boiler that is driven by steam generated by passing through the pressurized fluidized bed boiler. In a pressurized fluidized bed combined plant comprising a steam turbine, a gas turbine generator that generates electricity with the gas turbine, and a steam turbine generator that generates electricity with the steam turbine, high-temperature, high-pressure Prepare steam or water supply and calculate the energy of the steam or water supply, and if the energy of the combustion gas supplied to the gas turbine alone is insufficient for self-sustaining operation of the gas turbine equipment, A method for controlling partial load operation of a pressurized fluidized bed combined plant, characterized in that an amount of the steam or feed water corresponding to energy is determined and the steam or feed water is supplied to the gas turbine.
【請求項4】  ガスタービン及び該ガスタービンに一
軸に連結され該ガスタービンにより駆動される空気圧縮
機を有するガスタービン設備と、燃料としての石炭と前
記空気圧縮機からの圧縮空気が供給され前記石炭を前記
圧縮空気にて燃焼し燃焼ガスを前記ガスタービンに供給
し該ガスタービンを駆動させる加圧流動床ボイラと、該
加圧流動床ボイラを通すことで発生された蒸気にて駆動
される蒸気タービンと、前記ガスタービンにて発電され
るガスタービン発電機及び前記蒸気タービンにて発電さ
れる蒸気タービン発電機とを備える加圧流動床コンバイ
ンドプラントの部分負荷運転制御装置において、前記ガ
スタービンを前記燃焼ガスのみで駆動したとき前記ガス
タービン発電機の出力が負となるプラント運転負荷範囲
を検出する手段と、前記ガスタービンに高温,高圧蒸気
あるいは給水を前記燃焼ガスと共に供給し該燃焼ガスに
よるエネルギの不足分を補充して前記ガスタービン発電
機の出力が負とならないように制御する手段とを備える
ことを特徴とする加圧流動床コンバインドプラントの部
分負荷運転制御装置。
4. Gas turbine equipment comprising a gas turbine and an air compressor that is uniaxially connected to the gas turbine and driven by the gas turbine, and a gas turbine that is supplied with coal as a fuel and compressed air from the air compressor; A pressurized fluidized bed boiler that burns coal with the compressed air and supplies combustion gas to the gas turbine to drive the gas turbine; and a pressurized fluidized bed boiler that is driven by steam generated by passing through the pressurized fluidized bed boiler. A partial load operation control device for a pressurized fluidized bed combined plant including a steam turbine, a gas turbine generator that generates electricity with the gas turbine, and a steam turbine generator that generates electricity with the steam turbine, wherein the gas turbine means for detecting a plant operating load range in which the output of the gas turbine generator becomes negative when driven only by the combustion gas; and means for supplying high-temperature, high-pressure steam or feed water to the gas turbine together with the combustion gas, A partial load operation control device for a pressurized fluidized bed combined plant, comprising means for replenishing energy shortage and controlling the output of the gas turbine generator so that it does not become negative.
【請求項5】  ガスタービン及び該ガスタービンに一
軸に連結され該ガスタービンにより駆動される空気圧縮
機を有するガスタービン設備と、燃料としての石炭と前
記空気圧縮機からの圧縮空気が供給され前記石炭を前記
圧縮空気にて燃焼し燃焼ガスを前記ガスタービンに供給
し該ガスタービンを駆動させる加圧流動床ボイラと、該
加圧流動床ボイラを通すことで発生された蒸気にて駆動
される蒸気タービンと、前記ガスタービンにて発電され
るガスタービン発電機及び前記蒸気タービンにて発電さ
れる蒸気タービン発電機とを備える加圧流動床コンバイ
ンドプラントの部分負荷運転制御装置において、高温,
高圧の蒸気あるいは給水を前記ガスタービンに前記燃焼
ガスと共に供給する配管系統及び該蒸気あるいは給水の
量を調節する弁と、該蒸気あるいは給水のエネルギを算
出する手段と、前記ガスタービンに供給される燃焼ガス
のエネルギだけでは前記ガスタービン設備を自立運転さ
せることが不可能な場合に自立運転に不足するエネルギ
に見合う量の前記蒸気あるいは給水を前記ガスタービン
に供給すべく前記弁を調節する手段とを備えることを特
徴とする加圧流動床コンバインドプラントの部分負荷運
転制御装置。
5. Gas turbine equipment comprising a gas turbine and an air compressor that is uniaxially connected to the gas turbine and driven by the gas turbine; and a gas turbine facility that is supplied with coal as fuel and compressed air from the air compressor; A pressurized fluidized bed boiler that burns coal with the compressed air and supplies combustion gas to the gas turbine to drive the gas turbine; and a pressurized fluidized bed boiler that is driven by steam generated by passing through the pressurized fluidized bed boiler. In a partial load operation control device for a pressurized fluidized bed combined plant including a steam turbine, a gas turbine generator that generates electricity with the gas turbine, and a steam turbine generator that generates electricity with the steam turbine,
a piping system for supplying high-pressure steam or feed water to the gas turbine together with the combustion gas; a valve for adjusting the amount of the steam or feed water; a means for calculating the energy of the steam or feed water; means for adjusting the valve to supply the gas turbine with an amount of the steam or feed water commensurate with the insufficient energy for self-sustaining operation when it is impossible to operate the gas turbine equipment self-sustainingly using only the energy of combustion gas; A partial load operation control device for a pressurized fluidized bed combined plant, comprising:
【請求項6】  ガスタービン及び該ガスタービンに一
軸に連結され該ガスタービンにより駆動される空気圧縮
機を有するガスタービン設備と、燃料としての石炭と前
記空気圧縮機からの圧縮空気が供給され前記石炭を前記
圧縮空気にて燃焼し燃焼ガスを前記ガスタービンに供給
し該ガスタービンを駆動させる加圧流動床ボイラと、該
加圧流動床ボイラを通すことで発生された蒸気にて駆動
される蒸気タービンと、前記ガスタービンにて発電され
るガスタービン発電機及び前記蒸気タービンにて発電さ
れる蒸気タービン発電機とを備える加圧流動床コンバイ
ンドプラントにおいて、前記ガスタービンを前記燃焼ガ
スのみで駆動したとき前記ガスタービン発電機の出力が
負となるプラント運転負荷範囲を検出する手段と、前記
ガスタービンに高温,高圧蒸気あるいは給水を前記燃焼
ガスと共に供給し該燃焼ガスによるエネルギの不足分を
補充して前記ガスタービン発電機の出力が負とならない
ように制御する手段とを有する部分負荷運転制御装置を
備えることを特徴とする加圧流動床コンバインドプラン
ト。
6. Gas turbine equipment comprising a gas turbine and an air compressor that is uniaxially connected to the gas turbine and driven by the gas turbine; and a gas turbine that is supplied with coal as fuel and compressed air from the air compressor; A pressurized fluidized bed boiler that burns coal with the compressed air and supplies combustion gas to the gas turbine to drive the gas turbine; and a pressurized fluidized bed boiler that is driven by steam generated by passing through the pressurized fluidized bed boiler. In a pressurized fluidized bed combined plant comprising a steam turbine, a gas turbine generator that generates electricity with the gas turbine, and a steam turbine generator that generates electricity with the steam turbine, the gas turbine is driven only by the combustion gas. means for detecting a plant operating load range in which the output of the gas turbine generator becomes negative when the output of the gas turbine generator becomes negative; A pressurized fluidized bed combined plant, comprising: a partial load operation control device having means for controlling the output of the gas turbine generator so that the output thereof does not become negative.
【請求項7】  ガスタービン及び該ガスタービンに一
軸に連結され該ガスタービンにより駆動される空気圧縮
機を有するガスタービン設備と、燃料としての石炭と前
記空気圧縮機からの圧縮空気が供給され前記石炭を前記
圧縮空気にて燃焼し燃焼ガスを前記ガスタービンに供給
し該ガスタービンを駆動させる加圧流動床ボイラと、該
加圧流動床ボイラを通すことで発生された蒸気にて駆動
される蒸気タービンと、前記ガスタービンにて発電され
るガスタービン発電機及び前記蒸気タービンにて発電さ
れる蒸気タービン発電機とを備える加圧流動床コンバイ
ンドプラント、高温,高圧の蒸気あるいは給水を前記ガ
スタービンに前記燃焼ガスと共に供給する配管系統及び
該蒸気あるいは給水の量を調節する弁と、該蒸気あるい
は給水のエネルギを算出する手段と、前記ガスタービン
に供給される燃焼ガスのエネルギだけでは前記ガスター
ビン設備を自立運転させることが不可能な場合に自立運
転に不足するエネルギに見合う量の前記蒸気あるいは給
水を前記ガスタービンに供給すべく前記弁を調節する手
段とを有する部分負荷運転制御装置を備えることを特徴
とする加圧流動床コンバインドプラント。
7. Gas turbine equipment comprising a gas turbine and an air compressor uniaxially connected to the gas turbine and driven by the gas turbine; A pressurized fluidized bed boiler that burns coal with the compressed air and supplies combustion gas to the gas turbine to drive the gas turbine; and a pressurized fluidized bed boiler that is driven by steam generated by passing through the pressurized fluidized bed boiler. A pressurized fluidized bed combined plant comprising a steam turbine, a gas turbine generator that generates electricity with the gas turbine, and a steam turbine generator that generates electricity with the steam turbine; A piping system for supplying the combustion gas together with the combustion gas, a valve for adjusting the amount of the steam or water supply, and a means for calculating the energy of the steam or water supply, and the gas turbine cannot be supplied with only the energy of the combustion gas supplied to the gas turbine. and means for adjusting the valve to supply the gas turbine with the steam or feed water in an amount commensurate with the energy shortage for self-sustaining operation when it is impossible to operate the equipment self-sustainingly. A pressurized fluidized bed combined plant characterized by:
【請求項8】  加圧流動床ボイラにて石炭を高圧空気
のもとで燃焼して得た燃焼ガスが供給され、該燃焼ガス
の膨張による仕事で回転駆動されるガスタービンと、該
ガスタービンに一軸にて機械的に連結され前記加圧流動
床ボイラに高圧空気を供給する空気圧縮機とをほ備える
加圧流動床コンバインドプラント用の一軸型ガスタービ
ン設備において、高温,高圧の蒸気あるいは給水を前記
燃焼ガスと共に前記ガスタービン内に取り込む蒸気取り
込み手段と、取り込む蒸気あるいは給水のエネルギを求
める手段と、前記ガスタービンが前記空気圧縮機を前記
燃焼ガスだけで駆動するに不足するエネルギ量を求め該
不足エネルギを前記蒸気あるいは給水のエネルギで補足
すべく前記蒸気取り込み手段を制御する手段とを備える
ことを特徴とする一軸型のガスタービン設備。
8. A gas turbine supplied with combustion gas obtained by burning coal under high pressure air in a pressurized fluidized bed boiler and driven to rotate by the work caused by expansion of the combustion gas, and the gas turbine. In single-shaft gas turbine equipment for a pressurized fluidized bed combined plant, the equipment is equipped with an air compressor that is mechanically connected by a single shaft to the pressurized fluidized bed boiler and supplies high-pressure air to the pressurized fluidized bed boiler. steam intake means for taking in the air into the gas turbine along with the combustion gas; means for determining the energy of the intake steam or feed water; and determining the amount of energy insufficient for the gas turbine to drive the air compressor only with the combustion gas. 1. A single-shaft gas turbine facility comprising: means for controlling the steam intake means so as to supplement the insufficient energy with the energy of the steam or water supply.
【請求項9】  一軸型のガスタービン設備を用いる加
圧流動床コンバインドプラントにおいて、加圧流動床ボ
イラからの燃焼ガスだけで駆動されるガスタービンがガ
スタービン発電機にて発電を行えるプラント運転範囲で
は該ガスタービンを前記燃焼ガスのみで運転し、それ以
外のプラント運転範囲では、前記燃焼ガスに加え高温,
高圧の蒸気あるいは給水を前記ガスタービンに供給し前
記ガスタービン発電機の出力が負にならないようにする
ことを特徴とする加圧流動床コンバインドプラントの部
分負荷運転制御方法。
9. In a pressurized fluidized bed combined plant using single-shaft gas turbine equipment, a plant operation range in which a gas turbine driven only by combustion gas from a pressurized fluidized bed boiler can generate electricity with a gas turbine generator. In this case, the gas turbine is operated only with the above-mentioned combustion gas, and in other plant operation ranges, in addition to the above-mentioned combustion gas, high temperature,
A method for controlling partial load operation of a pressurized fluidized bed combined plant, characterized in that high pressure steam or feed water is supplied to the gas turbine so that the output of the gas turbine generator does not become negative.
【請求項10】  一軸型のガスタービン設備を用いる
加圧流動床コンバインドプラントにおいて、加圧流動床
ボイラからの燃焼ガスだけで駆動されるガスタービンが
ガスタービン発電機にて発電を行えるプラント運転範囲
を逸脱したことを検出する手段と、該プラント運転範囲
を逸脱したとき前記燃焼ガスに加え高温,高圧の蒸気あ
るいは給水を前記ガスタービンに供給し前記ガスタービ
ン発電機の出力が負にならないように制御する手段とを
有する部分負荷運転制御装置を備えることを特徴とする
加圧流動床コンバインドプラント。
10. In a pressurized fluidized bed combined plant using single-shaft gas turbine equipment, a plant operating range in which a gas turbine driven only by combustion gas from a pressurized fluidized bed boiler can generate electricity with a gas turbine generator. means for detecting deviation from the plant operating range, and supplying high temperature, high pressure steam or feed water to the gas turbine in addition to the combustion gas to prevent the output of the gas turbine generator from becoming negative. 1. A pressurized fluidized bed combined plant, comprising: a partial load operation control device having means for controlling.
JP3010922A 1991-01-31 1991-01-31 Pressurized fluidized bed combined plant and its partial load operation control method and control device Expired - Fee Related JP2908884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3010922A JP2908884B2 (en) 1991-01-31 1991-01-31 Pressurized fluidized bed combined plant and its partial load operation control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3010922A JP2908884B2 (en) 1991-01-31 1991-01-31 Pressurized fluidized bed combined plant and its partial load operation control method and control device

Publications (2)

Publication Number Publication Date
JPH04246244A true JPH04246244A (en) 1992-09-02
JP2908884B2 JP2908884B2 (en) 1999-06-21

Family

ID=11763735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3010922A Expired - Fee Related JP2908884B2 (en) 1991-01-31 1991-01-31 Pressurized fluidized bed combined plant and its partial load operation control method and control device

Country Status (1)

Country Link
JP (1) JP2908884B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510815A (en) * 1993-10-08 1996-11-12 エイ.アフルストロム コーポレイション Gas and steam combined cycle pressurized fluidized bed power plant and its establishment and operation method
US5704206A (en) * 1994-05-24 1998-01-06 Mitsubishi Jukogyo Kabushiki Kaisha Coal burner combined power plant having a fuel reformer located within the coal furnace
WO1999000586A1 (en) * 1997-06-27 1999-01-07 Mitsubishi Heavy Industries, Ltd. Pressurized fluidized-bed combined cycle power generation system
US6293087B2 (en) * 1997-06-27 2001-09-25 Mitsubishi Heavy Industries, Ltd. Pressurized fluidized bed combined electricity generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510815A (en) * 1993-10-08 1996-11-12 エイ.アフルストロム コーポレイション Gas and steam combined cycle pressurized fluidized bed power plant and its establishment and operation method
US5704206A (en) * 1994-05-24 1998-01-06 Mitsubishi Jukogyo Kabushiki Kaisha Coal burner combined power plant having a fuel reformer located within the coal furnace
WO1999000586A1 (en) * 1997-06-27 1999-01-07 Mitsubishi Heavy Industries, Ltd. Pressurized fluidized-bed combined cycle power generation system
US6212872B1 (en) * 1997-06-27 2001-04-10 Mitsubishi Heavy Industries, Ltd. Pressurized fluidized-bed combined cycle power generation system
US6293087B2 (en) * 1997-06-27 2001-09-25 Mitsubishi Heavy Industries, Ltd. Pressurized fluidized bed combined electricity generation system

Also Published As

Publication number Publication date
JP2908884B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US4282708A (en) Method for the shutdown and restarting of combined power plant
US6282883B1 (en) Hydrogen burning turbine plant
CN106089341B (en) Method for enhancing cold steam turbine startup in a multi-gas turbine combined cycle plant
EP1063402A2 (en) Method of operation of industrial gas turbine for optimal performance
JP5575381B2 (en) Method and apparatus for enabling cooling of steam turbine components
JPS6118649B2 (en)
JP2008095691A (en) Method and device for stabilizing power network frequency
JP2010261456A (en) System and method for heating fuel for gas turbine
US10428695B2 (en) Combined cycle plant, device for controlling said plant, and method for starting up said plant
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
US5251434A (en) Pressurized fluidized-bed boiler power plant
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JP4208397B2 (en) Start-up control device for combined cycle power plant
JPH06323162A (en) Steam-cooled gas turbine power plant
JP2007332817A (en) Steam injection gas turbine and control method
JPH07310505A (en) Staring method and device for uni-axis type combined cycle plant
JP2602951B2 (en) How to start a combined cycle plant
JP2002021508A (en) Condensate supply system
KR20220002437A (en) Gas turbine and its control method and combined cycle plant
JP3065773B2 (en) Pressurized fluidized bed boiler combined cycle power plant
JP2692978B2 (en) Start-up operation method of combined cycle plant
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
KR102434627B1 (en) Combined power plant and operating method of the same
JP2019027387A (en) Combined cycle power generation plant, and its operation method and modification method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees