JPH02140405A - Operating method for steam-gas complex cycle power generating plant and power generating plant thereof - Google Patents

Operating method for steam-gas complex cycle power generating plant and power generating plant thereof

Info

Publication number
JPH02140405A
JPH02140405A JP32010088A JP32010088A JPH02140405A JP H02140405 A JPH02140405 A JP H02140405A JP 32010088 A JP32010088 A JP 32010088A JP 32010088 A JP32010088 A JP 32010088A JP H02140405 A JPH02140405 A JP H02140405A
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure
low
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32010088A
Other languages
Japanese (ja)
Other versions
JP2558855B2 (en
Inventor
Etsuichi Hatano
羽田野 悦一
Kohei Saito
斉藤 浩平
Masayoshi Kakishima
柿島 正好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63320100A priority Critical patent/JP2558855B2/en
Publication of JPH02140405A publication Critical patent/JPH02140405A/en
Application granted granted Critical
Publication of JP2558855B2 publication Critical patent/JP2558855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent a low pressure turbine and a reheater from being overheated by starting a plant with a steam turbine which is driven by starting steam fed from a steam feed device for starting. CONSTITUTION:In a plant starting process, steam is introduced from a steam feed device 44 for starting to a low temperature reheat pipe 19, and a low pressure turbine 24 is driven by the steam so as to start a gas turbine 4 thereby. Therefore, when a power train system is in rotation, steam flows always to a reheater 7 and the low pressure turbine 24 passing through the low temperature reheater pipe 19, and the heating pipe of the reheater 7 is not heated to be damaged by exhaust gas of the gas turbine 4, and the low pressure turbine 24 is not set to a high temperature by a windage loss. On the other hand, in the case that the reheater 7 is not well heated, the low pressure turbine 24 is not driven by low temperature steam since the steam is fed switchingly to the low pressure turbine 24 after being passed through a high temperature reheat pipe 20.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、再熱器を有する排熱回収ボイラと蒸気タービ
ンとを組み合わせた蒸気−ガス複合サイクル発電プラン
トの運転方法およびその装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention provides a method for operating a steam-gas combined cycle power plant that combines a heat recovery boiler with a reheater and a steam turbine; Regarding the device.

(従来の技術) 蒸気−ガス複合サイクル発電プラントは、近年育力な高
効率発電技術として建設される数が増加しており、一方
、さらに高効率化を図るためガスタービン人口の高温化
、蒸気サイクルの再熱化などの対応が検討されている。
(Conventional technology) The number of steam-gas combined cycle power generation plants has been increasing in recent years as a promising high-efficiency power generation technology. Countermeasures such as reheating the cycle are being considered.

すなわち、第3図は上記蒸気−ガス複合サイクル発電プ
ラントの典形例を示す系統図であって、空気圧縮機1で
昇圧された空気は、燃料制御弁2を介して供給される燃
料とともに燃焼器3に供給され、そこで燃焼して高温高
圧燃焼ガスとなる。
That is, FIG. 3 is a system diagram showing a typical example of the above steam-gas combined cycle power generation plant, in which air pressurized by the air compressor 1 is combusted together with fuel supplied via the fuel control valve 2. The gas is supplied to the vessel 3, where it is combusted and becomes high-temperature, high-pressure combustion gas.

この燃焼ガスはガスタービン4に導入され、そこで膨脹
して仕事を行ない、排気ガスとして排熱回収ボイラ5に
送られる。
This combustion gas is introduced into the gas turbine 4, where it is expanded to perform work, and is sent to the exhaust heat recovery boiler 5 as exhaust gas.

この排気ガスは十分高温であり、それぞれ排熱回収ボイ
ラ5内に設置されている過熱器6、再熱器7、高圧蒸気
発生器8、高圧エコノマイザ9、中圧蒸気発生器10、
中圧エコノマイザ11、低圧蒸気発生器12および低圧
エコノマイザ13を加熱しながら排気され、ガスサイク
ルを形成する。
This exhaust gas has a sufficiently high temperature, and includes a superheater 6, a reheater 7, a high-pressure steam generator 8, a high-pressure economizer 9, and an intermediate-pressure steam generator 10, which are installed in the exhaust heat recovery boiler 5, respectively.
The medium-pressure economizer 11, low-pressure steam generator 12, and low-pressure economizer 13 are exhausted while being heated, forming a gas cycle.

一方、高圧蒸気発生器8で発生した蒸気は、過熱器6を
経由し主蒸気管14を通り、主蒸気止め弁15、主蒸気
加減弁16を介して高圧タービン17に送られ、そこで
膨脹して仕事を行ない、その排気は逆止弁18を経て低
温再熱管19を通って14熱器7に送られる。上記高圧
タービン17からの排気は11f熱器7で加熱され、高
温の再熱蒸気となって高温再熱管20を通って再熱蒸気
止め弁2]および再熱蒸気制御弁22を介して中圧ター
ビン23に導かれ、中圧タービン23および低圧タービ
ン24内で膨脹して仕事を行ない、その後復水器25で
循環水ポンプ26により送られる冷却水と熱交換して復
水となる。
On the other hand, the steam generated in the high-pressure steam generator 8 passes through the main steam pipe 14 via the superheater 6, and is sent to the high-pressure turbine 17 via the main steam stop valve 15 and the main steam control valve 16, where it is expanded. The exhaust gas is sent to the 14-heater 7 through the check valve 18 and the low-temperature reheat pipe 19. The exhaust gas from the high-pressure turbine 17 is heated in the 11f heater 7, becomes high-temperature reheat steam, passes through the high-temperature reheat pipe 20, passes through the reheat steam stop valve 2] and the reheat steam control valve 22, and then passes through the medium-pressure The water is guided to the turbine 23, expands and performs work in the intermediate pressure turbine 23 and the low pressure turbine 24, and then exchanges heat with the cooling water sent by the circulating water pump 26 in the condenser 25 to become condensed water.

上記復水器25で復水となった復水は、復水ポンプ27
により排熱回収ボイラ5の低圧エコノマイザ13に送ら
れ、そこで加熱された後、低圧蒸気発生器12に戻され
る。この低圧蒸気発生器12で発生した低圧蒸気は低圧
蒸気管28を通って低圧蒸気止め弁29および低圧蒸気
制御弁30を介して、前記中圧タービン23からの排気
とともに低圧タービン24に送られる。
The condensate that has become condensed water in the condenser 25 is transferred to the condensate pump 27
The steam is sent to the low-pressure economizer 13 of the waste heat recovery boiler 5, heated there, and then returned to the low-pressure steam generator 12. The low-pressure steam generated by the low-pressure steam generator 12 passes through the low-pressure steam pipe 28 and is sent to the low-pressure turbine 24 together with the exhaust from the intermediate-pressure turbine 23 via the low-pressure steam stop valve 29 and the low-pressure steam control valve 30.

ところで、前記低圧蒸気発生器12内に残った缶水は、
昇圧ポンプ31で昇圧され、昇圧ポンプ31の途中の一
部の缶水は中圧エコノマイザ11で加熱された後中圧蒸
気発生器10へ送られ、残りは高圧エコノマイザ9で加
熱され高圧蒸気発生器8へ送られる。中圧蒸気発生器1
0で発生した中圧蒸気は、中圧蒸気管32を通って逆止
弁33を経て前記低温再熱管19に送られ高圧タービン
排気と混合される。
By the way, the canned water remaining in the low pressure steam generator 12 is
The pressure is increased by the boost pump 31, and part of the canned water in the middle of the boost pump 31 is heated by the medium pressure economizer 11 and then sent to the medium pressure steam generator 10, and the rest is heated by the high pressure economizer 9 and then sent to the high pressure steam generator. Sent to 8. Medium pressure steam generator 1
The intermediate pressure steam generated at 0 is sent to the low temperature reheat pipe 19 through the intermediate pressure steam pipe 32, the check valve 33, and mixed with the high pressure turbine exhaust gas.

なお、前記主蒸気管14には、タービンバイパス弁34
を介して復水器25へ分岐するタービンバイパス管35
が分岐されており、低温再熱管19の途中には、他ユニ
ット或はプラント補助蒸気などに使用するために、抽気
弁36を介して抽気可能なラインが接続されている。ま
た、主蒸気管14にはドレン弁37、中圧蒸気管32に
はドレン弁38、低圧蒸気管28にはドレン弁39、高
圧再熱管20にはドレン弁40がそれぞれ設けられてい
る。このようにして、水−蒸気系に関する一つのサイク
ルが構成されている。
Note that the main steam pipe 14 includes a turbine bypass valve 34.
A turbine bypass pipe 35 that branches to the condenser 25 via
The low-temperature reheat pipe 19 is branched, and in the middle of the low-temperature reheat pipe 19, a line that can extract air is connected via an air extraction valve 36 for use as other units or plant auxiliary steam. Further, the main steam pipe 14 is provided with a drain valve 37, the intermediate pressure steam pipe 32 is provided with a drain valve 38, the low pressure steam pipe 28 is provided with a drain valve 39, and the high pressure reheat pipe 20 is provided with a drain valve 40, respectively. In this way, one cycle for the water-steam system is constructed.

一方、ガスタービン4、空気圧縮機1、高圧タービン1
7、中圧タービン23、低圧タービン24は一軸でパワ
ートレイン系を構成し、その軸に発電機41および起動
電動機42が連結されている。
On the other hand, a gas turbine 4, an air compressor 1, a high pressure turbine 1
7. The intermediate pressure turbine 23 and the low pressure turbine 24 constitute a power train system with one shaft, and a generator 41 and a starting motor 42 are connected to the shaft.

ところで、上記構成による蒸気−ガス複合サイクル発電
プラントの起動においては、停止中に燃料が万一漏洩し
てガスタービン本体に流れ込んだ状態や、ガスタービン
若人失敗で流出した未燃焼燃料が残留した状態で着火を
行なうと、爆発や火災を招く危険性があり、これを防止
するためにガスタービン若人前には必ずガスタービン系
を安全な空気に置換する必要がある。
By the way, when starting up a steam-gas combined cycle power plant with the above configuration, there is a possibility that fuel may leak during shutdown and flow into the gas turbine body, or that unburned fuel that leaks out due to a gas turbine failure remains. If ignition occurs under such conditions, there is a risk of explosion or fire, and to prevent this, it is necessary to replace the gas turbine system with safe air before starting a gas turbine.

このため、プラント起動時には、起動発電機42によっ
てパワートレイン系を回転上昇させ、略30%の回転速
度を保持することで空気圧縮機1からの空気によって燃
焼器3およびガスタービン4の内部の空気を置換する。
Therefore, at the time of plant startup, the power train system is rotated up by the startup generator 42 and the rotation speed is maintained at approximately 30%, so that the air from the air compressor 1 is used to air the inside of the combustor 3 and gas turbine 4. Replace.

このような空気の置換操作をパージ運転という。そして
、このパージ運転完了後は、燃焼器3に点火しガスター
ビン4を着火し、再び起動電動機42によりパワートレ
イン系を昇速して略50%の回転速度を保持する。
This air replacement operation is called purge operation. After the purge operation is completed, the combustor 3 is ignited, the gas turbine 4 is ignited, and the power train system is again sped up by the starting motor 42 to maintain approximately 50% rotational speed.

上記回転速度の保持によって、υト熱回収ボイラ5はガ
スタービン排ガスによって暖められ、高圧蒸気発生器8
、中圧蒸気発生器10、低圧蒸気発生器12の各々にお
いて蒸気が発生するようになるが、これらの蒸気の各々
は蒸気タービンに使用可能な圧力条件となるまでは高圧
、中圧、低圧の各蒸気管14,32.28で発生するド
レンを各ドレン弁37,38.39から排出しながら各
蒸気管の暖管作用を行なう。
By maintaining the above rotational speed, the heat recovery boiler 5 is heated by the gas turbine exhaust gas, and the high pressure steam generator 8
, intermediate pressure steam generator 10, and low pressure steam generator 12, but each of these steams is at high pressure, intermediate pressure, and low pressure until the pressure conditions can be reached for the steam turbine. While draining the drain generated in each steam pipe 14, 32.28 from each drain valve 37, 38.39, each steam pipe is warmed.

その後1、低圧蒸気発生S12の蒸気が所定圧力まで上
昇すると、ドレン弁39が閉じられ低圧タービン24の
冷却用として低圧蒸気制御弁30を介して低圧タービン
24に導かれる。同様に中圧蒸気発生器10の蒸気が所
定圧力まで上昇した時点で、ドレン弁38が閉じられ、
再熱器7の冷却用として逆止弁33を介して低温再熱管
19に導かれる。この時、高圧タービン排気側の逆止弁
18は全閉し、再熱蒸気止め弁21および再熱蒸気制御
弁22は全開状態にあるので、通常中圧蒸気発生器10
の蒸気圧力を所定圧力に制御するために別途圧力調整装
置(図示せず)が設けられている。一方、高圧蒸気発生
器8からの蒸気が所定圧力まで上昇した時点で、ドレン
弁37が閉じられ、上記高圧蒸気発生器8からの蒸気が
タービンバイパス弁34を介して復水器25に導かれる
After that, when the steam of the low-pressure steam generation S12 rises to a predetermined pressure, the drain valve 39 is closed and the steam is guided to the low-pressure turbine 24 via the low-pressure steam control valve 30 for cooling the low-pressure turbine 24. Similarly, when the steam in the intermediate pressure steam generator 10 rises to a predetermined pressure, the drain valve 38 is closed.
It is guided to the low-temperature reheat pipe 19 via the check valve 33 for cooling the reheater 7 . At this time, the check valve 18 on the high-pressure turbine exhaust side is fully closed, and the reheat steam stop valve 21 and the reheat steam control valve 22 are fully open, so normally the intermediate pressure steam generator 10
A separate pressure regulator (not shown) is provided to control the steam pressure to a predetermined pressure. On the other hand, when the steam from the high-pressure steam generator 8 rises to a predetermined pressure, the drain valve 37 is closed, and the steam from the high-pressure steam generator 8 is guided to the condenser 25 via the turbine bypass valve 34. .

そこで、この間ガスタービン4への燃料供給量を増加さ
せつつパワートレイン系を昇速し、略70%速度に到達
すると、空気圧縮機1から送られる空気で燃焼した燃焼
ガスによるガスタービン4の作動によってパワートレイ
ン系の回転速度が維持できるようになるので、起動電動
機42が停止される。しかして、これに引き続いて燃料
を増加してガスタービン4によりパワートレイン系を昇
速し、定格速度において発電機41を併入して初負荷を
とる。さらにガスタービン4による負荷上昇を続行し、
高圧蒸気発生器8からの蒸気が尚圧タービン17のロー
タ温度に対して適する温度に達すると、タービンバイパ
ス弁34が閉じられ、その蒸気が蒸気加減弁16を介し
て高圧タービン]7に導かれ、その後は、ガスタービン
4と高圧タービン17の負荷を上昇しながらプラントの
負荷上昇を行なっていく。
Therefore, during this time, the power train system is increased in speed while increasing the amount of fuel supplied to the gas turbine 4, and when the speed reaches approximately 70%, the gas turbine 4 is operated by the combustion gas combusted with the air sent from the air compressor 1. Since the rotational speed of the power train system can be maintained by this, the starting motor 42 is stopped. Subsequently, the amount of fuel is increased to increase the speed of the power train system by the gas turbine 4, and at the rated speed, the generator 41 is added to take the initial load. Furthermore, the load increase by the gas turbine 4 continues,
When the steam from the high-pressure steam generator 8 reaches a temperature suitable for the rotor temperature of the high-pressure turbine 17, the turbine bypass valve 34 is closed and the steam is guided to the high-pressure turbine 7 via the steam control valve 16. After that, the load on the plant is increased while increasing the load on the gas turbine 4 and the high-pressure turbine 17.

(発明が解決17ようとする課題) ところが、このような起動においては、パワートレイン
系の最初の回転上昇時から低圧蒸気発生器12よりの蒸
気が低圧タービン24に導入されるまでの間、長翼をH
する低圧タービン24が空回り状態となり、回転による
摩擦エネルギーのために高温となり、低圧タービン24
に使用される部品にとって好ましくない状態に置かれる
ことになる等の問題がある。また、ガスタービン着火後
、1圧蒸気発生器10からの蒸気が低温再熱管19に導
かれるまでの間、+1熱器7には蒸気が流れていない状
態でガスタービン4の排ガスによって加熱され続けるこ
とになり、再熱器7の加熱管の焼損を招くような状態が
予想される。
(Problem to be solved by the invention 17) However, in such a start-up, a long period of time is required from the time when the power train system first increases in rotation until the steam from the low-pressure steam generator 12 is introduced into the low-pressure turbine 24. Wings H
The low-pressure turbine 24 becomes idle and becomes high temperature due to the frictional energy caused by the rotation, and the low-pressure turbine 24
There are problems such as placing the parts used in the process in unfavorable conditions. In addition, after the gas turbine ignites, until the steam from the single-pressure steam generator 10 is guided to the low-temperature reheating pipe 19, it continues to be heated by the exhaust gas of the gas turbine 4 without steam flowing into the +1 heater 7. As a result, it is expected that the heating tube of the reheater 7 will burn out.

また、上述の如き蒸気−ガスIM合サイクル発電プラン
トの運転中には、低温再熱管19の圧力は中圧タービン
23の人口蒸気流量に略比例して変化する。このため他
ユニット或はプラント補助蒸気などに使用するために抽
気弁36を介して抽気する時には、低温再熱管内圧力は
通常運転中の圧力より低下することになる。この場合、
抽気量が中圧タービン人口蒸気流量に対して少ない場合
には問題ないが、例えば略20%を超えるような多量の
場合には低温再熱管内の圧力降下が大きくなる。
Further, during operation of the steam-gas IM combined cycle power plant as described above, the pressure in the low temperature reheat pipe 19 changes approximately in proportion to the artificial steam flow rate of the intermediate pressure turbine 23. Therefore, when extracting air through the extraction valve 36 for use in other units or plant auxiliary steam, the pressure inside the low-temperature reheating pipe will be lower than the pressure during normal operation. in this case,
There is no problem if the amount of extracted air is small compared to the artificial steam flow rate of the intermediate pressure turbine, but if the amount is large, such as exceeding approximately 20%, the pressure drop in the low temperature reheating pipe becomes large.

このような状態においては、排熱回収ボイラ5の高圧、
中圧、低圧の各蒸気発生器での収熱バランスがそれぞれ
の計画条件と大きく異なり、発生蒸気量が計画値と大き
くずれて性能低下を助長するだけでなく、高圧タービン
最終段羽根に過大な応力を発生させることになる等の問
題がある。
In such a state, the high pressure of the exhaust heat recovery boiler 5,
The heat absorption balance in each medium-pressure and low-pressure steam generator differs greatly from the planned conditions, and the amount of steam generated deviates significantly from the planned value, which not only contributes to performance deterioration, but also causes excessive pressure on the final stage blades of the high-pressure turbine. There are problems such as the generation of stress.

本発明はこのような点に鑑み、プラント起動時に、低圧
タービンおよび再熱器の過熱を防止する蒸気−ガス複合
サイクル発電プラントの運転方法およびその装置を得る
ことを目的とする。また、本発明の別の目的は、プラン
ト運転時に低温再熱管より抽気する場合に、性能低下を
極力減らし、しかも高圧タービン最終段羽根に過大な応
力を発生させることがないようにした蒸気−ガス複合サ
イクル発電プラントの運転方法およびその装置を得るこ
とにある。
In view of these points, the present invention aims to provide a method and apparatus for operating a steam-gas combined cycle power plant that prevents overheating of a low-pressure turbine and a reheater at the time of plant start-up. Another object of the present invention is to reduce the performance deterioration as much as possible when extracting air from a low-temperature reheating pipe during plant operation, and to avoid generating excessive stress on the final stage blades of a high-pressure turbine. An object of the present invention is to obtain a method for operating a combined cycle power plant and an apparatus therefor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、ガスタービンおよび空気圧縮機、そのガスタ
ービンからの排熱によって発生する蒸気によって作動す
る高圧側タービンおよび低圧側タービンからなる蒸気タ
ービン、並びに発電機を各々同一軸上に配置構成した、
パワートレイン系をaする蒸気−ガス複合サイクル発電
プラントの運転方法において、プラント起動用蒸気供給
装置からの蒸気を再熱器を経て低圧側タービンに導きパ
ワートレイン系を昇速し、次にその速度を保持して空気
圧縮機からの空気でガスタービン設備内の空気を置換(
−1その後ガスタービンを若人するとともに、引き続い
てプラント起動用蒸気供給装置からの蒸気によってパワ
ートレイン系を昇速し、ガスタービンが自立できる回転
速度到達後には、プラント起動用蒸気供給装置からの蒸
気は再熱器および低圧側タービンの冷却用として確保す
るとともに、再熱蒸気制御弁の制御によって低圧側ター
ビンの入口蒸気圧力を一定に制御しながら、燃料制御弁
によってパワートレイン系の昇速制御を行うことを特徴
とする。
(Means for Solving the Problems) The present invention provides a gas turbine, an air compressor, a steam turbine including a high-pressure side turbine and a low-pressure side turbine operated by steam generated by exhaust heat from the gas turbine, and a power generator. Each arranged on the same axis,
In a method of operating a steam-gas combined cycle power plant that operates a power train system, steam from a steam supply device for starting the plant is guided to a low-pressure turbine through a reheater to increase the speed of the power train system, and then the speed is increased. Replaces the air in the gas turbine equipment with air from the air compressor (
-1 After that, the gas turbine is rejuvenated, and the power train system is subsequently increased in speed with steam from the plant startup steam supply device, and after the gas turbine reaches a rotational speed at which it can become self-sustaining, Steam is secured for cooling the reheater and low-pressure turbine, and the reheat steam control valve controls the inlet steam pressure of the low-pressure turbine, while the fuel control valve controls the speed-up of the power train system. It is characterized by doing the following.

また、冷機起動時においては再熱器が十分に暖まってお
らず、起動用蒸気を再熱器に通すと蒸気が冷やされて過
ぎて低圧側タービン入口部の起動状態に対してかえって
好ましくないことになるため、このような場合には起動
用蒸気を再熱器の下流側の高温再熱管に導いて起動でき
るようにしたことを特徴とする。
In addition, the reheater is not sufficiently warmed during cold startup, and when the startup steam is passed through the reheater, the steam is cooled too much, which is rather unfavorable for the startup condition of the low-pressure side turbine inlet. Therefore, in such a case, starting steam is introduced to a high temperature reheating pipe on the downstream side of the reheater to enable starting.

さらに、本発明は排熱回収ボイラからの蒸気が高圧側タ
ービンに導入されるようになった後は、低圧側タービン
入口圧力を発電機の負荷を介して再熱蒸気制御弁によっ
て制御するようにしてもよい。
Furthermore, after the steam from the heat recovery boiler is introduced into the high-pressure turbine, the low-pressure turbine inlet pressure is controlled by the reheat steam control valve via the generator load. It's okay.

また、本発明に係わる装置は、ガスタービンおよび空気
圧縮機、そのガスタービンからの排熱によって発生する
蒸気によって作動する高圧側タービン、低圧側タービン
からなる蒸気タービン、並びに発電機を各々同一軸上に
配置構成したパワートレイン系を有する蒸気−ガス複合
サイクル発電プラントにおいて、高圧側タービンの排気
側の低温+Ii熱管に起動用蒸気供給装置を接続したこ
とを特徴とするものである。
Furthermore, the device according to the present invention includes a gas turbine, an air compressor, a steam turbine consisting of a high-pressure side turbine and a low-pressure side turbine operated by steam generated by exhaust heat from the gas turbine, and a generator on the same axis. A steam-gas combined cycle power generation plant having a power train system arranged and configured, characterized in that a starting steam supply device is connected to a low temperature +Ii heat pipe on the exhaust side of a high pressure side turbine.

(作 用) プラント起動過程においては起動用蒸気供給装置から蒸
気を低温再熱管に導入し、その蒸気によって低圧側ター
ビンを駆動し、それによってガスタービンの起動を行な
う。したがって、パワートレイン系の回転中は低温再熱
管を通して常に再熱器ならびに低圧側タービンに蒸気が
流れ、ガスタービンの排ガスによって再熱器の加熱管が
損傷に至るほど加熱されることがなく、また風損によっ
て低圧側タービンが高温となることがない。また、再熱
器が十分暖まっていない場合には、高温再熱管を通して
低圧側タービンに蒸気を切替え送給するので、低圧側タ
ービンが低温蒸気で作動されることもない。
(Function) In the plant startup process, steam is introduced from the startup steam supply device into the low-temperature reheat pipe, and the steam drives the low-pressure side turbine, thereby starting the gas turbine. Therefore, while the powertrain system is rotating, steam always flows to the reheater and low-pressure turbine through the low-temperature reheat pipe, and the reheater's heating pipe is never heated to the point where it is damaged by the gas turbine exhaust gas. The low-pressure turbine does not become hot due to wind damage. Furthermore, if the reheater is not sufficiently warmed up, the steam is switched and fed to the low pressure turbine through the high temperature reheat pipe, so the low pressure turbine is not operated with low temperature steam.

また、排熱回収ボイラからの蒸気が高圧側タービンに導
入されるようになった後は、低圧側タービン入口圧力を
発電機の負荷を介して再熱蒸気制御弁によって制御する
。したがって、プラント運転中に他ユニット或はプラン
ト補助蒸気などに抽気しても、低温再熱管内圧力が通常
運転中発電機負荷に応じて変化する圧力より低下するこ
とはない。そのため、中圧蒸気発生器での収熱バランス
が発電機の負荷に応じて安定に変化し、中圧発生蒸気量
はほぼ計画値通りに得ることができ、さらに高圧タービ
ン最終段羽根にかかる蒸気負荷すなわち応力は計画値に
対して過大になることはなく、プラント運転中の性能お
よび高圧タービン最終段羽根にかかる応力がほぼ計画値
通りに維持されることになる。
Further, after the steam from the exhaust heat recovery boiler is introduced into the high pressure side turbine, the low pressure side turbine inlet pressure is controlled by the reheat steam control valve via the load of the generator. Therefore, even if air is extracted to other units or plant auxiliary steam during plant operation, the pressure inside the low-temperature reheat pipe will not drop below the pressure that changes depending on the generator load during normal operation. Therefore, the heat absorption balance in the intermediate pressure steam generator changes stably according to the load of the generator, the amount of intermediate pressure generated steam can be obtained almost as planned, and the steam applied to the final stage blades of the high pressure turbine The load or stress will not exceed the planned value, and the performance during plant operation and the stress applied to the final stage blade of the high-pressure turbine will be maintained approximately as planned.

(実施例) 以下、添付図面を参照して本発明の実施例について説明
する。なお、第1図中第3図と同一部分には同一符号を
付しその詳細な説明は省略する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that the same parts in FIG. 1 as in FIG. 3 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第1図において、高圧タービン17の排気側に接続され
た低温再熱管19には、弁43を介して起動用蒸気(!
(給装置44が接続されている。また、上記起動用蒸気
供給装置44は弁45を介して再熱器7の下流側の高温
再熱管20にも接続されている。
In FIG. 1, starting steam (!
(A supply device 44 is connected. The startup steam supply device 44 is also connected to the high temperature reheat pipe 20 on the downstream side of the reheater 7 via a valve 45.

しかして、プラントの起動に際しては、まず逆止弁18
.33および再熱蒸気制御弁22が全閉の状態て、弁4
3を開き起動用蒸気供給装置44から起動用蒸気を低温
ilI熱管19に導入する。するとこの蒸気によって低
温再熱管19、再熱器7、高温再熱管20からなる再熱
ラインが徐々に暖められ、この間に発生するドレンはド
レン弁40から排出される。また、起動用蒸気を再熱器
7を通さずに起動する場合には、弁43を閉じた状態で
弁45を開き、起動用蒸気供給装置からの起動用蒸気を
高温再熱管20に導入する。
Therefore, when starting up the plant, first the check valve 18
.. 33 and reheat steam control valve 22 are fully closed, valve 4
3 is opened and starting steam is introduced from the starting steam supply device 44 into the low-temperature IL heat tube 19. Then, the reheat line consisting of the low temperature reheat pipe 19, the reheater 7, and the high temperature reheat pipe 20 is gradually warmed by this steam, and the drain generated during this time is discharged from the drain valve 40. In addition, when starting the starting steam without passing it through the reheater 7, the valve 45 is opened with the valve 43 closed, and the starting steam from the starting steam supply device is introduced into the high-temperature reheating pipe 20. .

ドレンの発生がなくなり再熱ライン内の蒸気圧力が所定
の圧力となったら、再熱蒸気制御弁22を微開して蒸気
を中圧タービンに導き、その後上記再熱蒸気制御弁22
によってパワートレイン系の回転速度を一定に制御する
When condensate is no longer generated and the steam pressure in the reheat line reaches a predetermined pressure, the reheat steam control valve 22 is slightly opened to guide the steam to the intermediate pressure turbine, and then the reheat steam control valve 22
The rotational speed of the powertrain system is controlled to be constant.

そこで、上記パワートレイン系の回転速度を30%の回
転速度に保持して、ガスタービン設備のパージ運転を行
ない、このパージ運転の完了後−旦パワードレイン系の
回転速度を略16%まで下げてガスタービンを召人する
。その後再び起動用蒸気供給装置44からの蒸気により
パワートレイン系を昇速して略50%の回転速度に保持
する。
Therefore, the rotational speed of the power train system is maintained at 30% rotational speed and purge operation of the gas turbine equipment is performed, and after the completion of this purge operation, the rotational speed of the power drain system is lowered to approximately 16%. Summon a gas turbine. Thereafter, the speed of the power train system is increased again by the steam from the startup steam supply device 44, and the rotation speed is maintained at approximately 50%.

この間、再熱器7および低圧タービン24等は起動用蒸
気供給装置44から供給される蒸気によってその冷却が
維持され、排熱回収ボイラ5はガスタービン排ガスによ
って暖められる。そして、高圧蒸気発生器8、中圧蒸気
発生器10.および低圧蒸気発生器12において発生す
る蒸気がそれぞれ蒸気タービンに使用可能な圧力条件と
なるまでは、高圧蒸気管14、中圧蒸気管32、および
低圧蒸気管28の各々で発生するドレンを各ドレン弁3
7,38.39より排出しながら各蒸気管の暖管操作を
行なう。
During this time, the reheater 7, the low pressure turbine 24, etc. are maintained cooled by the steam supplied from the startup steam supply device 44, and the exhaust heat recovery boiler 5 is warmed by the gas turbine exhaust gas. Then, a high pressure steam generator 8, an intermediate pressure steam generator 10. The drain generated in each of the high pressure steam pipe 14, intermediate pressure steam pipe 32, and low pressure steam pipe 28 is removed from each drain until the steam generated in the low pressure steam generator 12 reaches a pressure condition that can be used by the steam turbine. Valve 3
7, 38. Perform warm pipe operation for each steam pipe while discharging from 39.

その後、低圧蒸気発生器12の蒸気が所定圧力まで上昇
すると、ドレン弁3つが閉じられるとともにその蒸気が
低圧蒸気制御弁30を介して低圧タービン24に導かれ
熱回収される。同様に、中圧蒸気発生器10の蒸気が所
定圧力まで上昇すると、ドレン弁38が閉じられ、上記
中圧蒸気発生器10からの蒸気が逆止弁33を介して低
温再熱管19に導かれ熱回収される。また、高圧蒸気発
生器8の蒸気も、所定圧力まで上昇すると、ドレン弁3
7が閉じられタービンバイパス弁34を介して復水器2
5に導かれる。
Thereafter, when the steam in the low-pressure steam generator 12 rises to a predetermined pressure, the three drain valves are closed, and the steam is led to the low-pressure turbine 24 via the low-pressure steam control valve 30 for heat recovery. Similarly, when the steam in the intermediate pressure steam generator 10 rises to a predetermined pressure, the drain valve 38 is closed, and the steam from the intermediate pressure steam generator 10 is guided to the low temperature reheat pipe 19 via the check valve 33. Heat is recovered. Furthermore, when the steam in the high-pressure steam generator 8 rises to a predetermined pressure, the drain valve 3
7 is closed and the condenser 2 is connected via the turbine bypass valve 34.
5.

一方、この間、ガスタービン4への燃料供給全を増加さ
せながらパワートレイン系を昇速し、略70%速度に到
達すると、空気圧縮機1から送られる空気で燃焼した燃
焼ガスかガスタービン4て仕巾をしてパワートレイン系
の回転速度を維持できるようになるので、この後は起動
用蒸気供給装置44からの蒸気は再熱蒸気制御弁22に
よって中圧タービンの入口圧力を一定にするように制御
される。そこで、引き続き燃料制御弁2によって燃料を
増加してガスタービン4によりパワートレイン系を昇速
し、その後定格速度において発電機4】を併入して初負
荷をとる。
Meanwhile, during this period, the power train system is increased in speed while increasing the total fuel supply to the gas turbine 4, and when the speed reaches approximately 70%, the combustion gas combusted by the air sent from the air compressor 1 is transferred to the gas turbine 4. After this, the steam from the startup steam supply device 44 is used to keep the inlet pressure of the intermediate pressure turbine constant by the reheat steam control valve 22. controlled by. Therefore, the fuel is subsequently increased by the fuel control valve 2, the power train system is increased in speed by the gas turbine 4, and then, at the rated speed, the generator 4 is connected to take the initial load.

さらに、ガスタービン4による負荷上昇を続行し、高圧
蒸気発生器8からの蒸気が高圧タービン17のロータ温
度に対して適する温度になったら、主蒸気+lめ弁15
を全開し、主蒸気加減弁16を介してこの蒸気を高圧タ
ービン17に導く。同時にタービンバイパス弁34は閉
じられる。
Furthermore, when the load increase by the gas turbine 4 continues and the steam from the high-pressure steam generator 8 reaches a temperature suitable for the rotor temperature of the high-pressure turbine 17, the main steam + l valve 15
is fully opened and the steam is guided to the high pressure turbine 17 via the main steam control valve 16. At the same time, turbine bypass valve 34 is closed.

この後は、ガスタービン4と高圧タービン17の負荷を
上昇しながらプラントの負荷上昇を行なうとともに、中
圧タービンの人口圧力は発電機の負6:Iを介して再熱
蒸気制御弁22によって制御するようにする。
After this, the load of the plant is increased while increasing the load of the gas turbine 4 and the high pressure turbine 17, and the artificial pressure of the intermediate pressure turbine is controlled by the reheat steam control valve 22 via the negative 6:I of the generator. I'll do what I do.

第2図は、中圧タービン人口圧力と発電機負荷の関係の
一例を示す図であって、プラント起動時からパワートレ
イン系の回転速度が略70%速度に到達するまでは、再
熱蒸気制御弁22を速度制御するため、この制御によっ
て決まる中圧タービン人口圧力となる。その後は再熱蒸
気制御弁22が中圧タービン人口圧力の一定圧力制御に
用いられる。そして、高圧蒸気発生器の蒸気が高圧ター
ビンに導入されるようになると、中圧タービンの人口圧
力は発電機の負荷上昇とともに上昇する。
Figure 2 is a diagram showing an example of the relationship between the intermediate pressure turbine population pressure and the generator load. Since the valve 22 is speed controlled, the intermediate pressure turbine population pressure is determined by this control. Thereafter, the reheat steam control valve 22 is used for constant pressure control of the intermediate pressure turbine population pressure. Then, when steam from the high-pressure steam generator is introduced into the high-pressure turbine, the population pressure of the intermediate-pressure turbine increases as the load on the generator increases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においてはプラント起動を
起動用蒸気供給装置から送給される起動用蒸気による蒸
気タービンによって行なうようにしたので、再熱器およ
び低圧タービンに常に冷却蒸気を確保することができ、
再熱器の加熱管の損傷を招いたり、或は低圧タービンの
異常高温による不都合を防止することができる。また、
低圧側タービンの入口圧力を発電機の負荷に応じて制御
するようにした場合には、プラント運転中の性能および
高圧タービン最終段羽根にかかる応力をほぼ計画値通り
に維持しながら他ユニット或はブラント補助蒸気などに
抽気することができる。
As explained above, in the present invention, the plant is started by the steam turbine using the starting steam supplied from the starting steam supply device, so that cooling steam is always ensured in the reheater and the low-pressure turbine. is possible,
It is possible to prevent damage to the heating tube of the reheater or problems caused by abnormally high temperatures of the low pressure turbine. Also,
If the inlet pressure of the low-pressure turbine is controlled according to the load of the generator, the performance during plant operation and the stress applied to the final stage blades of the high-pressure turbine can be maintained almost as planned, while other units or Air can be extracted to blunt auxiliary steam, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の蒸気−ガス複合サイクル発電プラント
の系統図、第2図は本発明方法における中圧タービン人
口圧力と発電機負荷の関係を示す説明図、第3図は従来
の蒸気−ガス複合サイクル発電プラントの系統図である
。 1・・・空気圧縮機、3・・・燃焼器、4・・・ガスタ
ービン、5・・・υト熱回収ボイラ、7・・・再熱器、
8・・・高圧蒸気発生器、10・・・中圧蒸気発生器、
12・・・低圧蒸気発生器、16・・・主蒸気加減弁、
17・・・高圧タービン、19・・・低温再熱管、22
・・・再熱蒸気制御弁、23・・・中圧タービン、24
・・・低圧タービン、34・・・タービンバイパス弁、
44・・・起動用蒸気IJl、給装置。 出願人代理人  Vr、   藤  −雄第 2 図
Fig. 1 is a system diagram of the steam-gas combined cycle power plant of the present invention, Fig. 2 is an explanatory diagram showing the relationship between the intermediate pressure turbine population pressure and the generator load in the method of the present invention, and Fig. 3 is a diagram of the conventional steam-gas combined cycle power generation plant. FIG. 1 is a system diagram of a gas combined cycle power generation plant. 1... Air compressor, 3... Combustor, 4... Gas turbine, 5... υ heat recovery boiler, 7... Reheater,
8... High pressure steam generator, 10... Medium pressure steam generator,
12...Low pressure steam generator, 16...Main steam control valve,
17... High pressure turbine, 19... Low temperature reheat pipe, 22
... Reheat steam control valve, 23 ... Intermediate pressure turbine, 24
...Low pressure turbine, 34...Turbine bypass valve,
44...Steam IJl for startup, supply device. Applicant's agent Vr, Fujio Figure 2

Claims (1)

【特許請求の範囲】 1、ガスタービンおよび空気圧縮機、そのガスタービン
からの排熱によって発生する蒸気によって作動する高圧
側タービンおよび低圧側タービンからなる蒸気タービン
、並びに発電機を各々同一軸上に配置構成したパワート
レイン系を有する蒸気−ガス複合サイクル発電プラント
の運転方法において、プラント起動用蒸気供給装置から
の蒸気を再熱器を経て低圧側タービンに導きパワートレ
イン系を昇速し、次にその速度を保持して空気圧縮機か
らの空気でガスタービン設備内の空気を置換し、その後
ガスタービンを着火するとともに、引き続いてプラント
起動用蒸気供給装置からの蒸気によってパワートレイン
系を昇速し、ガスタービンが自立できる回転速度到達後
には、プラント起動用蒸気供給装置からの蒸気は再熱器
および低圧側タービンの冷却用として確保するとともに
、再熱蒸気制御弁の制御によって低圧側タービンの人口
蒸気圧力を一定に制御しながら、燃料制御弁によってパ
ワートレイン系の昇速制御を行なうことを特徴とする、
蒸気−ガス複合サイクル発電プラントの運転方法。 2、排熱回収ボイラからの蒸気が高圧側タービンに導入
されるようになった後は、低圧側タービン入口圧力を発
電機の負荷を介して再熱蒸気制御弁によって制御するよ
うにした、請求項1記載の蒸気−ガス複合サイクル発電
プラントの運転方法。 3、プラント起動用蒸気供給装置からの蒸気を、再熱器
が暖機状態にある時は再熱器を経て低圧側タービンに導
き、再熱器が冷機状態にある時は再熱器を経ずに直接低
圧側タービンに導くようにしたことを特徴とする請求項
1記載の蒸気−ガス複合サイクル発電プラントの運転方
法。 4、ガスタービンおよび空気圧縮機、そのガスタービン
からの排熱によって発生する蒸気によって作動する高圧
側タービンおよび低圧側タービンからなる蒸気タービン
、並びに発電機を各々同一軸上に配置構成したパワート
レイン系を有する蒸気−ガス複合サイクル発電プラント
において、高圧側タービンの排気側の低温再熱管に起動
用蒸気供給装置を接続したことを特徴とする、蒸気−ガ
ス複合サイクル発電プラント。 5、起動用蒸気供給装置を再熱器の下流側の高温再熱管
に接続して、低温再熱管への接続ラインとの切替を可能
としたことを特徴とする、請求項4記載の蒸気−ガス複
合サイクル発電プラント。
[Claims] 1. A gas turbine, an air compressor, a steam turbine consisting of a high-pressure side turbine and a low-pressure side turbine operated by steam generated by exhaust heat from the gas turbine, and a generator, each on the same axis. In a method of operating a steam-gas combined cycle power plant having a power train system arranged and configured, steam from a steam supply device for starting the plant is guided to a low-pressure turbine through a reheater to speed up the power train system, and then While maintaining that speed, the air in the gas turbine equipment is replaced with air from the air compressor, and then the gas turbine is ignited, and the power train system is subsequently sped up using steam from the plant startup steam supply device. After the gas turbine reaches a rotational speed that allows it to stand on its own, the steam from the plant startup steam supply system is secured for cooling the reheater and low-pressure turbine, and the reheat steam control valve controls the low-pressure turbine population. It is characterized by controlling the speed up of the power train system using the fuel control valve while controlling the steam pressure at a constant level.
A method of operating a steam-gas combined cycle power plant. 2. After the steam from the heat recovery boiler is introduced into the high-pressure turbine, the low-pressure turbine inlet pressure is controlled by the reheat steam control valve via the generator load. Item 1. A method of operating a steam-gas combined cycle power plant according to item 1. 3. Steam from the plant startup steam supply device is guided to the low-pressure turbine through the reheater when the reheater is warmed up, and through the reheater when the reheater is cold. 2. The method of operating a steam-gas combined cycle power plant according to claim 1, wherein the steam-gas combined cycle power generation plant is guided directly to the low-pressure turbine. 4. A power train system in which a gas turbine, an air compressor, a steam turbine consisting of a high-pressure side turbine and a low-pressure side turbine operated by steam generated by exhaust heat from the gas turbine, and a generator are arranged on the same axis. A steam-gas combined cycle power generation plant having a steam-gas combined cycle power generation plant, characterized in that a startup steam supply device is connected to a low-temperature reheat pipe on the exhaust side of a high-pressure side turbine. 5. The steam according to claim 4, characterized in that the startup steam supply device is connected to the high temperature reheat pipe on the downstream side of the reheater, thereby making it possible to switch to the connection line to the low temperature reheat pipe. Gas combined cycle power plant.
JP63320100A 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant Expired - Lifetime JP2558855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320100A JP2558855B2 (en) 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-209077 1988-08-23
JP20907788 1988-08-23
JP63320100A JP2558855B2 (en) 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant

Publications (2)

Publication Number Publication Date
JPH02140405A true JPH02140405A (en) 1990-05-30
JP2558855B2 JP2558855B2 (en) 1996-11-27

Family

ID=26517206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320100A Expired - Lifetime JP2558855B2 (en) 1988-08-23 1988-12-19 Method of operating steam-gas combined cycle power plant and its power plant

Country Status (1)

Country Link
JP (1) JP2558855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042641A1 (en) * 2010-09-30 2012-04-05 株式会社日立製作所 Combined cycle plant utilizing solar heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042641A1 (en) * 2010-09-30 2012-04-05 株式会社日立製作所 Combined cycle plant utilizing solar heat
JP5422747B2 (en) * 2010-09-30 2014-02-19 株式会社日立製作所 Solar-powered combined cycle plant

Also Published As

Publication number Publication date
JP2558855B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
CN106089341B (en) Method for enhancing cold steam turbine startup in a multi-gas turbine combined cycle plant
JP3068925B2 (en) Combined cycle power plant
JPH08240105A (en) Combined cycle power plant and steam turbine warming method
EP3450705B1 (en) Gas turbine combined cycle system equipped with control device and its control method
JP2000161014A (en) Combined power generator facility
WO1998046872A1 (en) Combined cycle power generating plant and method of supplying cooling steam for gas turbine in same
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JP2004169625A (en) Co-generation plant and its starting method
JPH0763010A (en) Starting method for single type combined cycle power generating facility
JPH06323162A (en) Steam-cooled gas turbine power plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JP2602951B2 (en) How to start a combined cycle plant
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JP2002021508A (en) Condensate supply system
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JPH02259301A (en) Waste heat recovery boiler
JP4209060B2 (en) Steam cooling rapid start system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2657411B2 (en) Combined cycle power plant and operating method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13