JPS62267527A - Air flow control device for combined cycle - Google Patents

Air flow control device for combined cycle

Info

Publication number
JPS62267527A
JPS62267527A JP11060286A JP11060286A JPS62267527A JP S62267527 A JPS62267527 A JP S62267527A JP 11060286 A JP11060286 A JP 11060286A JP 11060286 A JP11060286 A JP 11060286A JP S62267527 A JPS62267527 A JP S62267527A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow rate
air
boiler
inlet guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11060286A
Other languages
Japanese (ja)
Other versions
JPH0643810B2 (en
Inventor
Kazutaka Yamaguchi
山口 一孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11060286A priority Critical patent/JPH0643810B2/en
Publication of JPS62267527A publication Critical patent/JPS62267527A/en
Publication of JPH0643810B2 publication Critical patent/JPH0643810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To improve the heat efficiency, by controllably opening and closing an inlet guide vane according to an exhaust gas flow detection value and an exhaust gas flow set value in a combined cycle utilizing an exhaust gas from a gas turbine. CONSTITUTION:A variable guide vane 1 is provided at the inlet of an air compressor 5. An exhaust gas flow from a gas turbine 8 is detected, and a detection signal 13 is compared with an exhaust gas flow set signal 22. When the detection signal 13 is smaller than the set signal 22, the guide vane 1 is controlled to be opened, while when the former is larger than the latter, the guide vane 1 is controlled to be closed. A lacking amount of air on a boiler 14 side is compensated by an increase in amount of the exhaust gas from the gas turbine. Therefore, a ventilating temperature is not lowered. Accordingly, the heat efficiency in the whole plant may be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンの排ガスを利用するコンバイン
ドサイクルに係り、特に排ガスの中の残存02をボイラ
の燃焼用空気として利用する排気再燃形のコンバインド
サイクルに好適な空気流量制御装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combined cycle that utilizes exhaust gas from a gas turbine, and in particular to an exhaust reburning type that utilizes residual 02 in the exhaust gas as combustion air for a boiler. The present invention relates to an air flow rate control device suitable for combined cycles.

〔従来技術〕[Prior art]

従来の排気再燃形のコンバインドサイクルにおいては、
負荷の増大によりボイラ側の燃料消費量が増えて、ガス
タービン側から供給される排ガスの残存o2量だけでは
空気量が不足となる場合、ボイラ側の押込ファンの入口
翼開度を制御して不足分の空気量を外部から直接ボイラ
へ取込んでいた。なお、この種の装置に関しては、特開
昭52−100039号公報、特開昭52−12596
2号公報に記載の技術が公知である。
In the conventional exhaust reburning type combined cycle,
If the fuel consumption on the boiler side increases due to an increase in load, and the amount of air is insufficient with only the remaining O2 amount of exhaust gas supplied from the gas turbine side, the inlet blade opening of the forced fan on the boiler side should be controlled. The insufficient amount of air was taken directly into the boiler from outside. Regarding this type of device, please refer to Japanese Patent Application Laid-open No. 52-100039 and Japanese Patent Application Laid-Open No. 52-12596.
The technique described in Publication No. 2 is publicly known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、ボイラ側の不足分の空気は押込ファ
ンを介して大気から直接ボイラに取込ま゛れる為、該取
込大気を予熱する手段を付設してもガスタービン側から
供給されている排ガス温度を下げてしまい、プラントの
熱効率が低下するという問題があった。
In the above-mentioned conventional technology, the insufficient air on the boiler side is directly taken into the boiler from the atmosphere via a forced fan, so even if a means for preheating the taken-in air is provided, the air is still supplied from the gas turbine side. There was a problem that the exhaust gas temperature was lowered and the thermal efficiency of the plant was lowered.

本発明は、排ガス温度を大幅に下げる事なく不足分の空
気を供給することができるコンバインドサイクルの空気
流量制御装置を提供する事を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a combined cycle air flow rate control device capable of supplying insufficient air without significantly lowering exhaust gas temperature.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題は、ボイラ側に空気量の不足が生じた場合に、
ガイタービン側の空気圧縮機入口案内翼の開度を広げて
ガスタービンの燃焼用空気流量を増大してやり、その二
次的結果としてボイラ側へ供給される排ガスの残存02
を増加させる。このようにして排ガス中の02量を増加
させた場合、該排ガスはガスタービンを駆動した直後の
高温状態であるから、プラント全体の熱効率低下を招く
虞れがなくボイラに供給することが出来る。
The above problem occurs when there is a lack of air on the boiler side.
The opening degree of the air compressor inlet guide vanes on the guide turbine side is widened to increase the combustion air flow rate of the gas turbine, and as a secondary result, the residual exhaust gas supplied to the boiler side is reduced.
increase. When the amount of 02 in the exhaust gas is increased in this way, the exhaust gas is in a high temperature state immediately after driving the gas turbine, so it can be supplied to the boiler without causing a decrease in the thermal efficiency of the entire plant.

〔作用〕[Effect]

上記の技術によれば、ボイラ側に空気量の不足が生じて
も、供給される空気流量の増加は、ガスタービンで一旦
燃焼された高温の排ガス量の増加という形態でなされる
ので、不足分の空気量を補うべく供給しても徘ガス温度
が下がる事がない。
According to the above technology, even if there is a shortage of air on the boiler side, the supplied air flow will be increased in the form of an increase in the amount of high-temperature exhaust gas once combusted in the gas turbine. Even if air is supplied to supplement the amount of air, the wandering gas temperature will not drop.

〔実施例〕〔Example〕

以下、図面を参照してこの発明の一実施例について説明
する。第1図は本発明の一実施例の排気再燃式コンバイ
、ンドサイクルの構成を示す、空気圧縮機入口案内翼1
を通ってガスタービン燃焼用空気4は、空気圧縮機5で
圧縮され、この高圧空気によってガスタービン燃料6を
燃焼器7内で燃焼させる。この燃焼で得られた高温高圧
の燃焼ガスでガスタービン8を回し、発電機9によって
電気エネルギーを得る。ガスタービン8で仕事を終えた
高温の排ガス11は、排気ダクト10を通ってボイラ1
4へ流れていく。このボイラ14では、排ガス11中の
残存02によってボイラ燃料15を燃焼させ、高温の排
ガス温度をさらに高める。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an exhaust reburning type combined cycle according to an embodiment of the present invention. Air compressor inlet guide vane 1
Gas turbine combustion air 4 is compressed by an air compressor 5, and gas turbine fuel 6 is combusted in a combustor 7 by this high pressure air. The high-temperature, high-pressure combustion gas obtained by this combustion turns a gas turbine 8, and a generator 9 generates electrical energy. The high-temperature exhaust gas 11 that has finished its work in the gas turbine 8 passes through an exhaust duct 10 to the boiler 1.
It flows to 4. In this boiler 14, the remaining O2 in the exhaust gas 11 burns the boiler fuel 15, further increasing the temperature of the high-temperature exhaust gas.

この高温排ガスの熱エネルギーによってボイラ14は高
温高圧の蒸気を発生させる。ボイラ14で熱を回収され
て降温した排ガスは煙突16を通って大気へ放出される
。ボイラ14の負荷が増大して排ガス11中の残存02
だけでは空気が不足する場合に備えて、外気から新たな
空気を供給できるように、ボイラ押込ファン入ロ翼17
.ボイラ押込ファン20.ボイラ補給空気取込ロダンパ
21で構成されるボイラ補給用空気12ラインを設備し
である。
The boiler 14 generates high-temperature, high-pressure steam using the thermal energy of this high-temperature exhaust gas. The exhaust gas whose heat is recovered by the boiler 14 and whose temperature is lowered is discharged into the atmosphere through the chimney 16. As the load on the boiler 14 increases, residual 02 in the exhaust gas 11
In case there is insufficient air, the boiler forced fan intake blade 17 is installed so that fresh air can be supplied from outside air.
.. Boiler forced fan 20. It is equipped with 12 boiler make-up air lines consisting of a boiler make-up air intake rod damper 21.

ガスタービン側の空気圧縮機入口案内′R1は、空気圧
縮機入口案内翼駆動装置2によって開度調節ができる可
変翼で、最大開度になったことが検出できる入口案内翼
最大開度リミットスイッチ3を具備している。ボイラ側
の押込ファン人口翼17は、ボイラ押込ファン入口翼駆
動装置18によって開度調節ができる可変翼で、最小開
度になったことが検出できるボイラ押込ファン人口翼最
低開度リミットスイッチ19を具備している。
The air compressor inlet guide 'R1 on the gas turbine side is a variable blade whose opening can be adjusted by the air compressor inlet guide vane drive device 2, and there is an inlet guide vane maximum opening limit switch that can detect when the maximum opening has been reached. It is equipped with 3. The forced fan artificial blade 17 on the boiler side is a variable blade whose opening can be adjusted by a boiler forced fan inlet blade drive device 18, and has a boiler forced fan artificial blade minimum opening limit switch 19 that can detect when the minimum opening has been reached. Equipped with

次に、空気圧縮機入口案内翼駆動装置2及びボイラ押込
ファン翼駆動装v118の制御構成について説明する。
Next, the control configuration of the air compressor inlet guide vane drive device 2 and the boiler forced fan blade drive device v118 will be explained.

排ガス流量設定信号22と排ガス流量検出信号13とは
加算器23へ入力されている。
The exhaust gas flow rate setting signal 22 and the exhaust gas flow rate detection signal 13 are input to an adder 23.

加算器23からの偏差信号24は低値信号モニタ25、
高値信号モニタ26及び、入口案内翼開度制御切替指令
29の接点を介して入口案内翼開度制御用比例積分D3
1へ接続されると共に、ボイラ押込ファン入口型開度制
御切替指令30の接点を介してボイラ押込ファン入口翼
開度制御用比例積分器34へ接続されている。入口案内
翼開度制御用比例積分器31からの出力信号は上下限制
限器32を介して空気圧縮機入口案内翼開度制御信号3
3として空気圧縮機入口案内翼駆動装置2へ伝達される
。ボイラ押込ファン人口翼開度制御用比例積分器34か
らの出力信号は上、下限制限器35を介してボイラ押込
ファン入口型開度制御信号36としてボイラ押込ファン
入口型駆動装置18へ伝達される。高値信号モニタ26
から出力される信号28とボイラ押込ファン入口型最低
開度リミットスイッチ19のAND条件と低値信号モニ
タ25からの出力信号27とのOR条件によって入口案
内翼開度制御切替指令29が構成されている。一方ボイ
ラ押込ファン入口翼開度制御切替指令30は、低値信号
モニタ25からの出力信号27と入口案内翼最大開度リ
ミットスイッチ3のAND条件と高値信号モニタ26か
らの出力<g号28とのOR条件で構成されている0以
上が、排気再燃式コンバインドサイクルの通風系統と空
気流量制御設備との全体構成である。
The deviation signal 24 from the adder 23 is sent to a low value signal monitor 25;
Proportional integral D3 for inlet guide vane opening control via contact point of high value signal monitor 26 and inlet guide vane opening control switching command 29
1, and is also connected to a proportional integrator 34 for boiler forced fan inlet blade opening control via a contact point of a boiler forced fan inlet opening control switching command 30. The output signal from the inlet guide vane opening control proportional integrator 31 is passed through the upper and lower limit limiter 32 to the air compressor inlet guide vane opening control signal 3.
3 to the air compressor inlet guide vane drive device 2. The output signal from the boiler forced fan artificial blade opening control proportional integrator 34 is transmitted to the boiler forced fan inlet drive device 18 as a boiler forced fan inlet opening control signal 36 via the upper and lower limit limiters 35. . High value signal monitor 26
The inlet guide vane opening control switching command 29 is configured by the AND condition of the signal 28 output from the boiler forced fan inlet type minimum opening limit switch 19 and the OR condition of the output signal 27 from the low value signal monitor 25. There is. On the other hand, the boiler forced fan inlet blade opening control switching command 30 is determined by the AND condition of the output signal 27 from the low value signal monitor 25, the inlet guide blade maximum opening limit switch 3, and the output from the high value signal monitor 26 < g 28. 0 or more constituted by the OR condition is the overall configuration of the ventilation system and air flow rate control equipment of the exhaust reburning combined cycle.

次に空気流量制御設備の動作について説明する。Next, the operation of the air flow rate control equipment will be explained.

排気再燃のボイラ14は、ガスタービン8の排ガス11
の残存Oxによってボイラ燃料15を燃焼させているが
、ボイラ14の負荷が増大してボイラ燃料15が増加す
ると、これに伴い燃焼に必要な空気量も増加させる必要
がある。この様にボイラ燃料15が増加すると、必要空
気量を確保する為に排ガス流量設定信号22が増加する
。これによって排ガス流量検出信号13との間に偏差信
号24が生じるが排ガス流量設定信号22よりも排ガス
流量検出信号13の方が小さい場合はマイナス偏差とな
り、低値信号モニタ25側から出力信号27が発せられ
て入口案内翼開度制御切替指令29が成立する。これに
よってマイナスの偏差信号29は入口案内翼開度制御用
比例積分器31へ入力される。比例積分信号は上下限制
限器32を通り入口案内翼開度制御信号33として空気
圧縮機入口案内寞駆動装fi2へ伝達され、駆動装置2
はこの信号を受けて空気圧縮機入口案内11を開方向へ
動かす、この結果ガスタービン燃焼用空気4が増大し、
これによって排ガス11も増加してボイラ側に必要な空
気量が確保される。目標とする徘ガス量に達すると偏差
信号24は零となり、この状態で入口案内翼開度が整定
される。ボイラ側の負荷が大きくてボイラ燃料量が非常
に多い場合には入口案内翼開度はやがて全開となる。こ
の入口案内翼開度が全開となってもマイナス偏差のまま
の状態(すなわち目標に対して空気の量が不足の状a)
になると、入口案内翼最大開度リミットスイッチ3と低
値信号モニタ25からの出力信号27のAND条件が成
立し、ボイラ押込ファン入口型開度制御切替指令30の
出力によってマイナスの偏差信号24はボイラ押込ファ
ン人口翼開度制御用比例積分器34へ入力される5この
比例積分信号は上下限器35を通すボイラ押込ファン人
口翼開度制御信号36としてボイラ押込ファン入口型駆
動装置18八伝達され、ボイラ押込ファン入口型17を
開方向へ動かす。この結果ガスタービン側の入口案内翼
全開時の排ガス11に加えて、不足分空気としてボイラ
補給用空気12が供給される。ボイラ側から要求される
排ガス流電設定量と、「ガスタービン側の排ガス量とボ
イラ側の補給空気量との総和と」がバランスしたとき、
偏差信号24が零となってボイラ押込ファン入口型開度
が整定される。
The exhaust gas reburning boiler 14 uses the exhaust gas 11 of the gas turbine 8.
The boiler fuel 15 is combusted by the residual Ox, but as the load on the boiler 14 increases and the amount of boiler fuel 15 increases, the amount of air required for combustion must also increase accordingly. When the boiler fuel 15 increases in this way, the exhaust gas flow rate setting signal 22 increases in order to secure the required air amount. As a result, a deviation signal 24 is generated between the exhaust gas flow rate detection signal 13 and the exhaust gas flow rate detection signal 13, but if the exhaust gas flow rate detection signal 13 is smaller than the exhaust gas flow rate setting signal 22, a negative deviation occurs, and the output signal 27 from the low value signal monitor 25 side is It is issued and the inlet guide vane opening degree control switching command 29 is established. As a result, the negative deviation signal 29 is input to the proportional integrator 31 for controlling the opening of the inlet guide vane. The proportional integral signal passes through the upper and lower limit limiters 32 and is transmitted as an inlet guide vane opening degree control signal 33 to the air compressor inlet guide vane drive unit fi2.
receives this signal and moves the air compressor inlet guide 11 in the opening direction, resulting in an increase in gas turbine combustion air 4.
As a result, the exhaust gas 11 also increases, and the necessary amount of air is secured on the boiler side. When the target amount of wandering gas is reached, the deviation signal 24 becomes zero, and in this state, the opening degree of the inlet guide vane is set. If the load on the boiler side is large and the amount of boiler fuel is very large, the inlet guide vane will eventually become fully open. Even if this inlet guide vane opening is fully opened, the negative deviation remains (i.e., a state where the amount of air is insufficient for the target)
Then, the AND condition of the inlet guide vane maximum opening limit switch 3 and the output signal 27 from the low value signal monitor 25 is established, and the negative deviation signal 24 is set by the output of the boiler forced fan inlet type opening control switching command 30. This proportional integral signal is input to the proportional integrator 34 for boiler forced fan artificial blade opening control, and is transmitted to the boiler forced fan inlet type drive device 188 as a boiler forced fan artificial blade opening control signal 36 which passes through the upper and lower limiters 35. and moves the boiler forced fan inlet mold 17 in the opening direction. As a result, in addition to the exhaust gas 11 when the inlet guide vane on the gas turbine side is fully opened, the boiler supplementary air 12 is supplied as the insufficient air. When the amount of exhaust gas current required by the boiler is balanced with the sum of the amount of exhaust gas on the gas turbine side and the amount of make-up air on the boiler side,
The deviation signal 24 becomes zero and the opening degree of the boiler forced fan inlet type is set.

この様な状況下において、ボイラ14の負荷が低下して
ボイラ燃料15が減少すると、燃料量に対して空気量が
過剰となる為、最適燃焼とする為の徘ガス流量設定信号
22が与えられる。これによって排ガス流量検出信号1
3との間にプラス偏差信号を生じ、高値信号モニタ26
から出力信号28が発せられ、ボイラ押込ファン入口翼
開度制御切替指令30が成立する。これによってプラス
の偏差信号29はボイラ押込ファン人口翼開度制御用比
例積分W134へ入力される。ここからの比例積分信号
は上、下限制限器35を通すボイラ押込ファン入口翼駆
動装置18へ伝達され、ボイラ押込ファン人口寞17を
閉方向へ動かす、この結果、まず大気から直接取込して
いるボイラ補給用空気12が減らされて過剰空気が低減
される。ボイラ側から与えられた排ガス設定量と等しい
排ガス総量になると、偏差信号24は零となり、ボイラ
押込ファン人口翼17の開度は整定される。ボイラ側の
燃料が更に減少し、ボイラ押込ファン人口g17の開度
を最小にしても、まだ空気過剰状態を表わすプラス偏差
信号が持続すると、高値信号モニタ26からの出力信号
28に加えてボイラ押込ファン入口翼最小開度リミット
スイッチ19の入力によって、ガスタービン側の入口案
内翼開度制御切替指令19が成立し、プラス偏差信号2
4が入口案内翼開度制御用比例積分器31へ入力される
。ここからの比例積分信号は上、下限制限器32を通り
空気圧縮機入口案内翼開度制御信号33として空気圧縮
機入口案内翼駆動装置2へ伝達され、空気圧縮機入口案
内翼1を閉方向へ動かす、この結果ガスタービン燃焼用
空気4が減り、ボイラ側に必要な排ガス量になるまで入
口案内翼の開度が絞り込まれる。
Under such circumstances, when the load on the boiler 14 decreases and the amount of boiler fuel 15 decreases, the amount of air becomes excessive with respect to the amount of fuel, so a stray gas flow rate setting signal 22 is given to achieve optimal combustion. . As a result, the exhaust gas flow rate detection signal 1
A positive deviation signal is generated between the high value signal monitor 26 and
An output signal 28 is issued, and a boiler forced fan inlet blade opening control switching command 30 is established. As a result, the positive deviation signal 29 is input to the boiler forced fan artificial blade opening control proportional integral W134. The proportional-integral signal from here is transmitted to the boiler forced fan inlet vane drive unit 18 through the upper and lower limit limiters 35, and moves the boiler forced fan inlet vane drive 17 in the closing direction. The amount of boiler make-up air 12 present is reduced, and excess air is reduced. When the total exhaust gas amount becomes equal to the exhaust gas setting amount given from the boiler side, the deviation signal 24 becomes zero, and the opening degree of the boiler forced fan artificial blade 17 is stabilized. If the fuel on the boiler side further decreases and the positive deviation signal indicating an excess air condition still persists even if the opening degree of the boiler pushing fan g17 is minimized, the boiler pushing fan will increase in addition to the output signal 28 from the high value signal monitor 26. By inputting the fan inlet blade minimum opening degree limit switch 19, the gas turbine side inlet guide blade opening degree control switching command 19 is established, and the positive deviation signal 2
4 is input to the proportional integrator 31 for controlling the opening degree of the inlet guide vanes. The proportional integral signal from here passes through the upper and lower limit limiters 32 and is transmitted to the air compressor inlet guide vane driving device 2 as the air compressor inlet guide vane opening degree control signal 33, and moves the air compressor inlet guide vane 1 in the closing direction. As a result, the gas turbine combustion air 4 is reduced, and the opening degree of the inlet guide vanes is narrowed down until the amount of exhaust gas required for the boiler side is reached.

以上に説明した実施例においては、ボイラ側の負荷の増
大によって空気量が不足すると、まずガスタービン側の
燃焼空気量が増加し、その結果ガスタービンで仕事を終
えたあとの高温の排ガス内の残存o2が増加するので−
ボイラ側にとっては高温の空気が補給された事と同じ結
果となる。また、高温の排ガス量も増えるので、熱エネ
ルギーが補給された事と同じ効果が得られ、燃料量ベー
スで従来のものと比較すると、同一燃料量であっても本
発明の実施例では高温高圧の蒸気出力が得られる。従っ
て、同一負荷ベースであれば、従来よりも燃料が少なく
て済む、ボイラ側の負荷が減少して空気過剰になった場
合、このときボイラ側の押込ファンからも空気を供給し
ていたならば、空気温度の低い押込ファンから先に空気
絞り込みがなされ、引き続きガスタービン側の燃焼空気
量の絞り込みという順で過剰空気の低減が行われる。
In the embodiment described above, when the amount of air becomes insufficient due to an increase in the load on the boiler side, first the amount of combustion air on the gas turbine side increases, and as a result, the amount of air in the high-temperature exhaust gas after finishing work in the gas turbine increases. Since the remaining o2 increases -
On the boiler side, the result is the same as replenishing high temperature air. In addition, since the amount of high-temperature exhaust gas increases, the same effect as that of replenishing thermal energy can be obtained, and when compared with the conventional system on a fuel amount basis, even with the same amount of fuel, the high temperature and high pressure of the embodiment of the present invention steam output is obtained. Therefore, if the load is the same, less fuel will be needed than before.If the load on the boiler side is reduced and there is excess air, if air is also supplied from the forced fan on the boiler side, then Air is first narrowed down from the forced fan with the lowest air temperature, and then the amount of combustion air on the gas turbine side is narrowed down, in order to reduce excess air.

またガスタービンの特性上、燃焼空気量を絞り込みする
と排ガス温度が上昇する。従って本発明の実施例による
過剰空気絞り込みでは、絞り込む程に排ガス温度が高く
なるので、ボイラ低負荷時の燃料消費率は従来に比べて
大幅に低減できる。以上の様に本発明の実施例によれば
、ボイラの負荷が増える方向でも、低負荷領域でも、従
来に比べてボイラの燃料消費が少なくて済むという効果
がある。
Furthermore, due to the characteristics of gas turbines, when the amount of combustion air is reduced, the exhaust gas temperature increases. Therefore, in the excess air throttling according to the embodiment of the present invention, the more the exhaust gas temperature is reduced, the higher the exhaust gas temperature becomes, so that the fuel consumption rate when the boiler is under low load can be significantly reduced compared to the conventional method. As described above, according to the embodiments of the present invention, the fuel consumption of the boiler can be reduced compared to the conventional method, both in the direction where the load on the boiler increases and in the low load region.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ボイラ側の不足分の空気の供給は、ガ
スタービン側の高温の排ガス量の増加という形態で行わ
れ、ボ、イラ側の通風温度を下げる事が無いのでプラン
ト全体の熱効率を向上する事ができる。
According to the present invention, the insufficient amount of air on the boiler side is supplied in the form of an increase in the amount of high-temperature exhaust gas on the gas turbine side, and since the ventilation temperature on the boiler and boiler sides is not lowered, the overall thermal efficiency of the plant is improved. can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の排気再燃式コンバインドサ
イクルの作動流体の系統図に制御系統を付記した説明図
である。 1・・・空気圧縮機入口案内翼、2・・・空気圧縮機入
口案内翼駆動装置、3・・・入口案内翼最大開度リミッ
トスイッチ、4・・・ガスタービン燃焼空気、5・・・
空気圧縮機、6・・・ガスタービン燃料、7・・・燃焼
器、8・・・ガスタービン、9・・・発電機、10・・
排気ダクト、1,1・・・徘ガス、12・・・ボイラ補
給用空気。 13・・・排ガス流量信号、14・・・ボイラ、15・
・・ボイラ燃料、16・・・煙突、17・・・ボイラ押
込ファン入口翼、18・・・ボイラ押込ファン入口翼駆
動装置。 19・・・ボイラ押込ファン入口翼最低開度リミットス
イッチ、20・・・ボイラ押込ファン、21・・・ボイ
ラ補給空気取込ロダンパ、22・・・排ガス流量設定信
号、23・・・加算器、24・・・偏差信号、25・・
・低値信号モニタ、26・・・高値信号モニタ、27・
・・低値信号モニタからの出力信号、28・・・高値信
号モニラからの出力信号、29・・・入口案内翼開度制
御切替指令、30・・・ボイラ押込ファン人口型開度制
御切替指令、31・・・入口案内翼開度制御用比例積分
器、32・・・上、下限制限器、33・・・空気圧11
機入口案内翼開度制御信号、34・・・ボイラ押込ファ
ン入口翼開度制御用比例積分器、35・・・上、下限制
限器、36・・・ボイラ押込ファン人口型開度制御信号
FIG. 1 is an explanatory diagram in which a control system is added to a working fluid system diagram of an exhaust gas reburning combined cycle according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Air compressor inlet guide vane, 2... Air compressor inlet guide vane drive device, 3... Inlet guide vane maximum opening limit switch, 4... Gas turbine combustion air, 5...
Air compressor, 6... Gas turbine fuel, 7... Combustor, 8... Gas turbine, 9... Generator, 10...
Exhaust duct, 1,1... Wandering gas, 12... Boiler supply air. 13...Exhaust gas flow rate signal, 14...Boiler, 15.
... Boiler fuel, 16... Chimney, 17... Boiler forced fan inlet blade, 18... Boiler forced fan inlet blade drive device. 19... Boiler forced fan inlet blade minimum opening limit switch, 20... Boiler forced fan, 21... Boiler supplementary air intake rod damper, 22... Exhaust gas flow rate setting signal, 23... Adder, 24... Deviation signal, 25...
・Low value signal monitor, 26...High value signal monitor, 27・
...Output signal from the low value signal monitor, 28...Output signal from the high value signal monitor, 29...Inlet guide vane opening control switching command, 30...Boiler forced fan artificial opening control switching command , 31... Proportional integrator for inlet guide vane opening control, 32... Upper and lower limit limiters, 33... Air pressure 11
Machine inlet guide blade opening control signal, 34... Boiler forced fan inlet blade opening control proportional integrator, 35... Upper and lower limit limiters, 36... Boiler forced fan artificial opening control signal.

Claims (1)

【特許請求の範囲】 1、可変の入口案内翼を備えた空気圧縮機の吐出空気に
よつて燃料を燃焼させ、その燃焼ガスによつてガスター
ビンを駆動し、かつ、該ガスタービンの排ガス中に燃料
を噴射して燃焼せしめるボイラを設けたコンバインドサ
イクルの原動機プラントにおいて、 (a)前記の入口案内翼を開閉する入口案内翼駆動装置
と、 (b)前記ガスタービンの排ガスの流量を検出する手段
と、 (c)前記のボイラが必要とする排ガス流量を設定する
手段と、 (d)前記(b)項の手段による排ガス流量検出値と前
記(c)項の手段による排ガス流量設定値とを比較する
機能を備えた制御機構とを設け、かつ、前記比較制御機
構は、排ガス流量検出値が排ガス流量設定値よりも小な
るときは前記入口案内翼を開く方向に同駆動装置を作動
せしめると共に、排ガス流量検出値が排ガス流量設定値
よりも大なるときは前記入口案内翼を閉じる方向に同駆
動装置を作動せしめるように構成したことを特徴とする
、コンバインドサイクルの空気流量制御装置。 2、前記のボイラは、燃焼用空気として大気を導入する
流路を設けると共に該流入大気流量の調節手段を備えた
ものであり、かつ、前記の比較制御機構は上記の調節手
段を作動せしめる機能を兼ね備えたものであることを特
徴とする特許請求の範囲第1項に記載のコンバインドサ
イクルの空気流量制御装置。 3、前記の入口案内翼は、全開状態となつたことを検知
する手段を備えたものとし、かつ、前記の比較制御機構
は上記の入口案内翼が全開されていないときは前記の流
入大気流量を零ならしめるように同調節手段を作動せし
め、前記入口案内翼が全開された状態においてのみ大気
を流入せしめるように大気流量調節手段を作動せしめる
構造であることを特徴とする特許請求の範囲第2項に記
載のコンバインドサイクルの空気流量制御装置。
[Claims] 1. Fuel is combusted by the discharge air of an air compressor equipped with variable inlet guide vanes, the combustion gas drives a gas turbine, and the exhaust gas of the gas turbine is In a combined cycle prime mover plant equipped with a boiler that injects and burns fuel into the gas turbine, (a) an inlet guide vane drive device that opens and closes the inlet guide vanes, and (b) detects the flow rate of the exhaust gas of the gas turbine. (c) means for setting the exhaust gas flow rate required by the boiler; (d) an exhaust gas flow rate detected by the means in (b) above and an exhaust gas flow rate setting value by the means in (c) above; and a control mechanism having a function of comparing the exhaust gas flow rate, and the comparison control mechanism operates the drive device in a direction to open the inlet guide vane when the detected exhaust gas flow rate value is smaller than the set exhaust gas flow rate value. A combined cycle air flow control device, characterized in that the drive device is configured to operate in a direction to close the inlet guide vane when the detected exhaust gas flow rate is greater than the set exhaust gas flow rate. 2. The boiler described above is provided with a flow path for introducing atmospheric air as combustion air and is equipped with means for regulating the flow rate of the incoming atmospheric air, and the comparison control mechanism has a function of operating the regulating means. An air flow rate control device for a combined cycle according to claim 1, characterized in that the device has the following. 3. The inlet guide vane shall be equipped with a means for detecting that it is fully open, and the comparison control mechanism shall control the inflow air flow rate when the inlet guide vane is not fully open. Claim 1, characterized in that the adjusting means is operated so as to make the flow rate zero, and the atmospheric flow rate adjusting means is operated so as to allow atmospheric air to flow in only when the inlet guide vane is fully opened. The combined cycle air flow control device according to item 2.
JP11060286A 1986-05-16 1986-05-16 Combined cycle air flow controller Expired - Lifetime JPH0643810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11060286A JPH0643810B2 (en) 1986-05-16 1986-05-16 Combined cycle air flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11060286A JPH0643810B2 (en) 1986-05-16 1986-05-16 Combined cycle air flow controller

Publications (2)

Publication Number Publication Date
JPS62267527A true JPS62267527A (en) 1987-11-20
JPH0643810B2 JPH0643810B2 (en) 1994-06-08

Family

ID=14540006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11060286A Expired - Lifetime JPH0643810B2 (en) 1986-05-16 1986-05-16 Combined cycle air flow controller

Country Status (1)

Country Link
JP (1) JPH0643810B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177410A (en) * 1994-12-26 1996-07-09 Ishikawajima Harima Heavy Ind Co Ltd Plant control device of exhaust burning-up type combined cycle plant
JP2007040171A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Inlet guide vane control device of gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177410A (en) * 1994-12-26 1996-07-09 Ishikawajima Harima Heavy Ind Co Ltd Plant control device of exhaust burning-up type combined cycle plant
JP2007040171A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Inlet guide vane control device of gas turbine
JP4699130B2 (en) * 2005-08-03 2011-06-08 三菱重工業株式会社 Gas turbine inlet guide vane control device

Also Published As

Publication number Publication date
JPH0643810B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US8069646B2 (en) Gas turbine system having an air intake bypass system and an air discharge bypass system
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
KR20140012042A (en) Oxy-fuel plant with flue gas compression and method
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
CN102042092B (en) Surge protection method for switching control of air quantity of air compressor of turbocharging system
JP3849071B2 (en) Operation method of gas turbine equipment
JPS62267527A (en) Air flow control device for combined cycle
US10731568B2 (en) Systems and methods for reducing airflow imbalances in turbines
CN206545526U (en) A kind of steam turbine variable pressure operation control set for adjusting
CN106640227B (en) A kind of steam turbine variable pressure operation adjustment control method and device
CN205447813U (en) Wind control system in 660MW thermal generator set boiler
CN113638776A (en) Steam extraction back pressure type steam turbine thermodynamic system and control method thereof
JPH05296402A (en) Steam cycle control device
JPS60249609A (en) Load control device in combined cycle power plant
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JPS5783616A (en) Output controller for combined cycle
CN211692590U (en) Take power balance generator&#39;s little steam turbine control governing system of back pressure type of drawing steam
JP2003254011A (en) Operating method for multi-shaft type combined cycle power generating plant
JPH07301128A (en) Gas turbine exhaust gas temperature control device
JPS6246681B2 (en)
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JPH05340205A (en) Controller for combined power generation plant
JPS6278407A (en) Operating method for complex cycle plant
JP2507426B2 (en) Coal gasification combined cycle controller
JPS6390606A (en) Governor free control device for combined plant