JPH05296402A - Steam cycle control device - Google Patents

Steam cycle control device

Info

Publication number
JPH05296402A
JPH05296402A JP10414892A JP10414892A JPH05296402A JP H05296402 A JPH05296402 A JP H05296402A JP 10414892 A JP10414892 A JP 10414892A JP 10414892 A JP10414892 A JP 10414892A JP H05296402 A JPH05296402 A JP H05296402A
Authority
JP
Japan
Prior art keywords
steam
pressure
valve
turbine
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10414892A
Other languages
Japanese (ja)
Other versions
JP2918743B2 (en
Inventor
Shiro Hino
史郎 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4104148A priority Critical patent/JP2918743B2/en
Publication of JPH05296402A publication Critical patent/JPH05296402A/en
Application granted granted Critical
Publication of JP2918743B2 publication Critical patent/JP2918743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To prevent disturbance on a drum water level by a method wherein a turbine bypassing valve has a function for controlling an outlet pressure of a regulation valve so as to control a differential pressure of the regulation valve. CONSTITUTION:A turbine bypassing valve 19 has a function for controlling a regulation valve with its outlet pressure being applied as a set value, a condition of differential pressure across the regulation valve is added to a steam condition 62 of an opened regulation valve and then a limitation of an opening or closing variation rate of the regulation valve is provided in reference to the differential pressure of the regulation valve 15. That is, when a complex power generating plant is energized, a secondary pressure at the regulation valve 15 is controlled under the turbine bypassing control so as to keep the outlet port pressure of the regulation valve 15 constant. A condition of differential pressure across the regulation valve is added to the steam condition 62 of an opened regulation valve and a limitation of a variation rate of a degree of opening of the regulation valve 15 is given as a function in reference to a condition of differential pressure of the regulation valve. With such an arrangement even in the case that the regulation valve 15 is opened in reference to a completion of the steam condition, the differential pressure across the regulation valve 15 is controlled, so that a flow rate of main steam and its pressure are well controlled and any disturbance can not be given to the drum water level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービンと蒸気ター
ビンとを組み合わせた複合発電プラントに適用される蒸
気サイクル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam cycle control device applied to a combined cycle power plant in which a gas turbine and a steam turbine are combined.

【0002】[0002]

【従来の技術】エネルギー資源の有効利用と経済性の観
点から、発電プラントでは様々な高効率化が進められて
いる。複合発電プラントもそのひとつであり、火力発電
プラントの中心としての役割を担いつつある。
2. Description of the Related Art Various improvements in efficiency have been promoted in power generation plants from the viewpoint of effective use of energy resources and economic efficiency. The combined power plant is one of them, and is playing a central role in the thermal power plant.

【0003】図4は、複合発電プラントの構成の一例を
示す構成図であって、この発電プラントはガスタービン
1、HRSG2、蒸気タービン3、発電機4より構成さ
れている。これはガスタービン1で発電を行うだけでな
くその燃焼排ガスをHRSG2に導き、HRSG2で熱
回収することにより蒸気を発生させ、蒸気タービン3を
駆動し発電機4により発電を行う複合発電プラントであ
る。ガスタービン1では燃焼用空気を加圧し燃料を燃焼
しガスタービンを回し仕事をする。こののち高温の燃焼
排ガスはHRSG2に導かれる。
FIG. 4 is a block diagram showing an example of the structure of a combined power generation plant, which is composed of a gas turbine 1, an HRSG 2, a steam turbine 3 and a generator 4. This is a combined power generation plant that not only generates power by the gas turbine 1 but also guides the combustion exhaust gas to the HRSG 2 and generates heat by recovering heat by the HRSG 2 to drive the steam turbine 3 and generate power by the generator 4. .. In the gas turbine 1, the combustion air is pressurized to burn the fuel and rotate the gas turbine to perform work. After this, the high temperature combustion exhaust gas is guided to HRSG2.

【0004】HRSG2は、例えば高圧過熱器5、再熱
器6、高圧蒸発器7、高圧蒸気ドラム16、高圧節炭器
8、低圧過熱器9、低圧蒸発器10、低圧蒸気ドラム17、
低圧節炭器11等を有し、これらの熱交換器においてガス
タービン排ガスとの熱交換を行い蒸気を発生させる。
The HRSG 2 is, for example, a high pressure superheater 5, a reheater 6, a high pressure evaporator 7, a high pressure steam drum 16, a high pressure economizer 8, a low pressure superheater 9, a low pressure evaporator 10, a low pressure steam drum 17,
It has a low-pressure economizer 11 and the like, and heat is exchanged with the gas turbine exhaust gas in these heat exchangers to generate steam.

【0005】高圧ドラム16で発生した蒸気は高圧過熱器
5に送られ、ここで過熱蒸気になり高圧蒸気タービン21
に送られ、高圧蒸気タービン21を駆動し発電機4にて発
電を行う。低圧ドラム17で発生した蒸気は低圧過熱器9
に送られここで低圧過熱蒸気になる。高圧蒸気タービン
出口蒸気は低圧過熱蒸気と混合され再熱器6に送られ再
熱された後、再熱蒸気タービン22に送られ発電機4にて
発電する。
The steam generated in the high-pressure drum 16 is sent to the high-pressure superheater 5, where it becomes superheated steam and the high-pressure steam turbine 21
The high pressure steam turbine 21 is driven to generate electric power by the generator 4. The steam generated in the low-pressure drum 17 is the low-pressure superheater 9
Sent to the low pressure superheated steam. The high-pressure steam turbine outlet steam is mixed with the low-pressure superheated steam, sent to the reheater 6 and reheated, and then sent to the reheat steam turbine 22 to be generated by the generator 4.

【0006】再熱蒸気タービン22で仕事をした蒸気は、
復水器12で凝縮された後、給水ポンプ13で加圧し、高圧
節炭器8と低圧節炭器11に給水される。低圧節炭器11で
は飽和温度近くまで過熱されたのち、低圧蒸気ドラム17
に送られる。低圧蒸気ドラム17では低圧蒸発器10に水を
供給し低圧蒸発器10ではガスタービン排ガスと熱交換を
行い、低圧蒸気を発生する。高圧節炭器8では飽和温度
近くまで過熱されたのち高圧蒸気ドラム16に送られる。
高圧蒸気ドラム16では高圧蒸発器7に水を供給し、高圧
蒸発器7ではガスタービン排ガスと熱交換を行い、高圧
蒸気を発生する。最近のガスタービンの性能向上により
ガスタービンの排ガス温度が上昇し、高温の排ガスをH
RSGで熱回収できるために発電効率が向上している。
The steam that worked in the reheat steam turbine 22 is
After being condensed in the condenser 12, it is pressurized by the water supply pump 13 and is supplied to the high-pressure economizer 8 and the low-pressure economizer 11. In the low pressure economizer 11, after being heated to near the saturation temperature, the low pressure steam drum 17
Sent to. The low-pressure steam drum 17 supplies water to the low-pressure evaporator 10, and the low-pressure evaporator 10 exchanges heat with the gas turbine exhaust gas to generate low-pressure steam. In the high-pressure economizer 8, it is heated to near the saturation temperature and then sent to the high-pressure steam drum 16.
The high-pressure steam drum 16 supplies water to the high-pressure evaporator 7, and the high-pressure evaporator 7 exchanges heat with the gas turbine exhaust gas to generate high-pressure steam. Due to the recent improvement in the performance of gas turbines, the exhaust gas temperature of gas turbines has risen
Since RSG can recover heat, power generation efficiency is improved.

【0007】図5により複合発電プラントの従来の蒸気
サイクル制御構成を説明する。ここでは低圧蒸気系につ
いて代表して説明するが、高圧蒸気側も同様である。蒸
気サイクル制御を加減弁制御とタービンバイパス制御と
に分けて説明する。
A conventional steam cycle control configuration of the combined cycle power plant will be described with reference to FIG. Here, the low pressure steam system will be described as a representative, but the same applies to the high pressure steam side. The steam cycle control will be described separately for control valve control and turbine bypass control.

【0008】加減弁制御では複合発電プラントの場合に
は定格条件では従来プラントのように絞り制御は行わず
全開運転するので、加減弁は次の加減弁開条件62{蒸気
条件(圧力,流量,温度)成立かつプラント条件成立か
つと起動条件成立}により加減弁15を一定の変化率で開
閉することになる。
In the combined power plant, the throttle valve control does not perform throttling control as in the conventional plant and the throttle valve is operated in the fully open state under the rated condition. Therefore, the regulator valve is controlled by the following control valve open condition 62 {steam condition (pressure, flow rate, Temperature), the plant condition is satisfied, and the starting condition is satisfied}, the control valve 15 is opened and closed at a constant change rate.

【0009】機器は、加減弁の全開全閉位置を設定する
加減弁全開設定器29、加減弁全閉設定器30、現在の設定
値との偏差演算を行う偏差演算器31、加減弁の開度変化
率制限を行うための加減弁全開変化率制限器32、加減弁
全閉変化率制限器33、弁の全開全閉を切り替える全開閉
切り替え器34、及びこれらの偏差信号から開度信号を算
出する開度積分器35から構成される。
[0009] The equipment includes a control valve full open setter 29 for setting the fully open and closed position of the control valve, a control valve fully closed setter 30, a deviation calculator 31 for calculating a deviation from the current set value, and a control valve open. Control valve full-open change rate limiter 32 for restricting the rate change rate, control valve full-close change rate limiter 33, full open / close switch 34 for switching between full open and full close of the valve, and an opening signal from these deviation signals. It is composed of an opening degree integrator 35 for calculating.

【0010】タービンバイパス制御においては、加減弁
入口圧力検出器26からの圧力信号にバイパスをかける設
定値バイアス演算器37、現在の設定値との偏差演算を行
う設定値偏差演算器38、設定値の変化率制限を行う設定
値変化率制限器39、この偏差信号から設定値を算出する
設定値積分器41、設定値の上下限制限を行う設定値上下
限制限器42、起動時の主蒸気圧力を設定する転送器43、
起動時圧力設定器44、加減弁一定開度に開くまで設定値
とする転送器45、設定値と加減弁前側圧力とを偏差演算
する偏差演算器46、この信号に比例積分微分する演算器
47、この制御信号に対して関数変換を行う関数演算器4
8、及び加減弁開度を検出し一定開度でオンする事によ
りタービンバイパス制御を主蒸気圧力にトラッキングさ
せる開度検出器36から構成される。これらの制御が起動
時どのように動くかを、再熱気側を代表に取り、図6に
より説明する。高圧側も同様である。
In the turbine bypass control, a set value bias calculator 37 for bypassing the pressure signal from the regulator valve inlet pressure detector 26, a set value deviation calculator 38 for calculating a deviation from the current set value, and a set value Change rate limiter 39 that limits the change rate of the set value, set value integrator 41 that calculates the set value from this deviation signal, set value upper and lower limit limiter 42 that limits the upper and lower limits of the set value, main steam at startup Transmitter 43, which sets the pressure
Start-up pressure setter 44, transfer unit 45 that keeps the set value until the control valve opens to a certain opening degree, deviation calculator 46 that calculates the deviation between the set value and the pressure on the front side of the control valve, calculator that proportionally integrates and differentiates this signal
47 、 Function calculator 4 that performs function conversion on this control signal
8 and an opening detector 36 for detecting the opening / closing of the control valve and turning it on at a constant opening to track the turbine bypass control to the main steam pressure. How these controls operate at startup will be described with reference to FIG. 6 by taking the reheated air side as a representative. The same applies to the high pressure side.

【0011】ガスタービン側では回転数Nが起動時定格
回転数になるまで起動制御によりガスタービン1を昇速
し、定格回転数になると負荷制御に入る。排ガス流量Q
1および排ガス温度Tも上昇して行く。
On the gas turbine side, the gas turbine 1 is accelerated by start control until the number of revolutions N reaches the rated number of revolutions at start-up, and load control is started when the number of revolutions reaches the rated number of revolutions. Exhaust gas flow rate Q
1 and the exhaust gas temperature T also rise.

【0012】複合発電プラントの起動特性上、ガスター
ビン1は早く起動できるが、蒸気サイクル側はHRSG
2の熱容量による遅れや、ダクトおよび配管による伝達
遅れにより、起動が遅くなる。このため、ガスタービン
1と蒸気タービン3のマッチングをとるため、起動時は
蒸気タービン加減弁15とタービンバイパス弁19を操作す
る必要がある。
Due to the starting characteristics of the combined cycle power plant, the gas turbine 1 can be started early, but the steam cycle side is HRSG.
The start-up is delayed due to the delay due to the heat capacity of 2 and the transmission delay due to the duct and piping. Therefore, in order to match the gas turbine 1 and the steam turbine 3, it is necessary to operate the steam turbine control valve 15 and the turbine bypass valve 19 at the time of startup.

【0013】起動時は、起動条件成立によりシングルシ
ョット61がオンになり、転送器43によりこのときの主蒸
気圧力を送り、圧力設定値をとして設定演算器にて保持
する。また加減弁15が開いていないので開度検出器はオ
ンとなり、転送器45が働いて起動時はこの値を圧力設定
値とする。ガスタービン1の排ガスから入熱により、蒸
気発生および圧力上昇がはじまる。主蒸気圧力P1がこ
の圧力設定値に到達していないので偏差演算器46および
比例積分微分器47での演算した制御出力は負となり、タ
ービンバイパス弁は全閉のまま、圧力はガスタービン1
からの入熱に従い上昇する。
At the time of start-up, the single shot 61 is turned on when the start-up condition is satisfied, the main steam pressure at this time is sent by the transfer device 43, and the pressure set value is held as the setting calculator. Further, since the regulator valve 15 is not open, the opening detector is turned on, and the transfer device 45 operates to set this value as the pressure set value at the time of startup. Heat generation from the exhaust gas of the gas turbine 1 starts steam generation and pressure increase. Since the main steam pressure P1 has not reached this pressure set value, the control output calculated by the deviation calculator 46 and the proportional-plus-integral differentiator 47 becomes negative, the turbine bypass valve remains fully closed, and the pressure is set to the gas turbine 1.
It rises according to the heat input from.

【0014】高圧主蒸気圧力P1がこの圧力設定値にな
ると、高圧タービンバイパス圧力制御において、偏差演
算器46および比例積分微分器47での演算した制御出力は
正となりタービンバイパス弁19を開き、圧力を設定値に
保持する。蒸気圧力,温度,流量が増加し加減弁開条件
62が成立すると切り替え器34が加減弁全開設定器29側に
なり加減弁15を変化率制限器32で決まる一定の変化率で
開きはじめ、蒸気タービン側へ蒸気を流し始める。加減
弁15が開くと開度スイッチ36が働き、トラッキング回路
側37−39に切り替えられる。トラッキング回路ではこの
時の加減弁入口圧力をとりこみ、バイアス演算器37によ
りバイアスをかけ、圧力設定値の変化率制限を行うた
め、設定値と主蒸気圧力の偏差演算を行う偏差演算器38
と上下限制限器39とこの偏差信号を設定信号とする積分
器41により圧力設定値となる。このようにして、主蒸気
圧力設定値を主蒸気圧力にトラッキングさせ、徐々に定
格の圧力まで上昇させる。
When the high-pressure main steam pressure P1 reaches this pressure setting value, in the high-pressure turbine bypass pressure control, the control output calculated by the deviation calculator 46 and the proportional-plus-integral-differentiator 47 becomes positive, and the turbine bypass valve 19 is opened to open the pressure. Is held at the set value. Steam pressure, temperature, and flow rate increase, and control valve opening conditions
When 62 is established, the switching device 34 becomes the control valve full-open setting device 29 side and the control valve 15 starts to open at a constant change rate determined by the change rate limiter 32, and steam starts to flow to the steam turbine side. When the regulator valve 15 is opened, the opening switch 36 operates and the tracking circuit side 37-39 is selected. The tracking circuit takes in the regulator valve inlet pressure at this time, biases it with the bias calculator 37, and limits the rate of change of the pressure set value.Therefore, the deviation calculator 38 calculates the deviation between the set value and the main steam pressure.
The pressure setting value is obtained by the upper and lower limiter 39 and the integrator 41 which uses the deviation signal as a setting signal. In this way, the main steam pressure set value is tracked to the main steam pressure and gradually raised to the rated pressure.

【0015】ここで、図6中、Tは排ガス温度、Nはガ
スタービン回転数、Qgは排ガス流量、θ1は高圧加減
弁開度、P1は高圧主蒸気圧力、H1は高圧ドラム水
位、Q1は高圧バイパス流量、θ2は再熱蒸気加減弁開
度、H2は低圧ドラム水位、P2は低圧主蒸気圧力、P
3は再熱主蒸気圧力、Q2は再熱タービンバイパス流量
である。
In FIG. 6, T is the exhaust gas temperature, N is the gas turbine speed, Qg is the exhaust gas flow rate, θ1 is the high pressure control valve opening degree, P1 is the high pressure main steam pressure, H1 is the high pressure drum water level, and Q1 is High-pressure bypass flow rate, θ2 is reheat steam control valve opening, H2 is low-pressure drum water level, P2 is low-pressure main steam pressure, P
3 is the reheat main steam pressure, and Q2 is the reheat turbine bypass flow rate.

【0016】[0016]

【発明が解決しようとする課題】しかして、加減弁とタ
ービンバイパス弁の制御の協調がうまく取れていないた
め次の不具合があった。
However, since the control of the control valve and the turbine bypass valve is not well coordinated, there are the following problems.

【0017】加減弁15がタービンバイパス蒸気条件で開
き始めるときに、加減弁15の前後差圧が大きいため、加
減弁15を微少開しても、多量に蒸気が流入しドラム17の
水位が急変動する。特に起動時の場合は加減弁15差圧が
大きく蒸気流入量が大きいため、ドラム17の水位が急上
昇し最悪の場合は液滴が湿分分離されないままドラム17
から流出し、蒸気タービン22を損傷する可能性がある。
高圧蒸気側も同様であるが特に再熱側蒸気圧力は高圧側
蒸気圧力に依存するため、差圧が大きくなり、この影響
が大きくなる。特に複合発電プラントは単機容量が小さ
いこと、起動時間が短いことなどから負荷調整を行うの
に適しており、起動停止が頻繁に行われるため、この問
題の解決が重要となる。本発明はこのような点に鑑み、
蒸気タービン主蒸気流量及び圧力を良好に制御しドラム
水位へ外乱を与えない制御装置を得ることを目的とす
る。
Since the differential pressure across the regulator valve 15 is large when the regulator valve 15 starts to open under turbine bypass steam conditions, even if the regulator valve 15 is slightly opened, a large amount of steam will flow in and the water level of the drum 17 will suddenly increase. fluctuate. Especially at the time of startup, the regulator 15 has a large differential pressure and a large amount of steam inflow.
Can flow out and damage the steam turbine 22.
The same applies to the high-pressure steam side, but in particular, the reheat-side steam pressure depends on the high-pressure side steam pressure, so the differential pressure becomes large and this effect becomes large. In particular, a combined cycle power plant is suitable for load adjustment due to its small unit capacity and short start-up time, and it is important to solve this problem because it is frequently started and stopped. In view of such a point, the present invention is
It is an object of the present invention to obtain a control device that controls well the main steam flow rate and pressure of a steam turbine and does not disturb the drum water level.

【0018】[0018]

【課題を解決するための手段】本発明の蒸気サイクル制
御装置は、ガスタービンで仕事を終えた排ガスにて排熱
回収ボイラで蒸気を発生し蒸気タービンを駆動するよう
にした複合発電プラントの蒸気タービンに流入する蒸気
を制御する蒸気加減弁の開条件が成立したとき蒸気加減
弁を開閉駆動する加減弁駆動手段と、蒸気タービンをバ
イパスして復水器に導くタービンバイパス弁の開度が蒸
気加減弁の入口圧力に基づいて定められた設定値になる
ようにタービンバイパス弁を開閉駆動するタービンバイ
パス弁駆動手段と、タービンバイパス弁駆動手段に設け
られタービンバイパス弁の開度設定値として蒸気加減弁
の出口圧力をも加味する開度設定値補償手段と、蒸気加
減弁の入口圧力と出口圧力との差圧を蒸気加減弁の開条
件に加味する差圧条件設定手段と、蒸気加減弁の入口圧
力と出口圧力との差圧に基づいて蒸気加減弁の開閉変化
率の制限を設けた開閉変化率差圧関数演算手段とを備え
ている。
The steam cycle control device of the present invention is a steam generator for a combined cycle power plant in which steam is generated by an exhaust heat recovery boiler with exhaust gas that has finished working in a gas turbine to drive the steam turbine. When the opening condition of the steam control valve that controls the steam flowing into the turbine is satisfied, the control valve drive means that opens and closes the steam control valve, and the degree of opening of the turbine bypass valve that bypasses the steam turbine and leads to the condenser Turbine bypass valve drive means that opens and closes the turbine bypass valve to a set value that is set based on the inlet pressure of the regulator valve, and steam control as the opening set value of the turbine bypass valve that is provided in the turbine bypass valve drive means. An opening set value compensator that also takes the outlet pressure of the valve into account, and a differential pressure that takes into account the differential pressure between the inlet pressure and the outlet pressure of the steam control valve to the opening condition of the steam control valve. And Ken setting means, and a closing rate of change difference pressure function calculating means provided to limit the opening rate of change of the steam control valve based on the differential pressure between the inlet pressure and the outlet pressure of the steam control valve.

【0019】また、ガスタービンで仕事を終えた排ガス
にて排熱回収ボイラで蒸気を発生し蒸気タービンを駆動
するようにした複合発電プラントの蒸気タービンに流入
する蒸気を制御する蒸気加減弁の開条件が成立したとき
蒸気加減弁を開閉駆動する加減弁駆動手段と、蒸気ター
ビンをバイパスして復水器に蒸気を導くタービンバイパ
ス弁の開度が蒸気加減弁の入口圧力に基づいて定められ
た設定値になるようにタービンバイパス弁を開閉駆動す
るタービンバイパス弁駆動手段と、タービンバイパス弁
駆動手段に設けられ蒸気加減弁出口圧力を入力しそれを
上下限制限する制限器と、タービンバイパス弁駆動手段
に設けられ制限器の出力と蒸気加減弁の入口圧力との偏
差に基づいてタービンバイパス弁開度を演算する演算器
と、タービンバイパス弁駆動手段に設けられ起動時には
演算器で演算された開度指令を選択し通常時には蒸気加
減弁の入口圧力に基づいて定められた設定値になるよう
にタービンバイパス弁を開閉駆動する開度指令を選択す
る切替器とを備えている。
Further, the steam control valve is opened to control the steam flowing into the steam turbine of the combined cycle power plant in which the exhaust heat recovery boiler generates steam in the exhaust heat recovery boiler to drive the steam turbine. The opening degree of the control valve drive means that opens and closes the steam control valve when the conditions are satisfied and the opening degree of the turbine bypass valve that bypasses the steam turbine and guides the steam to the condenser are determined based on the inlet pressure of the steam control valve. Turbine bypass valve drive means for opening and closing the turbine bypass valve to a set value, a limiter provided in the turbine bypass valve drive means for inputting the steam control valve outlet pressure and limiting the upper and lower limits, and a turbine bypass valve drive A calculator for calculating the opening degree of the turbine bypass valve based on the deviation between the output of the restrictor and the inlet pressure of the steam control valve, and the turbine bypass valve. The opening degree for opening and closing the turbine bypass valve, which is provided in the valve driving means and selects the opening degree command calculated by the calculator at the time of startup, and normally becomes the set value determined based on the inlet pressure of the steam control valve. And a switch for selecting a command.

【0020】[0020]

【作用】本発明は、複合発電プラントの蒸気サイクル制
御装置においてタービンバイパス弁に加減弁出口圧力を
設定値とし制御する機能を設け、加減弁開条件に加減弁
前後差圧条件を追加し、加減弁差圧により加減弁開閉変
化率の制限に設けたことを特徴とするものである。
According to the present invention, in the steam cycle controller of the combined cycle power plant, the turbine bypass valve is provided with a function of controlling the outlet pressure of the regulator valve to be the set value, and the differential pressure condition before and after the regulator valve is added to the condition for opening the regulator valve to adjust the pressure. It is characterized in that it is provided to limit the rate of change in opening / closing of the control valve depending on the valve differential pressure.

【0021】すなわち、複合発電プラントの起動時にタ
ービンバイパス制御により加減弁2次圧を制御し加減弁
出口圧力を一定の保つので、かつ加減弁開条件に加減弁
差圧条件を加えかつ加減弁開度変化率制限を加減弁差圧
条件により関数として与えているために、蒸気条件成立
により加減弁が開く場合でも、加減弁差圧が制御されて
いるために、蒸気サイクル主蒸気流量及び圧力を良好に
制御し、ドラム水位へ外乱を与えない。
That is, at the time of starting the combined cycle power plant, the secondary pressure of the regulator valve is controlled by the turbine bypass control to keep the outlet pressure of the regulator valve constant, and the differential pressure condition of the regulator valve is added to the opening condition of the regulator valve to open the regulator valve. Since the rate change rate limit is given as a function of the control valve differential pressure condition, even if the control valve opens when the steam condition is satisfied, the control valve differential pressure is controlled. Good control, no disturbance to drum water level.

【0022】[0022]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。図中、図5のものと同一部分には同一符号を付
し、その詳細な説明は省略する。図1では再熱蒸気側で
代表して説明するが高圧側も同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 5, those parts which are the same as those corresponding parts in FIG. 5 are designated by the same reference numerals, and a detailed description thereof will be omitted. In FIG. 1, the reheat steam side will be described as a representative, but the same applies to the high pressure side.

【0023】タービンバイパス制御においては、加減弁
出口圧力を検出する圧力検出器49と、加減弁出口圧力に
バイパスをかけるバイアス設定器50と、変化率制限をか
けるために現在の圧力設定値との偏差演算をする偏差演
算器51と、変化率制限を行うための変化率制限器54と、
従来制御である加減弁前圧を制御する制御信号との切り
替え器40と、加減弁制御においては加減弁開条件に加減
弁差圧条件成立による条件設定器54と、加減弁差圧によ
り加減弁の開閉変化率に制限をかける関数発生器55,56
とから構成されている。図2に本発明の特性図を示す。
In the turbine bypass control, a pressure detector 49 for detecting the regulator valve outlet pressure, a bias setter 50 for bypassing the regulator valve outlet pressure, and a current pressure set value for limiting the rate of change are provided. A deviation calculator 51 for calculating the deviation, a change rate limiter 54 for limiting the change rate,
Switch 40 with the control signal for controlling the pressure before or after the conventional control, which is the conventional control, in conditioner control, the condition setter 54 depending on whether the control valve opening condition meets the control valve differential pressure condition, and the control valve depending on the control valve differential pressure. Function generators 55 and 56 that limit the switching rate of switching
It consists of and. FIG. 2 shows a characteristic diagram of the present invention.

【0024】低圧主蒸気圧力設定は、本発明では起動時
は開度検出器36がオンになり切り替え器40によって、加
減弁出口側に設定されるが、起動条件成立時にあらかじ
め最低値圧力設定値が設定させるのでこの最低圧力にな
る。起動時は、ガスタービンの排ガスからの入熱によ
り、蒸気発生および圧力上昇がはじまる。低圧主蒸気圧
力がこの圧力設定値に到達していないので偏差演算器46
および比例積分微分器47で演算した制御出力は負とな
り、タービンバイパス弁は全閉のまま、圧力はガスター
ビン1からの入熱に従い上昇する。
In the present invention, the low-pressure main steam pressure is set to the outlet side of the regulator valve by the switch 40 when the opening detector 36 is turned on at the time of start-up. This is the minimum pressure because the setting is made. At startup, heat generation from the exhaust gas of the gas turbine causes steam generation and pressure increase. Since the low-pressure main steam pressure has not reached this pressure setting value, the deviation calculator 46
And the control output calculated by the proportional-plus-integral-differentiator 47 becomes negative, the turbine bypass valve remains fully closed, and the pressure rises according to the heat input from the gas turbine 1.

【0025】高圧側では高圧加減弁14が開くため、加減
弁出口圧力は徐々に上昇する。加減弁出口圧力が最低圧
力設定値を越えると、再熱タービンバイパス制御の設定
値は加減弁出口圧力にバイアスした値に設定される。
On the high pressure side, the high pressure regulator valve 14 opens, so the regulator valve outlet pressure gradually rises. When the control valve outlet pressure exceeds the minimum pressure setting value, the set value for reheat turbine bypass control is set to a value biased to the control valve outlet pressure.

【0026】低圧主蒸気圧力がこの圧力設定値になる
と、再熱タービンバイパス圧力制御において、偏差演算
および比例積分微分演算した制御出力は正となり、ター
ビンバイパス弁を開き、圧力を加減弁出口圧である設定
値に保持する。蒸気圧力,温度,流量が増加し加減弁開
条件が成立し、かつ加減弁差圧条件が成立すると、再熱
加減弁を加減弁差圧による関数で決まる変化率で開きは
じめる。この時加減弁開変化率は加減弁差圧によった変
化率となるので差圧が大きい場合は低い変化率で、差圧
が小さい場合は大きな変化率で開き、低圧蒸気タービン
側へ蒸気を流し始める。
When the low-pressure main steam pressure reaches this pressure setting value, in the reheat turbine bypass pressure control, the control output obtained by the deviation calculation and the proportional-plus-integral-derivative calculation becomes positive, the turbine bypass valve is opened, and the pressure is adjusted by the regulator valve outlet pressure. Hold at a set value. When the steam pressure, temperature, and flow rate increase, the control valve opening condition is satisfied, and the control valve differential pressure condition is satisfied, the reheat control valve starts to open at a rate of change determined by a function of the control valve differential pressure. At this time, the rate of change of the control valve opening / closing changes according to the differential pressure of the control valve.Therefore, if the pressure difference is large, the rate of change is low.If the pressure difference is small, the rate of change is large. Start to run.

【0027】加減弁15が開くと、開度スイッチ36が働
き、トラッキング回路側37−39に切り替えられる。トラ
ッキング回路ではこの時の加減弁入口圧力をとりこみ、
バイアス演算器37によりバイアスをかけ、圧力設定値の
変化率制限を行うため、設定値と主蒸気圧力の偏差演算
を行う偏差演算器38と上下限制限器39とこの偏差信号を
設定信号とする積分器41により圧力設定値となる。この
ようにして、主蒸気圧力設定値を主蒸気圧力にトラッキ
ングさせ、徐々に定格の圧力まで上昇させる。
When the control valve 15 is opened, the opening switch 36 is activated to switch to the tracking circuit side 37-39. The tracking circuit takes in the regulator valve inlet pressure at this time,
The bias calculator 37 applies a bias to limit the rate of change of the pressure set value, so the deviation calculator 38 for calculating the deviation between the set value and the main steam pressure, the upper and lower limit limiter 39, and this deviation signal are set signals. The pressure is set by the integrator 41. In this way, the main steam pressure set value is tracked to the main steam pressure and gradually raised to the rated pressure.

【0028】このように、再熱タービンバイパス制御が
加減弁出口圧力を制御するので、加減弁がタービンバイ
パス蒸気条件で開き始めても、加減弁差圧が制御されて
おり、加減弁を開しても、多量に蒸気が流入することが
なく、ドラム水位が急変動することもない。また、加減
弁が開閉する変化率についても加減弁差圧により関数で
決まる変化率になるので急開する事もない。このように
加減弁・タービンバイパス弁の制御の協調がうまく取れ
るので、従来制御での不具合は解消される。以下のこの
発明の他の実施例について図3に基づいて述べる。ここ
でも再熱蒸気側で代表して説明するが高圧側でも同様で
ある。
As described above, since the reheat turbine bypass control controls the control valve outlet pressure, even if the control valve starts to open under turbine bypass steam conditions, the control valve differential pressure is controlled and the control valve is opened. However, a large amount of steam does not flow in, and the drum water level does not change suddenly. Further, the rate of change in opening and closing the regulator valve is also a rate of change determined by a function based on the differential pressure of the regulator valve, so there is no sudden opening. In this way, since the control of the control valve and the turbine bypass valve can be coordinated well, the problems in the conventional control can be solved. Another embodiment of the present invention will be described below with reference to FIG. Here, the reheat steam side will be described as a representative, but the same applies to the high pressure side.

【0029】加減弁出口圧力を上下限制限する制限器63
を設け、これに加減弁入口圧力との偏差演算を行う偏差
演算器53を設け、この差圧に対して設定する差圧設定器
57と偏差演算器58にて偏差演算を行い、この偏差信号に
比例積分微分演算を行う演算器59を設け、この信号に従
来の入口圧力制御とのマッチングのため関数演算器64を
かけ、起動時には差圧制御を行い通常時には圧力制御を
行う切り替え器60により構成されている。
A limiter 63 for limiting the upper and lower limits of the outlet pressure of the regulator valve
Is provided with a deviation calculator 53 for calculating a deviation from the pressure at the inlet and outlet of the regulator valve, and a differential pressure setting device for setting the difference pressure.
57 and the deviation calculator 58 perform deviation calculation, and provide a calculator 59 that performs proportional-plus-integral-derivative calculation on this deviation signal. The function calculator 64 is applied to this signal for matching with the conventional inlet pressure control, and it is started. It is composed of a switching device 60 that sometimes performs differential pressure control and normally performs pressure control.

【0030】起動時は、ガスタービンの排ガスからの入
熱により、蒸気発生および圧力上昇がはじまる。起動時
はこの制御は加減弁差圧制御となるが、加減弁2次圧は
起動条件成立時に転送器43、圧力設定器44、転送器45に
よって決まる最低値圧力設定値に上下限制限器63により
制限させる。低圧主蒸気圧力がこの圧力設定値に到達し
ていないので偏差演算器58および比例積分微分器59での
演算した制御出力は負となり、タービンバイパス弁は全
閉のまま、圧力はガスタービンからの入熱に従い上昇す
る。
At the time of startup, heat generation from the exhaust gas of the gas turbine causes steam generation and pressure increase. This control is the differential pressure control of the regulating valve at startup, but the secondary pressure of the regulating valve is set to the minimum pressure set value determined by the transmitter 43, the pressure setter 44, and the transmitter 45 when the starting condition is satisfied. It is restricted by. Since the low-pressure main steam pressure has not reached this pressure setting value, the control output calculated by the deviation calculator 58 and the proportional-plus-integral differentiator 59 becomes negative, the turbine bypass valve remains fully closed, and the pressure from the gas turbine is Increases with heat input.

【0031】高圧加減弁が開くため、加減弁出口圧力は
徐々に上昇する。加減弁出口圧力が最低圧力設定値を越
えると、再熱タービンバイパス制御の差圧が正に向かい
はじめる。低圧主蒸気圧力がこの圧力設定値になると、
再熱タービンバイパス差圧制御において、偏差演算器58
および比例積分微分器59での演算した制御出力は正とな
り、タービンバイパス弁を開き、加減弁差圧を設定値に
保持する。蒸気圧力,温度,流量が増加し加減弁開条件
が成立し、かつ加減弁差圧条件が成立すると、再熱加減
弁を一定の変化率で開きはじめ、低圧蒸気タービン側へ
蒸気を流し始める。加減弁15が開くと開度スイッチ36が
働き、トラッキング回路側37−39に切り替えられる。ト
ラッキング回路ではこの時の加減弁入口圧力をとりこ
み、バイアス演算器37によりバイアスをかけ、圧力設定
値の変化率制限を行うため、設定値と主蒸気圧力の偏差
演算を行う偏差演算器38と上下限制限器39とこの偏差信
号を設定信号とする積分器41により圧力設定値となる。
このようにして、主蒸気圧力設定値を主蒸気圧力にトラ
ッキングさせ、徐々に定格の圧力まで上昇させる。
Since the high pressure control valve opens, the control valve outlet pressure gradually rises. When the outlet pressure of the regulator valve exceeds the minimum pressure set value, the differential pressure of the reheat turbine bypass control starts to go positive. When the low pressure main steam pressure reaches this pressure setting value,
In the reheat turbine bypass differential pressure control, the deviation calculator 58
And the control output calculated by the proportional-plus-integral-differentiator 59 becomes positive, the turbine bypass valve is opened, and the differential pressure of the regulating valve is held at the set value. When the steam pressure, temperature, and flow rate increase and the control valve opening condition is satisfied and the control valve differential pressure condition is satisfied, the reheat control valve starts to open at a constant rate of change, and steam starts to flow to the low-pressure steam turbine side. When the regulator valve 15 is opened, the opening switch 36 operates and the tracking circuit side 37-39 is selected. The tracking circuit takes in the regulator inlet pressure at this time and applies a bias with the bias calculator 37 to limit the rate of change of the pressure set value.Therefore, the deviation calculator 38 and the deviation calculator 38, which calculates the deviation between the set value and the main steam pressure, are used. The lower limit limiter 39 and the integrator 41 using this deviation signal as a setting signal provide a pressure set value.
In this way, the main steam pressure set value is tracked to the main steam pressure and gradually raised to the rated pressure.

【0032】このように再熱タービンバイパス制御が加
減弁差圧を制御するので、加減弁がタービンバイパス蒸
気条件で開き始めても、加減弁差圧が制御されており、
加減弁を開しても、多量に蒸気が流入することがなく、
ドラム水位が急変動することもない。このように加減弁
・タービンバイパス弁の制御の協調がうまく取れるの
で、従来制御での不具合は解消される。
Since the reheat turbine bypass control controls the control valve differential pressure in this way, the control valve differential pressure is controlled even if the control valve starts to open under turbine bypass steam conditions.
Even if the regulator valve is opened, a large amount of steam does not flow in,
The drum water level does not change suddenly. In this way, since the control of the control valve and the turbine bypass valve can be coordinated well, the problems in the conventional control can be solved.

【0033】[0033]

【発明の効果】以上説明したように本発明においては、
複合発電プラントの蒸気サイクル制御装置においてター
ビンバイパス弁に加減弁出口圧力を制御する機能、加減
弁開条件に加減弁前後差圧条件および加減弁開閉変化率
制限に加減弁差圧条件を設け、加減弁差圧を制御するよ
うにしたので複合発電プラントの起動時ならびに負荷上
昇時に、蒸気サイクル主蒸気流量及び圧力を良好に制御
し、ドラムの大きな水位変動を防止することができる。
As described above, according to the present invention,
A function to control the outlet pressure of the control valve to the turbine bypass valve in the steam cycle control device of the combined cycle power plant, a differential pressure condition before and after the control valve is set for the control valve opening condition, and a control valve differential pressure condition is set for the control valve opening / closing change rate limit. Since the valve differential pressure is controlled, it is possible to properly control the steam flow rate and pressure of the steam cycle main steam at the time of starting the complex power generation plant and at the time of load increase, and prevent large fluctuations in the water level of the drum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の動作を示す特性図FIG. 2 is a characteristic diagram showing the operation of the present invention.

【図3】本発明の他の一実施例を示すブロック図FIG. 3 is a block diagram showing another embodiment of the present invention.

【図4】複合発電プラントのブロック構成図FIG. 4 is a block diagram of the combined cycle power plant.

【図5】従来例を示すブロック図FIG. 5 is a block diagram showing a conventional example.

【図6】従来例の動作を示す特性図FIG. 6 is a characteristic diagram showing the operation of a conventional example.

【符号の説明】[Explanation of symbols]

1…ガスタービン装置 2…HRSG 3…蒸気タービン 4…発電機 5…高圧過熱器 6…再熱器 7…高圧蒸発機 8…高圧節炭器 9…低圧過熱器 10…低圧蒸発機 11…低圧節炭器 12…復水器 13…給水ポンプ 14…高圧加減弁 15…再熱加減弁 16…高圧ドラム 17…低圧ドラム 18…高圧タービンバイパス弁 19…再熱タービンバイパス弁 20…蒸気サイクル制御装置 21…高圧蒸気タービン 22…再熱蒸気タービン 23…高圧主蒸気圧力検出器 24…高圧主蒸気温度検出器 25…高圧主蒸気流量検出器 26…低圧主蒸気圧力検出器 27…低圧主蒸気温度検出器 28…低圧主蒸気流量検出器 29…加減弁全開設定器 30…加減弁全閉設定器 31…偏差演算器 32…加減弁全開変化率制限器 33…加減弁全閉変化率制限器 34…全開閉切り替え器 35…開度積分器 36…開度検出器 37…設定値バイアス演算器 38…設定値偏差演算器 39…設定値変化率制限器 40…設定値切り替え器 41…設定地積分器 42…設定値上下限制限器 43…転送器 44…圧力設定器 45…転送器 46…設定値偏差演算器 47…比例積分微分演算器 48…関数演算器 49…加減弁出口圧力検出器 50…加減弁出口圧力バイアス設定器 51…加減弁出口圧力偏差演算器 52…加減弁出口圧力変化率制限器 53…加減弁差圧演算器 54…加減弁差圧条件設定器 55…加減弁開変化率用加減弁差圧関数演算器 56…加減弁閉変化率用加減弁差圧関数演算器 57…加減弁差圧設定値設定器 58…加減弁差圧偏差演算器 59…加減弁差圧比例積分微分演算器 60…加減弁圧力・差圧制御切り替え器 61…起動条件成立シングルショット 62…加減弁開蒸気条件 63…加減弁出口圧力用上下限制限器 64…加減弁差圧制御信号関数演算器 1 ... Gas turbine device 2 ... HRSG 3 ... Steam turbine 4 ... Generator 5 ... High pressure superheater 6 ... Reheater 7 ... High pressure evaporator 8 ... High pressure economizer 9 ... Low pressure superheater 10 ... Low pressure evaporator 11 ... Low pressure Economizer 12 ... Condenser 13 ... Water pump 14 ... High pressure regulator 15 ... Reheat regulator 16 ... High pressure drum 17 ... Low pressure drum 18 ... High pressure turbine bypass valve 19 ... Reheat turbine bypass valve 20 ... Steam cycle controller 21 ... High pressure steam turbine 22 ... Reheat steam turbine 23 ... High pressure main steam pressure detector 24 ... High pressure main steam temperature detector 25 ... High pressure main steam flow detector 26 ... Low pressure main steam pressure detector 27 ... Low pressure main steam temperature detector Unit 28… Low-pressure main steam flow detector 29… Adjustment valve fully open setter 30… Adjustment valve fully closed setter 31… Deviation calculator 32… Adjustment valve fully open change rate limiter 33… Adjustment valve fully closed change rate limiter 34… Full open / close switch 35 ... Opening integrator 36 ... Opening detector 37 ... Set value Calculator 38 ... Setpoint deviation calculator 39 ... Setpoint change rate limiter 40 ... Setpoint changer 41 ... Setpoint integrator 42 ... Setpoint upper / lower limiter 43 ... Transfer 44 ... Pressure setter 45 ... Transfer Unit 46 ... Set value deviation calculator 47 ... Proportional integral derivative calculator 48 ... Function calculator 49 ... Adjustment valve outlet pressure detector 50 ... Adjustment valve outlet pressure bias setter 51 ... Adjustment valve outlet pressure deviation calculator 52 ... Adjustment valve Outlet pressure change rate limiter 53 ... Adjustable valve differential pressure calculator 54 ... Adjustable valve differential pressure condition setter 55 ... Adjustable valve open / close change rate adjustable valve differential function calculator 56 ... Adjustable valve close change rate adjustable valve differential pressure Function Calculator 57… Adjustable valve differential pressure set value setter 58… Adjustable valve differential pressure deviation calculator 59… Adjustable valve differential pressure proportional integral derivative calculator 60… Adjustable valve pressure / differential pressure control switching device 61… Start condition satisfied single Shot 62… Adjustment valve open steam condition 63… Upper and lower limit limiter for outlet pressure of the adjustment valve 64… Adjustment valve differential pressure control signal function calculation vessel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンで仕事を終えた排ガスにて
排熱回収ボイラで蒸気を発生し蒸気タービンを駆動する
ようにした複合発電プラントの前記蒸気タービンに流入
する蒸気を制御する蒸気加減弁の開条件が成立したとき
前記蒸気加減弁を開閉駆動する加減弁駆動手段と前記蒸
気タービンをバイパスして復水器に蒸気を導くタービン
バイパス弁の開度が前記蒸気加減弁の入口圧力に基づい
て定められた設定値になるように前記タービンバイパス
弁を開閉駆動するタービンバイパス弁駆動手段とを備え
た蒸気サイクル制御装置において、前記タービンバイパ
ス弁駆動手段に設けられ前記タービンバイパス弁の開度
設定値として前記蒸気加減弁の出口圧力をも加味する開
度設定値補償手段と、前記蒸気加減弁の入口圧力と出口
圧力との差圧を前記蒸気加減弁の開条件に加味する差圧
条件設定手段と、前記蒸気加減弁の入口圧力と出口圧力
との差圧に基づいて前記蒸気加減弁の開閉変化率の制限
を設けた開閉変化率差圧関数演算手段とを備えた蒸気サ
イクル制御装置。
1. A steam control valve for controlling steam that flows into the steam turbine of a combined cycle power plant in which steam is generated in an exhaust heat recovery boiler to drive the steam turbine with exhaust gas that has finished working in the gas turbine. Based on the inlet pressure of the steam control valve, the opening degree of the turbine bypass valve that bypasses the steam turbine and guides steam to the condenser by opening and closing the steam control valve when the opening condition is satisfied In a steam cycle control device including a turbine bypass valve drive means for driving the turbine bypass valve to open and close so as to have a set value, an opening set value of the turbine bypass valve provided in the turbine bypass valve drive means As the opening set value compensating means that also considers the outlet pressure of the steam control valve, and the differential pressure between the inlet pressure and the outlet pressure of the steam control valve A differential pressure condition setting means that takes into account the opening condition of the steam control valve, and an opening / closing change rate difference that limits the opening / closing change rate of the steam control valve based on the differential pressure between the inlet pressure and the outlet pressure of the steam control valve. A steam cycle control device comprising a pressure function calculating means.
【請求項2】 ガスタービンで仕事を終えた排ガスにて
排熱回収ボイラで蒸気を発生し蒸気タービンを駆動する
ようにした複合発電プラントの前記蒸気タービンに流入
する蒸気を制御する蒸気加減弁の開条件が成立したとき
前記蒸気加減弁を開閉駆動する加減弁駆動手段と前記蒸
気タービンをバイパスして復水器に蒸気を導くタービン
バイパス弁の開度が前記蒸気加減弁の入口圧力に基づい
て定められた設定値になるように前記タービンバイパス
弁を開閉駆動するタービンバイパス弁駆動手段とを備え
た蒸気サイクル制御装置において、前記タービンバイパ
ス弁駆動に設けられ前記蒸気加減弁出口圧力を入力しそ
れを上下限制限する制限器と、前記タービンバイパス弁
駆動手段に設けられ前記制限器の出力と前記蒸気加減弁
の入口圧力との偏差に基づいて前記タービンバイパス弁
開度を演算する演算器と、前記タービンバイパス弁駆動
手段に設けられ起動時には前記演算器で演算された開度
指令を選択し通常時には前記蒸気加減弁の入口圧力に基
づいて定められた設定値になるように前記タービンバイ
パス弁を開閉駆動する開度指令を選択する切替器とを備
えた蒸気サイクル制御装置。
2. A steam control valve for controlling steam flowing into the steam turbine of a combined cycle power plant in which steam is generated in an exhaust heat recovery boiler by driving exhaust gas that has finished working in the gas turbine to drive the steam turbine. Based on the inlet pressure of the steam control valve, the opening degree of the turbine bypass valve that bypasses the steam turbine and guides steam to the condenser by opening and closing the steam control valve when the opening condition is satisfied In a steam cycle control device including a turbine bypass valve drive means for driving the turbine bypass valve to open and close so as to reach a set value, a steam control valve outlet pressure provided in the turbine bypass valve drive is input. A limiter for limiting the upper and lower limits of the difference between the output of the limiter provided in the turbine bypass valve drive means and the inlet pressure of the steam control valve. Based on the above, a calculator for calculating the turbine bypass valve opening degree, and an opening command calculated by the calculator provided at the turbine bypass valve drive means at the time of start-up is selected to normally set the inlet pressure of the steam control valve. A steam cycle control device comprising: a switching device that selects an opening degree command for opening and closing the turbine bypass valve so that the turbine bypass valve opens and closes to a set value determined based on the steam cycle control device.
JP4104148A 1992-04-23 1992-04-23 Steam cycle controller Expired - Lifetime JP2918743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104148A JP2918743B2 (en) 1992-04-23 1992-04-23 Steam cycle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104148A JP2918743B2 (en) 1992-04-23 1992-04-23 Steam cycle controller

Publications (2)

Publication Number Publication Date
JPH05296402A true JPH05296402A (en) 1993-11-09
JP2918743B2 JP2918743B2 (en) 1999-07-12

Family

ID=14372999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104148A Expired - Lifetime JP2918743B2 (en) 1992-04-23 1992-04-23 Steam cycle controller

Country Status (1)

Country Link
JP (1) JP2918743B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331884A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Fuel cell system
CN101463736A (en) * 2007-12-20 2009-06-24 通用电气公司 Methods and apparatus for starting up combined cycle power system
JP2009150392A (en) * 2007-12-20 2009-07-09 General Electric Co <Ge> Method and device for starting combined cycle power generating system
CN111255530A (en) * 2020-03-19 2020-06-09 西安热工研究院有限公司 Thermal power generating unit load adjusting system and method assisted by butterfly valve with low-pressure cylinder
CN113217132A (en) * 2021-04-29 2021-08-06 广东核电合营有限公司 Steam conversion control device and method for nuclear power plant and steam conversion system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197605A (en) * 1986-02-26 1987-09-01 Hitachi Ltd Starting method for combined cycle plant
JPH0486309A (en) * 1990-07-31 1992-03-18 Toshiba Corp Combined power generation plant control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197605A (en) * 1986-02-26 1987-09-01 Hitachi Ltd Starting method for combined cycle plant
JPH0486309A (en) * 1990-07-31 1992-03-18 Toshiba Corp Combined power generation plant control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331884A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Fuel cell system
CN101463736A (en) * 2007-12-20 2009-06-24 通用电气公司 Methods and apparatus for starting up combined cycle power system
JP2009150392A (en) * 2007-12-20 2009-07-09 General Electric Co <Ge> Method and device for starting combined cycle power generating system
CN111255530A (en) * 2020-03-19 2020-06-09 西安热工研究院有限公司 Thermal power generating unit load adjusting system and method assisted by butterfly valve with low-pressure cylinder
CN111255530B (en) * 2020-03-19 2024-02-02 西安热工研究院有限公司 Thermal power unit load adjusting system and method with low-pressure cylinder butterfly valve assistance
CN113217132A (en) * 2021-04-29 2021-08-06 广东核电合营有限公司 Steam conversion control device and method for nuclear power plant and steam conversion system
CN113217132B (en) * 2021-04-29 2023-09-19 广东核电合营有限公司 Steam conversion control device and method for nuclear power station and steam conversion system

Also Published As

Publication number Publication date
JP2918743B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
CN109638861B (en) Control method and control system model for supercritical unit to participate in primary frequency modulation
CN111255530B (en) Thermal power unit load adjusting system and method with low-pressure cylinder butterfly valve assistance
JPS6252121B2 (en)
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
CN113638776A (en) Steam extraction back pressure type steam turbine thermodynamic system and control method thereof
JP2918743B2 (en) Steam cycle controller
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
JPS61145305A (en) Control device for turbine plant using hot water
JPS6149487B2 (en)
JPH03267509A (en) Control method of reheating steam turbine
JP3112579B2 (en) Pressure control device
JPS6239657B2 (en)
JP2554099B2 (en) Control device for combined cycle power plant
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JPS6154927B2 (en)
JPH0486359A (en) Output control unit of co-generation plant
JPH04110507A (en) Steam temperature controller of superheater and reheater in cogeneration power plant
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPS6115244B2 (en)
JPS59180014A (en) Method of controlling load in combined cycle power plant
JPH04103902A (en) Method and device for controlling feedwater to boiler