JPS6149487B2 - - Google Patents

Info

Publication number
JPS6149487B2
JPS6149487B2 JP2085979A JP2085979A JPS6149487B2 JP S6149487 B2 JPS6149487 B2 JP S6149487B2 JP 2085979 A JP2085979 A JP 2085979A JP 2085979 A JP2085979 A JP 2085979A JP S6149487 B2 JPS6149487 B2 JP S6149487B2
Authority
JP
Japan
Prior art keywords
steam
control device
turbine
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2085979A
Other languages
Japanese (ja)
Other versions
JPS55114822A (en
Inventor
Yoshifumi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2085979A priority Critical patent/JPS55114822A/en
Publication of JPS55114822A publication Critical patent/JPS55114822A/en
Publication of JPS6149487B2 publication Critical patent/JPS6149487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】 本発明は、ガスタービン装置と該ガスタービン
排ガスの熱を利用して蒸気を発生させる排熱回収
ボイラと該ボイラから出た蒸気で駆動される蒸気
タービン装置とで構成される複合サイクルプラン
トにおける蒸気タービンの初圧制御切替に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a gas turbine device, an exhaust heat recovery boiler that generates steam using the heat of the gas turbine exhaust gas, and a steam turbine device that is driven by the steam emitted from the boiler. This relates to initial pressure control switching for a steam turbine in a combined cycle plant.

まず複合サイクルプラントの一般的な構成を第
1図にて説明する。
First, the general configuration of a combined cycle plant will be explained with reference to FIG.

複合サイクルプラントは1般に1台あるいは複
数台のガスタービン装置1と、このガスタービン
装置と同数の排熱回収ボイラ11と、1台の蒸気
タービン装置40とにより構成されている。ガス
タービン装置1は、コンプレツサ2と該コンプレ
ツサ2で加圧された空気により燃料配管4から送
られて来る燃料を燃焼して高温高圧の燃焼ガスを
発生する燃焼器3と、燃焼ガスにて駆動されガス
タービン発電機6を回転させるガスタービン5と
から構成されている。このガスタービン装置1か
ら排出される燃焼ガスは排ガスダクト7を通じて
排熱回収ボイラ11に導かれる。またこの排ガス
ダクト7には排熱回収ボイラ11をバイパスする
バイパスダクト10が設けられており、排ガスダ
クト7及びバイパスダクト10にはそれぞれ排ガ
スの流通を調節するボイラ入口ダンパ8及びボイ
ラバイパスタンパ9が設けられている。排熱回収
ボイラ11は、ドラム式ボイラであつて、給水配
管14を通して導入される給水を加熱するエコノ
マイザ15と、蒸気発生用のドラム16及び蒸発
器17と、過熱器18とから構成され、過熱器1
8から出る蒸気は、蒸気管19、ボイラ出口弁2
0を通つて蒸気ヘツダ21へ集められ、該蒸気ヘ
ツダ21から加減弁22を通じて蒸気タービン2
3内に送給されて発電機24を駆動し、復水器3
2で復水される。復水された給水は給水ポンプ1
2により、給水調整弁13を備えた給水配管14
を通じて排熱回収ボイラ11に戻される。また、
蒸気管19にはボイラ出口弁20の上流側にター
ビンバイパス弁25を備えたバイパス蒸気管26
が分岐して設けられており、減温器27を介して
復水器32に連通しているが、排熱回収ボイラ起
動時などに蒸気ヘツダ21内の蒸気圧力と排熱回
収ボイラ11の発生蒸気圧力とのマツチングを図
る場合に蒸気を復水器22に導入するものであ
り、通常運転時には使用されない。28は前記給
水ポンプ12の下流の給水配管より分岐し、前記
減温器27に接続して設けられたスプレー配管、
29はスプレー調整弁である。
A combined cycle plant generally includes one or more gas turbine devices 1, the same number of exhaust heat recovery boilers 11 as the gas turbine devices, and one steam turbine device 40. The gas turbine device 1 includes a compressor 2, a combustor 3 that generates high-temperature, high-pressure combustion gas by burning fuel sent from a fuel pipe 4 using air pressurized by the compressor 2, and a combustor 3 that is driven by the combustion gas. and a gas turbine 5 that rotates a gas turbine generator 6. Combustion gas discharged from this gas turbine device 1 is guided to an exhaust heat recovery boiler 11 through an exhaust gas duct 7. Further, the exhaust gas duct 7 is provided with a bypass duct 10 that bypasses the exhaust heat recovery boiler 11, and the exhaust gas duct 7 and the bypass duct 10 are provided with a boiler inlet damper 8 and a boiler bypass tamper 9, respectively, that adjust the flow of exhaust gas. It is provided. The exhaust heat recovery boiler 11 is a drum-type boiler, and is composed of an economizer 15 that heats feed water introduced through the water supply pipe 14, a drum 16 and an evaporator 17 for steam generation, and a superheater 18. Vessel 1
The steam coming out from the steam pipe 19 and the boiler outlet valve 2
0 to the steam header 21, and from the steam header 21 to the steam turbine 2 through the control valve 22.
3 to drive the generator 24, and the condenser 3
The water is condensed in 2. The condensed water is supplied to the water supply pump 1
2, the water supply pipe 14 equipped with the water supply regulating valve 13
is returned to the exhaust heat recovery boiler 11 through the exhaust heat recovery boiler 11. Also,
The steam pipe 19 includes a bypass steam pipe 26 equipped with a turbine bypass valve 25 on the upstream side of the boiler outlet valve 20.
The steam header 21 is branched and communicates with the condenser 32 via the desuperheater 27, but when the exhaust heat recovery boiler is started, the steam pressure in the steam header 21 and the generation of the exhaust heat recovery boiler 11 are Steam is introduced into the condenser 22 to match the steam pressure, and is not used during normal operation. 28 is a spray pipe branched from the water supply pipe downstream of the water supply pump 12 and connected to the desuperheater 27;
29 is a spray regulating valve.

この複合サイクルプラントはまずガスタービン
装置1を起動してその排ガスを排熱回収ボイラ1
1に導き、ドラム16にて発生する蒸気条件が規
定値になるまでは、ボイラ出口弁20を閉し、タ
ービンバイパス弁25を制御して蒸気圧力の上昇
を図る。蒸気タービンの通気のための蒸気温度、
蒸気圧力に達するとボイラ出口弁20を開き、蒸
気ヘツダ21から加減弁22を通じて送気し蒸気
タービン23を昇速する。定格速度に達すると系
統の電圧、周波数、位相差に合うよう同期調整を
し発電機24のしや断器を閉し、同期併入を行な
う。複合サイクルプラントにおける蒸気タービン
は、排熱回収ボイラ11の発生蒸気量がガスター
ビン装置1の出力により一義的に決るので、それ
自体で負荷制御を行うのではなく、排熱回収ボイ
ラ11からの発生蒸気を効率よく回収するように
加減弁22の前圧を一定値に制御する初圧制御装
置51による圧力ガバナ運転を行なう。しかし起
動過程に於てはガスタービン装置1が早く起動完
了し、従つて蒸気タービン装置40で必要とする
以上の蒸気量を排熱回収ボイラ11で発生するの
で前記の様にタービンバイパス弁25で蒸気圧力
を規定値に保ちながら余分な蒸気は減温器27を
介して復水器32にダンプする。タービンバイパ
ス弁25で蒸気圧力を制御している間は前記初圧
制御装置51で加減弁22の前圧を制御すると相
互で圧力制御をして好しい制御結果が得られない
ので、タービンバイパス弁25で蒸気圧力を制御
している間は蒸気タービンは速度ガバナ制御装置
54で負荷制御を行なう。即ちタービンバイパス
弁25が全閉になるまでは、排熱回収ボイラ11
は蒸気タービン装置40で負荷をとるに十分な蒸
気を発生していることになる。蒸気タービンが速
度ガバナ制御装置54により加減弁22を制御し
て負荷上昇していけば、タービンバイパス弁25
は蒸気圧力を保つべく閉方向に制御をしやがて全
閉となる。一方、速度ガバナ制御装置54で加減
弁22を制御している間は初圧制御装置51の設
定値は下限に保持され除外の状態となつている。
タービンバイパス弁25が全閉したことにより蒸
気圧力制御を初圧制御装置51で行なわねばなら
ない。このために初圧制御装置51の設定値を下
限よりタービンバイパス弁25の圧力設定値まで
上昇させ、一致したところでタービンバイパス制
御装置57の設定値を一定値だけ上昇させ蒸気圧
力の制御を初圧制御装置51に移す。この段階で
は蒸気圧力の偏差がないので初圧制御装置51の
出力信号は上限、即ち加減弁22に対して全開相
当のままでローセレクター55によりこの信号は
選択されず待機している。この状態ではローセレ
クター55は速度ガバナ制御装置54の出力を選
択している。ここで速度ガバナ制御装置54の設
定値を上昇させると加減弁22の開度がまし従つ
て蒸気圧力が低下し初圧制御装置51の出力信号
が速度ガバナ制御装置54の出力信号より低くな
つた時点で初圧制御装置51の出力信号がローセ
レクター55で選択され加減弁22を制御する。
しかしこの切替では初圧制御装置51が全開相当
の開度指令から制御を開始するので速度ガバナ制
御装置54の設定値を上昇させ、加減弁22の開
度を増し蒸気圧力を低下させて、初圧制御装置5
1の出力信号を低下させるので切替るまでの蒸気
圧力の低下、切替えた後の加減弁22の急激な閉
方向制御が発生し安定した制御結果が得られな
い。
This combined cycle plant first starts the gas turbine device 1 and transfers the exhaust gas to the exhaust heat recovery boiler 1.
1, and until the steam condition generated in the drum 16 reaches a specified value, the boiler outlet valve 20 is closed and the turbine bypass valve 25 is controlled to increase the steam pressure. Steam temperature for steam turbine ventilation,
When the steam pressure is reached, the boiler outlet valve 20 is opened and air is sent from the steam header 21 through the control valve 22 to speed up the steam turbine 23. When the rated speed is reached, synchronization adjustment is made to match the voltage, frequency, and phase difference of the grid, and the generator 24 and disconnector are closed to perform synchronization. The steam turbine in a combined cycle plant does not perform load control on its own, but rather controls the amount of steam generated from the exhaust heat recovery boiler 11, since the amount of steam generated by the exhaust heat recovery boiler 11 is uniquely determined by the output of the gas turbine device 1. Pressure governor operation is performed using an initial pressure control device 51 that controls the front pressure of the regulating valve 22 to a constant value so as to efficiently recover steam. However, during the startup process, the gas turbine device 1 completes startup quickly, and therefore the exhaust heat recovery boiler 11 generates more steam than is required by the steam turbine device 40, so the turbine bypass valve 25 is activated as described above. Excess steam is dumped into the condenser 32 via the attemperator 27 while maintaining the steam pressure at a specified value. If the initial pressure control device 51 controls the front pressure of the regulator valve 22 while the turbine bypass valve 25 is controlling the steam pressure, the pressures will be controlled mutually and favorable control results will not be obtained. While the steam pressure is being controlled at 25, the load of the steam turbine is controlled by the speed governor control device 54. That is, until the turbine bypass valve 25 is fully closed, the exhaust heat recovery boiler 11
This means that sufficient steam is generated to take up the load on the steam turbine device 40. When the load on the steam turbine increases by controlling the regulating valve 22 by the speed governor control device 54, the turbine bypass valve 25
is controlled in the closing direction to maintain steam pressure, and eventually becomes fully closed. On the other hand, while the speed governor control device 54 is controlling the adjustment valve 22, the set value of the initial pressure control device 51 is maintained at the lower limit and is in an excluded state.
Since the turbine bypass valve 25 is fully closed, steam pressure control must be performed by the initial pressure control device 51. For this purpose, the setting value of the initial pressure control device 51 is increased from the lower limit to the pressure setting value of the turbine bypass valve 25, and when they match, the setting value of the turbine bypass control device 57 is increased by a certain value to control the steam pressure to the initial pressure. Transferred to the control device 51. At this stage, since there is no deviation in steam pressure, the output signal of the initial pressure control device 51 remains at the upper limit, that is, equivalent to fully open with respect to the control valve 22, and this signal is not selected by the low selector 55 and is on standby. In this state, the low selector 55 selects the output of the speed governor control device 54. Here, when the set value of the speed governor control device 54 is increased, the opening degree of the regulating valve 22 is increased, and therefore the steam pressure is reduced, and the output signal of the initial pressure control device 51 becomes lower than the output signal of the speed governor control device 54. At this point, the output signal of the initial pressure control device 51 is selected by the low selector 55 to control the regulating valve 22.
However, in this switching, the initial pressure control device 51 starts control from an opening command equivalent to full opening, so the setting value of the speed governor control device 54 is increased, the opening degree of the regulating valve 22 is increased, and the steam pressure is lowered. Pressure control device 5
1, the steam pressure decreases until the switch is made, and after the switch is made, the control valve 22 is suddenly controlled in the closing direction, making it impossible to obtain stable control results.

本発明の目的は上記した蒸気圧力の変動や、加
減弁22の開度急変のない、安定した初圧制御装
置51の切替を行なうことのできる複合サイクル
プラント制御装置を提供することにある。
An object of the present invention is to provide a combined cycle plant control device that can perform stable switching of the initial pressure control device 51 without the above-described fluctuations in steam pressure or sudden changes in the opening degree of the regulating valve 22.

本発明の特徴は蒸気タービン装置40を速度ガ
バナ制御装置54で制御中、初圧制御装置51の
出力信号を速度ガバナ制御装置54の出力信号に
追従させ、初圧制御装置51へ切替時加減弁22
の開度が急変することなく切替えできることにあ
る。
The feature of the present invention is that while the steam turbine device 40 is being controlled by the speed governor control device 54, the output signal of the initial pressure control device 51 is made to follow the output signal of the speed governor control device 54, and when switching to the initial pressure control device 51, the adjustment valve is 22
The reason is that the opening degree can be changed without sudden changes.

以下本発明の一実施例を第2図及び第3図によ
り説明する。起動時、タービンバイパス制御装置
57の圧力設定値は信号発生器80でハイセレク
ター86を介して減算器81に与えられる。減算
器81は蒸気圧力発信器56の出力信号と比較し
その偏差がなくなるように比例・積分コントロー
ラ82でタービンバイパス弁25を制御する。蒸
気タービン装置40は速度ガバナ制御装置54の
設定器77で与えられた指令と速度検出器53の
出力信号を減算器76で比較しその偏差により比
例動作コントローラ79によりローセレクター5
5を介して加減弁22を制御して負荷上昇を行な
う。第3図に於てタービンバイパス制御装置57
により蒸気圧力は91のカーブの様に一定に制御
されている。速度ガバナ制御装置54の設定値7
7の指令を増すにつれて加減弁22の開度はカー
ブ94の様に上昇し、逆にタービンバイパス弁2
5は蒸気圧力の91の様に一定値に保つために9
3の様に開度を減じてやがて全閉となる。一方、
初圧制御装置51は速度ガバナ制御装置54で加
減弁22を制御中は切替器73はA→C側に切替
り蒸気圧力発信器52に追従した設定値を減算器
71に与え偏差ゼロの状態にしておき、又切替器
74はE→F側に切替つており速度ガバナ制御装
置54の出力信号をローセレクター55の出力側
より比例・積分コントローラ75に与え、同じ出
力信号をだすようにしておく。タービンバイパス
弁25が全閉になつたことは排熱回収ボイラ11
で発生している蒸気量を全量蒸気タービン装置4
0に通したことになりこれ以上速度ガバナ制御装
置54で蒸気タービン装置40の負荷上昇を行う
と加減弁22がさらに開き蒸気圧力が規定値以下
となり、蒸気タービン装置40にとつては好しい
ことでない。ここでは早く初圧制御装置51に切
替えねばならない。タービンバイパス弁25が全
閉になつた条件で、切替器73をA→C側からB
→C側に、切替器74をE→F側からD→F側
に、切替器78をG→K側からH→K側に、切替
器85をM→N側からL→N側に切替える。関数
発生器72は蒸気タービン23への蒸気流量をベ
ースに前圧の設定値を決めている。即ち蒸気流量
発信器58の出力信号を関数発生器72に入れ第
3図のカーブ91の特性で与えている。カーブ9
1はタービンバイパス弁25が全閉するまではタ
ービンバイパス制御装置57の蒸気圧力設定値と
等しいので前記の切替器73切替時減算器71の
設定値はフイードバツク値である蒸気圧力発信器
52の出力信号と等しく偏差ゼロである。また比
例・積分コントローラ75は速度ガバナ制御装置
54で加減弁22を制御中その指令に追従してい
るので切替器74をD→F側に切替えた時も同じ
出力信号のままである。タービンバイパス制御装
置57には初圧制御装置51より蒸気圧力設定値
が伝えられこれと、信号発生器84により与えら
れるバイアス量が加算器83で加算され、変化率
制限器87を通して切替器85のL→Nを通りハ
イセレクター86で選択されて第3図カーブ92
の様にタービンバイパス制御装置57の圧力設定
値をかえる。これで蒸気圧力の制御はタービンバ
イパス制御装置57から初圧制御装置51へ切替
が完了し、以降蒸気圧力はターブ91にそつて排
熱回収ボイラ11の負荷上昇による蒸気量増加に
対処するよう初圧制御装置51より制御される。
一方速度ガバナ制御装置54は切替器78がH→
Kに切替り初圧制御装置51による開度指令に追
従している。蒸気タービン23の速度が何等の原
因で過大になつたときに即加減弁22を閉操作す
るためである。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. At start-up, the pressure setting value of the turbine bypass control device 57 is applied by the signal generator 80 to the subtractor 81 via the high selector 86 . The subtracter 81 compares the output signal of the steam pressure transmitter 56 and controls the turbine bypass valve 25 with the proportional/integral controller 82 so that the deviation is eliminated. The steam turbine device 40 compares the command given by the setter 77 of the speed governor control device 54 and the output signal of the speed detector 53 with a subtracter 76, and depending on the difference, the low selector 5 is changed by the proportional operation controller 79.
5, the control valve 22 is controlled to increase the load. In FIG. 3, the turbine bypass control device 57
Accordingly, the steam pressure is controlled to be constant like the curve 91. Setting value 7 of speed governor control device 54
As the command 7 increases, the opening degree of the regulator valve 22 increases as shown by a curve 94, and conversely, the opening degree of the regulator valve 22 increases as shown by the curve 94.
5 is 9 to maintain a constant value like 91 for steam pressure.
As shown in 3, the opening degree is reduced and eventually it becomes fully closed. on the other hand,
While the initial pressure control device 51 is controlling the adjustment valve 22 with the speed governor control device 54, the switch 73 switches from A to C side and gives a set value that follows the steam pressure transmitter 52 to the subtractor 71 so that the deviation is zero. Also, the switch 74 is switched from E to F side, and the output signal of the speed governor control device 54 is given to the proportional/integral controller 75 from the output side of the low selector 55 so that the same output signal is output. . The fact that the turbine bypass valve 25 is fully closed means that the exhaust heat recovery boiler 11
The entire amount of steam generated in the steam turbine equipment 4
0, and if the speed governor control device 54 increases the load on the steam turbine device 40 any further, the control valve 22 will open further and the steam pressure will fall below the specified value, which is favorable for the steam turbine device 40. Not. Here, it is necessary to quickly switch to the initial pressure control device 51. Under the condition that the turbine bypass valve 25 is fully closed, switch 73 is switched from A to C side to B.
→C side, switch 74 from E→F side to D→F side, switch 78 from G→K side to H→K side, switch 85 from M→N side to L→N side. . The function generator 72 determines the set value of the prepressure based on the steam flow rate to the steam turbine 23. That is, the output signal of the steam flow rate transmitter 58 is input to the function generator 72 and is given by the characteristic of the curve 91 in FIG. curve 9
1 is equal to the steam pressure setting value of the turbine bypass control device 57 until the turbine bypass valve 25 is fully closed, so the setting value of the switching subtractor 71 of the switching device 73 is the feedback value.The output of the steam pressure transmitter 52 It is equal to the signal and has zero deviation. Further, since the proportional/integral controller 75 follows the command of the speed governor control device 54 while controlling the adjustment valve 22, the same output signal remains even when the switch 74 is switched from the D to the F side. The steam pressure set value is transmitted from the initial pressure control device 51 to the turbine bypass control device 57, and this and the bias amount given by the signal generator 84 are added by an adder 83, and the value is transmitted to the switch 85 through the rate of change limiter 87. Passing through L → N, it is selected by the high selector 86 and becomes the curve 92 in Figure 3.
Change the pressure setting value of the turbine bypass control device 57 as follows. This completes the switching of steam pressure control from the turbine bypass control device 57 to the initial pressure control device 51, and thereafter the steam pressure is changed along the turbine 91 to cope with the increase in steam amount due to the increase in the load of the exhaust heat recovery boiler 11. It is controlled by a pressure control device 51.
On the other hand, in the speed governor control device 54, the switch 78 is set to H→
K and follows the opening command from the initial pressure control device 51. This is to immediately close the regulating valve 22 when the speed of the steam turbine 23 becomes excessive for some reason.

上記の様に初圧制御装置51を速度ガバナ制御
装置54に追従させることによつて、制御系の切
替時の圧力変動、加減弁の急変をなくし安定した
制御ができる。
By causing the initial pressure control device 51 to follow the speed governor control device 54 as described above, stable control can be achieved by eliminating pressure fluctuations and sudden changes in the adjustment valve when switching the control system.

本実施例では簡便なため電気制御回路を基に説
明したが、機械リンク機構のガバナ制御装置の場
合でも同じ考えでできることはあきらかである。
Although this embodiment has been explained based on an electric control circuit for simplicity, it is obvious that the same idea can be applied to a governor control device of a mechanical link mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合サイクルプラントの系統図、第2
図は本発明による初圧制御装置、第3図は本発明
による初圧制御切替特性を示す図面である。 1……ガスタービン装置、11……排熱回収ボ
イラ、16……ドラム、25……タービンバイパ
ス弁、22……加減弁、51……初圧制御装置、
52……蒸気圧力発信器、53……速度発信器、
54……速度ガバナ制御装置、55……ローセレ
クター、56……蒸気圧力発信器、57……ター
ビンバイパス制御装置、58……蒸気流量発信
器、71……減算器、72……関数発生器、73
……切替器、74……切替器、75……比例・積
分コントローラ、76……減算器、77……設定
器、78……切替器、79……比例動作コントロ
ーラ、80……信号発生器、81……減算器、8
2……比例・積分コントローラ、83……加算
器、84……信号発生器、85……切替器、86
……ハイセレクター、87……変化率制限器。
Figure 1 is a system diagram of a combined cycle plant, Figure 2
The figure shows an initial pressure control device according to the present invention, and FIG. 3 is a drawing showing initial pressure control switching characteristics according to the present invention. 1...Gas turbine device, 11...Exhaust heat recovery boiler, 16...Drum, 25...Turbine bypass valve, 22...Adjustment valve, 51...Initial pressure control device,
52... Steam pressure transmitter, 53... Speed transmitter,
54...Speed governor control device, 55...Low selector, 56...Steam pressure transmitter, 57...Turbine bypass control device, 58...Steam flow rate transmitter, 71...Subtractor, 72...Function generator , 73
...Switcher, 74...Switcher, 75...Proportional/integral controller, 76...Subtractor, 77...Setter, 78...Switcher, 79...Proportional action controller, 80...Signal generator , 81...subtractor, 8
2...Proportional/integral controller, 83...Adder, 84...Signal generator, 85...Switcher, 86
...High selector, 87... Rate of change limiter.

Claims (1)

【特許請求の範囲】[Claims] 1 1台あるいは複数台のガスタービン装置と、
該ガスタービン装置の排ガスを熱源として蒸気を
発生する排熱回収ボイラ装置と、該排熱回収ボイ
ラで発生した蒸気により仕事を行なう蒸気タービ
ン装置との組み合せでなる複合サイクルプラント
において、蒸気タービンの加減弁前圧を一定に制
御する初圧制御装置と負荷を制御する速度ガバナ
制御装置を有する蒸気タービン制御装置を設け、
初圧制御装置の制御指令を速度ガバナ制御装置の
制御指令に自動追従させることにより排熱回収ボ
イラの蒸気管に設けるタービンバイパス弁による
蒸気圧力制御から初圧制御装置による蒸気圧力制
御への切換え時に蒸気圧力の変化による加減弁開
示の急変を防止することを特徴とする複合サイク
ルプラント制御装置。
1 one or more gas turbine devices,
In a combined cycle plant consisting of a combination of an exhaust heat recovery boiler device that generates steam using the exhaust gas of the gas turbine device as a heat source, and a steam turbine device that performs work using the steam generated by the exhaust heat recovery boiler, the control of the steam turbine is performed. A steam turbine control device is provided that has an initial pressure control device that controls the pre-valve pressure to a constant value and a speed governor control device that controls the load,
By automatically following the control commands of the initial pressure control device with the control commands of the speed governor control device, it is possible to switch from steam pressure control using the turbine bypass valve installed in the steam pipe of the exhaust heat recovery boiler to steam pressure control using the initial pressure control device. A combined cycle plant control device characterized by preventing sudden changes in control valve opening due to changes in steam pressure.
JP2085979A 1979-02-26 1979-02-26 Initial pressure control changeover system in combined- cycle plant Granted JPS55114822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085979A JPS55114822A (en) 1979-02-26 1979-02-26 Initial pressure control changeover system in combined- cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085979A JPS55114822A (en) 1979-02-26 1979-02-26 Initial pressure control changeover system in combined- cycle plant

Publications (2)

Publication Number Publication Date
JPS55114822A JPS55114822A (en) 1980-09-04
JPS6149487B2 true JPS6149487B2 (en) 1986-10-29

Family

ID=12038837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085979A Granted JPS55114822A (en) 1979-02-26 1979-02-26 Initial pressure control changeover system in combined- cycle plant

Country Status (1)

Country Link
JP (1) JPS55114822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461231B2 (en) 2018-02-27 2019-10-29 Lumens Co., Ltd. Method for fabricating LED package

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838309A (en) * 1981-08-28 1983-03-05 Toshiba Corp Uniaxial type composite generating plant
JPS60204907A (en) * 1984-03-29 1985-10-16 Toshiba Corp Operating method for reheat steam turbine plant
JPS61215408A (en) * 1985-03-20 1986-09-25 Mitsubishi Heavy Ind Ltd Steam turbine controlling equipment
JPH0680285B2 (en) * 1985-03-20 1994-10-12 三菱重工業株式会社 Steam turbine controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461231B2 (en) 2018-02-27 2019-10-29 Lumens Co., Ltd. Method for fabricating LED package

Also Published As

Publication number Publication date
JPS55114822A (en) 1980-09-04

Similar Documents

Publication Publication Date Title
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
JP3197578B2 (en) Method and apparatus for predicting and limiting overspeed of combined cycle turbines
KR890001172B1 (en) Hrsg damper control
RU2209320C2 (en) Steam power plant power control method and design of steam power plant
KR910003260B1 (en) Control system and method for a steam turbine having a steam bypass arrangement
JPS6218724B2 (en)
GB2131929A (en) Method and apparatus for correcting system frequency dips of a variable-pressure-operated steam generator unit
US3894396A (en) Control system for a power producing unit
JPS6123366B2 (en)
JPS6252121B2 (en)
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
JPS6224608B2 (en)
JPS6149487B2 (en)
CA1245282A (en) Steam turbine load control in a combined cycle electrical power plant
JP2918743B2 (en) Steam cycle controller
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPS628605B2 (en)
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
JPS6239655B2 (en)
JPS6239653B2 (en)
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JP3112579B2 (en) Pressure control device
JPS6235561B2 (en)
JPS6135441B2 (en)
JPH02130202A (en) Combined plant