JPS5838309A - Uniaxial type composite generating plant - Google Patents

Uniaxial type composite generating plant

Info

Publication number
JPS5838309A
JPS5838309A JP13432681A JP13432681A JPS5838309A JP S5838309 A JPS5838309 A JP S5838309A JP 13432681 A JP13432681 A JP 13432681A JP 13432681 A JP13432681 A JP 13432681A JP S5838309 A JPS5838309 A JP S5838309A
Authority
JP
Japan
Prior art keywords
steam
pressure
steam turbine
turbine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13432681A
Other languages
Japanese (ja)
Inventor
Motoyuki Sato
佐藤 征行
Akira Ishigaki
石垣 「あきら」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13432681A priority Critical patent/JPS5838309A/en
Publication of JPS5838309A publication Critical patent/JPS5838309A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable to perform a safe operation of a composite generating plant, by a method wherein, in a subject plant provided with a gas turbine and a steam turbine, a regulating valve of a steam turbine is controlled by means of a steam pressure deviation, deviation of the number of revolutions, and a load limit signal. CONSTITUTION:A composite generating plant is provided with a gas turbine and a steam turbine. Based on a pressure set value 22 and an actual steam pressure 21, an operating signal 26 for a bypass valve is computed. A regulating valve operating signal 27 is selected from 3 factors of a regulating valve control signal 38 by deviation of the number of revolutions and a load limit signal 36 in addition to a steam pressure deviation 26. This enables to hold a steam pressure in a stabilizing manner, and permits the steady and safe operation of the composite generating plant.

Description

【発明の詳細な説明】 本発明はガスタービン、蒸気タービン、発電機が一軸に
直列結合された一軸製の排熱回収型複合発電プラントに
係り、特にその蒸気ターCン加減弁の制御方式に関すゐ
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single-shaft exhaust heat recovery type combined cycle power plant in which a gas turbine, a steam turbine, and a generator are connected in series to a single shaft, and particularly relates to a control system for a steam turbine control valve. Kansui.

一般に、ガスタービンの排熱を排熱回収?イラによって
蒸気エネルゼーに変換し、この蒸気で駆動すみ蒸気ター
ビンと前記がスタービン及びこれらタービンの回転エネ
ルギー會電気エネルギーに変換する発電機が直列に一軸
で結合されたいわゆる一軸m11合発電プラントにおい
ては、発生し樽る発電出力はガスタービンへの燃料によ
りてtlぼ決tゐ@4IK排熱回収がイラで助燃のない
複合発電7Pツントにおいては、蒸気タービンで発生し
得ゐ発電出力はガスタービンの排熱余件に依存する。
In general, is exhaust heat recovered from gas turbines? In a so-called single-shaft M11 combined power generation plant, a steam turbine is connected in series with a single shaft to convert the rotational energy of these turbines into electric energy. The generated power output is determined by the fuel supplied to the gas turbine.@4IK In the 7P combined cycle power generation system with no auxiliary combustion due to exhaust heat recovery, the power generation output cannot be generated by a steam turbine. Depends on exhaust heat co-conditions.

ヒOため、F−011式の複合発電グ2ントにおける蒸
気タービンの加減弁は、通常の運転中は全開状態で運転
される方法がこれ迄とられてきている。
Due to this, the steam turbine control valve in the F-011 type combined power generator has been operated in a fully open state during normal operation.

一方、排熱回収がイj1c’を発生する蒸気の圧力はガ
スタービンの負荷にほぼ比例して変化する。従って、蒸
気タービンは負荷による変圧運転上余儀なくされ為、し
かしながら、変圧運転方式による部分負荷運転社、偽生
蒸気圧力の低下によシ蒸気タービンの低圧段落における
蒸気温度の低下に伴う蒸気の湿フ度が増大し、蒸気ター
ビンのエロージ冒ンを助長する危険性があり、蒸気ター
ビンに・とって好ましいことではない。
On the other hand, the pressure of steam at which exhaust heat recovery generates Ij1c' changes approximately in proportion to the load of the gas turbine. Therefore, steam turbines are forced to operate under variable pressure depending on the load. This is not desirable for the steam turbine, as there is a risk that the temperature will increase and promote erosion of the steam turbine.

第1図は一軸型の排熱回収型複合発電プラントの一般的
表概略構成図を示したもので、lはフンダレ、す、2は
ガスタービン、3は発電機、4は蒸気タービン、5は排
熱回収がイン、6は復水器、7は給水ポンダ、8は燃焼
器である。
Figure 1 shows a general table schematic configuration diagram of a single-shaft type waste heat recovery combined cycle power plant, where l is a fundare, 2 is a gas turbine, 3 is a generator, 4 is a steam turbine, and 5 is a 6 is a condenser, 7 is a water ponder, and 8 is a combustor.

7゛・かかゐ構成で、燃焼器8には燃料調整弁9t−通
して、負荷指令に応じた量の燃料と、フンダレ。
In the combustor 8, a fuel adjustment valve 9t is passed through the combustor 8, and an amount of fuel corresponding to the load command is supplied to the combustor 8.

す1から前記燃料の燃焼に必要な圧縮空気が送られ、そ
の燃焼WF8で燃焼し次高温高圧の燃焼ガスは、ガスタ
ービン2に送出される。このガスタービン2は前記高温
高圧ガスによって駆動され、この軸に直結された発電機
3、コンプレッサ1及び蒸気タービン4を駆動する拳但
し、蒸気タービン4は排熱回収?イン5にて、前記ガス
タービン2より排出される排ガスによって発生した蒸気
が流量する時は発電機3及びフンダレ、す1會ガスタビ
ン2で前記の如き仕事を終了した燃焼ガスは、排熱回収
ゴイ5)5に導かれ、復水器6がら給水ポyf7によっ
てその?イン5に送出された給水を蒸気に変換した後、
大気に放出される。排熱回収?イ?5によって発生した
前記蒸気は蒸気タービン加減弁101経て蒸気タービン
4あゐいはλイΔス弁11Yt経て復水器6に導かれ復
水される。
Compressed air necessary for combustion of the fuel is sent from the combustion chamber 1 , which is combusted by the combustion WF 8 , and then high-temperature and high-pressure combustion gas is sent to the gas turbine 2 . This gas turbine 2 is driven by the high-temperature and high-pressure gas, and drives a generator 3, a compressor 1, and a steam turbine 4 that are directly connected to this shaft. However, the steam turbine 4 does not recover exhaust heat? At the inlet 5, when the steam generated by the exhaust gas discharged from the gas turbine 2 flows through the generator 3 and the exhaust gas, the combustion gas that has completed the above-mentioned work at the gas turbine 2 is used for exhaust heat recovery. 5) It is led to 5, and the water is supplied from the condenser 6 by the water supply point yf7. After converting the feed water delivered to Inn 5 into steam,
released into the atmosphere. Exhaust heat recovery? stomach? The steam generated by the steam turbine 5 is guided to the condenser 6 via the steam turbine control valve 101, the steam turbine 4, or the λ-earth valve 11Yt, and is condensed.

さて、上述の如き構成を有する一軸m複合発電f?ント
において、排熱回収?イン5で発生した蒸気は、低負荷
の時はガスタービン2より排出されるlip f 7K
fi量が少ないため、蒸気タービン管駆動するに足りる
圧力、温度に達しない、この九め、蒸気はバイパス弁1
1を経て直接復水器6へ流入するようにし、蒸気タービ
ン4には加減弁1oを閉じて流さない、やがて、負荷が
通常約25囁以上になると、前記発生蒸気も高圧となる
ので、加減弁10會開き、パイノ々ス弁11を閉じて、
蒸気タービン4を駆動させることになる。しかしながら
、排熱回収がインで発生する前記蒸気圧力は、fスター
ンン2よシ送出され次排ガス量、即ち、運転負荷Kit
は比例するため、運転負荷の変化により発生蒸気圧力も
大きく変動する。パイノ譬ス弁11は、蒸気圧力が設定
圧力よりも大きくなった時の蒸気タービン系即ち蒸気タ
ービン4や蒸気配管の保護及び安全運転のために用いて
蒸気圧力の降下を目的としているが、上述の如く保護、
安全の面から設定した圧力よシも高くならないと、パイ
ノ9ス弁11の効果はない、つまり、バイパス弁11で
は、設定圧力以下の蒸気圧力変動に対して、蒸気タービ
ン4に流入する蒸気圧力の制御機能嬬なく、また、加減
弁10にもその機能を従来は持たせていない。
Now, uniaxial m compound power generation f? having the above-mentioned configuration? Exhaust heat recovery at the project? The steam generated in the inlet 5 is discharged from the gas turbine 2 when the load is low.
Because the amount of fi is small, the pressure and temperature that are sufficient to drive the steam turbine pipe cannot be reached.
1 to the condenser 6 directly, and the regulator valve 1o is closed to the steam turbine 4 to prevent the flow from flowing into the steam turbine 4. Eventually, when the load normally increases to about 25 hiss or more, the generated steam also becomes high pressure, so the regulator Open valve 10, close valve 11,
This will drive the steam turbine 4. However, the steam pressure generated at the exhaust heat recovery stage is sent out to the
is proportional, so the generated steam pressure will fluctuate greatly due to changes in operating load. The purpose of the pinhole valve 11 is to lower the steam pressure by protecting the steam turbine system, that is, the steam turbine 4 and steam piping, and for safe operation when the steam pressure becomes higher than the set pressure. protection,
The pinos valve 11 has no effect unless the pressure set for safety is higher than the set pressure.In other words, the bypass valve 11 reduces the steam pressure flowing into the steam turbine 4 in response to fluctuations in steam pressure below the set pressure. However, the control function of the control valve 10 is not so good, and the control valve 10 has not conventionally been provided with this function.

第2図は、そのような従来のバイパス弁の通常運転時の
制御ブpヤク図を示したもので、蒸気圧力設定値21と
実際の蒸気圧力22より偏差演算器23で圧力偏差24
が演算され、バイイス弁調節tt (Gt )25によ
ってパイノ母ス弁操作信号26に変換され、バイパス弁
11が操作される。一方、加減弁10は蒸気タービンが
蒸気によって駆動されている時は前述の如く全開状態に
ある。
FIG. 2 shows a control diagram of such a conventional bypass valve during normal operation.The deviation calculator 23 calculates the pressure deviation 24 from the steam pressure set value 21 and the actual steam pressure 22.
is calculated and converted into a pinot master valve operation signal 26 by the bypass valve adjustment tt (Gt) 25, and the bypass valve 11 is operated. On the other hand, when the steam turbine is driven by steam, the control valve 10 is fully open as described above.

本発明は、排熱回収がインによって発生し友蒸気圧力O
変動を加減弁によって圧力制御すゐことによp1蒸気タ
ービンに安定した蒸気を供給し得る一軸型複合発電グツ
ントを提供することを目的とする。
In the present invention, exhaust heat recovery is generated by inlet and steam pressure O
The object of the present invention is to provide a single-shaft combined power generation unit capable of supplying stable steam to a P1 steam turbine by controlling pressure fluctuations using a regulating valve.

以下、本発明を図の実施例を参照して説明する・第3図
は本発明の一実施例に係る制御プp、りWA會示したも
ので、圧力設定値21と実際の蒸気圧力22t−基にバ
イパス弁の操作信号26を演算する所は第2図と同じで
あるが、更に加減弁1゜を操作する制御系を付加し、こ
の加減弁′Ik操作する制御信号として蒸気圧力偏差だ
けでなく、回転数偏差による加減弁制御信号及び負荷制
限信号の3者の信号によって加減弁を制御するようにし
た点に41iFll管有する・ 即ち、本実施例においては、第2図で示したパイイス弁
操作侶号26で直接パイ/ぐス弁11’l操作せずに、
加減弁操作信号271偏差演算器28によって補正減算
した信号29によって操作する。
The present invention will be described below with reference to the embodiments shown in the figures. Figure 3 shows a control system according to an embodiment of the present invention, with a pressure setting value 21 and an actual steam pressure 22t. - Based on the operation signal 26 of the bypass valve, the operation signal 26 is the same as in Fig. 2, but a control system for operating the regulator valve 1° is added, and the steam pressure deviation is used as the control signal for operating the regulator valve 'Ik. In addition, the control valve is controlled by three signals: a control valve control signal based on rotational speed deviation and a load limit signal.In other words, in this embodiment, the control valve is controlled by three signals: Without directly operating the pi/gas valve 11'l with the piis valve operator No. 26,
Control valve operation signal 271 is operated by a signal 29 corrected and subtracted by deviation calculator 28.

一方、加減弁の制御は前記従来のパイノ母ス弁操作信号
26即ち主蒸気偏差による制御信号と、タービン回転数
設定値30と実際の回転数信号31との回転数偏差によ
る加減弁調節計(G、)34によって制御演算した加減
弁制御(操作)信号35及び負荷制限信号36の3Il
の制御信号を低値優先器(LVG ) 37によって、
最少の制御信号を選択し加減弁の最終的な操作信号27
として加減弁の制御による蒸気圧力制御機能を果たして
いる。
On the other hand, the adjustment valve is controlled by the conventional pinot bus valve operation signal 26, that is, the control signal based on the main steam deviation, and the adjustment valve controller ( 3Il of the control valve control (operation) signal 35 and the load limit signal 36, which are controlled and calculated by G,) 34.
The control signal of
Select the minimum control signal and obtain the final operation signal 27 of the control valve.
The steam pressure control function is achieved by controlling the regulating valve.

加減弁操作信号27に、蒸気圧力偏差信号によゐ制御信
号26のみだけでなく、回転数偏差による制御信号35
及び負荷制限信号36による制御系とし九のは、本来複
合発電fラントの回転数はほぼガスタービン側によって
決るが、負荷変動等の過渡的な状態においては、回転数
偏差が生じるため、蒸気タービン側でも積極的に回転数
制御に寄与しようとしたものであや、負荷制限信号36
はこのような過渡状態においても加減弁を余りに急激に
操作しないようにする目的で付加したものである。
The control valve operation signal 27 includes not only the control signal 26 based on the steam pressure deviation signal but also the control signal 35 based on the rotation speed deviation.
and the control system using the load limit signal 36. Originally, the rotational speed of the combined power generation unit is determined by the gas turbine, but in transient conditions such as load fluctuations, rotational speed deviation occurs, so the steam turbine It was an attempt to actively contribute to rotation speed control on the side as well, and the load limit signal 36
is added to prevent the control valve from being operated too rapidly even in such a transient state.

以上のように、本発明によれば、運転中、蒸気ターfン
の加減弁を制御するようにしたので、蒸気圧力を安定に
保ち、蒸気タービンの負荷変動時等に対しても安定、か
つ、安全な運転が可能な一軸瓢複合発電!ツントが得ら
れる。
As described above, according to the present invention, the control valve of the steam turbine f is controlled during operation, so that the steam pressure can be kept stable, and even when the steam turbine load fluctuates, the control valve can be controlled. , single-shaft combined cycle power generation that allows safe operation! Tsunt is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一軸型複合発電プラントの一般的な構成図、第
2図はその複合発電プラントにおける蒸気系統の従来の
制御プロ、り図、第3図は本発明O−実施例に係る制御
ブロック図でおる。 1・・・コンブレνす、2・・・ガスタービン、3・・
・発電機、4・・・蒸気タービン、5・・・排熱回収が
イン、6・−・復水器、7・・・給水ポンプ、8・・−
燃焼器、9・・・燃焼調整弁、10・・・加減弁、11
・・・パイノタス弁、21・・・蒸気圧力設定値、22
・・・実際の蒸気圧力、23・・・偏差演算器、24・
・・圧力偏差、25・・・パイイス弁調節針(Gs  
)、26.29・・・パイイス弁操作信号、27・・・
加減弁操作信号、28・・・偏差演算器、30・・・回
転数設定値、31・・・回転数信号、32・・・偏差演
算器、33・・・回転数偏差信号、34・・・回転数調
節針(G3 )、35・・・回転数偏差による加減弁制
御信号、36・・・負荷制限信号、37・・・低値優先
器。 (7317)代理人弁理士 則 近 憲 佑(ほか1名
) 隼1図 隼20 #3図 手続補正書(自発) 昭和  年  月  日 56.12.25 特許庁長官殿 1、事件の表示 特願昭56−134326号 2、発明の名称 複合発電プラントの制御方法 3、補正をする者 事件との関係   特許出願人 (307) 東京芝浦電気株式会社 4、代 理 人 〒100 東京都千代田区内幸町1−1−6 東京芝浦電気株式金社東京事務所内 (1)明細書全文および図面 6、補正の内容 別紙のとおり 明    細    書 1、発明の名称 複合発電プラントの制御方法 2、特許請求の範囲 (2、特許請求の範囲第1項記載において、前記加減弁
を蒸気圧力偏差信号、回転数偏差信号、負荷制限信号の
3者の信号のうち最初の信号により制御することを特徴
とする複合発電プ1ヱ上至m 3、発明の詳細な説明 本発明は、ガスタービン、#l+熱回収ボイラ。 蒸気タービン、発電機より構成される排熱回収量の複合
発電プラントの制御方法に関する。 一般に、ガスタービンの排熱を排熱回収ボイラによって
蒸気エネルギーに変換し、この蒸気でさらに蒸気タービ
ンを駆動し、ガスタービンおよび蒸気タービンの回転エ
ネルギーを発電機で電気エネルギーに変換する複合発電
プラントにおいては、発生し得る発電出力はガスタービ
ンへの燃料によってほぼ決まる。特に排熱回収ボイラで
助燃のない壷金発電プラントにおいては、蒸気タービン
で発生し得る発電出力はガスタービンの排熱条件に依存
する。このため、この型式の複合発電プラントにおける
蒸気タービンの流入蒸気量を制御する加減弁は、通常の
運転中は全開状態で運転し、発生した蒸気をそのまま蒸
気タービンへ流入させる方法がこれまでとられてきてい
る。従って排熱回収ボイラにて発生する蒸気の圧力はガ
スタービンの負荷に応じて変化するので、蒸気タービン
は負荷による変圧運転を余儀なくされる。しかしながら
、部分負荷運転は、発生蒸気圧力、温度の低下により蒸
気タービンの低圧段落における蒸気温度の低下に伴う蒸
気の湿り度が増大し、蒸気タービンの二ローションを助
長する危険度があり、蒸気タービンにとって好ましいこ
とではない。 第1図は一軸型の排熱回収型複合発電プラントの一般的
な概略構成図例を示したもので、1はコンプレッサ、2
はガスタービン、3は発電機、4は蒸気タービン、5は
排熱回収ボイラ、6は復水器、7は給水ポンプ、8は燃
焼器である。 かかる構成で、燃焼器8には燃料調整弁9を通して、負
荷指令に応じた量の燃料と、コンプレッサlから前記燃
料の燃焼に必要な圧縮空気が送られ、その燃焼器8で燃
焼した高温高圧の燃焼ガスは、ガスタービン2に送出さ
れる。このガスタービン2は前記高温高圧ガスによって
駆動され、この軸に直結された発電機3、コンプレッサ
1及び蒸気タービン4を駆動する。但し、蒸気タービン
4は排熱回収ボイラ5にて、前記ガスタービン2より排
出される排ガスによって発生した蒸気が流入する時は発
電機3及びコンプレッサ1をガスタービン2と共に駆動
する動力源となる。ガスタービン2で前記の如キ仕事を
終了した燃焼ガスは、排熱回収ボイラ5に導かれ、復水
器6から給水ポンプ7によってそのボイラ5に送出され
た給水を蒸気に変換した後、大気圧放出される。排熱回
収ボイラ5によって発生した前記蒸気は蒸気タービン加
減弁10を経て蒸気タービン4あるいはバイパス弁11
を経て復水器6に導かれ復水される。 さて、上述の如き構成を有する一軸型複合発電プラント
において、排熱回収ボイラ5で発生した蒸気は、低負荷
の時はガスタービン2より排出される排ガス流量が少な
いため、蒸気タービンを駆動するに足りる圧力、温度に
達しない。 このため、蒸気はバイパス弁11を経て直接復水器6へ
流入するようにし、蒸気タービン4には加減弁lOを閉
じて流さない。やがて、負荷が通常的25−以上になる
と、前記発生蒸気も高圧となるので、加減弁10を開き
、バイパス弁11を閉じて、蒸気タービン4を駆動させ
ることKなる。しかしながら、排熱回収ボイラで発生す
る前記蒸気圧力は、ガスタービン2より送出された排ガ
ス量、即ち、運転負荷に応じて変化するため、運転負荷
の変化により発生蒸気圧力も大きく変動する。バイパス
弁11は、蒸気圧力が設定圧力よりも大きくなった時の
蒸気タービン系即ち蒸気タービン4や蒸気配管の保線及
び安全運転のために用いて蒸気圧力の降下を目的として
いるが、上述の如く保鏝、安全の面から設定した圧力よ
りも高くならないと、バイパス弁11の効果はない。つ
まり、バイパス弁11では、設定圧力以下の蒸気圧力変
動に対して蒸気タービン4に流入する蒸気圧力の制御機
能はなく、また、加減弁10にもその機能を従来は持た
せていない。 第2図は、そのような従来のバイパス弁の通常運転時の
制御ブロック図例を示したもので、蒸気圧力設定値22
と実際の蒸気圧力21より偏差演算器23で圧力偏差2
4が演算され、バイパス弁調節針(Gl )25 Kよ
ってバイパス弁操作信号26に変換され、バイパス弁1
1が操作される。 一方、加減弁10は蒸気タービンが一気によって駆動さ
れている時は前述の如く全開状態にある。 本発明は、排熱回収ボイラによって発生した蒸気圧力の
変動を1つの圧力設定器により通常は加減弁によって圧
力制御することにより、蒸気タービンに安定した蒸気を
供給し、かつ圧力が異常に高くなった時にバイパス弁に
て保mすると共に、さらに蒸気タービン自身の回転数変
動も加減弁10を制御することにより蒸気タービンのオ
ーバスピード等を保鏝し得る複合発電プラントの制御方
法を提供することを目的とする。 以下、本発明を図の実施例を参照して説明する。′s3
図は本発明の一実施例に係る制御ブロック図を示したも
ので、圧力設定値22と′実際の蒸気圧力21を基にバ
イパス弁の操作信号26を演算する所は第2図と同じで
あるが、更に加減弁10を操作する制御系を付加し、 
この加減弁を操作する制御信号として蒸気圧力偏差だけ
でなく、回転数偏差による加減弁制御信号及び負荷制限
信号の3者の信号によって加減弁を制御するようにした
点に特徴を有する。 即ち、本実施例においては、第2図で示したバイパス弁
操作信号26で直接バイパス弁11を操作せずに、加減
弁操作信号27を偏差演算器28によって補正減算した
信号29によって操作する。一方、加減弁の制御は前記
従来のバイパス弁操作信号26即ち主蒸気圧力偏差によ
る制御信号と、タービン回転数設定値3oと実際の回転
数信号31との回転数偏差による加減弁調節針(G、 
) 34によって制御演算した加減弁制御[有]作)信
号35及び負荷制限信号3603種の制御信号を低値優
先器(LVG)37によって、最少の制御信号を選択し
加減弁の最終的な操作信号27として加減弁の制御によ
る蒸気圧力制御機能を果たしている。加減弁操作信号2
7に、蒸気圧力偏差信号による制御信号26のみだけで
なく、回転数偏差による制御信号35及び負荷制限信号
36による制御系としたのは、本来複合発電プラントの
回転数はほぼガスタービン側によって決るが、負荷急減
等の過渡的な状態においては、回転数偏差が生じるため
、蒸気タービン側でも積極的に回転数制御に寄与しよう
としたものであり、また通常時に於ても圧力偏差より回
転数偏差が小さくなるように回転数設定値30を下げる
か、圧力設定値22を下げるかすれば回転数制御系を優
先させる゛ことができ、系統への周波数変動を抑えるた
めの積極的な調速制御を行なうことも可能である。負荷
制限信号36は同期並列中に過度の周波数低下が発生し
た時においても加減弁を過度に開方向に操作しないよう
にする目的で付加したものである。 以上のように1本発明によれば、運転中、蒸気タービン
の加減弁を制御することにより、蒸気圧力を安定に保ち
、蒸気タービン自身も負荷しゃ断等の過速成いは系統事
故による周波数低下時の急激な出力増加を防止し、蒸気
タービンの負荷変動時等に対しても安定、かつ、安全な
運転が可能な複合発電プラントが得られる、4、図面の
簡単な説明 第1図は複合発電プラントの一般的な構成図、第2図は
その複合発電プラントにおける蒸気系統の従来の制御ブ
ロック図、$3図は本発明の一実施例に係る制御ブロッ
ク図である。 1・・・コンプレッサ、2・・・ガスタービン、3・・
・発電機、4甲蒸気タービン、5・・・排熱回収ボイラ
、6・・・復水器、7・・・給水ポンプ、8・・・燃焼
春9・・・燃焼調整弁、10・・−加減弁、11・・バ
イパス弁、21・・・実際の蒸気圧力値、22・・・蒸
気圧力設定値、23・・・偏差演算器、24・・・圧力
偏差、 25・・・バイパス弁11節計(G1)、26
 、29・・、バイパス弁操作信号、27・・・加減弁
操作信号、28・・・偏差演算器、30・・・回転数設
定値、31・・・回転数信号、32・・・偏差演算器、
33・・・回転数偏差信号、34・・・回転数調節計r
Gg)、35・・・回転数偏差による加減弁制御信号、
 36・・・負荷制限イ言号、37・・・低値優先器。 (7317)  代理人 弁理士 則近憲佑第  1 
 図
Fig. 1 is a general configuration diagram of a single-shaft combined cycle power plant, Fig. 2 is a diagram of a conventional control system for a steam system in the combined cycle plant, and Fig. 3 is a control block according to an embodiment of the present invention. Illustrated. 1... Combrev, 2... Gas turbine, 3...
- Generator, 4...Steam turbine, 5...Exhaust heat recovery in, 6...Condenser, 7...Water pump, 8...-
Combustor, 9... Combustion adjustment valve, 10... Adjustment valve, 11
... Pinotas valve, 21 ... Steam pressure setting value, 22
...Actual steam pressure, 23.Difference calculator, 24.
...Pressure deviation, 25...Pais valve adjustment needle (Gs
), 26.29...Piece valve operation signal, 27...
Adjustment valve operation signal, 28... Deviation calculator, 30... Rotation speed setting value, 31... Rotation speed signal, 32... Deviation calculator, 33... Rotation speed deviation signal, 34... - Rotation speed adjustment needle (G3), 35...Adjustment valve control signal based on rotation speed deviation, 36...Load limit signal, 37...Low value priority device. (7317) Representative Patent Attorney Kensuke Noriyuki Chika (and 1 other person) Hayabusa 1 Figure Hayabusa 20 #3 Procedure Amendment (Voluntary) December 25, 1939 Director General of the Japan Patent Office 1, Patent Application for Indication of Case No. 56-134326 2, Title of invention Control method for combined cycle power generation plant 3, Relationship with the amended case Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 4, Agent Address: 1 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100 -1-6 Tokyo Shibaura Electric Co., Ltd. Kinsha Tokyo Office (1) Full text of the specification and drawing 6, contents of amendments as shown in the appendix Description 1, Name of the invention Control method for a combined cycle power plant 2, Scope of claims ( 2. The combined power generation plant according to claim 1, wherein the control valve is controlled by the first of three signals: a steam pressure deviation signal, a rotational speed deviation signal, and a load limit signal. 1. Above m 3.Detailed Description of the Invention The present invention relates to a gas turbine, #l+heat recovery boiler.It relates to a method for controlling a combined cycle power generation plant for exhaust heat recovery, which is composed of a steam turbine and a generator.Generally, gas In a combined power generation plant, the exhaust heat of the turbine is converted into steam energy by an exhaust heat recovery boiler, this steam further drives a steam turbine, and the rotational energy of the gas turbine and steam turbine is converted into electrical energy by a generator. The power generation output that can be generated is almost determined by the fuel supplied to the gas turbine.Especially in the case of a power generation plant in which there is no auxiliary combustion in the exhaust heat recovery boiler, the power generation output that can be generated by the steam turbine depends on the exhaust heat conditions of the gas turbine. For this reason, the control valve that controls the amount of steam flowing into the steam turbine in this type of combined cycle power plant has been operated in a fully open state during normal operation, allowing the generated steam to directly flow into the steam turbine. Therefore, the pressure of the steam generated in the waste heat recovery boiler changes depending on the load on the gas turbine, so the steam turbine is forced to operate at variable pressure depending on the load.However, in partial load operation, the pressure of the steam generated, As the temperature decreases, the humidity of the steam increases as the steam temperature decreases in the low-pressure stage of the steam turbine, and there is a risk of promoting double lotion in the steam turbine, which is not desirable for the steam turbine. This figure shows an example of a general schematic configuration diagram of a type exhaust heat recovery type combined cycle power generation plant, where 1 is a compressor, 2 is a
3 is a gas turbine, 3 is a generator, 4 is a steam turbine, 5 is an exhaust heat recovery boiler, 6 is a condenser, 7 is a feed water pump, and 8 is a combustor. With this configuration, the amount of fuel according to the load command and the compressed air necessary for combustion of the fuel are sent from the compressor l to the combustor 8 through the fuel adjustment valve 9, and the high temperature and high pressure combusted in the combustor 8 The combustion gas is sent to the gas turbine 2. This gas turbine 2 is driven by the high-temperature and high-pressure gas, and drives a generator 3, a compressor 1, and a steam turbine 4 that are directly connected to this shaft. However, the steam turbine 4 serves as a power source for driving the generator 3 and the compressor 1 together with the gas turbine 2 when the steam generated by the exhaust gas discharged from the gas turbine 2 flows into the exhaust heat recovery boiler 5 . The combustion gas that has completed the above-mentioned work in the gas turbine 2 is led to the exhaust heat recovery boiler 5, and after converting the feed water sent from the condenser 6 to the boiler 5 by the feed water pump 7 into steam, it is Atmospheric pressure is released. The steam generated by the exhaust heat recovery boiler 5 passes through the steam turbine control valve 10 to the steam turbine 4 or the bypass valve 11.
The water is guided to the condenser 6 and condensed. Now, in the single-shaft combined cycle power plant having the above configuration, the steam generated in the heat recovery boiler 5 is not sufficient to drive the steam turbine because the flow rate of exhaust gas discharged from the gas turbine 2 is small when the load is low. Sufficient pressure and temperature are not reached. For this reason, the steam is made to flow directly into the condenser 6 via the bypass valve 11, and is not allowed to flow into the steam turbine 4 by closing the control valve IO. Eventually, when the load becomes more than the normal 25 -, the pressure of the generated steam also becomes high, so the control valve 10 is opened, the bypass valve 11 is closed, and the steam turbine 4 is driven. However, since the steam pressure generated in the exhaust heat recovery boiler changes depending on the amount of exhaust gas sent out from the gas turbine 2, that is, the operating load, the generated steam pressure also fluctuates greatly due to changes in the operating load. The bypass valve 11 is used to maintain the steam turbine system, that is, the steam turbine 4 and the steam piping, and to lower the steam pressure when the steam pressure becomes higher than the set pressure. The bypass valve 11 has no effect unless the pressure is higher than the preset pressure for safety reasons. That is, the bypass valve 11 does not have a function of controlling the steam pressure flowing into the steam turbine 4 in response to fluctuations in steam pressure below a set pressure, and the regulating valve 10 has not conventionally had this function. Figure 2 shows an example of a control block diagram of such a conventional bypass valve during normal operation.
and the actual steam pressure 21, the pressure deviation 2 is calculated by the deviation calculator 23.
4 is calculated and converted into a bypass valve operation signal 26 by the bypass valve adjustment needle (Gl) 25K, and the bypass valve 1 is
1 is operated. On the other hand, the control valve 10 is fully open as described above when the steam turbine is being driven at once. The present invention supplies stable steam to a steam turbine by controlling the fluctuations in steam pressure generated by an exhaust heat recovery boiler using a single pressure setting device, usually a control valve, and also prevents the pressure from becoming abnormally high. To provide a control method for a combined power generation plant that can prevent the overspeed of a steam turbine by controlling a regulating valve 10 to control rotational speed fluctuations of the steam turbine itself, as well as maintaining it with a bypass valve when purpose. Hereinafter, the present invention will be explained with reference to the embodiments shown in the figures. 's3
The figure shows a control block diagram according to an embodiment of the present invention, and the part where the bypass valve operation signal 26 is calculated based on the pressure setting value 22 and the actual steam pressure 21 is the same as in Figure 2. However, a control system for operating the regulating valve 10 is added,
A feature of the present invention is that the control valve is controlled by not only the steam pressure deviation, but also a control signal for controlling the control valve based on the rotational speed deviation and a load limit signal as the control signal for operating the control valve. That is, in this embodiment, the bypass valve 11 is not directly operated by the bypass valve operation signal 26 shown in FIG. On the other hand, the regulator valve is controlled by the conventional bypass valve operation signal 26, that is, the control signal based on the main steam pressure deviation, and the regulator valve adjustment needle (G ,
) 34, the control signal 35 and the load limit signal 360 select the lowest control signal using the low value priority device (LVG) 37, and perform the final operation of the regulator valve. The signal 27 serves as a steam pressure control function by controlling the regulating valve. Control valve operation signal 2
7, the control system was created using not only the control signal 26 based on the steam pressure deviation signal, but also the control signal 35 based on the rotational speed deviation and the load limit signal 36, because originally the rotational speed of the combined cycle power plant was determined almost entirely by the gas turbine side. However, under transient conditions such as a sudden load reduction, rotational speed deviation occurs, so the steam turbine side also actively tried to contribute to rotational speed control.Also, even under normal conditions, pressure deviation By lowering the rotation speed setting value 30 or lowering the pressure setting value 22 to reduce the deviation, it is possible to give priority to the rotation speed control system, and active governor control is performed to suppress frequency fluctuations in the system. It is also possible to do this. The load limit signal 36 is added for the purpose of preventing the control valve from being excessively operated in the opening direction even when an excessive frequency drop occurs during synchronous parallel operation. As described above, according to the present invention, the steam pressure is kept stable by controlling the control valve of the steam turbine during operation, and the steam turbine itself is also operated when the frequency decreases due to overspeed such as load cutoff or system failure. A combined power generation plant that prevents sudden increases in output and can operate stably and safely even when the steam turbine load fluctuates can be obtained. 4. Brief explanation of the drawings Figure 1 shows a combined power generation plant. FIG. 2 is a conventional control block diagram of the steam system in the combined power generation plant, and FIG. 3 is a control block diagram according to an embodiment of the present invention. 1...Compressor, 2...Gas turbine, 3...
・Generator, 4A steam turbine, 5...Exhaust heat recovery boiler, 6...Condenser, 7...Water pump, 8...Combustion spring 9...Combustion adjustment valve, 10... - Adjustment valve, 11...Bypass valve, 21...Actual steam pressure value, 22...Steam pressure set value, 23...Difference calculator, 24...Pressure deviation, 25...Bypass valve 11 Sekkei (G1), 26
, 29... Bypass valve operation signal, 27... Adjustment valve operation signal, 28... Deviation calculator, 30... Rotation speed setting value, 31... Rotation speed signal, 32... Deviation calculation vessel,
33... Rotation speed deviation signal, 34... Rotation speed controller r
Gg), 35... Regulating valve control signal due to rotation speed deviation,
36...Load limit number, 37...Low value priority device. (7317) Agent Patent Attorney Kensuke Norichika 1st
figure

Claims (2)

【特許請求の範囲】[Claims] (1)  ガスタービンと蒸気タービンの軸が結合され
た一軸製複合発電デラントにおいて、排熱回収−イラで
発生した蒸気を蒸気タービンの加減弁によって圧力制御
することによシ、負荷によって変化し易い排熱回収Iイ
ラの発生蒸気圧を一足に保ち、蒸気タービンに安定した
蒸気を流入させ、部分負荷においても安全な運転を可能
としたことを特徴とする一軸m複合発電fラント。
(1) In a single-shaft combined power generation system in which the shafts of a gas turbine and a steam turbine are combined, exhaust heat recovery is achieved by controlling the pressure of the steam generated by the steam turbine with the control valve of the steam turbine, which easily changes depending on the load. A single-shaft combined cycle power generator characterized by maintaining the steam pressure generated by the exhaust heat recovery I-ra at a constant level, allowing stable steam to flow into the steam turbine, and enabling safe operation even under partial load.
(2)  特許請求の範囲第1項記載において、前記加
減弁!蒸気圧力偏差信号、回転数偏差信号、負荷制限信
号の3者の信号のうち最少の信号によシ制御することt
特徴とする一軸型複合発電ゾランF。
(2) In the scope of claim 1, the control valve! Control should be performed using the minimum signal among the three signals: steam pressure deviation signal, rotation speed deviation signal, and load limit signal.
Features of the single-shaft combined power generation ZORAN F.
JP13432681A 1981-08-28 1981-08-28 Uniaxial type composite generating plant Pending JPS5838309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13432681A JPS5838309A (en) 1981-08-28 1981-08-28 Uniaxial type composite generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13432681A JPS5838309A (en) 1981-08-28 1981-08-28 Uniaxial type composite generating plant

Publications (1)

Publication Number Publication Date
JPS5838309A true JPS5838309A (en) 1983-03-05

Family

ID=15125702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13432681A Pending JPS5838309A (en) 1981-08-28 1981-08-28 Uniaxial type composite generating plant

Country Status (1)

Country Link
JP (1) JPS5838309A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151438A (en) * 1976-05-13 1977-12-15 Gen Electric Compound cycle steam turbine and gas turbine power plant
JPS5395402A (en) * 1977-01-31 1978-08-21 Toshiba Corp Pressure controller for atomic turbine
JPS55114822A (en) * 1979-02-26 1980-09-04 Hitachi Ltd Initial pressure control changeover system in combined- cycle plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151438A (en) * 1976-05-13 1977-12-15 Gen Electric Compound cycle steam turbine and gas turbine power plant
JPS5395402A (en) * 1977-01-31 1978-08-21 Toshiba Corp Pressure controller for atomic turbine
JPS55114822A (en) * 1979-02-26 1980-09-04 Hitachi Ltd Initial pressure control changeover system in combined- cycle plant

Similar Documents

Publication Publication Date Title
JP3658415B2 (en) Gas turbine equipment
EP0083109B1 (en) Combined plant having steam turbine and gas turbine connected by single shaft
KR890001172B1 (en) Hrsg damper control
EP0615060A1 (en) Control methods and valve arrangement for start-up and shut down or presssurized combustion and gasification systems integrated with a gas turbine
JPS6118649B2 (en)
US4274256A (en) Turbine power plant with back pressure turbine
JP2000161014A (en) Combined power generator facility
GB2166226A (en) Apparatus and method for fluidly connecting a boiler into a pressurized steam feed line and combined-cycle steam generator power plant embodying the same
US4362013A (en) Method for operating a combined plant
US5388411A (en) Method of controlling seal steam source in a combined steam and gas turbine system
JP2013076388A (en) Uniaxial combined cycle power generation plant and method for operating the same
US4145995A (en) Method of operating a power plant and apparatus therefor
JPS60542B2 (en) Fuel viscosity compensation gas turbine fuel control device
JPS5838309A (en) Uniaxial type composite generating plant
JP2000297608A (en) Control device for feed water pump of power station
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JPH0932512A (en) Steam supply device of steam turbine gland seal
JPS63192919A (en) Control device for coal gasification combined plant
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JP2774665B2 (en) Combined cycle power plant and its overspeed prevention method and apparatus
JPS6239657B2 (en)
JPS63230911A (en) Control device for combined cycle power plant
JPS58107805A (en) Control of turbine for combined cycle power generation
JPH0539901A (en) Method and device for automatically controlling boiler
JPS59176423A (en) Gas turbine plant system