JPS58107805A - Control of turbine for combined cycle power generation - Google Patents

Control of turbine for combined cycle power generation

Info

Publication number
JPS58107805A
JPS58107805A JP20752481A JP20752481A JPS58107805A JP S58107805 A JPS58107805 A JP S58107805A JP 20752481 A JP20752481 A JP 20752481A JP 20752481 A JP20752481 A JP 20752481A JP S58107805 A JPS58107805 A JP S58107805A
Authority
JP
Japan
Prior art keywords
turbine
steam
temperature
gas
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20752481A
Other languages
Japanese (ja)
Inventor
Kenji Takahara
高原 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP20752481A priority Critical patent/JPS58107805A/en
Publication of JPS58107805A publication Critical patent/JPS58107805A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To improve the controllability of the steam temperature at the outlet of a steam turbine by detecting the abnormal rise of the temperature described above and correcting a set value of the temperature of the gas-turbine exhaust by means of the correction signal thereby generated. CONSTITUTION:A power generation system by a combined cycle consists of a cycle in which fuel and the air whose flow-rate is controlled by the inlet variable stationary blade 1 of a compressor 2 are combusted in a combustor 3 and a gas turbine 5 is driven by said combustion gas and a cycle in which the supplied boiler water is heated by the gas-turbine exhaust and a steam turbine 8 is driven by the steam thus generated. In this case, if the steam temperature TS at the inlet of the steam turbine exceeds a set value and further exceeds a dangerous temperature TSE, each prescribed signal is applied into an adder 25 through filters 22 and 24. A correction signal TMO is generated in the adder 25, and the opening of the stationary blade 1 described above is controlled by correcting the set value TEO of the gas turbine exhaust temperature through a calculator 26 by using said signal TMO.

Description

【発明の詳細な説明】 発明の技術分野 本発明はコンバインドサイクル発電用タービンの制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a control device for a combined cycle power generation turbine.

発明の技術的背景 第1図にコンバインドサイクルによる発電システムを示
す。図示のものは一軸型コンバインドサイクルの一例で
あり、圧縮機2、ガスタービン5、発電機7、蒸気ター
ビン8が一軸に結合されている。捷ず、圧縮機入口可変
静翼1で流量制御された空気は、圧縮機2により高圧に
圧縮される。この圧縮空気は、燃料制御弁4によって流
量制御された燃料と混合され、燃料の燃焼により高温高
圧のガスが形成される。この高温高圧のガスはガスター
ビン5を駆動した後、排熱回収ボイラ6に入(2) リ、後述するボイラ給水との間で熱交換した後、′  
 低温となって大気へ放出される。一方、排熱回収ボイ
ラ6に供給されるボイラ給水は、ガスタービン排気ガス
から熱を吸収して過熱蒸気となり、主蒸気止め弁9、蒸
気加減弁10を通って蒸気タービン8に導かれ、蒸気タ
ービン8を駆動した後、復水器11で凝縮して水になり
、復水ポンプ12で再び排熱回収ボイラ6に供給される
。ガスタービン5および蒸気タービン8により駆動され
る発電機7は、ガスタービン5および蒸気タービン8の
出力の合計に相当する出力を発生する。
Technical Background of the Invention Figure 1 shows a combined cycle power generation system. The illustrated one is an example of a single-shaft combined cycle, in which a compressor 2, a gas turbine 5, a generator 7, and a steam turbine 8 are connected to one shaft. The air whose flow rate is controlled by the compressor inlet variable stator blade 1 without being separated is compressed to high pressure by the compressor 2. This compressed air is mixed with fuel whose flow rate is controlled by the fuel control valve 4, and high-temperature, high-pressure gas is formed by combustion of the fuel. After driving the gas turbine 5, this high-temperature, high-pressure gas enters the exhaust heat recovery boiler 6 (2), and after exchanging heat with the boiler feed water (described later),
It cools down and is released into the atmosphere. On the other hand, the boiler feed water supplied to the exhaust heat recovery boiler 6 absorbs heat from the gas turbine exhaust gas and becomes superheated steam, which is led to the steam turbine 8 through the main steam stop valve 9 and the steam control valve 10, and is then led to the steam turbine 8, where it is introduced into steam. After driving the turbine 8, the water is condensed into water in the condenser 11, and is supplied to the exhaust heat recovery boiler 6 again by the condensate pump 12. The generator 7 driven by the gas turbine 5 and the steam turbine 8 generates an output corresponding to the sum of the outputs of the gas turbine 5 and the steam turbine 8.

このよう々コン′バイン′ドサイクル発電システムの系
統への併入後の通常運転時には、発電機の負荷が変動し
た場合、圧縮機の入口可変靜lL1の開度を変え、空気
tを燃料消費量に合うように調節することによって最適
の燃焼状態を得、ガスタービン排ガス温度が常に最も高
いある一定の温度になるように制御を行なっている。こ
れは排ガス温度が高いほど排熱回収ボイラ6での熱交換
の効率が良好となり、従ってプラント全体の熱効率が高
(3) くなるからである− 次に、第2図を参照して、圧縮機入口可変静翼の従来の
制御方法を説明する。まずタービン起動時でタービン回
転数が最小回転数(定格回転数の約90チ)以下の場合
は、圧縮機の圧力脈動を防止するため、設定信号発生器
13は一定の値を持つ入口可変静翼開度信号り。8択し
て設定信号λとして出力する。一方フイードバック信号
発生器】5は実際の入口可静翼の開度LXを選択してこ
れをフィードバック信号μとして出力する。設定信号λ
として与えられた入口可変静翼開度信号り。とフィード
バック信号μとして与えられた実際の入口可変静翼の開
度LXとは比較器16で比較され、両者の偏差信号δが
入口可変静翼のサーボモータ14に送られる。サーボモ
ータ14はこの偏差信号が零になると動きを停止する。
In this way, during normal operation after the combined cycle power generation system is added to the system, if the load on the generator fluctuates, the opening of the variable inlet valve L1 of the compressor is changed to convert air t into fuel consumption. Optimum combustion conditions are obtained by adjusting the amount to match the amount, and control is performed so that the gas turbine exhaust gas temperature is always at the highest constant temperature. This is because the higher the exhaust gas temperature, the better the efficiency of heat exchange in the waste heat recovery boiler 6, and therefore the higher the thermal efficiency of the entire plant (3). A conventional control method for variable inlet stator vanes will be explained. First, when the turbine is started and the turbine rotation speed is below the minimum rotation speed (approximately 90 degrees of the rated rotation speed), the setting signal generator 13 is activated to prevent pressure pulsations in the compressor. Wing opening signal. 8 are selected and output as a setting signal λ. On the other hand, the feedback signal generator 5 selects the actual opening LX of the inlet movable vane and outputs it as a feedback signal μ. Setting signal λ
The inlet variable stator blade opening signal given as and the actual opening LX of the variable inlet stator vane given as the feedback signal μ are compared by a comparator 16, and a deviation signal δ between the two is sent to the servo motor 14 of the variable inlet stator vane. The servo motor 14 stops moving when this deviation signal becomes zero.

このようにして入口可変静翼の開度は一定値し。に保た
れる。この間は、ガスタービン排気ガス設定信号t。と
実際のガスタービン排気ガス温度T。Xとの比較に基く
ガスタービンの排気ガス温度の制御は行なわれておらず
(4) 排気ガス温度はタービン回転数の上昇とともに上昇する
In this way, the opening degree of the inlet variable stator vane is kept at a constant value. is maintained. During this time, the gas turbine exhaust gas setting signal t. and the actual gas turbine exhaust gas temperature T. The exhaust gas temperature of the gas turbine is not controlled based on comparison with X (4) The exhaust gas temperature increases as the turbine rotation speed increases.

タービン回転数が最小回転数に達し、ガスタービン排気
温度がある一定の値T0゜に達すると、設定信号発生器
13は入口可変静翼開度設定信号り。の代りにガスター
ビン排気温度設定信号LF、。′(+−選択してこれを
設定信号として出力する。一方、フィードバック信号発
生器15は入口可変静翼開度信号LXに代りにガスター
ビン排気温度TExを選択し7てフィードバック信号μ
として出力する。この結果、設定信号λとして与えられ
た排気温度設定信号T。0とフィードバック信号μとし
て与えられた実際の排気温度TExとの偏差信号δが入
口可変静翼のサーボモータ14に送られ、サーボモータ
14はこの偏差信号が零となる位置で停止する。このよ
うに、ガスタービン排気温度T。Xが設定値T。0と等
しくなるように入口可変静翼の開度が制御される。即ち
タービン回転数が最小回転数以上で・部分負荷の場合に
は、入口可変静翼はガスタービン排気温度を一定するよ
うに働いている。尚圧縮機の吐出圧力peaは入口可変
静翼の開度補正を行なうために使用されている。
When the turbine rotational speed reaches the minimum rotational speed and the gas turbine exhaust temperature reaches a certain value T0°, the setting signal generator 13 generates an inlet variable stator blade opening setting signal. Gas turbine exhaust temperature setting signal LF, instead of . '(+-) and outputs it as a setting signal. On the other hand, the feedback signal generator 15 selects the gas turbine exhaust temperature TEx instead of the inlet variable stator blade opening signal LX, and outputs the feedback signal μ.
Output as . As a result, the exhaust temperature setting signal T is given as the setting signal λ. A deviation signal δ between 0 and the actual exhaust gas temperature TEx given as the feedback signal μ is sent to the servo motor 14 of the inlet variable stator vane, and the servo motor 14 stops at the position where this deviation signal becomes zero. Thus, the gas turbine exhaust temperature T. X is the set value T. The opening degree of the inlet variable stator vane is controlled to be equal to 0. That is, when the turbine rotational speed is higher than the minimum rotational speed and there is a partial load, the variable inlet stationary vanes work to keep the gas turbine exhaust temperature constant. Note that the discharge pressure pea of the compressor is used to correct the opening degree of the variable inlet stator vanes.

背景技術の問題点 以上のようにして圧縮機の入口可変静翼の開度調整によ
るガスタービン排気温度の制御がなされるが、蒸気ター
ビンのサイクルでは、通常運転時には主蒸気止め弁9お
よび蒸気加減弁10が全開状態にあり、発電機の負荷変
動が生じたとき、排熱回収ボイラへの給水流量を発生蒸
気量とバランスする量に再調整1/、ドラム水位を一定
に制御するものの、タービンの入口蒸気圧力および温度
が直接制御されない。従って、排熱回収ボイラへの給水
量制御(又はドラム水位制御)の遅れあるいは異常によ
り蒸気タービン入口温度が過度に上昇した場合、効果的
にタービン入口蒸気温度を下げることができず、蒸気タ
ービンを危険立状態に到らせるおそれがあった。
Problems with the Background Art As described above, the gas turbine exhaust temperature is controlled by adjusting the opening of the variable inlet stator vanes of the compressor, but in the steam turbine cycle, during normal operation, the main steam stop valve 9 and the steam control When the valve 10 is fully open and the generator load fluctuates, the water flow rate to the waste heat recovery boiler is readjusted to an amount that balances the amount of steam generated. The inlet steam pressure and temperature are not directly controlled. Therefore, if the steam turbine inlet temperature rises excessively due to a delay or abnormality in water supply control (or drum water level control) to the waste heat recovery boiler, the turbine inlet steam temperature cannot be effectively lowered, and the steam turbine There was a risk that this could lead to a dangerous situation.

発明の目的 本発明の目的は、蒸気タービンの入口蒸気温度を効果的
に制御することができるコンパインドサイクル発電プラ
ントの制御方法を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for controlling a combined cycle power plant that can effectively control the inlet steam temperature of a steam turbine.

発明の概要 本発明の制御方法においては、圧縮機の入口可変静翼の
開度設定信号として、ガスタービンの排気ガス温度と蒸
気タービンの入口蒸気温度とに基いて定めたものを用い
ることにより、蒸気タービンの入口蒸気温度が急激に上
昇した場合あるいは異常に高くなった場合に圧縮機の入
口可変静翼の開fe上げることにより、上記温度の急激
な上昇等を抑制するようにしたものである。
Summary of the Invention In the control method of the present invention, by using a signal determined based on the exhaust gas temperature of the gas turbine and the inlet steam temperature of the steam turbine as the opening degree setting signal of the variable inlet stator blade of the compressor, When the steam temperature at the inlet of the steam turbine suddenly rises or becomes abnormally high, the aperture of the compressor's inlet variable stator vanes is increased to suppress the sudden rise in temperature. .

発明の実施例 第3図は本発明に係る制御方法の実施に用いられる装置
を示したものである。同図において、蒸気タービン入口
蒸気温度T8は微分器2]で微分され、フィルター22
を通される。蒸気タービン入口蒸気温度Tsはまた演算
器Z4に与えられ、危険獣THEとの差に比例した信号
が出力としてフィルター24を通される。フィルター2
2.24はそれぞれ入力が負の場合、即ちTsの上昇率
がある値以下の(7) 場合+TSがTSE以Fの場合にはその出力信号を零と
する。フィルター22.24の出力は加算器部で加算さ
れる。加算器部の出力は修正信号TMoとして演j42
6に与えられる。演算器26は、ガスタービン排気温度
設定値TF、oを修正信号TMoで修正して(例えばK
を定数とするとき、TSo ” TEo −KTM。
Embodiment of the Invention FIG. 3 shows an apparatus used to implement the control method according to the invention. In the same figure, the steam turbine inlet steam temperature T8 is differentiated by a differentiator 2], and a filter 22
will be passed through. The steam turbine inlet steam temperature Ts is also given to a calculator Z4, and a signal proportional to the difference from the dangerous animal THE is passed through a filter 24 as an output. filter 2
In 2.24, when the input is negative, that is, when the rate of increase of Ts is below a certain value (7), when +TS is less than TSE, the output signal is zero. The outputs of filters 22, 24 are summed in an adder section. The output of the adder section is operated as a correction signal TMo.
given to 6. The calculator 26 corrects the gas turbine exhaust temperature set value TF,o using a correction signal TMo (for example, K
When is a constant, TSo ” TEo −KTM.

なる演算を行なって)TF、。よりも小さい設定信号T
8oを発生する。設定信号TSoは、第2図の設定信号
発生器13に、TEoの代りに与えられる。その結果、
TEoの代りにTsoを用い、上記と同様に入口可変静
翼の開度調整が行なわれる。
) TF. Setting signal T smaller than
Generates 8o. Setting signal TSo is provided to setting signal generator 13 in FIG. 2 instead of TEo. the result,
Using Tso instead of TEo, the opening degree of the inlet variable stator vane is adjusted in the same manner as above.

蒸気タービン入口蒸気温度T8の上昇率が所定値以下で
またTsが危険温度TSE以下であれば、加算器部の出
力TMoは零であり、設定信号TSo”E。
If the rate of increase of the steam turbine inlet steam temperature T8 is below a predetermined value and Ts is below the critical temperature TSE, the output TMo of the adder section is zero, and the setting signal TSo''E.

と等しいものとなり、これが設定信号発生器13に供給
され、上記した従来の場合と同様にして、ガスタービン
排気温度設定値咥。による入口可変静翼14の開度が調
整される。蒸気タービン入口蒸気温度T8の上昇率が所
定値を超えると、これに応じた信号がフィルタnを通り
加算器かに与えられる。
This is supplied to the set signal generator 13 to determine the gas turbine exhaust temperature set point in the same manner as in the conventional case described above. The opening degree of the inlet variable stator blade 14 is adjusted. When the rate of increase in the steam turbine inlet steam temperature T8 exceeds a predetermined value, a corresponding signal is passed through a filter n and given to an adder.

(8) ま7’cT8がTSEよりも大きくなると、(Ts−T
sE)に比例した信号がフィルター24 を通り加算器
5に与えられる。フィルター22.24の少くとも一方
から出力が加算器部に与えられると、加算器5から修正
信号T4oが発生され演算器26に与えられる。
(8) When 7'cT8 becomes larger than TSE, (Ts-T
A signal proportional to sE) passes through a filter 24 and is applied to an adder 5. When the output from at least one of the filters 22 and 24 is applied to the adder section, a correction signal T4o is generated from the adder 5 and is applied to the arithmetic unit 26.

この結果、演算器部はTEoをTlvloに基いて修正
した値′f、T8゜とじて出力する。この結果、修正信
号は入口可変静翼を開度を増加するように作用し、蒸気
タービン入口蒸気温度の温度を低下させ、または急激な
上昇を抑制する。
As a result, the arithmetic unit outputs TEo as a modified value 'f, T8° based on Tlvlo. As a result, the correction signal acts to increase the opening degree of the inlet variable stator vane, thereby reducing the temperature of the steam turbine inlet steam temperature or suppressing a sudden rise in the temperature.

発明の効果 以上のように本発明によれば、従来直接制御されていな
かった蒸気タービンの入口蒸気温度を圧縮機の入口可変
静翼の開度調整により制御することがでへ、蒸気タービ
ン入口蒸気温度の制御性が良好になり、蒸気タービンを
異常な高温にさらすおそれがなくなり、安全性が向上す
る。
Effects of the Invention As described above, according to the present invention, the steam temperature at the inlet of the steam turbine, which has not been directly controlled in the past, can be controlled by adjusting the opening of the variable stator vanes at the inlet of the compressor. Temperature control becomes better, there is no risk of exposing the steam turbine to abnormally high temperatures, and safety is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコンバインドサイクル発電システムを示す系統
図、第2図は従来の制御方法の実施に用いられる装置を
示すブロック図、第3図は本発明に係る制御方法の実施
に用いられる装置の一部を示すブロック図である。 1・・・圧縮機入口可変静翼、2・・・圧縮機、3・・
・燃焼器、4・・・燃料制御弁、5・・・ガスタービン
、6・・・排熱回収ボイラ、7・・・発電機、8・・・
蒸気タービン、9・・・主蒸気止め弁、10・・・蒸気
加減弁、11・・・複水器、12・・・復水ポンプ、1
3・・・設定信号発生器、14・・・入口可変静翼サー
ボモータ、15・・・フィードバック信号発生器、21
・・・微分器、22.24・・・フィルター、23゜2
6・・・演算器、25・・・加算器。
Fig. 1 is a system diagram showing a combined cycle power generation system, Fig. 2 is a block diagram showing equipment used to implement the conventional control method, and Fig. 3 is an example of equipment used to implement the control method according to the present invention. FIG. 1... Compressor inlet variable stator vane, 2... Compressor, 3...
- Combustor, 4... Fuel control valve, 5... Gas turbine, 6... Exhaust heat recovery boiler, 7... Generator, 8...
Steam turbine, 9... Main steam stop valve, 10... Steam control valve, 11... Double water device, 12... Condensate pump, 1
3... Setting signal generator, 14... Inlet variable stator vane servo motor, 15... Feedback signal generator, 21
...Differentiator, 22.24...Filter, 23゜2
6... Arithmetic unit, 25... Adder.

Claims (1)

【特許請求の範囲】 1、圧縮機の入口可変静翼で流量制御された空気と燃料
とを混合して燃焼させ、燃焼ガスでガスタービンを駆動
するガスタービンサイクルと、ガスタービン排気でボイ
ラ給水を加熱して形成した蒸気で蒸気タービンを駆動す
る蒸気タービンサイクルとを備えたコンバインドサイク
ル発電用タービンの制御方法において、蒸気タービン入
口蒸気温度が急激に上昇したときまたは過度に高くなっ
たときに修正信号を発生し、該修正信号によりガスター
ビン排気温度の設定値を修正して形成された設定信号と
実際のガスタービン排気温度を示す信号との偏差が零に
なるように前記入口可変静翼の開度を調整することを特
徴とするコンバインドサイクル発電用タービンの制御方
法。 (1)                   リ12
、前記修正信号による修正は、修正信号の増加に伴って
前記入口可変静翼の開度が増加するようになされること
を特徴とする特許請求の範囲第1項記載の制御方法。
[Claims] 1. A gas turbine cycle in which air and fuel whose flow rate is controlled by variable inlet stator blades of a compressor are mixed and combusted, and the combustion gas drives a gas turbine, and the gas turbine exhaust gas is used to supply boiler water. In the control method for a combined cycle power generation turbine equipped with a steam turbine cycle in which the steam turbine is driven by the steam formed by heating the the variable inlet stator vane so that the deviation between the set signal generated by correcting the set value of the gas turbine exhaust temperature using the corrected signal and the signal indicating the actual gas turbine exhaust temperature becomes zero. A method for controlling a combined cycle power generation turbine, the method comprising adjusting the opening degree. (1) Ri12
2. The control method according to claim 1, wherein the correction by the correction signal is performed such that the opening degree of the inlet variable stator vane increases as the correction signal increases.
JP20752481A 1981-12-22 1981-12-22 Control of turbine for combined cycle power generation Pending JPS58107805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20752481A JPS58107805A (en) 1981-12-22 1981-12-22 Control of turbine for combined cycle power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20752481A JPS58107805A (en) 1981-12-22 1981-12-22 Control of turbine for combined cycle power generation

Publications (1)

Publication Number Publication Date
JPS58107805A true JPS58107805A (en) 1983-06-27

Family

ID=16541139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20752481A Pending JPS58107805A (en) 1981-12-22 1981-12-22 Control of turbine for combined cycle power generation

Country Status (1)

Country Link
JP (1) JPS58107805A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162907A (en) * 1986-12-26 1988-07-06 Hitachi Ltd Control for combined power generation plant
JPS6466405A (en) * 1987-09-07 1989-03-13 Hitachi Ltd Control method and controller of integrated electric power plant
JPH01117903A (en) * 1987-08-24 1989-05-10 Asea Brown Boveri Ag Output regulator for combined gas-steam turbine-generating set
JPH01285608A (en) * 1988-05-11 1989-11-16 Hitachi Ltd Method and device of operating combined plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162907A (en) * 1986-12-26 1988-07-06 Hitachi Ltd Control for combined power generation plant
JPH01117903A (en) * 1987-08-24 1989-05-10 Asea Brown Boveri Ag Output regulator for combined gas-steam turbine-generating set
JPS6466405A (en) * 1987-09-07 1989-03-13 Hitachi Ltd Control method and controller of integrated electric power plant
JPH01285608A (en) * 1988-05-11 1989-11-16 Hitachi Ltd Method and device of operating combined plant

Similar Documents

Publication Publication Date Title
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
EP1063402B1 (en) Method for operating an industrial gas turbine with optimal performance
JPS6118649B2 (en)
US4550565A (en) Gas turbine control systems
EP0908603B1 (en) Single shaft combined cycle plant
CS199691A3 (en) Process and system for detecting and controlling of a combined turbine unit excessive speed
WO2014050163A1 (en) Method for controlling gas turbine cooling system, control device for executing this method, and gas turbine facility equipped with same
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
JPS58107805A (en) Control of turbine for combined cycle power generation
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JP2002106305A (en) Starting controller of combined cycle power generation plant
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JPS6246681B2 (en)
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPS6239658B2 (en)
JP2692978B2 (en) Start-up operation method of combined cycle plant
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JP2003254011A (en) Operating method for multi-shaft type combined cycle power generating plant
JPS5845566B2 (en) combined cycle power plant
JP2645128B2 (en) Coal gasification power plant control unit
JPS6239657B2 (en)