JP2918743B2 - Steam cycle controller - Google Patents

Steam cycle controller

Info

Publication number
JP2918743B2
JP2918743B2 JP4104148A JP10414892A JP2918743B2 JP 2918743 B2 JP2918743 B2 JP 2918743B2 JP 4104148 A JP4104148 A JP 4104148A JP 10414892 A JP10414892 A JP 10414892A JP 2918743 B2 JP2918743 B2 JP 2918743B2
Authority
JP
Japan
Prior art keywords
steam
pressure
control valve
turbine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4104148A
Other languages
Japanese (ja)
Other versions
JPH05296402A (en
Inventor
史郎 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4104148A priority Critical patent/JP2918743B2/en
Publication of JPH05296402A publication Critical patent/JPH05296402A/en
Application granted granted Critical
Publication of JP2918743B2 publication Critical patent/JP2918743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はガスタービンと蒸気ター
ビンとを組み合わせた複合発電プラントに適用される蒸
気サイクル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam cycle control device applied to a combined power plant combining a gas turbine and a steam turbine.

【0002】[0002]

【従来の技術】エネルギー資源の有効利用と経済性の観
点から、発電プラントでは様々な高効率化が進められて
いる。複合発電プラントもそのひとつであり、火力発電
プラントの中心としての役割を担いつつある。
2. Description of the Related Art From the viewpoint of effective use of energy resources and economic efficiency, various high-efficiency power generation plants are being promoted. Combined cycle power plants are one of them, and are playing a central role in thermal power plants.

【0003】図4は、複合発電プラントの構成の一例を
示す構成図であって、この発電プラントはガスタービン
1、HRSG2、蒸気タービン3、発電機4より構成さ
れている。これはガスタービン1で発電を行うだけでな
くその燃焼排ガスをHRSG2に導き、HRSG2で熱
回収することにより蒸気を発生させ、蒸気タービン3を
駆動し発電機4により発電を行う複合発電プラントであ
る。ガスタービン1では燃焼用空気を加圧し燃料を燃焼
しガスタービンを回し仕事をする。こののち高温の燃焼
排ガスはHRSG2に導かれる。
FIG. 4 is a configuration diagram showing an example of the configuration of a combined cycle power plant. This power plant includes a gas turbine 1, an HRSG 2, a steam turbine 3, and a generator 4. This is a combined power plant that not only generates power with the gas turbine 1 but also guides the combustion exhaust gas to the HRSG 2, generates steam by recovering heat with the HRSG 2, drives the steam turbine 3, and generates power with the generator 4. . In the gas turbine 1, the combustion air is pressurized to burn fuel, and the gas turbine is turned to perform work. Thereafter, the high temperature combustion exhaust gas is led to HRSG2.

【0004】HRSG2は、例えば高圧過熱器5、再熱
器6、高圧蒸発器7、高圧蒸気ドラム16、高圧節炭器
8、低圧過熱器9、低圧蒸発器10、低圧蒸気ドラム17、
低圧節炭器11等を有し、これらの熱交換器においてガス
タービン排ガスとの熱交換を行い蒸気を発生させる。
The HRSG 2 comprises, for example, a high-pressure superheater 5, a reheater 6, a high-pressure evaporator 7, a high-pressure steam drum 16, a high-pressure economizer 8, a low-pressure superheater 9, a low-pressure evaporator 10, a low-pressure steam drum 17,
It has a low-pressure economizer 11 and the like. These heat exchangers exchange heat with gas turbine exhaust gas to generate steam.

【0005】高圧ドラム16で発生した蒸気は高圧過熱器
5に送られ、ここで過熱蒸気になり高圧蒸気タービン21
に送られ、高圧蒸気タービン21を駆動し発電機4にて発
電を行う。低圧ドラム17で発生した蒸気は低圧過熱器9
に送られここで低圧過熱蒸気になる。高圧蒸気タービン
出口蒸気は低圧過熱蒸気と混合され再熱器6に送られ再
熱された後、再熱蒸気タービン22に送られ発電機4にて
発電する。
[0005] The steam generated by the high-pressure drum 16 is sent to the high-pressure superheater 5, where it becomes superheated steam and becomes high-pressure steam turbine 21.
And drives the high-pressure steam turbine 21 to generate electricity with the generator 4. The steam generated by the low-pressure drum 17 is supplied to the low-pressure superheater 9
Where it becomes low-pressure superheated steam. The high-pressure steam turbine outlet steam is mixed with the low-pressure superheated steam, sent to the reheater 6 and reheated, sent to the reheat steam turbine 22 and generated by the power generator 4.

【0006】再熱蒸気タービン22で仕事をした蒸気は、
復水器12で凝縮された後、給水ポンプ13で加圧し、高圧
節炭器8と低圧節炭器11に給水される。低圧節炭器11で
は飽和温度近くまで過熱されたのち、低圧蒸気ドラム17
に送られる。低圧蒸気ドラム17では低圧蒸発器10に水を
供給し低圧蒸発器10ではガスタービン排ガスと熱交換を
行い、低圧蒸気を発生する。高圧節炭器8では飽和温度
近くまで過熱されたのち高圧蒸気ドラム16に送られる。
高圧蒸気ドラム16では高圧蒸発器7に水を供給し、高圧
蒸発器7ではガスタービン排ガスと熱交換を行い、高圧
蒸気を発生する。最近のガスタービンの性能向上により
ガスタービンの排ガス温度が上昇し、高温の排ガスをH
RSGで熱回収できるために発電効率が向上している。
The steam that has worked in the reheat steam turbine 22 is:
After being condensed in the condenser 12, the water is pumped by the water supply pump 13 and supplied to the high-pressure economizer 8 and the low-pressure economizer 11. In the low-pressure economizer 11, after being heated to near the saturation temperature, the low-pressure steam drum 17
Sent to The low-pressure steam drum 17 supplies water to the low-pressure evaporator 10, and the low-pressure evaporator 10 exchanges heat with the gas turbine exhaust gas to generate low-pressure steam. In the high-pressure economizer 8, the fuel is superheated to near the saturation temperature and then sent to the high-pressure steam drum 16.
The high-pressure steam drum 16 supplies water to the high-pressure evaporator 7, and the high-pressure evaporator 7 performs heat exchange with gas turbine exhaust gas to generate high-pressure steam. With the recent improvement of gas turbine performance, the exhaust gas temperature of the gas turbine has risen,
Since the heat can be recovered by the RSG, the power generation efficiency is improved.

【0007】図5により複合発電プラントの従来の蒸気
サイクル制御構成を説明する。ここでは低圧蒸気系につ
いて代表して説明するが、高圧蒸気側も同様である。蒸
気サイクル制御を加減弁制御とタービンバイパス制御と
に分けて説明する。
A conventional steam cycle control configuration of the combined cycle power plant will be described with reference to FIG. Here, the low-pressure steam system will be described as a representative, but the same applies to the high-pressure steam side. The steam cycle control will be described separately for control valve control and turbine bypass control.

【0008】加減弁制御では複合発電プラントの場合に
は定格条件では従来プラントのように絞り制御は行わず
全開運転するので、加減弁は次の加減弁開条件62{蒸気
条件(圧力,流量,温度)成立かつプラント条件成立か
つと起動条件成立}により加減弁15を一定の変化率で開
閉することになる。
In the case of a combined cycle power plant, in the case of a combined power generation plant, under the rated conditions, the throttle valve is not fully opened as in the conventional plant and the valve is fully opened. The temperature) is satisfied, the plant condition is satisfied, and the starting condition is satisfied, so that the control valve 15 opens and closes at a constant rate of change.

【0009】機器は、加減弁の全開全閉位置を設定する
加減弁全開設定器29、加減弁全閉設定器30、現在の設定
値との偏差演算を行う偏差演算器31、加減弁の開度変化
率制限を行うための加減弁全開変化率制限器32、加減弁
全閉変化率制限器33、弁の全開全閉を切り替える全開閉
切り替え器34、及びこれらの偏差信号から開度信号を算
出する開度積分器35から構成される。
[0009] The equipment includes a control valve full-open setting device 29 for setting the control valve fully open and fully closed position, a control valve full-close setting device 30, a deviation calculator 31 for calculating a deviation from the current set value, and a control valve open. The opening / closing switch 34 for switching the fully open / closed state of the valve, and the open / closed switch 34 for switching the fully open / closed state of the valve, and an opening signal from these deviation signals. It comprises an opening degree integrator 35 for calculation.

【0010】タービンバイパス制御においては、加減弁
入口圧力検出器26からの圧力信号にバイパスをかける設
定値バイアス演算器37、現在の設定値との偏差演算を行
う設定値偏差演算器38、設定値の変化率制限を行う設定
値変化率制限器39、この偏差信号から設定値を算出する
設定値積分器41、設定値の上下限制限を行う設定値上下
限制限器42、起動時の主蒸気圧力を設定する転送器43、
起動時圧力設定器44、加減弁一定開度に開くまで設定値
とする転送器45、設定値と加減弁前側圧力とを偏差演算
する偏差演算器46、この信号に比例積分微分する演算器
47、この制御信号に対して関数変換を行う関数演算器4
8、及び加減弁開度を検出し一定開度でオンする事によ
りタービンバイパス制御を主蒸気圧力にトラッキングさ
せる開度検出器36から構成される。これらの制御が起動
時どのように動くかを、再熱気側を代表に取り、図6に
より説明する。高圧側も同様である。
In the turbine bypass control, a set value bias calculator 37 for bypassing the pressure signal from the control valve inlet pressure detector 26, a set value deviation calculator 38 for calculating a deviation from a current set value, and a set value deviation calculator 38 The set value change rate limiter 39 for limiting the change rate of the set value, the set value integrator 41 for calculating the set value from the deviation signal, the set value upper / lower limiter 42 for limiting the set value upper and lower limits, the main steam at the time of startup Transmitter 43 for setting pressure,
A pressure setting device 44 at the time of start, a transfer device 45 which keeps a set value until the regulator valve is opened to a certain degree, a deviation calculator 46 which calculates a deviation between the set value and a pressure before the regulator valve, and a calculator which performs proportional integral differentiation with this signal.
47, function calculator 4 that performs function conversion on this control signal
8, and an opening detector 36 that detects the opening and closing of the control valve and turns on at a constant opening, thereby tracking the turbine bypass control to the main steam pressure. How these controls operate at startup will be described with reference to FIG. 6, taking the reheated air side as a representative. The same applies to the high pressure side.

【0011】ガスタービン側では回転数Nが起動時定格
回転数になるまで起動制御によりガスタービン1を昇速
し、定格回転数になると負荷制御に入る。排ガス流量Q
1および排ガス温度Tも上昇して行く。
On the gas turbine side, the speed of the gas turbine 1 is increased by start-up control until the rotation speed N reaches the rated rotation speed at startup, and when the rotation speed reaches the rated rotation speed, load control is started. Exhaust gas flow Q
1 and the exhaust gas temperature T also increase.

【0012】複合発電プラントの起動特性上、ガスター
ビン1は早く起動できるが、蒸気サイクル側はHRSG
2の熱容量による遅れや、ダクトおよび配管による伝達
遅れにより、起動が遅くなる。このため、ガスタービン
1と蒸気タービン3のマッチングをとるため、起動時は
蒸気タービン加減弁15とタービンバイパス弁19を操作す
る必要がある。
Due to the startup characteristics of the combined cycle power plant, the gas turbine 1 can be started up quickly, but the HRSG on the steam cycle side
The startup is delayed due to the delay due to the heat capacity of No. 2 and the transmission delay by the duct and the piping. Therefore, in order to match the gas turbine 1 and the steam turbine 3, it is necessary to operate the steam turbine control valve 15 and the turbine bypass valve 19 at the time of startup.

【0013】起動時は、起動条件成立によりシングルシ
ョット61がオンになり、転送器43によりこのときの主蒸
気圧力を送り、圧力設定値をとして設定演算器にて保持
する。また加減弁15が開いていないので開度検出器はオ
ンとなり、転送器45が働いて起動時はこの値を圧力設定
値とする。ガスタービン1の排ガスから入熱により、蒸
気発生および圧力上昇がはじまる。主蒸気圧力P1がこ
の圧力設定値に到達していないので偏差演算器46および
比例積分微分器47での演算した制御出力は負となり、タ
ービンバイパス弁は全閉のまま、圧力はガスタービン1
からの入熱に従い上昇する。
At the time of startup, the single shot 61 is turned on when the startup conditions are satisfied, and the main steam pressure at this time is sent by the transmitter 43, and the set pressure value is held by the setting calculator. Also, since the control valve 15 is not open, the opening detector is turned on, and when the transmitter 45 operates and starts up, this value is used as the pressure set value. Due to the heat input from the exhaust gas of the gas turbine 1, steam generation and pressure rise start. Since the main steam pressure P1 has not reached this pressure set value, the control output calculated by the deviation calculator 46 and the proportional integral differentiator 47 becomes negative, the turbine bypass valve remains fully closed, and the pressure becomes
Rises according to the heat input from

【0014】高圧主蒸気圧力P1がこの圧力設定値にな
ると、高圧タービンバイパス圧力制御において、偏差演
算器46および比例積分微分器47での演算した制御出力は
正となりタービンバイパス弁19を開き、圧力を設定値に
保持する。蒸気圧力,温度,流量が増加し加減弁開条件
62が成立すると切り替え器34が加減弁全開設定器29側に
なり加減弁15を変化率制限器32で決まる一定の変化率で
開きはじめ、蒸気タービン側へ蒸気を流し始める。加減
弁15が開くと開度スイッチ36が働き、トラッキング回路
側37−39に切り替えられる。トラッキング回路ではこの
時の加減弁入口圧力をとりこみ、バイアス演算器37によ
りバイアスをかけ、圧力設定値の変化率制限を行うた
め、設定値と主蒸気圧力の偏差演算を行う偏差演算器38
と上下限制限器39とこの偏差信号を設定信号とする積分
器41により圧力設定値となる。このようにして、主蒸気
圧力設定値を主蒸気圧力にトラッキングさせ、徐々に定
格の圧力まで上昇させる。
When the high-pressure main steam pressure P1 reaches this pressure set value, in the high-pressure turbine bypass pressure control, the control outputs calculated by the deviation calculator 46 and the proportional-integral differentiator 47 become positive, and the turbine bypass valve 19 is opened, and the pressure is increased. Is kept at the set value. Steam pressure, temperature, and flow rate increase and control valve open condition
When the condition 62 is established, the switching device 34 is set to the control valve full-open setting device 29 side, and the control valve 15 starts to open at a constant rate of change determined by the change rate limiter 32, and starts to flow steam to the steam turbine side. When the control valve 15 is opened, the opening switch 36 is activated, and is switched to the tracking circuit side 37-39. The tracking circuit takes in the control valve inlet pressure at this time, applies a bias by the bias calculator 37, and limits the rate of change of the pressure set value. Therefore, a deviation calculator 38 for calculating a deviation between the set value and the main steam pressure.
And the upper and lower limiter 39 and the integrator 41 that uses the deviation signal as a setting signal to obtain a pressure set value. In this way, the main steam pressure set value is tracked to the main steam pressure, and is gradually increased to the rated pressure.

【0015】ここで、図6中、Tは排ガス温度、Nはガ
スタービン回転数、Qgは排ガス流量、θ1は高圧加減
弁開度、P1は高圧主蒸気圧力、H1は高圧ドラム水
位、Q1は高圧バイパス流量、θ2は再熱蒸気加減弁開
度、H2は低圧ドラム水位、P2は低圧主蒸気圧力、P
3は再熱主蒸気圧力、Q2は再熱タービンバイパス流量
である。
In FIG. 6, T is the exhaust gas temperature, N is the gas turbine speed, Qg is the exhaust gas flow rate, θ1 is the high-pressure control valve opening, P1 is the high-pressure main steam pressure, H1 is the high-pressure drum water level, and Q1 is the high-pressure drum water level. High-pressure bypass flow rate, θ2 is the reheat steam control valve opening, H2 is the low-pressure drum water level, P2 is the low-pressure main steam pressure, P
3 is the reheat main steam pressure, and Q2 is the reheat turbine bypass flow rate.

【0016】[0016]

【発明が解決しようとする課題】しかして、加減弁とタ
ービンバイパス弁の制御の協調がうまく取れていないた
め次の不具合があった。
However, since the control of the control valve and the control of the turbine bypass valve are not properly coordinated, the following problems have been encountered.

【0017】加減弁15がタービンバイパス蒸気条件で開
き始めるときに、加減弁15の前後差圧が大きいため、加
減弁15を微少開しても、多量に蒸気が流入しドラム17の
水位が急変動する。特に起動時の場合は加減弁15差圧が
大きく蒸気流入量が大きいため、ドラム17の水位が急上
昇し最悪の場合は液滴が湿分分離されないままドラム17
から流出し、蒸気タービン22を損傷する可能性がある。
高圧蒸気側も同様であるが特に再熱側蒸気圧力は高圧側
蒸気圧力に依存するため、差圧が大きくなり、この影響
が大きくなる。特に複合発電プラントは単機容量が小さ
いこと、起動時間が短いことなどから負荷調整を行うの
に適しており、起動停止が頻繁に行われるため、この問
題の解決が重要となる。本発明はこのような点に鑑み、
蒸気タービン主蒸気流量及び圧力を良好に制御しドラム
水位へ外乱を与えない制御装置を得ることを目的とす
る。
When the control valve 15 starts to open under the turbine bypass steam condition, the pressure difference before and after the control valve 15 is large. Therefore, even if the control valve 15 is slightly opened, a large amount of steam flows in and the water level of the drum 17 suddenly increases. fluctuate. In particular, at the time of start-up, since the differential pressure of the control valve 15 is large and the amount of steam inflow is large, the water level of the drum 17 rises rapidly.
And may damage the steam turbine 22.
The same applies to the high-pressure steam side, but particularly, the reheat-side steam pressure depends on the high-pressure side steam pressure. In particular, a combined cycle power plant is suitable for performing load adjustment because of its small single unit capacity and short startup time, and the startup and shutdown are frequently performed. Therefore, it is important to solve this problem. The present invention has been made in view of such a point,
It is an object of the present invention to obtain a control device which controls the main steam flow rate and pressure of a steam turbine well and does not cause disturbance to a drum water level.

【0018】[0018]

【課題を解決するための手段】本発明の蒸気サイクル制
御装置は、ガスタービンで仕事を終えた排ガスにて排熱
回収ボイラで蒸気を発生し蒸気タービンを駆動するよう
にした複合発電プラントの蒸気タービンに流入する蒸気
を制御する蒸気加減弁の開条件が成立したとき蒸気加減
弁を開閉駆動する加減弁駆動手段と、蒸気タービンをバ
イパスして復水器に導くタービンバイパス弁の開度が蒸
気加減弁の入口圧力に基づいて定められた設定値になる
ようにタービンバイパス弁を開閉駆動するタービンバイ
パス弁駆動手段と、タービンバイパス弁駆動手段に設け
られタービンバイパス弁の開度設定値として蒸気加減弁
の出口圧力をも加味する開度設定値補償手段と、蒸気加
減弁の入口圧力と出口圧力との差圧を蒸気加減弁の開条
件に加味する差圧条件設定手段と、蒸気加減弁の入口圧
力と出口圧力との差圧に基づいて蒸気加減弁の開閉変化
率の制限を設けた開閉変化率差圧関数演算手段とを備え
ている。
SUMMARY OF THE INVENTION A steam cycle control device according to the present invention is a steam generator for a combined cycle power plant in which exhaust gas after work in a gas turbine generates steam in an exhaust heat recovery boiler to drive the steam turbine. The opening and closing of the steam control valve that opens and closes the steam control valve when the open condition of the steam control valve that controls the steam flowing into the turbine is satisfied, and the opening degree of the turbine bypass valve that guides the steam turbine to the condenser by the steam. Turbine bypass valve driving means for opening and closing the turbine bypass valve so as to have a set value determined based on the inlet pressure of the control valve, and steam control as an opening set value of the turbine bypass valve provided in the turbine bypass valve driving means. Opening set value compensation means that also takes into account the outlet pressure of the valve, and a differential pressure that takes into account the differential pressure between the inlet pressure and the outlet pressure of the steam control valve in the opening condition of the steam control valve. And Ken setting means, and a closing rate of change difference pressure function calculating means provided to limit the opening rate of change of the steam control valve based on the differential pressure between the inlet pressure and the outlet pressure of the steam control valve.

【0019】また、ガスタービンで仕事を終えた排ガス
にて排熱回収ボイラで蒸気を発生し蒸気タービンを駆動
するようにした複合発電プラントの蒸気タービンに流入
する蒸気を制御する蒸気加減弁の開条件が成立したとき
蒸気加減弁を開閉駆動する加減弁駆動手段と、蒸気ター
ビンをバイパスして復水器に蒸気を導くタービンバイパ
ス弁の開度が蒸気加減弁の入口圧力に基づいて定められ
た設定値になるようにタービンバイパス弁を開閉駆動す
るタービンバイパス弁駆動手段と、タービンバイパス弁
駆動手段に設けられ蒸気加減弁出口圧力を入力しそれを
上下限制限する制限器と、タービンバイパス弁駆動手段
に設けられ制限器の出力と蒸気加減弁の入口圧力との偏
差に基づいてタービンバイパス弁開度を演算する演算器
と、タービンバイパス弁駆動手段に設けられ起動時には
演算器で演算された開度指令を選択し通常時には蒸気加
減弁の入口圧力に基づいて定められた設定値になるよう
にタービンバイパス弁を開閉駆動する開度指令を選択す
る切替器とを備えている。
Further, the steam control valve for controlling the steam flowing into the steam turbine of the combined cycle power plant in which steam is generated by the exhaust heat recovery boiler from the exhaust gas having completed the work in the gas turbine and drives the steam turbine. The opening degree of the control valve drive means for opening and closing the steam control valve when the condition is satisfied and the opening degree of the turbine bypass valve for guiding the steam to the condenser bypassing the steam turbine are determined based on the inlet pressure of the steam control valve. Turbine bypass valve driving means for opening and closing the turbine bypass valve so as to reach a set value; a limiter provided in the turbine bypass valve driving means for inputting a steam control valve outlet pressure to limit the upper and lower limits; Means for calculating the opening degree of the turbine bypass valve based on the deviation between the output of the restrictor and the inlet pressure of the steam control valve; The opening degree, which is provided in the valve driving means, selects the opening degree command calculated by the calculator at the time of startup, and normally drives the opening and closing of the turbine bypass valve so as to have a set value determined based on the inlet pressure of the steam control valve during normal operation. And a switch for selecting a command.

【0020】[0020]

【作用】本発明は、複合発電プラントの蒸気サイクル制
御装置においてタービンバイパス弁に加減弁出口圧力を
設定値とし制御する機能を設け、加減弁開条件に加減弁
前後差圧条件を追加し、加減弁差圧により加減弁開閉変
化率の制限に設けたことを特徴とするものである。
According to the present invention, in a steam cycle control system of a combined cycle power plant, a function is provided for controlling a turbine bypass valve with a regulator valve outlet pressure as a set value. The present invention is characterized in that the rate of change of the opening and closing of the control valve is limited by the valve differential pressure.

【0021】すなわち、複合発電プラントの起動時にタ
ービンバイパス制御により加減弁2次圧を制御し加減弁
出口圧力を一定の保つので、かつ加減弁開条件に加減弁
差圧条件を加えかつ加減弁開度変化率制限を加減弁差圧
条件により関数として与えているために、蒸気条件成立
により加減弁が開く場合でも、加減弁差圧が制御されて
いるために、蒸気サイクル主蒸気流量及び圧力を良好に
制御し、ドラム水位へ外乱を与えない。
That is, the secondary pressure of the control valve is controlled by the turbine bypass control at the start of the combined cycle power plant to keep the control valve outlet pressure constant, and the control valve opening condition is added to the control valve differential pressure condition and the control valve is opened. The rate change rate limit is given as a function by the control valve differential pressure condition, so even when the control valve is opened due to the establishment of the steam condition, the control valve control differential pressure controls the steam cycle main steam flow rate and pressure. Good control, no disturbance to drum water level.

【0022】[0022]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。図中、図5のものと同一部分には同一符号を付
し、その詳細な説明は省略する。図1では再熱蒸気側で
代表して説明するが高圧側も同様である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, the same parts as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. In FIG. 1, the reheat steam side will be described as a representative, but the same applies to the high pressure side.

【0023】タービンバイパス制御においては、加減弁
出口圧力を検出する圧力検出器49と、加減弁出口圧力に
バイパスをかけるバイアス設定器50と、変化率制限をか
けるために現在の圧力設定値との偏差演算をする偏差演
算器51と、変化率制限を行うための変化率制限器54と、
従来制御である加減弁前圧を制御する制御信号との切り
替え器40と、加減弁制御においては加減弁開条件に加減
弁差圧条件成立による条件設定器54と、加減弁差圧によ
り加減弁の開閉変化率に制限をかける関数発生器55,56
とから構成されている。図2に本発明の特性図を示す。
In the turbine bypass control, a pressure detector 49 for detecting the pressure at the control valve outlet, a bias setting device 50 for bypassing the pressure at the control valve outlet, and a current pressure set value for limiting the rate of change are used. A deviation calculator 51 for performing a deviation calculation, a change rate limiter 54 for performing a change rate limit,
A switching unit 40 for controlling the control pressure before and after the control valve, which is a conventional control, a condition setting unit 54 for the control valve opening condition when the control valve opening condition is satisfied, and a control valve for controlling the control valve according to the control valve differential pressure. Function generators 55 and 56 that limit the rate of change of switching
It is composed of FIG. 2 shows a characteristic diagram of the present invention.

【0024】低圧主蒸気圧力設定は、本発明では起動時
は開度検出器36がオンになり切り替え器40によって、加
減弁出口側に設定されるが、起動条件成立時にあらかじ
め最低値圧力設定値が設定させるのでこの最低圧力にな
る。起動時は、ガスタービンの排ガスからの入熱によ
り、蒸気発生および圧力上昇がはじまる。低圧主蒸気圧
力がこの圧力設定値に到達していないので偏差演算器46
および比例積分微分器47で演算した制御出力は負とな
り、タービンバイパス弁は全閉のまま、圧力はガスター
ビン1からの入熱に従い上昇する。
According to the present invention, the low-pressure main steam pressure is set to the opening / closing valve outlet side by the switching device 40 at the time of start-up, and the minimum pressure set value is set in advance when the start-up condition is satisfied. Is set to this minimum pressure. During startup, steam generation and pressure rise begin due to heat input from the exhaust gas of the gas turbine. Since the low-pressure main steam pressure has not reached this pressure set value, the deviation calculator 46 is used.
The control output calculated by the proportional-integral differentiator 47 becomes negative, and the pressure increases with the heat input from the gas turbine 1 while the turbine bypass valve remains fully closed.

【0025】高圧側では高圧加減弁14が開くため、加減
弁出口圧力は徐々に上昇する。加減弁出口圧力が最低圧
力設定値を越えると、再熱タービンバイパス制御の設定
値は加減弁出口圧力にバイアスした値に設定される。
On the high pressure side, since the high pressure control valve 14 is opened, the control valve outlet pressure gradually increases. When the control valve outlet pressure exceeds the minimum pressure set value, the set value of the reheat turbine bypass control is set to a value biased to the control valve outlet pressure.

【0026】低圧主蒸気圧力がこの圧力設定値になる
と、再熱タービンバイパス圧力制御において、偏差演算
および比例積分微分演算した制御出力は正となり、ター
ビンバイパス弁を開き、圧力を加減弁出口圧である設定
値に保持する。蒸気圧力,温度,流量が増加し加減弁開
条件が成立し、かつ加減弁差圧条件が成立すると、再熱
加減弁を加減弁差圧による関数で決まる変化率で開きは
じめる。この時加減弁開変化率は加減弁差圧によった変
化率となるので差圧が大きい場合は低い変化率で、差圧
が小さい場合は大きな変化率で開き、低圧蒸気タービン
側へ蒸気を流し始める。
When the low-pressure main steam pressure reaches this pressure set value, in the reheat turbine bypass pressure control, the control output obtained by the deviation calculation and the proportional integral differentiation calculation becomes positive, the turbine bypass valve is opened, and the pressure is adjusted by the control valve outlet pressure. Keep at a certain set value. When the steam pressure, the temperature, and the flow rate increase and the control valve opening condition is satisfied and the control valve differential pressure condition is satisfied, the reheat control valve starts to open at a rate of change determined by a function based on the control valve differential pressure. At this time, the rate of change of the opening and closing of the control valve is a rate of change based on the differential pressure of the control valve. Therefore, when the differential pressure is large, the rate of change is low, and when the differential pressure is small, the rate of change is large. Start flowing.

【0027】加減弁15が開くと、開度スイッチ36が働
き、トラッキング回路側37−39に切り替えられる。トラ
ッキング回路ではこの時の加減弁入口圧力をとりこみ、
バイアス演算器37によりバイアスをかけ、圧力設定値の
変化率制限を行うため、設定値と主蒸気圧力の偏差演算
を行う偏差演算器38と上下限制限器39とこの偏差信号を
設定信号とする積分器41により圧力設定値となる。この
ようにして、主蒸気圧力設定値を主蒸気圧力にトラッキ
ングさせ、徐々に定格の圧力まで上昇させる。
When the control valve 15 is opened, the opening degree switch 36 is activated, and is switched to the tracking circuit side 37-39. The tracking circuit takes in the control valve inlet pressure at this time,
In order to apply a bias by the bias calculator 37 and limit the rate of change of the pressure set value, a deviation calculator 38 for calculating a deviation between the set value and the main steam pressure, an upper / lower limiter 39, and this deviation signal as a set signal. The pressure is set by the integrator 41. In this way, the main steam pressure set value is tracked to the main steam pressure, and is gradually increased to the rated pressure.

【0028】このように、再熱タービンバイパス制御が
加減弁出口圧力を制御するので、加減弁がタービンバイ
パス蒸気条件で開き始めても、加減弁差圧が制御されて
おり、加減弁を開しても、多量に蒸気が流入することが
なく、ドラム水位が急変動することもない。また、加減
弁が開閉する変化率についても加減弁差圧により関数で
決まる変化率になるので急開する事もない。このように
加減弁・タービンバイパス弁の制御の協調がうまく取れ
るので、従来制御での不具合は解消される。以下のこの
発明の他の実施例について図3に基づいて述べる。ここ
でも再熱蒸気側で代表して説明するが高圧側でも同様で
ある。
As described above, since the reheat turbine bypass control controls the control valve outlet pressure, even if the control valve starts to open under turbine bypass steam conditions, the control valve differential pressure is controlled and the control valve is opened. Also, a large amount of steam does not flow in, and the drum water level does not fluctuate rapidly. Also, the rate of change at which the control valve opens and closes does not suddenly open because the rate of change is determined by a function based on the control valve differential pressure. As described above, the control of the control valve and the turbine bypass valve can be coordinated well, and the problem with the conventional control is eliminated. The following describes another embodiment of the present invention with reference to FIG. Here also, the description will be made on the reheat steam side as a representative, but the same applies on the high pressure side.

【0029】加減弁出口圧力を上下限制限する制限器63
を設け、これに加減弁入口圧力との偏差演算を行う偏差
演算器53を設け、この差圧に対して設定する差圧設定器
57と偏差演算器58にて偏差演算を行い、この偏差信号に
比例積分微分演算を行う演算器59を設け、この信号に従
来の入口圧力制御とのマッチングのため関数演算器64を
かけ、起動時には差圧制御を行い通常時には圧力制御を
行う切り替え器60により構成されている。
Limiter 63 for limiting upper and lower limits of the control valve outlet pressure
And a deviation calculator 53 for calculating a deviation from the control valve inlet pressure, and a differential pressure setting device for setting the differential pressure.
A deviation calculator 57 and a deviation calculator 58 perform a deviation calculation, and a calculator 59 for performing a proportional-integral-differentiation calculation on the deviation signal is provided. It is constituted by a switching device 60 that sometimes performs differential pressure control and normally performs pressure control.

【0030】起動時は、ガスタービンの排ガスからの入
熱により、蒸気発生および圧力上昇がはじまる。起動時
はこの制御は加減弁差圧制御となるが、加減弁2次圧は
起動条件成立時に転送器43、圧力設定器44、転送器45に
よって決まる最低値圧力設定値に上下限制限器63により
制限させる。低圧主蒸気圧力がこの圧力設定値に到達し
ていないので偏差演算器58および比例積分微分器59での
演算した制御出力は負となり、タービンバイパス弁は全
閉のまま、圧力はガスタービンからの入熱に従い上昇す
る。
During startup, steam generation and pressure rise begin due to the heat input from the exhaust gas of the gas turbine. At the time of startup, this control is a control valve differential pressure control. Is restricted by Since the low-pressure main steam pressure has not reached this pressure set value, the control output calculated by the deviation calculator 58 and the proportional-integral differentiator 59 becomes negative, the turbine bypass valve remains fully closed, and the pressure from the gas turbine is reduced. It rises with heat input.

【0031】高圧加減弁が開くため、加減弁出口圧力は
徐々に上昇する。加減弁出口圧力が最低圧力設定値を越
えると、再熱タービンバイパス制御の差圧が正に向かい
はじめる。低圧主蒸気圧力がこの圧力設定値になると、
再熱タービンバイパス差圧制御において、偏差演算器58
および比例積分微分器59での演算した制御出力は正とな
り、タービンバイパス弁を開き、加減弁差圧を設定値に
保持する。蒸気圧力,温度,流量が増加し加減弁開条件
が成立し、かつ加減弁差圧条件が成立すると、再熱加減
弁を一定の変化率で開きはじめ、低圧蒸気タービン側へ
蒸気を流し始める。加減弁15が開くと開度スイッチ36が
働き、トラッキング回路側37−39に切り替えられる。ト
ラッキング回路ではこの時の加減弁入口圧力をとりこ
み、バイアス演算器37によりバイアスをかけ、圧力設定
値の変化率制限を行うため、設定値と主蒸気圧力の偏差
演算を行う偏差演算器38と上下限制限器39とこの偏差信
号を設定信号とする積分器41により圧力設定値となる。
このようにして、主蒸気圧力設定値を主蒸気圧力にトラ
ッキングさせ、徐々に定格の圧力まで上昇させる。
Since the high-pressure control valve opens, the control valve outlet pressure gradually increases. When the control valve outlet pressure exceeds the minimum pressure set value, the differential pressure of the reheat turbine bypass control starts to become positive. When the low-pressure main steam pressure reaches this pressure set value,
In the reheat turbine bypass differential pressure control, the deviation calculator 58
The control output calculated by the proportional-integral differentiator 59 becomes positive, the turbine bypass valve is opened, and the control valve differential pressure is maintained at the set value. When the steam pressure, the temperature, and the flow rate increase, the control valve opening condition is satisfied, and the control valve differential pressure condition is satisfied, the reheat control valve starts to open at a constant rate of change, and the steam starts flowing to the low-pressure steam turbine side. When the control valve 15 is opened, the opening switch 36 is activated, and is switched to the tracking circuit side 37-39. The tracking circuit takes in the control valve inlet pressure at this time, applies a bias by the bias calculator 37, and limits the rate of change of the pressure set value. The lower limiter 39 and the integrator 41 that uses this deviation signal as a setting signal make the pressure set value.
In this way, the main steam pressure set value is tracked to the main steam pressure, and is gradually increased to the rated pressure.

【0032】このように再熱タービンバイパス制御が加
減弁差圧を制御するので、加減弁がタービンバイパス蒸
気条件で開き始めても、加減弁差圧が制御されており、
加減弁を開しても、多量に蒸気が流入することがなく、
ドラム水位が急変動することもない。このように加減弁
・タービンバイパス弁の制御の協調がうまく取れるの
で、従来制御での不具合は解消される。
As described above, since the reheat turbine bypass control controls the differential valve differential pressure, the differential valve differential pressure is controlled even when the control valve starts to open under turbine bypass steam conditions.
Even if the control valve is opened, a large amount of steam does not flow in,
There is no sudden change in the drum water level. As described above, the control of the control valve and the turbine bypass valve can be coordinated well, and the problem with the conventional control is eliminated.

【0033】[0033]

【発明の効果】以上説明したように本発明においては、
複合発電プラントの蒸気サイクル制御装置においてター
ビンバイパス弁に加減弁出口圧力を制御する機能、加減
弁開条件に加減弁前後差圧条件および加減弁開閉変化率
制限に加減弁差圧条件を設け、加減弁差圧を制御するよ
うにしたので複合発電プラントの起動時ならびに負荷上
昇時に、蒸気サイクル主蒸気流量及び圧力を良好に制御
し、ドラムの大きな水位変動を防止することができる。
As described above, in the present invention,
In the steam cycle control system of the combined cycle power plant, the function to control the outlet pressure of the regulator valve in the turbine bypass valve, the differential pressure condition before and after the regulator valve for the opening condition of the regulator valve, and the differential pressure condition for the regulating valve opening / closing rate limit are set. Since the valve differential pressure is controlled, the flow rate and pressure of the main steam in the steam cycle can be controlled well when the combined cycle power plant is started and when the load is increased, and large fluctuations in the water level of the drum can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の動作を示す特性図FIG. 2 is a characteristic diagram showing the operation of the present invention.

【図3】本発明の他の一実施例を示すブロック図FIG. 3 is a block diagram showing another embodiment of the present invention.

【図4】複合発電プラントのブロック構成図FIG. 4 is a block diagram of a combined cycle power plant.

【図5】従来例を示すブロック図FIG. 5 is a block diagram showing a conventional example.

【図6】従来例の動作を示す特性図FIG. 6 is a characteristic diagram showing an operation of a conventional example.

【符号の説明】[Explanation of symbols]

1…ガスタービン装置 2…HRSG 3…蒸気タービン 4…発電機 5…高圧過熱器 6…再熱器 7…高圧蒸発機 8…高圧節炭器 9…低圧過熱器 10…低圧蒸発機 11…低圧節炭器 12…復水器 13…給水ポンプ 14…高圧加減弁 15…再熱加減弁 16…高圧ドラム 17…低圧ドラム 18…高圧タービンバイパス弁 19…再熱タービンバイパス弁 20…蒸気サイクル制御装置 21…高圧蒸気タービン 22…再熱蒸気タービン 23…高圧主蒸気圧力検出器 24…高圧主蒸気温度検出器 25…高圧主蒸気流量検出器 26…低圧主蒸気圧力検出器 27…低圧主蒸気温度検出器 28…低圧主蒸気流量検出器 29…加減弁全開設定器 30…加減弁全閉設定器 31…偏差演算器 32…加減弁全開変化率制限器 33…加減弁全閉変化率制限器 34…全開閉切り替え器 35…開度積分器 36…開度検出器 37…設定値バイアス演算器 38…設定値偏差演算器 39…設定値変化率制限器 40…設定値切り替え器 41…設定地積分器 42…設定値上下限制限器 43…転送器 44…圧力設定器 45…転送器 46…設定値偏差演算器 47…比例積分微分演算器 48…関数演算器 49…加減弁出口圧力検出器 50…加減弁出口圧力バイアス設定器 51…加減弁出口圧力偏差演算器 52…加減弁出口圧力変化率制限器 53…加減弁差圧演算器 54…加減弁差圧条件設定器 55…加減弁開変化率用加減弁差圧関数演算器 56…加減弁閉変化率用加減弁差圧関数演算器 57…加減弁差圧設定値設定器 58…加減弁差圧偏差演算器 59…加減弁差圧比例積分微分演算器 60…加減弁圧力・差圧制御切り替え器 61…起動条件成立シングルショット 62…加減弁開蒸気条件 63…加減弁出口圧力用上下限制限器 64…加減弁差圧制御信号関数演算器 DESCRIPTION OF SYMBOLS 1 ... Gas turbine apparatus 2 ... HRSG 3 ... Steam turbine 4 ... Generator 5 ... High pressure super heater 6 ... Reheater 7 ... High pressure evaporator 8 ... High pressure economizer 9 ... Low pressure super heater 10 ... Low pressure evaporator 11 ... Low pressure Energy saving device 12… Condenser 13… Water pump 14… High pressure control valve 15… Reheat control valve 16… High pressure drum 17… Low pressure drum 18… High pressure turbine bypass valve 19… Reheat turbine bypass valve 20… Steam cycle control device 21 high-pressure steam turbine 22 reheat steam turbine 23 high-pressure main steam pressure detector 24 high-pressure main steam temperature detector 25 high-pressure main steam flow detector 26 low-pressure main steam pressure detector 27 low-pressure main steam temperature detection Unit 28… Low-pressure main steam flow detector 29… Control valve fully open setting device 30… Control valve fully closed setting device 31… Deviation calculator 32… Control valve full-open change rate limiter 33… Control valve full-close change rate limiter 34… Full open / close switch 35… Opening degree integrator 36… Opening degree detector 37… Set value Calculator 38… Set value deviation calculator 39… Set value change rate limiter 40… Set value switcher 41… Set ground integrator 42… Set value upper and lower limit limiter 43… Transmitter 44… Pressure setter 45… Transfer Unit 46… Set value deviation calculator 47… Proportional integral derivative calculator 48… Function calculator 49… Regulator valve outlet pressure detector 50… Regulator valve outlet pressure bias setter 51… Regulator valve outlet pressure deviation calculator 52… Regulator Outlet pressure change rate limiter 53 ... Deceleration valve differential pressure calculator 54 ... Deceleration valve differential pressure condition setting device 55 ... Deceleration valve differential pressure function calculator for deceleration valve opening change rate 56 ... Deceleration valve differential pressure for decrement valve closing change rate Function calculator 57… Regulating valve differential pressure set value setting device 58… Regulator valve differential pressure deviation calculator 59… Regulator valve differential pressure proportional integral derivative calculator 60… Regulator valve pressure / differential pressure control switch 61… Start-up condition single Shot 62: Control valve open steam condition 63: Upper and lower limiter for control valve outlet pressure 64 ... Control valve differential pressure control signal function calculation vessel

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスタービンで仕事を終えた排ガスにて
排熱回収ボイラで蒸気を発生し蒸気タービンを駆動する
ようにした複合発電プラントの前記蒸気タービンに流入
する蒸気を制御する蒸気加減弁の開条件が成立したとき
前記蒸気加減弁を開閉駆動する加減弁駆動手段と前記蒸
気タービンをバイパスして復水器に蒸気を導くタービン
バイパス弁の開度が前記蒸気加減弁の入口圧力に基づい
て定められた設定値になるように前記タービンバイパス
弁を開閉駆動するタービンバイパス弁駆動手段とを備え
た蒸気サイクル制御装置において、前記タービンバイパ
ス弁駆動手段に設けられ前記タービンバイパス弁の開度
設定値として前記蒸気加減弁の出口圧力をも加味する開
度設定値補償手段と、前記蒸気加減弁の入口圧力と出口
圧力との差圧を前記蒸気加減弁の開条件に加味する差圧
条件設定手段と、前記蒸気加減弁の入口圧力と出口圧力
との差圧に基づいて前記蒸気加減弁の開閉変化率の制限
を設けた開閉変化率差圧関数演算手段とを備えた蒸気サ
イクル制御装置。
1. A steam control valve for controlling steam flowing into a steam turbine of a combined cycle power plant in which steam is generated by an exhaust heat recovery boiler using exhaust gas having completed work in a gas turbine and the steam turbine is driven. When the open condition is satisfied, the opening degree of the control valve drive unit that opens and closes the steam control valve and the turbine bypass valve that guides steam to the condenser by bypassing the steam turbine is based on the inlet pressure of the steam control valve. A turbine bypass valve driving means for driving the turbine bypass valve to open and close so that the turbine bypass valve opens and closes to a predetermined set value. The opening degree set value compensating means also taking into account the outlet pressure of the steam control valve, and the differential pressure between the inlet pressure and the outlet pressure of the steam control valve is A differential pressure condition setting means that takes into account the opening condition of the steam control valve, and an opening / closing change rate difference that limits the opening / closing change rate of the steam control valve based on a differential pressure between an inlet pressure and an outlet pressure of the steam control valve. A steam cycle control device comprising pressure function calculating means.
【請求項2】 ガスタービンで仕事を終えた排ガスにて
排熱回収ボイラで蒸気を発生し蒸気タービンを駆動する
ようにした複合発電プラントの前記蒸気タービンに流入
する蒸気を制御する蒸気加減弁の開条件が成立したとき
前記蒸気加減弁を開閉駆動する加減弁駆動手段と前記蒸
気タービンをバイパスして復水器に蒸気を導くタービン
バイパス弁の開度が前記蒸気加減弁の入口圧力に基づい
て定められた設定値になるように前記タービンバイパス
弁を開閉駆動するタービンバイパス弁駆動手段とを備え
た蒸気サイクル制御装置において、前記タービンバイパ
ス弁駆動に設けられ前記蒸気加減弁出口圧力を入力しそ
れを上下限制限する制限器と、前記タービンバイパス弁
駆動手段に設けられ前記制限器の出力と前記蒸気加減弁
の入口圧力との偏差に基づいて前記タービンバイパス弁
開度を演算する演算器と、前記タービンバイパス弁駆動
手段に設けられ起動時には前記演算器で演算された開度
指令を選択し通常時には前記蒸気加減弁の入口圧力に基
づいて定められた設定値になるように前記タービンバイ
パス弁を開閉駆動する開度指令を選択する切替器とを備
えた蒸気サイクル制御装置。
2. A steam control valve for controlling steam flowing into the steam turbine of a combined cycle power plant in which steam is generated by an exhaust heat recovery boiler using exhaust gas having completed work in the gas turbine and drives the steam turbine. When the open condition is satisfied, the opening degree of the control valve drive unit that opens and closes the steam control valve and the turbine bypass valve that guides steam to the condenser by bypassing the steam turbine is based on the inlet pressure of the steam control valve. A turbine bypass valve driving means for opening and closing the turbine bypass valve so as to open and close the turbine bypass valve so as to have a predetermined set value, wherein the steam control valve outlet pressure provided in the turbine bypass valve drive is inputted. And a deviation between an output of the restrictor and an inlet pressure of the steam control valve provided in the turbine bypass valve driving means. A computing unit that computes the opening degree of the turbine bypass valve based on the opening degree command that is provided in the turbine bypass valve driving means and that is operated by the computing unit at startup and that is normally used to adjust the inlet pressure of the steam control valve. A switching device for selecting an opening command for opening and closing the turbine bypass valve so as to have a set value determined based on the steam cycle control device.
JP4104148A 1992-04-23 1992-04-23 Steam cycle controller Expired - Lifetime JP2918743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104148A JP2918743B2 (en) 1992-04-23 1992-04-23 Steam cycle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104148A JP2918743B2 (en) 1992-04-23 1992-04-23 Steam cycle controller

Publications (2)

Publication Number Publication Date
JPH05296402A JPH05296402A (en) 1993-11-09
JP2918743B2 true JP2918743B2 (en) 1999-07-12

Family

ID=14372999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104148A Expired - Lifetime JP2918743B2 (en) 1992-04-23 1992-04-23 Steam cycle controller

Country Status (1)

Country Link
JP (1) JP2918743B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115680B2 (en) * 2005-05-26 2013-01-09 トヨタ自動車株式会社 Fuel cell system
CH698282B1 (en) * 2007-12-20 2013-11-29 Gen Electric Combined cycle power plant system.
US20090158738A1 (en) * 2007-12-20 2009-06-25 Tailai Hu Methods and apparatus for starting up combined cycle power system
CN111255530B (en) * 2020-03-19 2024-02-02 西安热工研究院有限公司 Thermal power unit load adjusting system and method with low-pressure cylinder butterfly valve assistance
CN113217132B (en) * 2021-04-29 2023-09-19 广东核电合营有限公司 Steam conversion control device and method for nuclear power station and steam conversion system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197605A (en) * 1986-02-26 1987-09-01 Hitachi Ltd Starting method for combined cycle plant
JP2549190B2 (en) * 1990-07-31 1996-10-30 株式会社東芝 Combined Cycle Power Plant Controller

Also Published As

Publication number Publication date
JPH05296402A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
US5203160A (en) Combined generating plant and its start-up control device and start-up control method
EP0615061A1 (en) Combined cycle power plant and method of operating it
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
CN111255530B (en) Thermal power unit load adjusting system and method with low-pressure cylinder butterfly valve assistance
JPS6252121B2 (en)
CN113638776B (en) Steam extraction back pressure type steam turbine thermodynamic system and control method thereof
JP2918743B2 (en) Steam cycle controller
JPH10292902A (en) Main steam temperature controller
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JP2698141B2 (en) Water supply control device for FCB of drum boiler
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPS6239657B2 (en)
JPH03267509A (en) Control method of reheating steam turbine
JPS6149487B2 (en)
JPH04103902A (en) Method and device for controlling feedwater to boiler
JP3112579B2 (en) Pressure control device
JPH04110507A (en) Steam temperature controller of superheater and reheater in cogeneration power plant
JP2531755B2 (en) Water supply control device
JPH09195718A (en) Main steam temperature control device
JPS6239658B2 (en)
JPH04191405A (en) Water supply control device for repowering system
JPH09242508A (en) Method and device for stopping combined cycle plant