JPH10292902A - Main steam temperature controller - Google Patents

Main steam temperature controller

Info

Publication number
JPH10292902A
JPH10292902A JP10194097A JP10194097A JPH10292902A JP H10292902 A JPH10292902 A JP H10292902A JP 10194097 A JP10194097 A JP 10194097A JP 10194097 A JP10194097 A JP 10194097A JP H10292902 A JPH10292902 A JP H10292902A
Authority
JP
Japan
Prior art keywords
steam
temperature
flow rate
pressure
main steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10194097A
Other languages
Japanese (ja)
Inventor
Yukihiro Mizoguchi
口 幸 宏 溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10194097A priority Critical patent/JPH10292902A/en
Publication of JPH10292902A publication Critical patent/JPH10292902A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of the rapid change of a main steam temperature by a method wherein a steam bypass pipe to bypass a superheater and a bypass flow rate regulator are provided, and a steam amount passing the superheater is regulated according to main steam. SOLUTION: A main steam temperature controller comprises a steam bypass 51 branched from a final superheater steam flow passage in a manner to bypass between the output side of a high pressure main steam temperature reducer 23 and a high pressure steam pipe 20, and a bypass steam steam flow rate regulation valve 52 to regulate a branching steam flow rate. Based on the detecting result of a main steam temperature detector 33 to detect a main steam temperature, a bypass steam flow rate regulating device 34 is operated, and based on a control signal from the bypass steam flow rate regulating device 34, the travel of a bypass steam flow rate regulating valve 52 is regulated. By the travel of a bypass steam flow rate regulation valve 52, an amount of the output substance of the high pressure main steam temperature reducer 23 fed to a high pressure second superheater 19 is regulated. Further, an amount of the output substance of the high pressure main steam temperature reducer 23 fed not through a high pressure second superheater 19 but directly to the high pressure steam pipe 20 is regulatable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電プラント
(コンバインドサイクル)の排熱回収ボイラの主蒸気温
度制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of a main steam temperature of an exhaust heat recovery boiler of a thermal power plant (combined cycle).

【0002】[0002]

【従来の技術】最近のコンバインドサイクルプラント
は、高効率化および大容量化等への対応から、ガスター
ビン入口ガス温度が高温化され、これによってガスター
ビン排気温度も高温化してきている。ガスタービン排気
の高温化により、排熱回収ボイラの出口蒸気温度(高圧
主蒸気温度)も高くなる傾向にある。しかし、蒸気ター
ビンは、高圧蒸気を使用するためのケーシングが厚肉で
あること、ロータも高温蒸気に曝されることなどの条件
から出力に応じて最適な蒸気条件が存在する。現状での
蒸気タービン入口主蒸気温度の最高値は、538〜56
6℃程度である。したがって、主蒸気温度がこの値を越
える様な運転状態が発生する場合には、負荷に関係なく
排熱回収ボイラの発生蒸気温度の上限値を設定して、こ
れに蒸気温度を制御しているのが一般的である。
2. Description of the Related Art In recent combined cycle plants, the gas temperature at the inlet of a gas turbine has been increased in order to cope with an increase in efficiency and capacity, and the exhaust temperature of the gas turbine has also been increased. As the temperature of the gas turbine exhaust increases, the outlet steam temperature (high-pressure main steam temperature) of the exhaust heat recovery boiler also tends to increase. However, the steam turbine has optimum steam conditions according to the output from conditions such as a thick casing for using high-pressure steam and exposure of the rotor to high-temperature steam. At present, the maximum value of the steam turbine inlet main steam temperature is 538-56.
It is about 6 ° C. Therefore, when an operation state in which the main steam temperature exceeds this value occurs, the upper limit of the generated steam temperature of the exhaust heat recovery boiler is set regardless of the load, and the steam temperature is controlled to this. It is common.

【0003】従来技術について、図17および図18を
使って説明する。図17は、排熱回収ボイラの構成要素
と水・蒸気・ガスの流れを示した図であり、図18は、
制御方法の一例を示した図である。
The prior art will be described with reference to FIGS. 17 and 18. FIG. 17 is a diagram showing components of the exhaust heat recovery boiler and flows of water, steam, and gas.
FIG. 4 is a diagram illustrating an example of a control method.

【0004】図17で、蒸気タービン(図示せず)で仕
事をした蒸気は復水器(図示せず)で冷却・復水となり
復水器ホットウエル(図示せず)に貯められる。ホット
ウエルに貯まった復水は、復水ポンプ(図示せず)で抽
出され低圧給水管1を介して、低圧節炭器2に供給され
る。低圧節炭器2では、既にガスタービン(図示せず)
排気ガスと他の熱交換器部分での熱交換で低温になった
排気ガスとの熱交換で全給水を加熱する。
In FIG. 17, steam worked by a steam turbine (not shown) is cooled and condensed by a condenser (not shown) and stored in a condenser hot well (not shown). The condensed water stored in the hot well is extracted by a condensate pump (not shown) and supplied to the low-pressure economizer 2 through the low-pressure water supply pipe 1. In the low-pressure economizer 2, a gas turbine (not shown) has already been used.
The entire feedwater is heated by heat exchange between the exhaust gas and the exhaust gas which has been cooled by heat exchange in the other heat exchangers.

【0005】低圧節炭器2で加熱された給水は、低圧連
絡管4を介し、低圧給水調節弁5で低圧蒸気ドラム8の
水位を一定に保つように低圧給水量を調節して低圧ドラ
ム8へ供給される。
The feed water heated by the low-pressure economizer 2 is supplied through a low-pressure connecting pipe 4 to adjust the low-pressure feed rate of the low-pressure steam drum 8 with a low-pressure feed water control valve 5 so as to keep the water level of the low-pressure steam drum 8 constant. Supplied to

【0006】一方、低圧連絡管4から分岐した高圧給水
ポンプ吸込管3を介して、高圧給水ポンプ6に供給し、
高圧給水ポンプ6で昇圧する。昇圧された給水は、高圧
給水管7を介して、高圧節炭器12へ高圧給水を供給す
る。高圧節炭器12で、排気ガスと熱交換し昇温した高
圧給水は、高圧連絡管13を介し高圧給水調節弁14
で、高圧蒸気ドラム15の水位を一定に保つように高圧
給水量を調節して、高圧蒸気ドラム15に供給する。
On the other hand, the high pressure water is supplied to a high pressure water pump 6 through a high pressure water pump suction pipe 3 branched from the low pressure communication pipe 4.
The pressure is increased by the high-pressure water supply pump 6. The pressurized feed water is supplied to the high-pressure economizer 12 through the high-pressure feed pipe 7. The high-pressure water supplied to the high-pressure economizer 12 and exchanged heat with the exhaust gas to raise the temperature is supplied to a high-pressure water supply control valve 14 through a high-pressure communication pipe 13.
Then, the high-pressure water supply amount is adjusted so as to keep the water level of the high-pressure steam drum 15 constant, and the water is supplied to the high-pressure steam drum 15.

【0007】先に、低圧蒸気ドラム8に供給された給水
は、低圧蒸発器9で、排気ガスとの熱交換を行い蒸気を
発生させながら蒸気ドラム8に戻る、つまり、低圧蒸気
ドラム8と低圧蒸発器9の間を熱交換をしながら循環し
蒸気を発生させる。低圧蒸気ドラム8で分離された蒸気
は、低圧蒸気連絡管10を介して低圧過熱器11に供給
され、排気ガスと熱交換して過熱蒸気として、蒸気ター
ビン(図示せず)の低圧段落へ供給される。
The feedwater supplied to the low-pressure steam drum 8 returns to the steam drum 8 while performing heat exchange with the exhaust gas in the low-pressure evaporator 9 to generate steam. It circulates while exchanging heat between the evaporators 9 to generate steam. The steam separated by the low-pressure steam drum 8 is supplied to a low-pressure superheater 11 through a low-pressure steam communication pipe 10 and exchanges heat with exhaust gas to be supplied to a low-pressure stage of a steam turbine (not shown) as superheated steam. Is done.

【0008】一方、高圧節炭器12で加熱され高圧蒸気
ドラム15に供給された給水は、高圧蒸発器16で、排
気ガスとの熱交換を行い蒸気を発生させながら高圧蒸気
ドラム15に戻る、つまり、高圧蒸気ドラム15と高圧
蒸発器16の間を熱交換をしながら循環し、蒸気を発生
させる。高圧蒸気ドラム15で分離された蒸気は、高圧
蒸気連絡管17を介して高圧第一過熱器18に供給さ
れ、排気ガスと熱交換して過熱蒸気となり、主蒸気温度
を所定の温度にするためにスプレー水を蒸気タービン
(図示せず)の高圧段落へ供給される。
On the other hand, the feed water heated by the high-pressure economizer 12 and supplied to the high-pressure steam drum 15 is returned to the high-pressure steam drum 15 while performing heat exchange with exhaust gas to generate steam by the high-pressure evaporator 16. That is, the heat is circulated between the high-pressure steam drum 15 and the high-pressure evaporator 16 while exchanging heat to generate steam. The steam separated by the high-pressure steam drum 15 is supplied to a high-pressure first superheater 18 via a high-pressure steam communication pipe 17 and exchanges heat with the exhaust gas to become superheated steam. Spray water is supplied to a high pressure stage of a steam turbine (not shown).

【0009】一方、蒸気タービン(図示せず)の高圧段
落で仕事をした蒸気は、再熱器21,22で排気ガスと
の熱交換で加熱され再び高温蒸気とした後、蒸気タービ
ン(図示せず)の中圧段落に供給される。この再熱蒸気
についても、蒸気タービンの材料等により定まる最高許
容温度が設定され、運転状態の変化にかかわらず再熱蒸
気温度を許容温度以下に制御する。この温度制御方法
は、再熱器の伝熱面を分割し、分割された伝熱面の連絡
管に減温器26を設け、再熱蒸気の温度に応じて減温器
26へのスプレー水量を再熱蒸気温度調節弁27で調節
して供給するものが一般的である。ただし、この再熱器
は、プラントの規模等によって設置されない場合もあ
る。
On the other hand, the steam that has worked in the high-pressure stage of the steam turbine (not shown) is heated by heat exchange with the exhaust gas in the reheaters 21 and 22 to turn it into high-temperature steam again. Zu) is supplied to the medium-pressure paragraph. Also for this reheat steam, the maximum allowable temperature determined by the material of the steam turbine and the like is set, and the temperature of the reheat steam is controlled to be equal to or lower than the allowable temperature regardless of a change in the operation state. According to this temperature control method, the heat transfer surface of the reheater is divided, a desuperheater 26 is provided in the connecting pipe of the divided heat transfer surface, and the amount of water sprayed to the deheater 26 according to the temperature of the reheat steam. Is controlled by the reheat steam temperature control valve 27 and supplied. However, this reheater may not be installed depending on the size of the plant.

【0010】更に、高圧給水ポンプ6の吐出側の高圧給
水管7から分岐して低圧節炭器2の入口に循環する低圧
節炭器入口給水温度調節管28および低圧給水温度調節
弁29を設置し低圧節炭器2の入口温度を一定に調節す
る。
Further, a low-pressure economizer inlet feed-water temperature control pipe 28 and a low-pressure feedwater temperature control valve 29 which branch off from the high-pressure water pipe 7 on the discharge side of the high-pressure water pump 6 and circulate to the inlet of the low-pressure economizer 2 are installed. Then, the inlet temperature of the low-pressure economizer 2 is adjusted to be constant.

【0011】一般的に、排熱回収ボイラの主蒸気温度
は、排気ガス入口温度、排気ガス量、蒸気量、伝熱面積
等の特性決定要素に支配されて定まる。一般的に蒸気タ
ービンの主蒸気温度には、上限値があり、この上限値を
越えないように過熱器を分割し、分割された過熱器の伝
熱面を接続する連絡管の途中に減温器23を設け、主蒸
気温度に応じて減温器23に供給するスプレー水量を主
蒸気温度調節弁25で調節する方式が一般的に採用され
ている。スプレー水の水源は、蒸気圧力より高い圧力を
有し、水量の変化に十分に対応できなければならない。
図17の例では高圧給水管7から分岐する方法で示して
ある。
Generally, the main steam temperature of the exhaust heat recovery boiler is determined by characteristics such as exhaust gas inlet temperature, exhaust gas amount, steam amount, and heat transfer area. Generally, the main steam temperature of a steam turbine has an upper limit, and the superheater is divided so as not to exceed the upper limit, and the temperature is reduced in the middle of the connecting pipe connecting the heat transfer surfaces of the divided superheaters. In general, a system is provided in which a heater 23 is provided, and the amount of spray water supplied to the desuperheater 23 is adjusted by a main steam temperature control valve 25 in accordance with the main steam temperature. The source of the spray water must have a pressure higher than the steam pressure and be able to adequately cope with changes in water volume.
In the example of FIG. 17, a method of branching from the high-pressure water supply pipe 7 is shown.

【0012】ここで、図18に従来の主蒸気温度制御の
一例を示す。高圧蒸気ドラム15の圧力は、高圧第二過
熱器19の入口蒸気温度の下限値を演算する関数発生器
35に入力され、高圧蒸気ドラム15の圧力に応じた高
圧第二加熱器19の入口蒸気温度の下限値が演算され
る。この演算値は、高圧蒸気管20の蒸気流量および減
温水供給管24のスプレー水温度と共に高圧主蒸気温度
調節スプレー弁25の開度演算器36に入力され、高圧
主蒸気温度調節スプレー弁25の開度が演算される。
FIG. 18 shows an example of conventional main steam temperature control. The pressure of the high-pressure steam drum 15 is input to a function generator 35 that calculates the lower limit value of the inlet steam temperature of the high-pressure second superheater 19, and the inlet steam of the high-pressure second heater 19 according to the pressure of the high-pressure steam drum 15. The lower limit of the temperature is calculated. The calculated value is input to the opening degree calculator 36 of the high-pressure main steam temperature control spray valve 25 together with the steam flow rate of the high-pressure steam pipe 20 and the spray water temperature of the desuperheated water supply pipe 24. The opening is calculated.

【0013】一方、高圧蒸気管20の高圧蒸気温度とそ
の設置値との偏差に基づいてその偏差が零となるような
高圧主蒸気温度調節スプレー弁25の開度が主蒸気温度
調節器37で演算される。そして、この演算値と開度演
算値36の演算値とのうち小さい方を選択して高圧主蒸
気温度調節スプレー弁25に開度指令を出力する低値優
先回路38を備えている。
On the other hand, based on the deviation between the high-pressure steam temperature of the high-pressure steam pipe 20 and the installation value, the opening of the high-pressure main steam temperature control spray valve 25 is set by the main steam temperature controller 37 so that the deviation becomes zero. Is calculated. Further, there is provided a low value priority circuit 38 for selecting the smaller one of the calculated value and the calculated value of the opening calculated value 36 and outputting an opening command to the high-pressure main steam temperature control spray valve 25.

【0014】従来技術による主蒸気温度制御は、負荷に
関係なく設定温度を一定にしておく一定値制御を採用し
ている。しかし、ガスタービンの大容量化および環境対
策を考慮した運転方法の採用により、ガスタービンの排
気ガス温度が高くなると共に蒸気温度の温度上昇率も高
くなる傾向にある。
The main steam temperature control according to the prior art employs constant value control in which the set temperature is kept constant regardless of the load. However, the increase in the capacity of the gas turbine and the adoption of an operation method in consideration of environmental measures tend to increase the exhaust gas temperature of the gas turbine and increase the temperature rise rate of the steam temperature.

【0015】特に、助燃装置を設置していない排熱回収
ボイラにあっては、排気ガス入口温度,排気ガス量,蒸
気量,伝熱面積等の特性決定要素に支配されて高圧第二
過熱器19の出口蒸気温度が定まる。蒸気発生量の少な
いガスタービンの出力が低い運転状態においては、蒸気
温度は排気ガスの温度上昇率と同等の温度変化となる。
蒸気温度一定値制御の場合は、従来技術でも蒸気温度制
御は可能である。しかし、排気ガスの温度上昇率と同等
の率で蒸気温度が上昇すると蒸気タービンの許容温度上
昇率を上回り、蒸気タービンの熱応力が異常に大きくな
り寿命消費が大きくなるような不都合が生じる。
In particular, in a heat recovery steam generator having no auxiliary combustion device, the high pressure second superheater is governed by characteristics such as exhaust gas inlet temperature, exhaust gas amount, steam amount, and heat transfer area. The exit steam temperature at 19 is determined. In an operation state in which the output of a gas turbine with a small amount of steam generation is low, the steam temperature changes in temperature equivalent to the temperature rise rate of the exhaust gas.
In the case of the constant steam temperature control, the steam temperature can be controlled by the conventional technology. However, if the steam temperature rises at a rate equivalent to the temperature rise rate of the exhaust gas, the temperature rise exceeds the allowable temperature rise rate of the steam turbine, and the thermal stress of the steam turbine becomes abnormally large, resulting in an inconvenience that the life consumption increases.

【0016】一方、このような不都合を解消するには、
ある定められた温度上昇率で設定温度を変化させ、蒸気
温度を制御する必要が生じる。
On the other hand, in order to solve such inconvenience,
It is necessary to control the steam temperature by changing the set temperature at a certain temperature rise rate.

【0017】この温度制御をスプレー水量調節のみで実
施する場合、スプレー水が水滴の状態で過熱器内に流入
しないように、水分が過飽和状態にならないようにスプ
レー水の注入量を制限するのが一般的である。このスプ
レー水量の制限値は、一般的にスプレー注入部分の蒸気
圧力に対する飽和温度に30〜50℃の余裕を加えた温
度以下に減温しないような水量とすることにある。
When the temperature control is performed only by adjusting the spray water amount, the injection amount of the spray water must be limited so that the spray water does not flow into the superheater in the form of water droplets and the water does not become supersaturated. General. The limit value of the spray water amount is generally set to a water amount that does not decrease below a temperature obtained by adding a margin of 30 to 50 ° C. to the saturation temperature with respect to the vapor pressure of the spray injection part.

【0018】また、スプレー水での主蒸気温度の制御に
は、大きな遅れが生じる。このため、主蒸気温度が設定
値に制御できない状態が発生し、結果として温度上昇率
も初期の目標より高くなってしまうことになる。
Further, there is a large delay in controlling the main steam temperature in the spray water. For this reason, a state occurs in which the main steam temperature cannot be controlled to the set value, and as a result, the temperature rise rate also becomes higher than the initial target.

【0019】[0019]

【発明が解決しようとする課題】前述したとおり、蒸気
発生量の少ないガスタービンの出力が低い運転状態にお
いては、蒸気温度は排気ガスの温度上昇率と同等の温度
変化となる。蒸気温度一定値制御の場合は、従来技術で
も蒸気温度制御は可能である。
As described above, in an operating state where the output of a gas turbine with a small amount of steam generation is low, the steam temperature changes in temperature equivalent to the temperature rise rate of the exhaust gas. In the case of the constant steam temperature control, the steam temperature can be controlled by the conventional technology.

【0020】しかし、排気ガスの温度上昇率と同等の率
で蒸気温度が上昇すると蒸気タービンの許容温度上昇率
を上回り、蒸気タービンの熱応力が異常に大きくなり寿
命消費が大きくなるような不都合が生じる。
However, if the steam temperature rises at a rate equal to the rate of temperature rise of the exhaust gas, the temperature rise exceeds the allowable temperature rise rate of the steam turbine, and the thermal stress of the steam turbine becomes abnormally large and the life consumption increases. Occurs.

【0021】そこで本発明の目的は、上記従来技術の有
する問題を解消し、ガスタービンの負荷上昇率(燃料投
入量)を変更しないで主蒸気温度の上昇率を蒸気タービ
ンの許容範囲内に治めるように主蒸気温度の急激な変化
を防止し、プラントの起動時間を長くすることなく蒸気
タービンの寿命消費を最小限に抑えることができる主蒸
気温度制御装置を提供することである。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to control the rate of increase of the main steam temperature within the allowable range of the steam turbine without changing the rate of increase in the load (fuel input) of the gas turbine. It is an object of the present invention to provide a main steam temperature control device capable of preventing a sudden change in the main steam temperature and minimizing the life consumption of a steam turbine without prolonging the start-up time of a plant.

【0022】[0022]

【課題を解決するための手段】上記の目的を達成するた
めに、本願第1発明の主蒸気温度制御装置は、蒸気ター
ビンへ供給する高圧主蒸気を出力する最終過熱器と、高
圧主蒸気温度を検出する主蒸気温度検出器と、前記最終
過熱器の入口側と出口側とをバイパスする蒸気バイパス
管と、前記主蒸気温度検出器で検出した高圧主蒸気温度
に応じて前記蒸気バイパス管を通る蒸気流量を調節する
バイパス流量調節手段と、を備えている。
In order to achieve the above object, a main steam temperature control device according to a first aspect of the present invention comprises a final superheater for outputting high-pressure main steam supplied to a steam turbine, a high-pressure main steam temperature, A main steam temperature detector, a steam bypass pipe that bypasses an inlet side and an outlet side of the final superheater, and the steam bypass pipe according to the high-pressure main steam temperature detected by the main steam temperature detector. Bypass flow rate adjusting means for adjusting the flow rate of the passing steam.

【0023】また、本願第2発明は、蒸気タービンへ供
給する高圧主蒸気を出力する最終過熱器と、ガスタービ
ンの排気ガス温度を検出する排気ガス温度検出器と、前
記最終過熱器の入口側と出口側とをバイパスする蒸気バ
イパス管と、前記排気ガス温度検出器で検出した排気ガ
ス温度に応じて前記蒸気バイパス管を通る蒸気流量を調
節するバイパス流量調節手段と、を備えている。
Further, the second invention of the present application provides a final superheater for outputting high-pressure main steam supplied to a steam turbine, an exhaust gas temperature detector for detecting an exhaust gas temperature of a gas turbine, and an inlet side of the final superheater. A steam bypass pipe for bypassing the exhaust gas and the outlet side; and a bypass flow rate adjusting means for adjusting a steam flow rate passing through the steam bypass pipe according to the exhaust gas temperature detected by the exhaust gas temperature detector.

【0024】また、本願第3発明は、蒸気タービンへ供
給する高圧主蒸気を出力する最終過熱器と、高圧主蒸気
温度を検出する主蒸気温度検出器と、前記最終過熱器よ
り前段側にある減温器と、前記減温器へ蒸気を供給する
蒸気ドラムと、前記蒸気ドラムの出口側と前記最終過熱
器の出口側とをバイパスする過熱器バイパス蒸気管と、
前記主蒸気温度検出器で検出した高圧主蒸気温度に応じ
て前記過熱器バイパス蒸気管を通る蒸気流量を調節する
バイパス流量調節手段と、を備えている。
The third invention of the present application is a final superheater for outputting high-pressure main steam to be supplied to a steam turbine, a main steam temperature detector for detecting high-pressure main steam temperature, and a stage preceding the final superheater. A desuperheater, a steam drum that supplies steam to the desuperheater, a superheater bypass steam pipe that bypasses an outlet side of the steam drum and an outlet side of the final superheater,
A bypass flow rate adjusting means for adjusting a steam flow rate through the superheater bypass steam pipe according to the high-pressure main steam temperature detected by the main steam temperature detector.

【0025】また、本願第4発明は、蒸気タービンへ供
給する高圧主蒸気を出力する最終過熱器と、ガスタービ
ンの排気ガス温度を検出する排気ガス温度検出器と、前
記最終過熱器より前段側にある減温器と、前記減温器へ
蒸気を供給する蒸気ドラムと、前記蒸気ドラムの出口側
と前記最終過熱器の出口側とをバイパスする過熱器バイ
パス蒸気管と、前記排気ガス温度検出器で検出したガス
タービンの排気ガス温度に応じて前記過熱器バイパス蒸
気管を通る蒸気流量を調節するバイパス流量調節手段
と、を備えている。
Further, the fourth invention of the present application is directed to a final superheater for outputting high-pressure main steam supplied to the steam turbine, an exhaust gas temperature detector for detecting the exhaust gas temperature of the gas turbine, and a stage upstream of the final superheater. A steam drum for supplying steam to the cooler, a superheater bypass steam pipe for bypassing an outlet side of the steam drum and an outlet side of the final superheater, and detecting the exhaust gas temperature. And a bypass flow rate adjusting means for adjusting a steam flow rate through the superheater bypass steam pipe according to the exhaust gas temperature of the gas turbine detected by the heater.

【0026】また、本願第5発明は、蒸気タービンへ供
給する高圧主蒸気を出力する最終過熱器と、ガスタービ
ン出力を検出するガスタービン出力検出手段と、前記最
終過熱器より前段側にある減温器と、前記減温器へ蒸気
を供給する蒸気ドラムと、前記蒸気ドラムの蒸気を過熱
せずに前記減温器へ供給するための第1蒸気管と、前記
蒸気ドラムの蒸気を過熱して前記減温器へ供給するため
の第2蒸気管と、前記ガスタービン出力検出手段で検出
したガスタービン出力に応じて前記第1蒸気管を通る蒸
気流量を調節するバイパス流量調節手段と、を備えてい
る。
Further, the fifth invention of the present application provides a final superheater for outputting high-pressure main steam to be supplied to a steam turbine, a gas turbine output detecting means for detecting a gas turbine output, and a reduction device located upstream of the final superheater. A heater, a steam drum that supplies steam to the desuperheater, a first steam pipe for supplying the steam of the steam drum to the desuperheater without overheating, and a heater that superheats the steam of the steam drum. A second steam pipe for supplying to the desuperheater, and a bypass flow rate adjusting means for adjusting a steam flow rate passing through the first steam pipe in accordance with the gas turbine output detected by the gas turbine output detecting means. Have.

【0027】また、本願第6発明は、蒸気タービンへ供
給する高圧主蒸気を出力する最終過熱器と、ガスタービ
ン燃料流量を検出するガスタービン燃料流量検出手段
と、前記最終過熱器より前段側にある減温器と、前記減
温器へ蒸気を供給する蒸気ドラムと、前記蒸気ドラムの
蒸気を過熱せずに前記減温器へ供給するための第1蒸気
管と、前記蒸気ドラムの蒸気を過熱して前記減温器へ供
給するための第2蒸気管と、前記ガスタービン燃料流量
検出手段で検出したガスタービン燃料流量に応じて前記
第1蒸気管を通る蒸気流量を調節するバイパス流量調節
手段と、を備えている。
Further, the sixth invention of the present application is directed to a final superheater for outputting high-pressure main steam supplied to a steam turbine, a gas turbine fuel flow rate detecting means for detecting a gas turbine fuel flow rate, and a stage upstream of the final superheater. A cooler, a steam drum for supplying steam to the cooler, a first steam pipe for supplying the steam of the steam drum to the cooler without overheating, and a steam for the steam drum. A second steam pipe for heating and supplying to the desuperheater; and a bypass flow rate adjusting means for adjusting a steam flow rate passing through the first steam pipe according to the gas turbine fuel flow rate detected by the gas turbine fuel flow rate detecting means. Means.

【0028】また、本願第7発明は、蒸気タービンへ供
給する高圧主蒸気を出力する最終過熱器と、負荷指令値
を指令する負荷指令値出力手段と、前記最終過熱器より
前段側にある減温器と、前記減温器へ蒸気を供給する蒸
気ドラムと、前記蒸気ドラムの蒸気を過熱せずに前記減
温器へ供給するための第1蒸気管と、前記蒸気ドラムの
蒸気を過熱して前記減温器へ供給するための第2蒸気管
と、前記負荷指令値出力手段で出力した負荷指令値に応
じて前記第1蒸気管を通る蒸気流量を調節するバイパス
流量調節手段と、を備えている。
Further, the seventh invention of the present application is directed to a final superheater for outputting high-pressure main steam to be supplied to a steam turbine, a load command value output means for instructing a load command value, and a reduction device located upstream of the final superheater. A heater, a steam drum that supplies steam to the desuperheater, a first steam pipe for supplying the steam of the steam drum to the desuperheater without overheating, and a heater that superheats the steam of the steam drum. A second steam pipe for supplying to the desuperheater, and a bypass flow rate adjusting means for adjusting a steam flow rate through the first steam pipe in accordance with the load command value output from the load command value output means. Have.

【0029】また、本願第8発明は、蒸気タービンへ供
給する高圧主蒸気を出力する最終過熱器と、発電機出力
を検出する発電機出力検出手段と、前記最終過熱器より
前段側にある減温器と、前記減温器へ蒸気を供給する蒸
気ドラムと、前記蒸気ドラムの蒸気を過熱せずに前記減
温器へ供給するための第1蒸気管と、前記蒸気ドラムの
蒸気を過熱して前記減温器へ供給するための第2蒸気管
と、前記発電機出力検出手段で検出した発電機出力に応
じて前記第1蒸気管を通る蒸気流量を調節するバイパス
流量調節手段と、を備えている。
The eighth invention of the present application is directed to a final superheater for outputting high-pressure main steam to be supplied to a steam turbine, a generator output detecting means for detecting a generator output, and a reduction output upstream of the final superheater. A heater, a steam drum that supplies steam to the desuperheater, a first steam pipe for supplying the steam of the steam drum to the desuperheater without overheating, and a heater that superheats the steam of the steam drum. A second steam pipe for supplying to the desuperheater, and a bypass flow rate adjusting means for adjusting a steam flow rate through the first steam pipe in accordance with the generator output detected by the generator output detecting means. Have.

【0030】具体的には、本願の第1発明の主蒸気温度
制御装置は、過熱器19をバイパスする蒸気バイパス管
51とバイパス流量調節器52を設け、主蒸気温度に応
じて過熱器19を通過する蒸気量を調節することによっ
て主蒸気温度の急激な変化を防止することを特徴とす
る。
More specifically, the main steam temperature control device of the first invention of the present application is provided with a steam bypass pipe 51 and a bypass flow rate regulator 52 that bypass the superheater 19, and the superheater 19 is controlled according to the main steam temperature. It is characterized in that a sudden change in the main steam temperature is prevented by adjusting the amount of passing steam.

【0031】第2発明の主蒸気温度制御装置は、過熱器
19をバイパスする蒸気バイパス管51と排ガス温度検
出器53を設け、排ガス温度に応じて過熱器19を通過
する蒸気量を調節することによって主蒸気温度の急激な
変化を防止することを特徴とする。
The main steam temperature control device of the second invention is provided with a steam bypass pipe 51 for bypassing the superheater 19 and an exhaust gas temperature detector 53 to adjust the amount of steam passing through the superheater 19 according to the exhaust gas temperature. This prevents a sudden change in the main steam temperature.

【0032】第3発明の主蒸気温度制御装置は、主蒸気
温度検出器46と第2減温器47を設け、主蒸気温度に
応じて第2減温器47へドラム15出口から供給するス
プレー蒸気流量を調節することによって主蒸気温度の急
激な変化を防止することを特徴とする。
The main steam temperature control device according to the third invention is provided with a main steam temperature detector 46 and a second desuperheater 47, and sprays the air supplied from the outlet of the drum 15 to the second desuperheater 47 in accordance with the main steam temperature. It is characterized in that a sudden change in the main steam temperature is prevented by adjusting the steam flow rate.

【0033】第4発明の主蒸気温度制御装置は、排ガス
温度検出器53と第2減温器47を設け、排ガス温度に
応じて第2減温器47へドラム15出口から供給する蒸
気スプレー流量を調節することによって主蒸気温度の急
激な変化を防止することを特徴とする。
The main steam temperature control device of the fourth invention is provided with an exhaust gas temperature detector 53 and a second desuperheater 47, and a steam spray flow rate supplied from the outlet of the drum 15 to the second desuperheater 47 according to the exhaust gas temperature. By controlling the temperature, a rapid change in the main steam temperature is prevented.

【0034】第5発明の主蒸気温度制御装置は、ガスタ
ービン出力検出器45を設け、ガスタービン出力に応じ
て減温器23へドラム出口から供給するスプレー蒸気流
量を調節することによって主蒸気温度の急激な変化を防
止することを特徴とする。
The main steam temperature control device according to the fifth aspect of the present invention is provided with a gas turbine output detector 45 and adjusts the flow rate of the spray steam supplied from the drum outlet to the desuperheater 23 in accordance with the output of the gas turbine. It is characterized by preventing a rapid change in

【0035】第6発明の主蒸気温度制御装置は、燃料流
量検出器41を設け、燃料流量に応じて減温器23へド
ラム出口から供給するスプレー蒸気流量を調節すること
によって主蒸気温度の急激な変化を防止することを特徴
とする。
The main steam temperature control device according to the sixth aspect of the present invention is provided with a fuel flow rate detector 41 and adjusts the flow rate of the spray steam supplied from the drum outlet to the desuperheater 23 in accordance with the fuel flow rate to thereby sharply increase the main steam temperature. Characteristic change is prevented.

【0036】第7発明の主蒸気温度制御装置は、負荷指
令値出力手段42を設け、負荷指令値に応じて減温器2
3へドラム15出口から供給するスプレー蒸気流量を調
節することによって主蒸気温度の急激な変化を防止する
ことを特徴とする。
The main steam temperature control device according to the seventh aspect of the present invention includes a load command value output means 42, and the temperature control device 2 according to the load command value.
By controlling the flow rate of the spray steam supplied from the outlet of the drum 15 to the outlet 3, a sudden change in the main steam temperature is prevented.

【0037】第8発明の主蒸気温度制御装置は、発電機
出力検出手段43を設け、発電機出力に応じて減温器2
3へドラム出口から供給するスプレー蒸気流量を調節す
ることによって主蒸気温度の急激な変化を防止すること
を特徴とする。
The main steam temperature control device according to the eighth aspect of the present invention is provided with a generator output detecting means 43.
The method is characterized in that the main steam temperature is prevented from changing rapidly by adjusting the flow rate of the spray steam supplied from the drum outlet to 3.

【0038】上述の発明において、最終過熱器の出口の
高圧主蒸気温度を補正制御することによって高圧主蒸気
温度の急激な変化を防止できる。
In the above-described invention, a sudden change in the high-pressure main steam temperature can be prevented by correcting and controlling the high-pressure main steam temperature at the outlet of the final superheater.

【0039】具体的には、第1発明において、蒸気分岐
によって、過熱器を通過する蒸気流量制御を行えば、排
ガスから主蒸気への熱交換量をも制御することになり、
主蒸気温度の急激な変化を抑制することができる。
Specifically, in the first invention, if the flow rate of steam passing through the superheater is controlled by the steam branch, the amount of heat exchange from the exhaust gas to the main steam is also controlled.
A rapid change in the main steam temperature can be suppressed.

【0040】第2発明において、第1発明と同じ作用だ
が、主蒸気温度に応じて蒸気流量制御を行う第1発明に
対し、排ガス温度に応じて蒸気流量制御を行う。
In the second invention, the operation is the same as that of the first invention, but in contrast to the first invention in which the steam flow is controlled in accordance with the main steam temperature, the steam flow is controlled in accordance with the exhaust gas temperature.

【0041】第3発明において、第2減温器を追加し
て、主蒸気温度に応じてドラム出口からのスプレー蒸気
流量を調節することにより、従来の主蒸気温度制御の応
答の遅れを、さらに補正することができる。
In the third aspect of the present invention, by adding a second desuperheater to adjust the flow rate of the spray steam from the drum outlet according to the main steam temperature, the response delay of the conventional main steam temperature control can be further reduced. Can be corrected.

【0042】第4発明において、第3発明と同じ作用だ
が、主蒸気温度ではなく、排ガス温度に応じてスプレー
蒸気流量を調節する。
In the fourth aspect, the operation is the same as that of the third aspect, but the spray vapor flow rate is adjusted not according to the main steam temperature but according to the exhaust gas temperature.

【0043】第5発明において、ガスタービン出力に応
じてスプレー蒸気流量を調節することで、従来の主蒸気
温度制御よりも応答を早くすることができる。
In the fifth aspect, the response can be made faster than in the conventional main steam temperature control by adjusting the spray steam flow rate according to the gas turbine output.

【0044】第6発明において、燃料流量の応じてスプ
レー蒸気流量を調節することで、従来の主蒸気温度制御
よりも応答を早くすることができる。
In the sixth aspect, by adjusting the spray steam flow rate according to the fuel flow rate, the response can be made faster than in the conventional main steam temperature control.

【0045】第7発明において、負荷指令値に応じてス
プレー蒸気流量を調節することで、従来の主蒸気温度制
御よりも応答を早くすることができる。
In the seventh aspect, by adjusting the spray steam flow rate according to the load command value, the response can be made faster than in the conventional main steam temperature control.

【0046】第8発明において、発電機出力に応じてス
プレー蒸気流量を調節することで、従来の主蒸気温度制
御よりも応答を早くすることができる。
In the eighth aspect, the response can be made faster than in the conventional main steam temperature control by adjusting the spray steam flow rate according to the generator output.

【0047】[0047]

【発明の実施の形態】以下に図面を参照して、本発明の
好適な実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0048】まず、第1発明の実施の形態について説明
する。
First, an embodiment of the first invention will be described.

【0049】図1に示す実施形態の機器構成および系統
は、図17に示した従来技術の機器構成と系統の同じ部
分には同一の符号をつけて説明を省略する。
In the device configuration and system of the embodiment shown in FIG. 1, the same parts as those of the device configuration of the prior art shown in FIG.

【0050】高圧蒸気ドラム15からの高圧蒸気は高圧
蒸気連絡管17を介して高圧第一過熱器18で過熱され
る。高圧主蒸気減温器23には高圧第一過熱器18で過
熱された蒸気と減温水供給管24を介して供給されるス
プレー注水とが入力され、高圧主蒸気減温器23からは
減温された蒸気とスプレー水との混合物が出力される。
高圧主蒸気減温器23の出力物は高圧第二過熱器19へ
送られて過熱され完全な蒸気状態になり、主蒸気として
高圧主蒸気管20を介して蒸気タービンへ送出される。
The high-pressure steam from the high-pressure steam drum 15 is superheated by the high-pressure first superheater 18 through the high-pressure steam communication pipe 17. The steam superheated by the high-pressure first superheater 18 and the spray water supplied through the desuperheated water supply pipe 24 are input to the high-pressure main steam desuperheater 23, and the high-temperature main steam desuperheater 23 reduces the temperature. A mixture of the generated steam and the spray water is output.
The output of the high-pressure main steam desuperheater 23 is sent to the high-pressure second superheater 19 to be superheated to a complete steam state, and sent out to the steam turbine via the high-pressure main steam pipe 20 as main steam.

【0051】高圧主蒸気管20に連結された主蒸気温度
検出器33は、主蒸気温度を検出する。この検出結果に
基づき主蒸気温度蒸気調節器32によって高圧主蒸気温
度調節スプレー弁25の開度が調節され、減温水供給管
24から高圧主蒸気減温器23へ供給されるスプレー水
注入量が調節される。
The main steam temperature detector 33 connected to the high-pressure main steam pipe 20 detects the main steam temperature. The opening degree of the high pressure main steam temperature control spray valve 25 is adjusted by the main steam temperature steam controller 32 based on the detection result, and the injection amount of spray water supplied from the desuperheated water supply pipe 24 to the high pressure main steam desuperheater 23 is reduced. Adjusted.

【0052】図2に示すように、主蒸気温度蒸気調節器
32は、関数発生器35、開度演算器36、主蒸気温度
調節器37および低値優先回路38を備えている。高圧
蒸気ドラム15の圧力は、高圧第二過熱器19の入口蒸
気温度の下限値を演算する関数発生器35に入力され、
高圧蒸気ドラム15の圧力に応じた高圧第二加熱器19
の入口蒸気温度の下限値が演算される。この演算値は、
高圧蒸気管20の蒸気流量および減温水供給管24のス
プレー水温度と共に高圧主蒸気温度調節スプレー弁25
の開度演算器36に入力され、高圧主蒸気温度調節スプ
レー弁25の開度が演算される。一方、高圧蒸気管20
の高圧蒸気温度とその設置値との偏差に基づいてその偏
差が零となるような高圧主蒸気温度調節スプレー弁25
の開度が主蒸気温度調節器37で演算される。そして、
この演算値と開度演算値36の演算値とのうち小さい方
を選択して低値優先回路38により高圧主蒸気温度調節
スプレー弁25に開度指令を出力する。
As shown in FIG. 2, the main steam temperature steam regulator 32 includes a function generator 35, an opening degree calculator 36, a main steam temperature regulator 37, and a low value priority circuit 38. The pressure of the high-pressure steam drum 15 is input to a function generator 35 that calculates the lower limit of the inlet steam temperature of the high-pressure second superheater 19,
High pressure second heater 19 corresponding to the pressure of high pressure steam drum 15
The lower limit of the inlet steam temperature is calculated. This calculated value is
The high-pressure main steam temperature control spray valve 25 together with the steam flow rate of the high-pressure steam pipe 20 and the spray water temperature of the cooling water supply pipe 24.
Of the high-pressure main steam temperature control spray valve 25 is calculated. On the other hand, the high pressure steam pipe 20
High-pressure main steam temperature control spray valve 25 such that the deviation becomes zero based on the deviation between the high-pressure steam temperature and its set value.
Is calculated by the main steam temperature controller 37. And
The smaller one of the calculated value and the calculated value of the opening calculated value 36 is selected, and the low value priority circuit 38 outputs an opening command to the high-pressure main steam temperature control spray valve 25.

【0053】一般に、減温水供給管24から減温水供給
管24へ供給されるスプレー水注入により高圧主蒸気管
20を介して蒸気タービンへ供給される高圧蒸気の温度
上昇を抑制しようとすることは、高圧第二過熱器19を
介しているため、高圧蒸気温度の上昇抑制効果はかなり
遅れを生じる。
In general, it is difficult to suppress a rise in the temperature of the high-pressure steam supplied to the steam turbine via the high-pressure main steam pipe 20 by injecting spray water supplied from the desuperheated water supply pipe 24 to the desuperheated water supply pipe 24. Because of the high-pressure second superheater 19, the effect of suppressing the increase in the high-pressure steam temperature is considerably delayed.

【0054】図1においては、高圧主蒸気減温器23の
出力側と高圧蒸気管20との間をバイパスするように最
終過熱器蒸気流路から分岐する蒸気バイパス51と分岐
する蒸気流量を調節するバイパス蒸気流量調節弁52と
が新たに設けられている。主蒸気温度を検出する主蒸気
温度検出器33の検出結果に基づいてバイパス蒸気流量
調節装置34が作動し、バイパス蒸気流量調節装置34
の制御信号に基づいてバイパス蒸気流量調節弁52の開
度が調節される。バイパス蒸気流量調節弁52の開度に
よって、高圧第二過熱器19へ供給される高圧主蒸気減
温器23の出力物の供給量を調整でき、また、高圧第二
過熱器19へ経ずに直接、高圧蒸気管20へ供給される
高圧主蒸気減温器23の出力物の供給量を調整できる。
高圧第二過熱器19へ経ずに直接、高圧蒸気管20へ供
給される高圧主蒸気減温器23の出力物の温度は、高圧
第二過熱器19から高圧蒸気管20へ供給される高圧主
蒸気の温度より低い。
In FIG. 1, the flow rate of steam branched from the steam bypass 51 branched from the steam path of the final superheater is adjusted so as to bypass between the output side of the high-pressure main steam desuperheater 23 and the high-pressure steam pipe 20. And a bypass steam flow control valve 52 is newly provided. The bypass steam flow control device 34 operates based on the detection result of the main steam temperature detector 33 that detects the main steam temperature, and the bypass steam flow control device 34
The opening degree of the bypass steam flow control valve 52 is adjusted based on the control signal. The supply amount of the output of the high-pressure main steam desuperheater 23 supplied to the high-pressure second superheater 19 can be adjusted by the opening degree of the bypass steam flow control valve 52, and the output amount does not pass to the high-pressure second superheater 19. The supply amount of the output of the high-pressure main steam desuperheater 23 supplied to the high-pressure steam pipe 20 can be adjusted directly.
The temperature of the output of the high-pressure main steam desuperheater 23, which is supplied directly to the high-pressure steam pipe 20 without passing through the high-pressure second superheater 19, is equal to the high pressure supplied to the high-pressure steam pipe 20 from the high-pressure second superheater 19. Lower than main steam temperature.

【0055】図2に示す本実施形態の制御図において、
主蒸気温度が急激に上昇した場合に、バイパス流量調節
器34によりバイパス蒸気流量調節弁52が開閉され
る。減温水供給管24からのスプレー水注入による高圧
蒸気温度上昇の抑制の効果はかなり遅れを生じるのに対
し、バイパス分岐による過熱器蒸気への交換熱量減少の
効果は徐々に現れ、高圧主蒸気温度を蒸気温度設定値に
するように作用する。
In the control diagram of this embodiment shown in FIG.
When the main steam temperature rises rapidly, the bypass steam flow control valve 52 opens and closes the bypass steam flow control valve 52. The effect of suppressing the increase in high-pressure steam temperature by injection of spray water from the desuperheated water supply pipe 24 causes a considerable delay, whereas the effect of reducing the amount of heat exchanged into superheater steam by the bypass branch gradually appears, and the high-pressure main steam temperature is reduced. To the steam temperature set point.

【0056】次に本実施形態の効果について説明する。Next, the effect of the present embodiment will be described.

【0057】バイパス流量調節器34と蒸気バイパス5
1とバイパス蒸気流量調節弁52とを設け、主蒸気温度
検出器33の検出結果に基づきバイパス蒸気流量調節装
置34を作動させ、高圧主蒸気減温器23の出力物のう
ち高圧第二過熱器19へ経ずに直接、高圧蒸気管20へ
供給される供給量を調節することにより、蒸気タービン
へ供給される高圧蒸気温度上昇の抑制を迅速に行うこと
ができる。
The bypass flow controller 34 and the steam bypass 5
1 and a bypass steam flow control valve 52, and activates the bypass steam flow control device 34 based on the detection result of the main steam temperature detector 33. By directly adjusting the supply amount to the high-pressure steam pipe 20 without going to 19, it is possible to quickly suppress the rise in the temperature of the high-pressure steam supplied to the steam turbine.

【0058】主蒸気温度上昇率などの蒸気温度変化率に
制約を受けた場合、スプレー水制御のみでは変化率制限
を満足することが不可能な場合も発生するが、本実施形
態の構成によれば、最終過熱器入口蒸気をバイパスして
熱交換量を減少させる方法を採用することにより、蒸気
温度の上昇を抑制することができ、変化率制限を必要と
する場合でも目的の温度制御を行うことができる。
If the steam temperature change rate such as the main steam temperature rise rate is restricted, it may not be possible to satisfy the change rate limit only by spray water control. For example, by adopting a method of reducing the amount of heat exchange by bypassing the final superheater inlet steam, it is possible to suppress an increase in the steam temperature, and to perform a desired temperature control even when a change rate restriction is required. be able to.

【0059】次に、図3および図4を参照して第2発明
の実施形態について説明する。
Next, an embodiment of the second invention will be described with reference to FIGS.

【0060】図1に示す構成と異なり、本実施形態では
図3に示すようにガスタービンの排気ガスの温度を検出
する排気ガス温度検出器53が設けられている。主蒸気
温度検出器33の検出結果ではなく、排気ガス温度検出
器53の検出結果に基づいてバイパス蒸気流量調節装置
34が作動し、バイパス蒸気流量調節装置34の制御信
号に基づいてバイパス蒸気流量調節弁52の開度が調節
される。
Unlike the configuration shown in FIG. 1, in this embodiment, as shown in FIG. 3, an exhaust gas temperature detector 53 for detecting the temperature of the exhaust gas of the gas turbine is provided. The bypass steam flow controller 34 operates based on the detection result of the exhaust gas temperature detector 53, not the detection result of the main steam temperature detector 33, and controls the bypass steam flow based on the control signal of the bypass steam flow controller 34. The opening of the valve 52 is adjusted.

【0061】図4に示す制御図において、排ガス温度が
急激に上昇した場合は、バイパス流量調節器34により
バイパス流量調節弁52が開閉される。
In the control diagram shown in FIG. 4, when the exhaust gas temperature rises rapidly, the bypass flow rate regulator 34 opens and closes the bypass flow rate control valve 52.

【0062】本実施形態の構成によれば、バイパス流量
調節器34と蒸気バイパス51とバイパス蒸気流量調節
弁52とを設け、排気ガス温度検出器53の検出結果に
基づきバイパス蒸気流量調節装置34を作動させ、高圧
主蒸気減温器23の出力物のうち高圧第二過熱器19へ
経ずに直接、高圧蒸気管20へ供給される供給量を調節
することにより、蒸気タービンへ供給される高圧蒸気温
度上昇の抑制を迅速に行うことができる。
According to the structure of this embodiment, the bypass flow rate controller 34, the steam bypass 51, and the bypass steam flow rate control valve 52 are provided, and the bypass steam flow rate control device 34 is controlled based on the detection result of the exhaust gas temperature detector 53. By operating and directly adjusting the supply amount of the output of the high-pressure main steam desuperheater 23 to the high-pressure steam pipe 20 without passing through the high-pressure second superheater 19, the high-pressure supply to the steam turbine is controlled. It is possible to quickly suppress an increase in steam temperature.

【0063】このように、最終過熱器入口蒸気をバイパ
スして熱交換量を減少させる方法を採用することによ
り、蒸気温度の上昇を抑制することができ、変化率制限
を必要とする場合でも、目的の温度制御を可能にするこ
とができる。
As described above, by adopting a method of reducing the amount of heat exchange by bypassing the steam at the inlet of the final superheater, it is possible to suppress an increase in the steam temperature, and even if the rate of change is required, Desired temperature control can be enabled.

【0064】次に、図5および図6を参照して第3発明
の実施形態について説明する。
Next, an embodiment of the third invention will be described with reference to FIGS.

【0065】図5に示す実施形態の機器構成および系統
は、図17に示した従来技術の機器構成と系統に比べ
て、第2減温器47が新たに設けられている。減温器バ
イパス蒸気管30を介して第2減温器47へスプレー蒸
気が供給される。この際、第2減温器47へ供給される
スプレー蒸気流量は、主蒸気温度調節器46の制御信号
に基づき高圧主蒸気温度調節第2スプレー弁31によっ
て調節される。
The device configuration and system of the embodiment shown in FIG. 5 are different from the device configuration and system of the prior art shown in FIG. 17 in that a second desuperheater 47 is newly provided. Spray steam is supplied to the second desuperheater 47 via the desuperheater bypass steam pipe 30. At this time, the flow rate of the spray steam supplied to the second desuperheater 47 is adjusted by the high-pressure main steam temperature adjusting second spray valve 31 based on the control signal of the main steam temperature adjuster 46.

【0066】主蒸気温度調節器46は、図6に示すよう
に微分器39と主蒸気温度調節器40を備えている。高
圧主蒸気温度が急激に上昇した場合は、主蒸気温度調節
器37によりスプレー水が注入されるが、同時にもう一
つの主蒸気温度調節器40は微分器39によって微分さ
れた温度偏差も急激に上昇するため飽和蒸気の混合量を
増加させる。このとき、スプレー注水による高圧蒸気温
度上昇の抑制の効果はかなり遅れて生じるのに対し、飽
和蒸気の混合による効果はすぐに現れ、高圧主蒸気温度
を蒸気温度設定値にするように作用する。
The main steam temperature controller 46 includes a differentiator 39 and a main steam temperature controller 40 as shown in FIG. When the high-pressure main steam temperature rises sharply, spray water is injected by the main steam temperature controller 37, and at the same time, the temperature deviation differentiated by the differentiator 39 by the other main steam temperature controller 40 also sharply increases. The amount of the saturated steam is increased to rise. At this time, the effect of suppressing the rise in high-pressure steam temperature by spray injection occurs with a considerable delay, whereas the effect of mixing saturated steam appears immediately and acts to bring the high-pressure main steam temperature to the steam temperature set value.

【0067】図6に示す制御図において、主蒸気温度が
急激に上昇した場合は、主蒸気温度調節器46により高
圧主蒸気温度調節第2スプレー弁31が開閉される。高
圧主蒸気温度調節第2スプレー弁31が開くと、第2減
温器47へスプレー蒸気が注入され、第2減温器47に
おける高圧第二過熱器19からの過熱蒸気への交換熱量
が減少し、この減少の効果は徐々に現れて高圧主蒸気温
度が蒸気温度設定値になるように作用する。
In the control chart shown in FIG. 6, when the main steam temperature rises rapidly, the main steam temperature controller 46 opens and closes the high-pressure main steam temperature control second spray valve 31. When the high-pressure main steam temperature control second spray valve 31 is opened, the spray steam is injected into the second desuperheater 47, and the amount of heat exchanged by the second desuperheater 47 to the superheated steam from the high-pressure second superheater 19 decreases. However, the effect of this decrease gradually appears, and acts so that the high-pressure main steam temperature becomes the steam temperature set value.

【0068】本実施形態の構成によれば、最終過熱器出
口側に新設した第2減温器47に高圧主蒸気温度調節第
2スプレー弁31を介してスプレー蒸気を注入し、第2
減温器47の熱交換量を減少させる方法を採用し過熱蒸
気の熱交換量を調整することにより、蒸気温度の上昇を
抑制することができ、変化率制限を必要とする場合で
も、目的の温度制御をすることができる。また、微分器
39を用い蒸気温度偏差の微分値により過熱蒸気の熱交
換量を求めることにより、蒸気温度の上昇を抑制するこ
とができ、変化率制限を必要とする場合でも、目的の温
度制御を行うことができる。
According to the configuration of the present embodiment, spray steam is injected into the newly installed second desuperheater 47 at the outlet side of the final superheater via the high-pressure main steam temperature control second spray valve 31,
By adjusting the heat exchange amount of the superheated steam by adopting a method of reducing the heat exchange amount of the desuperheater 47, it is possible to suppress an increase in the steam temperature, and even when the rate of change restriction is required, Temperature control can be performed. Further, by obtaining the heat exchange amount of the superheated steam from the differential value of the steam temperature deviation using the differentiator 39, the rise of the steam temperature can be suppressed, and even if the rate of change restriction is required, the target temperature control can be performed. It can be performed.

【0069】次に、図7および図8を参照して第4発明
の実施形態について説明する。
Next, an embodiment of the fourth invention will be described with reference to FIGS.

【0070】図5に示す構成と異なり、本実施形態では
図7に示すようにガスタービンの排気ガスの温度を検出
する排気ガス温度検出器53が設けられている。主蒸気
温度検出器33の検出結果ではなく、排気ガス温度検出
器53の検出結果に基づいて主蒸気温度調節器46が作
動し、第2減温器47へ供給されるスプレー蒸気流量
は、主蒸気温度調節器46の制御信号に基づき高圧主蒸
気温度調節第2スプレー弁31によって調節される。
Unlike the configuration shown in FIG. 5, in this embodiment, as shown in FIG. 7, an exhaust gas temperature detector 53 for detecting the temperature of the exhaust gas of the gas turbine is provided. The main steam temperature controller 46 operates based on the detection result of the exhaust gas temperature detector 53 instead of the detection result of the main steam temperature detector 33, and the flow rate of the spray steam supplied to the second desuperheater 47 is The high pressure main steam temperature is adjusted by the second spray valve 31 based on the control signal of the steam temperature controller 46.

【0071】図8に示す制御図において、排気ガス温度
が急激に上昇した場合は、主蒸気温度調節器46により
高圧主蒸気温度調節第2スプレー弁31が開閉される。
高圧主蒸気温度調節第2スプレー弁31が開くと、第2
減温器47へスプレー蒸気が注入され、第2減温器47
における高圧第二過熱器19からの過熱蒸気への交換熱
量が減少し、この減少の効果は徐々に現れて高圧主蒸気
温度が蒸気温度設定値になるように作用する。
In the control chart shown in FIG. 8, when the exhaust gas temperature rises rapidly, the main steam temperature controller 46 opens and closes the high-pressure main steam temperature control second spray valve 31.
When the high pressure main steam temperature control second spray valve 31 is opened, the second
Spray steam is injected into the desuperheater 47, and the second desuperheater 47
, The amount of heat exchanged with the superheated steam from the high-pressure second superheater 19 is reduced, and the effect of this reduction gradually appears, and acts so that the high-pressure main steam temperature becomes the steam temperature set value.

【0072】本実施形態の構成によれば、排気ガス温度
検出器53を設け、最終過熱器出口側に新設した第2減
温器47に高圧主蒸気温度調節第2スプレー弁31を介
してスプレー蒸気を注入し、第2減温器47の熱交換量
を減少させる方法を採用し過熱蒸気の熱交換量を調整す
ることにより、蒸気温度の上昇を抑制することができ、
変化率制限を必要とする場合でも、目的の温度制御をす
ることができる。また、微分器39を用い蒸気温度偏差
の微分値により過熱蒸気の熱交換量を求めることによ
り、蒸気温度の上昇を抑制することができ、変化率制限
を必要とする場合でも、目的の温度制御を行うことがで
きる。
According to the structure of this embodiment, the exhaust gas temperature detector 53 is provided, and the newly-developed second desuperheater 47 at the outlet of the final superheater is sprayed through the high-pressure main steam temperature control second spray valve 31. By injecting steam and adopting a method of reducing the heat exchange amount of the second desuperheater 47 and adjusting the heat exchange amount of the superheated steam, it is possible to suppress an increase in the steam temperature,
Even when the rate of change restriction is required, desired temperature control can be performed. Further, by obtaining the heat exchange amount of the superheated steam from the differential value of the steam temperature deviation using the differentiator 39, the rise of the steam temperature can be suppressed, and even if the rate of change restriction is required, the target temperature control can be performed. It can be performed.

【0073】次に、図9および図10を参照して第5発
明の実施形態について説明する。
Next, an embodiment of the fifth invention will be described with reference to FIGS. 9 and 10.

【0074】図9に示す実施形態の機器構成および系統
は、図17に示した従来技術の機器構成と系統に対し、
ガスタービン出力を検出するためのガスタービン出力検
出器45が新たに設けられている。ガスタービン出力検
出器45の出力に基づいて主蒸気温度調節装置32が作
動し、高圧主蒸気温度調整弁25の開度が調整され、高
圧主蒸気減温器23へのスプレー蒸気流量が調節され
る。
The device configuration and system of the embodiment shown in FIG. 9 are different from the device configuration and system of the prior art shown in FIG.
A gas turbine output detector 45 for detecting a gas turbine output is newly provided. The main steam temperature control device 32 is operated based on the output of the gas turbine output detector 45, the opening of the high-pressure main steam temperature control valve 25 is adjusted, and the spray steam flow rate to the high-pressure main steam desuperheater 23 is adjusted. You.

【0075】高圧蒸気ドラム15から高圧主蒸気減温器
23へ送られる蒸気には、高圧第一過熱器18によって
過熱された後に高圧主蒸気減温器23へ送られる蒸気
と、高圧第一過熱器18によって過熱されずに直接、高
圧主蒸気減温器23へ送られる蒸気とがある。高圧第一
過熱器18を経ない蒸気は第1蒸気管55を介して高圧
主蒸気減温器23へ送られ、高圧第一過熱器18で過熱
された蒸気は第2蒸気管56を介して高圧主蒸気減温器
23へ送られる。高圧主蒸気温度調整弁25は第1蒸気
管55に設けられている。
The steam sent from the high-pressure steam drum 15 to the high-pressure main steam desuperheater 23 includes steam sent to the high-pressure main steam deheater 23 after being superheated by the high-pressure first superheater 18, Steam directly to the high-pressure main steam desuperheater 23 without being superheated by the heater 18. The steam that has not passed through the high-pressure first superheater 18 is sent to the high-pressure main steam desuperheater 23 via the first steam pipe 55, and the steam superheated by the high-pressure first superheater 18 is passed through the second steam pipe 56. It is sent to the high-pressure main steam desuperheater 23. The high-pressure main steam temperature control valve 25 is provided in the first steam pipe 55.

【0076】図10に示す制御図において、ガスタービ
ン出力が急激に上昇した場合に主蒸気温度調節器37を
有する主蒸気温度調節器32により高圧主蒸気温度調節
スプレー弁25が開閉される。
In the control diagram shown in FIG. 10, when the gas turbine output rises sharply, the high-pressure main steam temperature control spray valve 25 is opened and closed by the main steam temperature controller 32 having the main steam temperature controller 37.

【0077】本実施形態の構成によれば、ガスタービン
出力を検出するためのガスタービン出力検出器45を設
けたので、蒸気タービンの高圧主蒸気の温度に密接に関
係するガスタービン出力に応じて、最終過熱器入口側の
高圧主蒸気減温器23にスプレー蒸気を注入して高圧主
蒸気減温器23における熱交換量を減少させることがで
き、主蒸気温度の上昇を迅速に抑制することができ、変
化率制限を必要とする場合でも目的の温度制御を行うこ
とができる。
According to the configuration of the present embodiment, the gas turbine output detector 45 for detecting the gas turbine output is provided, so that the gas turbine output detector 45 is provided in accordance with the gas turbine output closely related to the temperature of the high-pressure main steam of the steam turbine. Injecting the spray steam into the high-pressure main steam desuperheater 23 at the inlet side of the final superheater, it is possible to reduce the amount of heat exchange in the high-pressure main steam desuperheater 23 and quickly suppress the rise of the main steam temperature. Thus, even when a change rate restriction is required, the desired temperature control can be performed.

【0078】次に、図11および図12を参照して第6
発明の実施形態について説明する。図11に示す実施形
態の機器構成および系統は、図17に示した従来技術の
機器構成と系統に対し、ガスタービン燃料流量を検出す
るためのガスタービン燃料流量検出器41が新たに設け
られている。ガスタービン燃料流量検出器41の出力に
基づいて主蒸気温度調節装置32が作動し、高圧主蒸気
温度調整弁25の開度が調整され、高圧主蒸気減温器2
3へのスプレー蒸気流量が調節される。
Next, referring to FIG. 11 and FIG.
An embodiment of the invention will be described. The device configuration and system of the embodiment shown in FIG. 11 are different from the device configuration and system of the prior art shown in FIG. 17 in that a gas turbine fuel flow detector 41 for detecting a gas turbine fuel flow is newly provided. I have. The main steam temperature controller 32 operates based on the output of the gas turbine fuel flow rate detector 41, the opening of the high-pressure main steam temperature control valve 25 is adjusted, and the high-pressure main steam
The spray vapor flow to 3 is adjusted.

【0079】高圧蒸気ドラム15から高圧主蒸気減温器
23へ送られる蒸気には、高圧第一過熱器18によって
過熱された後に高圧主蒸気減温器23へ送られる蒸気
と、高圧第一過熱器18によって過熱されずに直接、高
圧主蒸気減温器23へ送られる蒸気とがある。高圧第一
過熱器18を経ない蒸気は第1蒸気管55を介して高圧
主蒸気減温器23へ送られ、高圧第一過熱器18で過熱
された蒸気は第2蒸気管56を介して高圧主蒸気減温器
23へ送られる。高圧主蒸気温度調整弁25は第1蒸気
管55に設けられている。
The steam sent from the high-pressure steam drum 15 to the high-pressure main steam desuperheater 23 includes steam sent to the high-pressure main steam deheater 23 after being superheated by the high-pressure first superheater 18, Steam directly to the high-pressure main steam desuperheater 23 without being superheated by the heater 18. The steam that has not passed through the high-pressure first superheater 18 is sent to the high-pressure main steam desuperheater 23 via the first steam pipe 55, and the steam superheated by the high-pressure first superheater 18 is passed through the second steam pipe 56. It is sent to the high-pressure main steam desuperheater 23. The high-pressure main steam temperature control valve 25 is provided in the first steam pipe 55.

【0080】図12に示す制御図において、ガスタービ
ン燃料流量が急激に上昇した場合に主蒸気温度調節器3
7を有する主蒸気温度調節器32により高圧主蒸気温度
調節スプレー弁25が開閉される。
In the control diagram shown in FIG. 12, when the gas turbine fuel flow rate rises sharply, the main steam temperature controller 3
The high-pressure main steam temperature control spray valve 25 is opened / closed by the main steam temperature controller 32 having 7.

【0081】本実施形態の構成によれば、ガスタービン
燃料流量を検出するためのガスタービン燃料流量検出器
41を設けたので、蒸気タービンの高圧主蒸気の温度に
密接に関係するガスタービン燃料流量に応じて、最終過
熱器入口側の高圧主蒸気減温器23にスプレー蒸気を注
入して高圧主蒸気減温器23における熱交換量を減少さ
せることができ、主蒸気温度の上昇を迅速に抑制するこ
とができ、変化率制限を必要とする場合でも目的の温度
制御を行うことができる。
According to the configuration of the present embodiment, the gas turbine fuel flow rate detector 41 for detecting the gas turbine fuel flow rate is provided, so that the gas turbine fuel flow rate closely related to the temperature of the high-pressure main steam of the steam turbine is provided. Accordingly, the amount of heat exchange in the high-pressure main steam desuperheater 23 can be reduced by injecting the spray steam into the high-pressure main steam desuperheater 23 on the inlet side of the final superheater, and the main steam temperature can be increased quickly. Thus, even when the rate of change is required, the desired temperature control can be performed.

【0082】次に、図13および図14を参照して第7
発明の実施形態について説明する。図13に示す実施形
態の機器構成および系統は、図17に示した従来技術の
機器構成と系統に対し、負荷指令値を指令する負荷指令
値出力手段42を主蒸気温度調節装置32に新たに連結
し、負荷指令値に応じた主蒸気温度調節装置32の制御
信号に基づいて高圧主蒸気減温器23へのスプレー蒸気
流量を調節する。
Next, referring to FIG. 13 and FIG.
An embodiment of the invention will be described. The device configuration and system of the embodiment shown in FIG. 13 are different from the device configuration and system of the prior art shown in FIG. Then, the flow rate of the spray steam to the high-pressure main steam desuperheater 23 is adjusted based on the control signal of the main steam temperature adjusting device 32 according to the load command value.

【0083】高圧蒸気ドラム15から高圧主蒸気減温器
23へ送られる蒸気には、高圧第一過熱器18によって
過熱された後に高圧主蒸気減温器23へ送られる蒸気
と、高圧第一過熱器18によって過熱されずに直接、高
圧主蒸気減温器23へ送られる蒸気とがある。高圧第一
過熱器18を経ない蒸気は第1蒸気管55を介して高圧
主蒸気減温器23へ送られ、高圧第一過熱器18で過熱
された蒸気は第2蒸気管56を介して高圧主蒸気減温器
23へ送られる。高圧主蒸気温度調整弁25は第1蒸気
管55に設けられている。
The steam sent from the high-pressure steam drum 15 to the high-pressure main steam desuperheater 23 includes steam that is superheated by the high-pressure first superheater 18 and then sent to the high-pressure main steam deheater 23, Steam directly to the high-pressure main steam desuperheater 23 without being superheated by the heater 18. The steam that has not passed through the high-pressure first superheater 18 is sent to the high-pressure main steam desuperheater 23 via the first steam pipe 55, and the steam superheated by the high-pressure first superheater 18 is passed through the second steam pipe 56. It is sent to the high-pressure main steam desuperheater 23. The high-pressure main steam temperature control valve 25 is provided in the first steam pipe 55.

【0084】図14において、負荷指令値が急激に上昇
した場合に主蒸気温度調節器37を有する主蒸気温度調
節器32により高圧主蒸気温度調節スプレー弁25が開
閉される。
In FIG. 14, when the load command value rises sharply, the high-pressure main steam temperature control spray valve 25 is opened and closed by the main steam temperature controller 32 having the main steam temperature controller 37.

【0085】本実施形態の構成によれば、負荷指令値出
力手段42を主蒸気温度調節装置32に新たに連結した
ので、蒸気タービンの高圧主蒸気の温度に密接に関係す
る負荷指令値に応じて、最終過熱器入口側の高圧主蒸気
減温器23にスプレー蒸気を注入して高圧主蒸気減温器
23における熱交換量を減少させることができ、主蒸気
温度の上昇を迅速に抑制することができ、変化率制限を
必要とする場合でも目的の温度制御を行うことができ
る。
According to the configuration of the present embodiment, the load command value output means 42 is newly connected to the main steam temperature control device 32, so that the load command value output means 42 responds to the load command value closely related to the high-pressure main steam temperature of the steam turbine. Thus, the amount of heat exchange in the high-pressure main steam desuperheater 23 can be reduced by injecting the spray steam into the high-pressure main steam desuperheater 23 on the inlet side of the final superheater, and the increase in the main steam temperature can be suppressed quickly. The target temperature control can be performed even when the rate of change restriction is required.

【0086】次に、図15および図16を参照して第8
発明の実施形態について説明する。図15に示す実施形
態の機器構成および系統は、図17に示した従来技術の
機器構成と系統に対し、発電機出力を検出する発電機出
力検出手段43を主蒸気温度調節装置32に新たに連結
し、発電器出力に応じた主蒸気温度調節装置32の制御
信号に基づいて高圧主蒸気減温器23へのスプレー蒸気
流量を調節する。
Next, referring to FIG. 15 and FIG.
An embodiment of the invention will be described. The device configuration and system of the embodiment shown in FIG. 15 are different from the device configuration and system of the prior art shown in FIG. 17 in that a generator output detection means 43 for detecting a generator output is newly added to the main steam temperature controller 32. Then, the flow rate of the spray steam to the high-pressure main steam desuperheater 23 is adjusted based on the control signal of the main steam temperature adjusting device 32 according to the generator output.

【0087】高圧蒸気ドラム15から高圧主蒸気減温器
23へ送られる蒸気には、高圧第一過熱器18によって
過熱された後に高圧主蒸気減温器23へ送られる蒸気
と、高圧第一過熱器18によって過熱されずに直接、高
圧主蒸気減温器23へ送られる蒸気とがある。高圧第一
過熱器18を経ない蒸気は第1蒸気管55を介して高圧
主蒸気減温器23へ送られ、高圧第一過熱器18で過熱
された蒸気は第2蒸気管56を介して高圧主蒸気減温器
23へ送られる。高圧主蒸気温度調整弁25は第1蒸気
管55に設けられている。
The steam sent from the high-pressure steam drum 15 to the high-pressure main steam desuperheater 23 includes steam that is superheated by the high-pressure first superheater 18 and then sent to the high-pressure main steam desuperheater 23, Steam directly to the high-pressure main steam desuperheater 23 without being superheated by the heater 18. The steam that has not passed through the high-pressure first superheater 18 is sent to the high-pressure main steam desuperheater 23 via the first steam pipe 55, and the steam superheated by the high-pressure first superheater 18 is passed through the second steam pipe 56. It is sent to the high-pressure main steam desuperheater 23. The high-pressure main steam temperature control valve 25 is provided in the first steam pipe 55.

【0088】図16において、発電機出力が急激に上昇
した場合に主蒸気温度調節器37を有する主蒸気温度調
節器32により高圧主蒸気温度調節スプレー弁25が開
閉される。
In FIG. 16, when the generator output rises sharply, the high-pressure main steam temperature control spray valve 25 is opened and closed by the main steam temperature controller 32 having the main steam temperature controller 37.

【0089】本実施形態の構成によれば、発電機出力検
出手段43を主蒸気温度調節装置32に新たに連結した
ので、蒸気タービンの高圧主蒸気の温度に密接に関係す
る負荷指令値に応じて、最終過熱器入口側の高圧主蒸気
減温器23にスプレー蒸気を注入して高圧主蒸気減温器
23における熱交換量を減少させることができ、主蒸気
温度の上昇を迅速に抑制することができ、変化率制限を
必要とする場合でも目的の温度制御を行うことができ
る。
According to the configuration of the present embodiment, the generator output detection means 43 is newly connected to the main steam temperature control device 32, so that the generator output detection means 43 responds to the load command value closely related to the high-pressure main steam temperature of the steam turbine. Thus, the amount of heat exchange in the high-pressure main steam desuperheater 23 can be reduced by injecting the spray steam into the high-pressure main steam desuperheater 23 on the inlet side of the final superheater, and the increase in the main steam temperature can be suppressed quickly. The target temperature control can be performed even when the rate of change restriction is required.

【0090】[0090]

【発明の効果】以上説明したように、本発明の構成によ
れば、最終過熱器の出口の高圧主蒸気温度を補正制御す
ることによって高圧主蒸気温度の急激な変化を防止でき
る。この結果、ガスタービンの負荷上昇率(燃料投入
量)を変更しないで主蒸気温度の上昇率を蒸気タービン
の許容範囲内に治めるように主蒸気温度の急激な変化を
防止し、プラントの起動時間を長くすることなく蒸気タ
ービンの寿命消費を最小限に抑えることが可能になる。
As described above, according to the configuration of the present invention, a sudden change in the high-pressure main steam temperature can be prevented by correcting and controlling the high-pressure main steam temperature at the outlet of the final superheater. As a result, a sudden change in the main steam temperature is prevented so that the rate of increase in the main steam temperature falls within the allowable range of the steam turbine without changing the load increase rate (fuel input amount) of the gas turbine, and the plant startup time is reduced. It is possible to minimize the life consumption of the steam turbine without lengthening the time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の排熱回収ボイラの機
器要素構成と系統を示す図。
FIG. 1 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態の主蒸気温度制御の簡
単なブロックを示す図。
FIG. 2 is a diagram showing a simple block of main steam temperature control according to a second embodiment of the present invention.

【図3】本発明の第2の実施形態の排熱回収ボイラの機
器要素構成と系統を示す図。
FIG. 3 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to a second embodiment of the present invention.

【図4】本発明の第1の実施形態の主蒸気温度制御の簡
単なブロックを示す図。
FIG. 4 is a diagram showing a simple block of main steam temperature control according to the first embodiment of the present invention.

【図5】本発明の第3の実施形態の排熱回収ボイラの機
器要素構成と系統を示す図。
FIG. 5 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to a third embodiment of the present invention.

【図6】本発明の第3の実施形態の主蒸気温度制御の簡
単なブロックを示す図。
FIG. 6 is a diagram showing simple blocks of main steam temperature control according to a third embodiment of the present invention.

【図7】本発明の第4の実施形態の排熱回収ボイラの機
器要素構成と系統を示す図。
FIG. 7 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to a fourth embodiment of the present invention.

【図8】本発明の第4の実施形態の主蒸気温度制御の簡
単なブロックを示す図。
FIG. 8 is a diagram showing a simple block of main steam temperature control according to a fourth embodiment of the present invention.

【図9】本発明の第5の実施形態の排熱回収ボイラの機
器要素構成と系統を示す図。
FIG. 9 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to a fifth embodiment of the present invention.

【図10】本発明の第5の実施形態の主蒸気温度制御の
簡単なブロックを示す図。
FIG. 10 is a diagram showing a simple block of main steam temperature control according to a fifth embodiment of the present invention.

【図11】本発明の第6の実施形態の排熱回収ボイラの
機器要素構成と系統を示す図。
FIG. 11 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to a sixth embodiment of the present invention.

【図12】本発明の第6の実施形態の主蒸気温度制御の
簡単なブロックを示す図。
FIG. 12 is a diagram showing a simple block of main steam temperature control according to a sixth embodiment of the present invention.

【図13】本発明の第7の実施形態の排熱回収ボイラの
機器要素構成と系統を示す図。
FIG. 13 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to a seventh embodiment of the present invention.

【図14】本発明の第7の実施形態の主蒸気温度制御の
簡単なブロックを示す図。
FIG. 14 is a diagram showing a simple block of main steam temperature control according to a seventh embodiment of the present invention.

【図15】本発明の第8の実施形態の排熱回収ボイラの
機器要素構成と系統を示す図。
FIG. 15 is a diagram showing a device element configuration and a system of an exhaust heat recovery boiler according to an eighth embodiment of the present invention.

【図16】本発明の第8の実施形態の主蒸気温度制御の
簡単なブロックを示す図。
FIG. 16 is a diagram showing a simple block of main steam temperature control according to an eighth embodiment of the present invention.

【図17】従来の排熱回収ボイラの構成要素と系統を示
す図。
FIG. 17 is a diagram showing components and a system of a conventional heat recovery steam generator.

【図18】図17に示す排熱回収ボイラの主蒸気温度を
制御するための排ガス流量調節方法の一例を示す図。
FIG. 18 is a diagram showing an example of an exhaust gas flow rate adjusting method for controlling the main steam temperature of the exhaust heat recovery boiler shown in FIG.

【符号の説明】[Explanation of symbols]

1 低圧給水管 2 低圧節炭管 3 高圧吸水ポンプ吸込管 4 低圧連絡管 5 低圧給水調節弁 6 高圧給水ポンプ 7 高圧給水管 8 低圧蒸気ドラム 9 低圧過熱器 10 低圧蒸気連絡官 11 低圧過熱器 12 高圧節炭管 13 高圧連絡官 14 高圧給水調節弁 15 高圧蒸気ドラム 16 高圧蒸発器 17 高圧蒸気連絡官 18 高圧第一過熱器 19 高圧第二過熱器 20 高圧主蒸気管 21 第一再熱器 22 第二再熱器 23 高圧主蒸気減温器 24 減温水供給管 25 高圧主蒸気温度調節スプレー弁 26 再熱蒸気減温器 27 再熱蒸気温度調節弁 28 低圧節炭器入口給水温度調節管 29 低圧給水温度調節弁 30 過熱器バイパス蒸気管 31 主蒸気温度調節弁 32 主蒸気温度調節装置 35 関数発生器 36 開度演算器 37 主蒸気温度調節器 38 定値優先回路 39 微分器 40 主蒸気温度調節器 41 ガスタービン燃料流量検出器 42 負荷指令出力手段 43 発電器出力検出器 45 ガスタービン出力検出器 46 主蒸気温度調節器 47 主蒸気第二減温器 51 蒸気バイパス管 52 バイパス蒸気流量調節弁 53 排ガス温度検出器 55 第1蒸気管 56 第2蒸気管 DESCRIPTION OF SYMBOLS 1 Low-pressure water supply pipe 2 Low-pressure coal-saving pipe 3 High-pressure water suction pump suction pipe 4 Low-pressure water supply pipe 5 Low-pressure water supply control valve 6 High-pressure water supply pump 7 High-pressure water pipe 8 Low-pressure steam drum 9 Low-pressure superheater 10 Low-pressure steam liaison 11 Low-pressure superheater 12 High-pressure coal saving pipe 13 High-pressure liaison 14 High-pressure feedwater control valve 15 High-pressure steam drum 16 High-pressure evaporator 17 High-pressure steam liaison 18 High-pressure first superheater 19 High-pressure second superheater 20 High-pressure main steam pipe 21 First reheater 22 Second reheater 23 High pressure main steam desuperheater 24 Desuperheated water supply pipe 25 High pressure main steam temperature control spray valve 26 Reheat steam deheater 27 Reheat steam temperature control valve 28 Low pressure economizer inlet feedwater temperature control pipe 29 Low pressure feedwater temperature control valve 30 Superheater bypass steam pipe 31 Main steam temperature control valve 32 Main steam temperature control device 35 Function generator 36 Opening degree calculator 37 Main steam temperature controller 38 Value priority circuit 39 Differentiator 40 Main steam temperature controller 41 Gas turbine fuel flow rate detector 42 Load command output means 43 Generator output detector 45 Gas turbine output detector 46 Main steam temperature controller 47 Main steam second temperature reducer 51 steam bypass pipe 52 bypass steam flow control valve 53 exhaust gas temperature detector 55 first steam pipe 56 second steam pipe

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、高圧主蒸気温度を検出する主蒸気温
度検出器と、前記最終過熱器の入口側と出口側とをバイ
パスする蒸気バイパス管と、前記主蒸気温度検出器で検
出した高圧主蒸気温度に応じて前記蒸気バイパス管を通
る蒸気流量を調節するバイパス流量調節手段と、を備え
ることを特徴とする主蒸気温度制御装置。
1. A final superheater for outputting high-pressure main steam to be supplied to a steam turbine, a main steam temperature detector for detecting high-pressure main steam temperature, and a steam for bypassing an inlet side and an outlet side of the final superheater. A main steam temperature control device comprising: a bypass pipe; and bypass flow rate adjusting means for adjusting a steam flow rate passing through the steam bypass pipe according to a high-pressure main steam temperature detected by the main steam temperature detector.
【請求項2】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、ガスタービンの排気ガス温度を検出
する排気ガス温度検出器と、前記最終過熱器の入口側と
出口側とをバイパスする蒸気バイパス管と、前記排気ガ
ス温度検出器で検出した排気ガス温度に応じて前記蒸気
バイパス管を通る蒸気流量を調節するバイパス流量調節
手段と、を備えることを特徴とする主蒸気温度制御装
置。
2. A final superheater for outputting high-pressure main steam supplied to a steam turbine, an exhaust gas temperature detector for detecting an exhaust gas temperature of a gas turbine, and a bypass between an inlet side and an outlet side of the final superheater. A main steam temperature control device, comprising: a steam bypass pipe for performing steam flow, and bypass flow rate adjusting means for adjusting a steam flow rate passing through the steam bypass pipe in accordance with the exhaust gas temperature detected by the exhaust gas temperature detector. .
【請求項3】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、高圧主蒸気温度を検出する主蒸気温
度検出器と、前記最終過熱器より前段側にある減温器
と、前記減温器へ蒸気を供給する蒸気ドラムと、前記蒸
気ドラムの出口側と前記最終過熱器の出口側とをバイパ
スする過熱器バイパス蒸気管と、前記主蒸気温度検出器
で検出した高圧主蒸気温度に応じて前記過熱器バイパス
蒸気管を通る蒸気流量を調節するバイパス流量調節手段
と、を備えることを特徴とする主蒸気温度制御装置。
3. A final superheater for outputting high-pressure main steam to be supplied to a steam turbine, a main steam temperature detector for detecting high-pressure main steam temperature, a desuperheater at a stage preceding the final superheater, A steam drum that supplies steam to the desuperheater; a superheater bypass steam pipe that bypasses an outlet side of the steam drum and an outlet side of the final superheater; and a high-pressure main steam temperature detected by the main steam temperature detector. And a bypass flow rate adjusting means for adjusting a steam flow rate through the superheater bypass steam pipe according to the main steam temperature control device.
【請求項4】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、ガスタービンの排気ガス温度を検出
する排気ガス温度検出器と、前記最終過熱器より前段側
にある減温器と、前記減温器へ蒸気を供給する蒸気ドラ
ムと、前記蒸気ドラムの出口側と前記最終過熱器の出口
側とをバイパスする過熱器バイパス蒸気管と、前記排気
ガス温度検出器で検出したガスタービンの排気ガス温度
に応じて前記過熱器バイパス蒸気管を通る蒸気流量を調
節するバイパス流量調節手段と、を備えることを特徴と
する主蒸気温度制御装置。
4. A final superheater for outputting high-pressure main steam to be supplied to a steam turbine, an exhaust gas temperature detector for detecting an exhaust gas temperature of a gas turbine, and a desuperheater located upstream of the final superheater. A steam drum that supplies steam to the desuperheater, a superheater bypass steam pipe that bypasses an outlet side of the steam drum and an outlet side of the final superheater, and a gas turbine detected by the exhaust gas temperature detector. A bypass flow rate adjusting means for adjusting a steam flow rate passing through the superheater bypass steam pipe according to the exhaust gas temperature of the main steam temperature control apparatus.
【請求項5】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、ガスタービン出力を検出するガスタ
ービン出力検出手段と、前記最終過熱器より前段側にあ
る減温器と、前記減温器へ蒸気を供給する蒸気ドラム
と、前記蒸気ドラムの蒸気を過熱せずに前記減温器へ供
給するための第1蒸気管と、前記蒸気ドラムの蒸気を過
熱して前記減温器へ供給するための第2蒸気管と、前記
ガスタービン出力検出手段で検出したガスタービン出力
に応じて前記第1蒸気管を通る蒸気流量を調節するバイ
パス流量調節手段と、を備えることを特徴とする主蒸気
温度制御装置。
5. A final superheater for outputting high-pressure main steam to be supplied to a steam turbine, gas turbine output detecting means for detecting a gas turbine output, a desuperheater at a stage preceding the final superheater, A steam drum for supplying steam to the heater, a first steam pipe for supplying the steam of the steam drum to the desuperheater without overheating, and a superheater of the steam of the steam drum to the desuperheater A second steam pipe for supplying; and a bypass flow rate adjusting means for adjusting a steam flow rate passing through the first steam pipe in accordance with the gas turbine output detected by the gas turbine output detecting means. Main steam temperature control device.
【請求項6】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、ガスタービン燃料流量を検出するガ
スタービン燃料流量検出手段と、前記最終過熱器より前
段側にある減温器と、前記減温器へ蒸気を供給する蒸気
ドラムと、前記蒸気ドラムの蒸気を過熱せずに前記減温
器へ供給するための第1蒸気管と、前記蒸気ドラムの蒸
気を過熱して前記減温器へ供給するための第2蒸気管
と、前記ガスタービン燃料流量検出手段で検出したガス
タービン燃料流量に応じて前記第1蒸気管を通る蒸気流
量を調節するバイパス流量調節手段と、を備えることを
特徴とする主蒸気温度制御装置。
6. A final superheater for outputting high-pressure main steam to be supplied to a steam turbine, gas turbine fuel flow rate detecting means for detecting a gas turbine fuel flow rate, and a desuperheater located upstream of the final superheater. A steam drum for supplying steam to the temperature reducer, a first steam pipe for supplying steam to the temperature reducer without overheating the steam in the steam drum, and a temperature reduction by heating the steam in the steam drum A second steam pipe for supplying to the vessel, and a bypass flow rate adjusting means for adjusting a steam flow rate passing through the first steam pipe in accordance with the gas turbine fuel flow rate detected by the gas turbine fuel flow rate detecting means. A main steam temperature control device.
【請求項7】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、負荷指令値を指令する負荷指令値出
力手段と、前記最終過熱器より前段側にある減温器と、
前記減温器へ蒸気を供給する蒸気ドラムと、前記蒸気ド
ラムの蒸気を過熱せずに前記減温器へ供給するための第
1蒸気管と、前記蒸気ドラムの蒸気を過熱して前記減温
器へ供給するための第2蒸気管と、前記負荷指令値出力
手段で出力した負荷指令値に応じて前記第1蒸気管を通
る蒸気流量を調節するバイパス流量調節手段と、を備え
ることを特徴とする主蒸気温度制御装置。
7. A final superheater for outputting high-pressure main steam to be supplied to a steam turbine, load command value output means for instructing a load command value, a desuperheater at a stage preceding the final superheater,
A steam drum for supplying steam to the temperature reducer, a first steam pipe for supplying steam to the temperature reducer without overheating the steam in the steam drum, and a temperature reduction by heating the steam in the steam drum A second steam pipe for supplying to the vessel, and bypass flow rate adjusting means for adjusting a steam flow rate passing through the first steam pipe in accordance with the load command value output by the load command value output means. Main steam temperature control device.
【請求項8】蒸気タービンへ供給する高圧主蒸気を出力
する最終過熱器と、発電機出力を検出する発電機出力検
出手段と、前記最終過熱器より前段側にある減温器と、
前記減温器へ蒸気を供給する蒸気ドラムと、前記蒸気ド
ラムの蒸気を過熱せずに前記減温器へ供給するための第
1蒸気管と、前記蒸気ドラムの蒸気を過熱して前記減温
器へ供給するための第2蒸気管と、前記発電機出力検出
手段で検出した発電機出力に応じて前記第1蒸気管を通
る蒸気流量を調節するバイパス流量調節手段と、を備え
ることを特徴とする主蒸気温度制御装置。
8. A final superheater for outputting high-pressure main steam to be supplied to a steam turbine, a generator output detecting means for detecting a generator output, a desuperheater located upstream of the final superheater,
A steam drum for supplying steam to the temperature reducer, a first steam pipe for supplying steam to the temperature reducer without overheating the steam in the steam drum, and a temperature reduction by heating the steam in the steam drum A second steam pipe for supplying to the steam generator; and a bypass flow rate adjusting means for adjusting a steam flow rate passing through the first steam pipe in accordance with the generator output detected by the generator output detecting means. Main steam temperature control device.
JP10194097A 1997-04-18 1997-04-18 Main steam temperature controller Withdrawn JPH10292902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10194097A JPH10292902A (en) 1997-04-18 1997-04-18 Main steam temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10194097A JPH10292902A (en) 1997-04-18 1997-04-18 Main steam temperature controller

Publications (1)

Publication Number Publication Date
JPH10292902A true JPH10292902A (en) 1998-11-04

Family

ID=14313908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10194097A Withdrawn JPH10292902A (en) 1997-04-18 1997-04-18 Main steam temperature controller

Country Status (1)

Country Link
JP (1) JPH10292902A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168410A (en) * 2000-12-05 2002-06-14 Babcock Hitachi Kk Waste heat recovery boiler
JP2003521623A (en) * 2000-02-02 2003-07-15 シーメンス アクチエンゲゼルシヤフト Turbine operating method and turbine plant
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
JP2012508861A (en) * 2008-11-13 2012-04-12 シーメンス アクチエンゲゼルシヤフト Operation method of exhaust heat recovery boiler
CN107166360A (en) * 2017-05-11 2017-09-15 华北电力大学(保定) New-type boiler main steam temperature adjusting means and control method
CN109340736A (en) * 2018-08-24 2019-02-15 浙江浙能技术研究院有限公司 A kind of ultra-supercritical boiler reheater second level attemperator protection system
CN110822947A (en) * 2018-08-13 2020-02-21 孚雷德(北京)蒸汽节能技术有限公司 Novel steam cooling energy-saving equipment
JP2020125702A (en) * 2019-02-04 2020-08-20 株式会社日立製作所 Cogeneration system
CN114383129A (en) * 2021-12-09 2022-04-22 广西电网有限责任公司电力科学研究院 Method for adjusting main steam temperature of boiler with four tangential points of coal-electric machine set
WO2024042839A1 (en) * 2022-08-26 2024-02-29 日立造船株式会社 Control device, control method, incinerator facility, and prediction model creation device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521623A (en) * 2000-02-02 2003-07-15 シーメンス アクチエンゲゼルシヤフト Turbine operating method and turbine plant
JP4694080B2 (en) * 2000-02-02 2011-06-01 シーメンス アクチエンゲゼルシヤフト Turbine operation method
JP2002168410A (en) * 2000-12-05 2002-06-14 Babcock Hitachi Kk Waste heat recovery boiler
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
US7801711B2 (en) 2005-01-17 2010-09-21 Hitachi, Ltd. Generated steam estimation method and device for heat recovery steam generator, and maintenance planning support method and system for power generation facility
JP2012508861A (en) * 2008-11-13 2012-04-12 シーメンス アクチエンゲゼルシヤフト Operation method of exhaust heat recovery boiler
US9593844B2 (en) 2008-11-13 2017-03-14 Siemens Aktiengesellschaft Method for operating a waste heat steam generator
CN107166360A (en) * 2017-05-11 2017-09-15 华北电力大学(保定) New-type boiler main steam temperature adjusting means and control method
CN110822947A (en) * 2018-08-13 2020-02-21 孚雷德(北京)蒸汽节能技术有限公司 Novel steam cooling energy-saving equipment
CN109340736A (en) * 2018-08-24 2019-02-15 浙江浙能技术研究院有限公司 A kind of ultra-supercritical boiler reheater second level attemperator protection system
CN109340736B (en) * 2018-08-24 2024-04-09 浙江浙能技术研究院有限公司 Two-stage desuperheater protection system for ultra-supercritical boiler reheater
JP2020125702A (en) * 2019-02-04 2020-08-20 株式会社日立製作所 Cogeneration system
US11506115B2 (en) 2019-02-04 2022-11-22 Hitachi, Ltd. Cogeneration system
CN114383129A (en) * 2021-12-09 2022-04-22 广西电网有限责任公司电力科学研究院 Method for adjusting main steam temperature of boiler with four tangential points of coal-electric machine set
CN114383129B (en) * 2021-12-09 2023-10-31 广西电网有限责任公司电力科学研究院 Method for adjusting main steam temperature of four-corner tangential boiler of coal motor group
WO2024042839A1 (en) * 2022-08-26 2024-02-29 日立造船株式会社 Control device, control method, incinerator facility, and prediction model creation device

Similar Documents

Publication Publication Date Title
EP0178617B1 (en) Steam turbine plant having a turbine bypass system
KR100592144B1 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US8733104B2 (en) Single loop attemperation control
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
JPS6239648B2 (en)
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JPH10292902A (en) Main steam temperature controller
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JPH09195718A (en) Main steam temperature control device
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPH11200889A (en) Gas turbine combined power generation system
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2001317704A (en) Combined plant and method for supplying water in exhaust heat recovery boiler
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2908085B2 (en) Waste heat recovery boiler
JPH0842802A (en) Device for controlling generating quantity of intermediate/low pressure steam in exhaust gas boiler
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JPH04110507A (en) Steam temperature controller of superheater and reheater in cogeneration power plant
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706