JPH05296401A - Exhaust heat recoverying boiler system and its main steam temperature controller - Google Patents

Exhaust heat recoverying boiler system and its main steam temperature controller

Info

Publication number
JPH05296401A
JPH05296401A JP10269492A JP10269492A JPH05296401A JP H05296401 A JPH05296401 A JP H05296401A JP 10269492 A JP10269492 A JP 10269492A JP 10269492 A JP10269492 A JP 10269492A JP H05296401 A JPH05296401 A JP H05296401A
Authority
JP
Japan
Prior art keywords
steam
temperature
pressure
main steam
superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10269492A
Other languages
Japanese (ja)
Inventor
Takeshi Kono
武史 河野
Toshihiro Yamada
利広 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10269492A priority Critical patent/JPH05296401A/en
Publication of JPH05296401A publication Critical patent/JPH05296401A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/18Controlling superheat temperature by by-passing steam around superheater sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Abstract

PURPOSE:To restrict an increasing rate of a main steam temperature within an allowable range of a steam turbine without changing a load increasing rate (a feeding amount of fuel) of the gas turbine, and make a minimum consumption of life of a steam turbine without extending a starting time of a plant. CONSTITUTION:High pressure superheaters 18 and 19 are divided in such a manner that a relation between a heating face area of the second high pressure superheater 19 and a heating surface area of the first high pressure superheater 18 may become the most suitable districution. High pressure main steam temperature is controled by the desuperheater 23 provided in the midway of the communicating pipe between the divided superheaters and also mixing the saturated steam branched from the high pressure communicating pipe 17 on directly from the high pressure steam drum 15 into the high pressure main steam pipe 20 by controling the main steam temperature control valve 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンバインドサイクル
火力発電プラントの排熱回収ボイラの主蒸気温度制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a main steam temperature control device for an exhaust heat recovery boiler of a combined cycle thermal power plant.

【0002】[0002]

【従来の技術】最近のコンバインドサイクルプラント
は、高効率化および大容量化等への対応から、ガスタ―
ビン入口ガス温度が高温化され、これによって排気温度
も高温化してきている。ガスタ―ビン排気の高温化によ
り、排熱回収ボイラの出口蒸気温度(高圧主蒸気温度)
も高くなる傾向にある。しかし、蒸気タ―ビンは、高圧
蒸気を使用するためケ―シングが厚肉であること、ロ―
タも高温蒸気に曝されることなどの条件から出力に応じ
て最適な蒸気条件が存在する。現状での蒸気タ―ビン入
口主蒸気温度の最高値は、538〜566℃程度であ
る。したがって、主蒸気温度がこの値を越える様な運転
状態が発生する場合には、負荷に関係なく排熱回収ボイ
ラの発生蒸気温度の上限値を設定して、これに蒸気温度
を制御しているのが一般的である。図4は、排熱回収ボ
イラの構成要素と、水,蒸気,ガスの流れを示した図で
あり、図5は、制御装置の一例を示したブロック図であ
る。
2. Description of the Related Art Recent combined cycle plants are equipped with gas turbines in order to cope with high efficiency and large capacity.
The temperature of the gas at the inlet of the bottle is raised, and the temperature of the exhaust gas is also raised accordingly. Outlet steam temperature (high-pressure main steam temperature) of exhaust heat recovery boiler due to high temperature of gas turbine exhaust
Also tends to be higher. However, since the steam turbine uses high-pressure steam, the casing has a thick wall.
There is an optimum steam condition depending on the output from the condition that the water is also exposed to high temperature steam. At present, the maximum value of the main steam temperature at the steam turbine inlet is about 538 to 566 ° C. Therefore, when an operating state occurs in which the main steam temperature exceeds this value, the steam temperature is controlled by setting the upper limit value of the steam temperature generated by the exhaust heat recovery boiler regardless of the load. Is common. FIG. 4 is a diagram showing components of the exhaust heat recovery boiler and flows of water, steam, and gas, and FIG. 5 is a block diagram showing an example of a control device.

【0003】図4で、蒸気タ―ビンで仕事をした蒸気
は、復水器で冷却されて復水となり復水器ホットウエル
に貯められる。ホットウエルに貯まった復水は、復水ポ
ンプで抽出され低圧給水管1を介して、低圧節炭器2に
供給される。低圧節炭器2では、既にガスタ―ビンの排
気ガスと他の熱交換器部分での熱交換で低温になった排
気ガスとの熱交換で全給水を加熱する。低圧節炭器2で
加熱された給水は、低圧連絡管4を介し、低圧給水調節
弁5で低圧蒸気ドラム8の水位を一定に保つように低圧
給水量を調節して低圧ドラム8へ供給される。
In FIG. 4, the steam that has worked in the steam turbine is cooled in the condenser to become condensed water, which is stored in the condenser hot well. Condensed water stored in the hot well is extracted by a condensate pump and supplied to the low pressure economizer 2 via the low pressure water supply pipe 1. In the low-pressure economizer 2, the entire feedwater is heated by heat exchange between the exhaust gas of the gas turbine and the exhaust gas which has already become low temperature due to heat exchange in other heat exchanger parts. The feed water heated by the low-pressure coal economizer 2 is supplied to the low-pressure drum 8 through the low-pressure connecting pipe 4 with the low-pressure feed water control valve 5 adjusting the low-pressure feed water amount so as to keep the water level of the low-pressure steam drum 8 constant. It

【0004】一方、低圧連絡管4から分岐した高圧給水
ポンプ吸込管3を介して、高圧給水ポンプ6に供給し、
高圧給水ポンプ6で昇圧する。昇圧された給水は、高圧
給水管7を介して、高圧節炭器12へ高圧給水を供給す
る。高圧節炭器12で、排気ガスと熱交換し昇温した高圧
給水は、高圧連絡管13を介し高圧給水調節弁14で、高圧
蒸気ドラム15の水位を一定に保つように高圧給水量を調
節して、高圧蒸気ドラムに供給する。
On the other hand, the high-pressure water supply pump 6 is supplied through the high-pressure water supply pump suction pipe 3 branched from the low-pressure communication pipe 4,
The pressure is increased by the high-pressure water supply pump 6. The pressurized water supply supplies high-pressure water supply to the high-pressure economizer 12 via the high-pressure water supply pipe 7. The high-pressure feedwater, which has been heated by exchanging heat with the exhaust gas in the high-pressure economizer 12, is adjusted through the high-pressure connecting pipe 13 by the high-pressure feedwater control valve 14 to adjust the high-pressure feedwater amount so that the water level of the high-pressure steam drum 15 is kept constant. And supply it to the high pressure steam drum.

【0005】先に、低圧蒸気ドラム8に供給された給水
は、低圧蒸発器9で、排気ガスとの熱交換を行い蒸気を
発生させながら蒸気ドラム8に戻る。つまり、低圧蒸気
ドラム8と低圧蒸発器9との間の熱交換をしながら循環
し蒸気を発生させる。低圧蒸気ドラム8で分離された蒸
気は、低圧蒸気連絡管10を介して低圧過熱器11に供給さ
れ、排気ガスと熱交換して過熱蒸気として、蒸気タ―ビ
ンの低圧段落へ供給される。
The feed water previously supplied to the low-pressure steam drum 8 returns to the steam drum 8 while generating heat by exchanging heat with the exhaust gas in the low-pressure evaporator 9. That is, the heat is exchanged between the low-pressure steam drum 8 and the low-pressure evaporator 9 to circulate and generate steam. The steam separated by the low-pressure steam drum 8 is supplied to the low-pressure superheater 11 via the low-pressure steam communication pipe 10, exchanges heat with the exhaust gas, and is supplied to the low-pressure stage of the steam turbine as superheated steam.

【0006】一方、高圧節炭器12で加熱され高圧ドラム
15に供給された給水は、高圧蒸発器16で、排気ガスとの
熱交換を行い蒸気を発生させながら高圧蒸気ドラム15に
戻る。つまり、高圧蒸気ドラム15と高圧蒸発器16の間を
熱交換をしながら循環し、蒸気を発生させる。高圧蒸気
ドラム15で分離された蒸気は、高圧蒸気連絡管17を介し
て高圧第一過熱器18に供給され、排気ガスと熱交換して
過熱蒸気となり、主蒸気温度を所定の温度にするために
スプレ―水を蒸気タ―ビンの高圧段落へ供給される。
On the other hand, a high pressure drum heated by the high pressure economizer 12
The feed water supplied to 15 returns to the high pressure steam drum 15 while generating heat by exchanging heat with the exhaust gas in the high pressure evaporator 16. That is, the high pressure steam drum 15 and the high pressure evaporator 16 circulate while exchanging heat to generate steam. The steam separated in the high-pressure steam drum 15 is supplied to the high-pressure first superheater 18 via the high-pressure steam communication pipe 17, exchanges heat with the exhaust gas to become superheated steam, and to bring the main steam temperature to a predetermined temperature. The spray water is supplied to the high pressure section of the steam turbine.

【0007】一方、蒸気タ―ビンの高圧段落で仕事をし
た蒸気は、再熱器21,22で排気ガスとの熱交換で加熱さ
れ再び高温蒸気とした後、蒸気タ―ビンの中圧段落に供
給される。この再熱蒸気についても、蒸気タ―ビンの材
料等により定まる最高許容温度が設定され、運転状態の
変化にかかわらず再熱蒸気温度を許容温度以下に制御す
る。この温度制御は、再熱器の伝熱面を分割し、分割さ
れた伝熱面の連絡管に減温器26を設け、再熱蒸気の温度
に応じて減温器26へのスプレ―水量を再熱蒸気調節弁27
で調節して供給するものが一般的である。ただし、この
再熱器は、プラントの規模等によって設置されない場合
もある。
On the other hand, the steam that has worked in the high pressure stage of the steam turbine is heated by heat exchange with the exhaust gas in the reheaters 21 and 22 to be turned into high temperature steam again, and then the medium pressure stage of the steam turbine. Is supplied to. For this reheated steam, the maximum allowable temperature determined by the material of the steam turbine is set, and the reheated steam temperature is controlled below the allowable temperature regardless of changes in operating conditions. This temperature control divides the heat transfer surface of the reheater, installs a desuperheater 26 in the connecting pipe of the divided heat transfer surface, and sprays water to the desuperheater 26 according to the temperature of the reheated steam. The reheat steam control valve 27
It is common to adjust and supply at. However, this reheater may not be installed depending on the scale of the plant.

【0008】更に、高圧給水ポンプ6の吐出側の高圧給
水管7から分岐して低圧節炭器2の入口に循環する低圧
節炭器入口給水温度調節管28および低圧給水温度調節弁
29を設置し低圧節炭器2の入口温度を一定に調節する。
Further, a low pressure economizer inlet feed water temperature control pipe 28 and a low pressure feed water temperature control valve that branch from the high pressure water supply pipe 7 on the discharge side of the high pressure water supply pump 6 and circulate to the inlet of the low pressure economizer 2.
29 is installed and the inlet temperature of the low pressure economizer 2 is adjusted to be constant.

【0009】一般に、排熱回収ボイラの主蒸気温度は、
排気ガス入口温度、排気ガス量,蒸気量,伝熱面積等の
特性決定要素に支配されて定まる。一般に蒸気タ―ビン
の主蒸気温度には、上限値があり、この上限値を越えな
いように過熱器を分割し、分割された過熱器の伝熱面を
接続する連絡管の途中に減温器23を設け、主蒸気温度に
応じて減温器23に供給するスプレ―水量を主蒸気温度調
節弁25で調節する方式が一般に採用されている。スプレ
―水の水源は、蒸気圧力より高い圧力を有し、水量の変
化に十分に対応できなければならない。図4の例では高
圧給水管7から分岐する方法で示してある。
Generally, the main steam temperature of the exhaust heat recovery boiler is
It is determined by the determinants of characteristics such as exhaust gas inlet temperature, exhaust gas amount, steam amount, and heat transfer area. Generally, the main steam temperature of the steam turbine has an upper limit value.The superheater is divided so that it does not exceed this upper limit, and the temperature is reduced in the middle of the connecting pipe that connects the heat transfer surfaces of the divided superheaters. A system is generally used in which the steam generator 23 is provided and the amount of spray water supplied to the desuperheater 23 is adjusted by the main steam temperature control valve 25 according to the main steam temperature. The water source of the spray water should have a pressure higher than the steam pressure and should be able to cope with changes in the water volume sufficiently. In the example of FIG. 4, a method of branching from the high-pressure water supply pipe 7 is shown.

【0010】ここで、図5に従来の主蒸気温度制御の一
例を示す。高圧蒸気ドラム15の圧力は、高圧第二過熱器
19の入口蒸気温度の下限値を演算する関数発生器35に入
力され、高圧蒸気ドラム15の圧力に応じた高圧第二過熱
器19の入口蒸気温度の下限値が演算される。この演算値
は、高圧蒸気管20の蒸気流量および減温水供給管24のス
プレ―水温度と共に高圧主蒸気温度調節スプレ―弁25の
開度演算器36に入力され、高圧主蒸気温度調節スプレ―
弁25の開度が演算される。
FIG. 5 shows an example of conventional main steam temperature control. The pressure of the high pressure steam drum 15 is the high pressure second superheater.
The lower limit value of the inlet steam temperature of the high-pressure second superheater 19 corresponding to the pressure of the high-pressure steam drum 15 is calculated by inputting into the function generator 35 for calculating the lower limit value of the inlet steam temperature of 19. This calculated value is input to the opening calculator 36 of the high pressure main steam temperature control spray valve 25 together with the steam flow rate of the high pressure steam pipe 20 and the spray water temperature of the reduced temperature water supply pipe 24, and the high pressure main steam temperature control spray is supplied.
The opening degree of the valve 25 is calculated.

【0011】一方、高圧蒸気管20の高圧蒸気温度とその
設定値との偏差に基づいてその偏差が零となるような高
圧主蒸気温度調節スプレ―弁25の開度が主蒸気温度調節
器37で演算される。そして、この演算値と開度演算器36
の演算値とのうち小さい方を選択して高圧主蒸気温度調
節スプレ―弁25に開度指令を出力する低値優先回路38を
備えている。
On the other hand, the opening of the high-pressure main steam temperature control spray valve 25 is set so that the deviation becomes zero based on the deviation between the high-pressure steam temperature of the high-pressure steam pipe 20 and its set value. Is calculated by. Then, this calculated value and the opening calculator 36
The low value priority circuit 38 is provided for selecting the smaller one of the calculated values and the output value of the opening command to the high pressure main steam temperature control spray valve 25.

【0012】従来例による主蒸気温度制御は、負荷に関
係なく設定温度を一定にしておく一定値制御を採用して
いる。しかし、ガスタ―ビンの大容量化および環境対策
を考慮した運転方法の採用により、ガスタ―ビンの排気
ガス温度が高くなると共に温度上昇率も高くなる傾向に
ある。特に、助燃装置を設置していない排熱回収ボイラ
にあっては、排気ガス入口温度,排気ガス量,蒸気量,
伝熱面積等の決定要素に支配されて高圧第二過熱器19の
出口蒸気温度が定まる。蒸気発生量の少ないガスタ―ビ
ンの出力が低い運転状態においては、排気ガスの温度上
昇率と同等の温度変化となる。蒸気温度一定値制御の場
合は、従来技術でも蒸気温度制御は可能である。しか
し、排気ガスの温度上昇率と同等の率で蒸気温度が上昇
すると蒸気タ―ビンの許容温度上昇率を上回り、蒸気タ
―ビンの熱応力が異常に大きくなり寿命消費が大きくな
るような不都合が生じる。
The main steam temperature control according to the conventional example employs a constant value control for keeping the set temperature constant regardless of the load. However, by adopting an operating method in consideration of the large capacity of the gas turbine and environmental measures, the exhaust gas temperature of the gas turbine tends to increase and the temperature rise rate tends to increase. Especially, in an exhaust heat recovery boiler without an auxiliary combustion device, the exhaust gas inlet temperature, the exhaust gas amount, the steam amount,
The outlet steam temperature of the high-pressure second superheater 19 is determined by the determinants such as the heat transfer area. In an operating state where the output of the gas turbine with a small amount of steam generation is low, the temperature change is equivalent to the temperature rise rate of the exhaust gas. In the case of the steam temperature constant value control, the steam temperature control is possible even with the conventional technique. However, if the steam temperature rises at the same rate as the exhaust gas temperature rise rate, it will exceed the allowable temperature rise rate of the steam turbine, and the thermal stress of the steam turbine will become abnormally large, leading to an increase in life consumption. Occurs.

【0013】一方、このような不都合を解消するには、
ある定められた温度上昇率で設定温度を変化させ、蒸気
温度を制御する必要が生じる。この温度制御をスプレ―
水量調節のみで実施する場合、スプレ―水が水滴の状態
で過熱器内に流入しないように、水分が過飽和状態にな
らないようにスプレ―水の注入量を制限するのが一般的
である。このスプレ―水量の制限値は、一般的にスプレ
―注入部分の蒸気圧力に対する飽和温度に30〜50℃
の余裕を加えた温度以下に減温しないような水量とする
ことにある。また、スプレ―水での主蒸気温度の制御に
は、大きな遅れが生じる。このため、主蒸気温度が設定
値に制御できない状態が発生し、結果として温度上昇率
も初期の目標より高くなってしまうことになる。
On the other hand, in order to eliminate such inconvenience,
It becomes necessary to change the set temperature at a certain rate of temperature rise to control the steam temperature. Spray this temperature control
When performing only by adjusting the water amount, it is general to limit the injection amount of the spray water so that the water does not become supersaturated so that the spray water does not flow into the superheater in the state of water droplets. The limit value of the amount of spray water is generally 30 to 50 ° C. at the saturation temperature with respect to the steam pressure of the spray injection part.
The amount of water is set so that the temperature does not drop below the temperature that includes the margin. Also, there is a large delay in controlling the main steam temperature in the spray water. For this reason, a state in which the main steam temperature cannot be controlled to the set value occurs, and as a result, the temperature increase rate also becomes higher than the initial target.

【0014】[0014]

【発明が解決しようとする課題】ところで、蒸気発生量
の少ないガスタ―ビンの出力が低い運転状態において
は、排気ガスの温度上昇率と同等の温度変化となる。
By the way, in an operating state in which the output of the gas turbine with a small amount of steam generation is low, the temperature change becomes equivalent to the temperature rise rate of the exhaust gas.

【0015】蒸気温度一定値制御の場合は、従来技術で
も蒸気温度制御は可能である。しかし、排気ガスの温度
上昇率と同等の率で蒸気温度が上昇すると蒸気タ―ビン
の許容温度上昇率を上回り、蒸気タ―ビンの熱応力が異
常に大きくなり寿命消費が大きくなるような不都合が生
じる。
In the case of constant steam temperature control, steam temperature control is possible with the prior art. However, if the steam temperature rises at the same rate as the exhaust gas temperature rise rate, it will exceed the allowable temperature rise rate of the steam turbine, and the thermal stress of the steam turbine will become abnormally large, leading to an increase in life consumption. Occurs.

【0016】本発明の目的は、ガスタ―ビンの負荷上昇
率(燃料投入量)は変更しないで主蒸気温度の上昇率を
蒸気タ―ビンの許容範囲内に治め、プラントの起動時間
を長くすることなく蒸気タ―ビンの寿命消費を最小限に
することである。
The object of the present invention is to control the increase rate of the main steam temperature within the allowable range of the steam turbine without changing the load increase rate (fuel input amount) of the gas turbine, and prolong the starting time of the plant. Is to minimize the lifetime consumption of steam turbines.

【0017】[0017]

【課題を解決するための手段】高圧過熱器18,19の分割
を高圧第二過熱器19の伝熱面積と高圧第一過熱器18の伝
熱面積との関係を最適配分となるようにし、分割した伝
熱面の蒸気連絡管の途中に設けた減温器23と高圧蒸気連
絡管17からの分岐もしくは高圧蒸気ドラム15から直接取
り出して高圧主蒸気管20に高圧蒸気ドラム15の飽和蒸気
を主蒸気温度調節弁31で調節して混合して高圧主蒸気の
温度制御を行う。
[Means for Solving the Problems] The high-pressure superheaters 18, 19 are divided so that the relationship between the heat-transfer area of the high-pressure second superheater 19 and the heat-transfer area of the high-pressure first superheater 18 is optimally distributed. The saturated steam of the high-pressure steam drum 15 is taken out from the high-temperature main steam pipe 20 by branching from the high-temperature steam communication pipe 17 or the branch from the desuperheater 23 and the high-pressure steam communication pipe 17 provided in the middle of the divided heat-transfer surface steam communication pipe. The temperature of the high-pressure main steam is controlled by adjusting and mixing with the main steam temperature control valve 31.

【0018】[0018]

【作用】スプレ―と蒸気混合の二方式を併用した高圧蒸
気温度制御によれば、分割された高圧過熱器の伝熱面を
連絡する蒸気管の途中に設けた減温器にスプレ―水を注
入すると同時に、飽和蒸気の混合制御を先行的に行う。
したがって、スプレ―水の過飽和状態が発生するような
運転状態においても、高圧主蒸気温度は、温度上昇率の
許容範囲内での温度設定に対しても十分な制御性を発揮
できる。
[Operation] According to the high-pressure steam temperature control that uses both the spray and steam mixing methods, spray water is supplied to the desuperheater provided in the middle of the steam pipe that connects the heat transfer surfaces of the divided high-pressure superheaters. At the same time as the injection, the saturated vapor mixing control is performed in advance.
Therefore, even in an operating state in which a supersaturated state of spray water occurs, the high-pressure main steam temperature can exhibit sufficient controllability even when the temperature is set within the allowable range of the temperature increase rate.

【0019】[0019]

【実施例】図1に本発明の実施例の機器構成および系統
を示す。
FIG. 1 shows the equipment configuration and system of an embodiment of the present invention.

【0020】図1に示す機器構成および系統は、図3に
示した従来技術の機器構成と系統に、高圧蒸気連絡管17
から分岐して高圧主蒸気管20に合流する過熱器バイパス
蒸気管30、および過熱器バイパス蒸気管30の途中に、混
合する飽和蒸気流量を調節する主蒸気温度調節弁31とを
設ける。主蒸気温度調節弁31は、主蒸気温度調節装置32
の制御信号に基づいてその開度を調節する。
The equipment configuration and system shown in FIG. 1 is the same as the equipment configuration and system of the prior art shown in FIG.
A superheater bypass steam pipe (30) branching from and joining the high-pressure main steam pipe (20), and a main steam temperature control valve (31) for adjusting the saturated steam flow rate to be mixed are provided in the middle of the superheater bypass steam pipe (30). The main steam temperature control valve 31 is a main steam temperature control device 32.
The opening degree is adjusted based on the control signal.

【0021】図2に示す主蒸気温度調節装置32の内部構
成は、高圧蒸気ドラム15の圧力を入力として分割した過
熱器の高温側伝熱面入口温度、すなわち図1の高圧第二
過熱器19の入口温度に相当の許容最低温度を算出する関
数発生器35と、関数発生器35によって計算された過熱器
の高圧側伝熱面入口温度の許容最低温度,スプレ―水温
度,蒸気流量およびその他演算に必要なデ―タを入力と
して高圧主蒸気温度調節スプレ―弁開度を計算する演算
器36と、蒸気設定温度と高圧主蒸気温度との偏差を減少
させるように高圧主蒸気温度調節スプレ―弁開度を計算
する主蒸気温度調節器と前記の両者の高圧主蒸気温度調
節スプレ―弁開度の低値を優先して出力する低値優先回
路38と、蒸気温度設定値と高圧主蒸気温度との偏差を微
分する微分器39と、微分器39によって微分された偏差を
減少させるように主蒸気温度調節弁31の弁開度を出力す
るもう一つの主蒸気温度調節器を設けた構成である。
The internal structure of the main steam temperature control device 32 shown in FIG. 2 is the inlet temperature of the high temperature side heat transfer surface of the superheater divided by the pressure of the high pressure steam drum 15, that is, the high pressure second superheater 19 of FIG. Function generator 35 for calculating the allowable minimum temperature equivalent to the inlet temperature of the, and the allowable minimum temperature, spray water temperature, steam flow rate, etc. of the inlet temperature of the high-pressure side of the superheater calculated by the function generator 35 A calculator 36 that calculates the high-pressure main steam temperature control spray valve opening by inputting the data required for the calculation, and a high-pressure main steam temperature control spray to reduce the deviation between the steam set temperature and the high-pressure main steam temperature. -Main steam temperature controller for calculating valve opening and high-pressure main steam temperature control spray for both of the above-Low value priority circuit 38 that prioritizes and outputs low value of valve opening, steam temperature set value and high pressure main Differentiator 39 that differentiates the deviation from the steam temperature Another main steam temperature controller is provided which outputs the valve opening of the main steam temperature control valve 31 so as to reduce the deviation differentiated by the device 39.

【0022】高圧主蒸気温度が急激に上昇した場合は、
主蒸気温度調節器37によりスプレ―水が注入されるが、
同時にもう一つの主蒸気温度調節器40は微分器39によっ
て微分された温度偏差も急激に上昇するため、飽和蒸気
の混合量を増加させる。
When the high pressure main steam temperature rises rapidly,
Spray water is injected by the main steam temperature controller 37,
At the same time, the other main steam temperature controller 40 rapidly increases the temperature deviation differentiated by the differentiator 39, thereby increasing the amount of saturated steam mixed.

【0023】この時、スプレ―水注入による高圧蒸気温
度上昇の抑制の降下は、かなりの遅れを生じるが、飽和
蒸気の混合による効果はすぐに現れ、高圧主蒸気温度を
蒸気温度設定値にするように作用する。
At this time, the decrease in suppression of the high-pressure steam temperature rise due to spray water injection causes a considerable delay, but the effect of mixing saturated steam immediately appears, and the high-pressure main steam temperature becomes the steam temperature set value. Acts like.

【0024】主蒸気温度上昇率などの蒸気温度変化率に
制約を受けた場合、スプレ―水制御のみでは、変化率制
限を満足することが不可能なケ―スも発生するるが、実
施例のように飽和蒸気を混合する蒸気温度制御方法を採
用し、飽和蒸気の混合量を温度偏差の微分値により求め
ることにより、蒸気温度の上昇を抑制することができ、
変化率制限を必要とする場合でも、目的の温度制御が可
能である。
When the steam temperature change rate such as the main steam temperature rise rate is restricted, there are cases where the change rate limit cannot be satisfied only by spray water control. By adopting a steam temperature control method of mixing saturated steam as described above, and obtaining the mixed amount of saturated steam by the differential value of the temperature deviation, it is possible to suppress the rise in steam temperature,
The desired temperature control is possible even when the rate of change limitation is required.

【0025】次に、図3に他の一実施例を示す。主蒸気
温度調節装置32の内部構成は、高圧蒸気ドラム15の圧力
を入力として分割した過熱器の高温側伝熱面入口温度、
すなわち、図1の高圧第二過熱器19の入口温度の許容最
低限温度を算出する関数発生器35,主蒸気温度設定値,
蒸気流量,排熱回収ボイラ入口ガス温度およびその他演
算に必要なデ―タを入力として分割した過熱器の高温側
伝熱面入口温度、すなわち図1の高圧第二過熱器19の入
口温度の推定値を計算する演算器36および前記の両者の
出力の高値を優先して出力する高値優先回路37から構成
された高圧第二過熱器入口温度設定値の計算部分と、こ
の設定値と第二過熱器入口温度の測定値の偏差を入力と
して高圧主蒸気温度調節弁25の駆動信号を出力する減温
スプレ―水量調節器38,更に飽和蒸気の混合量を調節す
るための主蒸気温度調節器39である。
Next, FIG. 3 shows another embodiment. The internal configuration of the main steam temperature control device 32, the high temperature side heat transfer surface inlet temperature of the superheater divided by the pressure of the high pressure steam drum 15 as an input,
That is, the function generator 35 that calculates the allowable minimum temperature of the inlet temperature of the high-pressure second superheater 19 of FIG. 1, the main steam temperature set value,
Estimating the inlet temperature of the high-temperature side heat transfer surface of the superheater divided by inputting the steam flow rate, exhaust heat recovery boiler inlet gas temperature and other data necessary for calculation, that is, the inlet temperature of the high pressure second superheater 19 in FIG. A high pressure second superheater inlet temperature set point calculation part composed of a calculator 36 for calculating a value and a high value priority circuit 37 for preferentially outputting the high value of the outputs of both, and the set value and the second superheat Dehumidifying spray water amount controller 38 which outputs the drive signal of the high pressure main steam temperature control valve 25 by inputting the deviation of the measured value of the inlet temperature of the reactor, and the main steam temperature controller 39 which further regulates the mixing amount of the saturated steam. Is.

【0026】図3に示す実施例の場合は、関連デ―タを
使用して計算した推定値と許容最低限の値を比較し、高
い方の値を第二過熱器入口蒸気温度の設定値とし、実測
値との比較によりスプレ―水量を調節する。したがっ
て、第二過熱器入口温度の設定値が許容最低温度より高
い場合は、このスプレ―水量制御のみで高圧主蒸気温度
の制御が可能である。一方、この逆の現象の場合は、高
圧主蒸気温度が設定値に制御できないが、実施例の場合
は、更に飽和蒸気の混合による高圧主蒸気温度制御を組
み合わせてあるため、高圧主蒸気温度を設定値に制御す
ることが可能である。
In the case of the embodiment shown in FIG. 3, the estimated value calculated using the related data is compared with the minimum allowable value, and the higher value is set to the second superheater inlet steam temperature set value. Then, the amount of spray water is adjusted by comparison with the measured value. Therefore, when the set value of the inlet temperature of the second superheater is higher than the allowable minimum temperature, the high pressure main steam temperature can be controlled only by this spray water amount control. On the other hand, in the case of this opposite phenomenon, the high-pressure main steam temperature cannot be controlled to the set value, but in the case of the embodiment, since the high-pressure main steam temperature control by further mixing the saturated steam is combined, It is possible to control the set value.

【0027】主蒸気温度上昇率などの蒸気温度変化率に
制約を受けた場合、スプレ―水制御のみでは、変化率制
限を満足することが不可能なケ―スも発生するが、実施
例のように飽和蒸気を混合する蒸気温度制御方法を採用
することにより、これらの制約は解除できる。つまり、
変化率制限を必要とする場合でも、目的の温度制御が可
能である。
When the steam temperature change rate such as the main steam temperature rise rate is restricted, there are cases where it is impossible to satisfy the change rate limitation only by spray water control. These restrictions can be lifted by adopting a steam temperature control method in which saturated steam is mixed as described above. That is,
The desired temperature control is possible even when the rate of change limitation is required.

【0028】また、スプレ―水量制御について、高圧第
二過熱器19の入口温度の設定値については、上述の実施
例と同様に、高圧第二過熱器入口温度下限値関数発生器
35および高圧第二過熱器入口蒸気温度演算器36の出力の
高値とするが、スプレ―水量をこの設定値とスプレ―水
温度および蒸気流量等を入力として演算し、この結果に
したがって、減温スプレ―水調節弁の開度を設定して水
量調節を行う。蒸気の混合制御は、図3に示した実施例
と同様である。
Further, regarding the spray water amount control, the set value of the inlet temperature of the high pressure second superheater 19 is the same as in the above-mentioned embodiment, and the high pressure second superheater inlet temperature lower limit function generator
The output of the high temperature 35 and high temperature second superheater inlet steam temperature calculator 36 is set to the high value, but the spray water amount is calculated by inputting this set value and the spray water temperature and steam flow rate, etc. Set the opening of the spray water control valve to control the water volume. The vapor mixing control is the same as in the embodiment shown in FIG.

【0029】[0029]

【発明の効果】コンバインドサイクル発電設備等で、ガ
スタ―ビン側と蒸気タ―ビン側との起動特性の相違等に
より、蒸気タ―ビン側で温度上昇率の制限を加えた蒸気
温度制御が必要な場合、従来技術である過熱器の伝熱面
を分割し、両者を連絡する連絡管の途中に減温器を設置
し、この減温器にスプレ―水を供給して蒸気温度を制御
する方法では、主蒸気温度の設定値にまで蒸気温度を下
げるような制御ができない場合がある。しかし、本発明
では、このような制限もなく蒸気温度の制御が可能であ
る。したがって、ガスタ―ビンの速い起動特性を活かし
たプラントの起動ができる効果がある。
[Effects of the Invention] In combined cycle power generation equipment, it is necessary to control the steam temperature by limiting the rate of temperature rise on the steam turbine side due to the difference in starting characteristics between the gas turbine side and the steam turbine side. In that case, the heat transfer surface of the conventional superheater is divided, a desuperheater is installed in the middle of the connecting pipe that connects the two, and spray water is supplied to this desuperheater to control the steam temperature. The method may not be able to control the steam temperature to the set value of the main steam temperature. However, in the present invention, the steam temperature can be controlled without such a limitation. Therefore, there is an effect that the plant can be started by taking advantage of the quick starting characteristic of the gas turbine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す系統図FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】本発明の一実施例を示す主蒸気温度制御ブロッ
ク図
FIG. 2 is a main steam temperature control block diagram showing an embodiment of the present invention.

【図3】本発明の他の一実施例を示す主蒸気温度制御ブ
ロック図
FIG. 3 is a main steam temperature control block diagram showing another embodiment of the present invention.

【図4】従来例の系統図[Fig. 4] System diagram of a conventional example

【図5】従来例の主蒸気温度制御ブロック図FIG. 5 is a conventional steam temperature control block diagram.

【符号の説明】[Explanation of symbols]

1…低圧給水管 2…低圧節炭器 3…高圧給水ポンプ吸込管 4…低圧連絡管 5…低圧給水調節弁 6…高圧給水ホンプ 7…高圧給水管 8…低圧蒸気ドラム 9…低圧蒸発器 10…低圧蒸気連絡管 11…低圧過熱器 12…高圧節炭器 13…高圧連絡管 14…高圧給水調節弁 15…高圧蒸気ドラム 16…高圧蒸発器 17…高圧蒸気連絡管 18…高圧第一過熱器 19…高圧第二過熱器 20…高圧主蒸気管 21…第一再熱器 22…第二再熱器 23…高圧主蒸気減温器 24…減温水供給管 25…高圧主蒸気温度調節スプレ―弁 26…再熱蒸気減温器 27…再熱蒸気温度調
節弁 28…低圧節炭器入口給水温度調節管 29…低圧給水温度調節弁 30…過熱器バイパス
蒸気管 31…主蒸気温度調節弁 32…主蒸気温度調節
装置 35…第二過熱器入口蒸気下限値関数発生器 36…高圧主蒸気温度調節スプレ―弁開度演算器 37…主蒸気温度調節器 38…低値優先回路 39…微分器 40…主蒸気温度調節
器 41…第二過熱器入口温度演算器 42…高値優先回路 43…減温スプレ―水
量調節器 44…主蒸気温度調節器
1 ... Low pressure water supply pipe 2 ... Low pressure coal economizer 3 ... High pressure water supply pump suction pipe 4 ... Low pressure connection pipe 5 ... Low pressure water supply control valve 6 ... High pressure water supply pump 7 ... High pressure water supply pipe 8 ... Low pressure steam drum 9 ... Low pressure evaporator 10 Low pressure steam connecting pipe 11 Low pressure superheater 12 High pressure economizer 13 High pressure connecting pipe 14 High pressure water supply control valve 15 High pressure steam drum 16 High pressure evaporator 17 High pressure steam connecting pipe 18 High pressure first superheater 19 ... High-pressure second superheater 20 ... High-pressure main steam pipe 21 ... First reheater 22 ... Second reheater 23 ... High-pressure main steam desuperheater 24 ... Dehumidified water supply pipe 25 ... High-pressure main steam temperature control spray Valve 26 ... Reheat steam desuperheater 27 ... Reheat steam temperature control valve 28 ... Low pressure coal economizer inlet feed water temperature control pipe 29 ... Low pressure feed water temperature control valve 30 ... Superheater bypass steam pipe 31 ... Main steam temperature control valve 32 … Main steam temperature controller 35… Second overheat Inlet steam lower limit function generator 36 ... High-pressure main steam temperature control spray valve opening calculator 37 ... Main steam temperature controller 38 ... Low value priority circuit 39 ... Differentiator 40 ... Main steam temperature controller 41 ... Second superheat Unit inlet temperature calculator 42 ... High price priority circuit 43 ... Dehumidifying spray water amount controller 44 ... Main steam temperature controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 給水を一種以上の圧力で動作する蒸気ド
ラムと、この蒸気ドラムへの給水を加熱する節炭器およ
び缶水を循環し加熱蒸発する蒸発器と、蒸気ドラムで発
生した蒸気を過熱する過熱器とを有し、主蒸気温度を蒸
気の使用目的に応じた温度に制御して供給する排熱回収
ボイラ系統において、前記過熱器の伝熱面を複数に分割
してその分割した伝熱面を接続する連絡管と減温器とを
設け、高圧給水ポンプ吐出等の適当な条件を有するスプ
レ―水を調節して供給する系統設備と、高圧蒸気ドラム
と分割した過熱器の低温側過熱器の蒸気入口との連絡管
から分岐もしくは蒸気ドラムから独立して、分割した過
熱器の高温側過熱器の出口管(主蒸気管)に蒸気ドラム
内の飽和蒸気を調節して過熱器を通過した蒸気と混合
し、主蒸気温度を減温器スプレ―水量とドラム内蒸気の
混合量の調節により、主蒸気温度を調節できるように構
成した排熱回収ボイラ系統。
1. A steam drum that operates feed water at one or more pressures, a economizer that heats the feed water to the steam drum, an evaporator that circulates and heats boiler water to heat and evaporate, and steam generated in the steam drum. In an exhaust heat recovery boiler system that has a superheater that superheats and controls the main steam temperature to a temperature according to the purpose of use of steam, and divides the heat transfer surface of the superheater into multiple parts. Provided with a connecting pipe for connecting the heat transfer surface and a desuperheater, system equipment for adjusting and supplying spray water having appropriate conditions such as discharge of high pressure water supply pump, low temperature of superheater divided from high pressure steam drum Branched from the connecting pipe to the steam inlet of the side superheater or independent from the steam drum, adjust the saturated steam in the steam drum to the outlet pipe (main steam pipe) of the high temperature side superheater of the divided superheater The temperature of the main steam is reduced by mixing with the steam that has passed through Exhaust heat recovery boiler system configured to control the main steam temperature by adjusting the amount of spray water and the mixing amount of steam in the drum.
【請求項2】 請求項1の排熱回収ボイラ系統を使用し
スプレ―水量調節と飽和蒸気混合量の調節による主蒸気
温度制御装置において、スプレ―水量は主蒸気温度設定
値と主蒸気温度の偏差を減少するように調節され、飽和
蒸気混合量は、主蒸気温度設定値と主蒸気温度との偏差
の微分値を減少するように調節されることを特徴とする
主蒸気温度制御装置。
2. A main steam temperature control device using the exhaust heat recovery boiler system according to claim 1 by adjusting a spray water amount and a saturated steam mixture amount, wherein the spray water amount is a main steam temperature set value and a main steam temperature. The main steam temperature control device is characterized in that it is adjusted to reduce the deviation, and the saturated steam mixing amount is adjusted to decrease the differential value of the deviation between the main steam temperature set value and the main steam temperature.
【請求項3】 請求項1の排熱回収ボイラ系統を使用し
スプレ―水量調節と飽和蒸気混合量の調節による主蒸気
温度制御装置において、分割した過熱器の高温側過熱器
入口温度を、スプレ―水を混合した後においてスプレ―
水が完全に蒸気の状態になるよう同部蒸気もしくはその
上流の蒸気ドラム内蒸気圧力の飽和温度に余裕を加えた
温度以上に保つようにし、高温側過熱器出口蒸気と蒸気
ドラム内蒸気の混合によって最終的に主蒸気温度を制御
するように構成したことを特徴とする主蒸気温度制御装
置。
3. The main steam temperature control device using the exhaust heat recovery boiler system according to claim 1 by adjusting the amount of spray water and adjusting the amount of saturated steam, the temperature of the high temperature side superheater inlet of the divided superheater is -Spray after mixing water-
Mix the steam at the high temperature side superheater and the steam in the steam drum by keeping the temperature above the saturation temperature of the steam pressure in the steam drum in the same part or in the steam drum upstream of the steam so that the water becomes completely steam. The main steam temperature control device is characterized in that it is configured to finally control the main steam temperature by.
【請求項4】 請求項3の主蒸気温度制御装置におい
て、高圧蒸気ドラム圧力および分割した過熱器の低温側
過熱器出口もしくは高温側過熱器入口圧力に対する飽和
温度を計算する関数発生器の出力と主蒸気温度設定値と
蒸気流量および伝熱特性を使用して高温側過熱器入口蒸
気温度を演算する演算器の出力の高値を蒸気温度設定値
として採用し、高温側過熱器入口蒸気温度の測定値と比
較してスプレ―水量を調節することを特徴とする主蒸気
温度制御装置。
4. The main steam temperature control device according to claim 3, wherein an output of a function generator for calculating a saturation temperature with respect to a high-pressure steam drum pressure and a divided low-temperature side superheater outlet or high-temperature side superheater inlet pressure of the superheater, Measure the high temperature side superheater inlet steam temperature by using the high value of the output of the calculator that calculates the high temperature side superheater inlet steam temperature using the main steam temperature set value, steam flow rate and heat transfer characteristics. Main steam temperature controller characterized by adjusting the amount of spray water in comparison with the value.
JP10269492A 1992-04-22 1992-04-22 Exhaust heat recoverying boiler system and its main steam temperature controller Pending JPH05296401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10269492A JPH05296401A (en) 1992-04-22 1992-04-22 Exhaust heat recoverying boiler system and its main steam temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10269492A JPH05296401A (en) 1992-04-22 1992-04-22 Exhaust heat recoverying boiler system and its main steam temperature controller

Publications (1)

Publication Number Publication Date
JPH05296401A true JPH05296401A (en) 1993-11-09

Family

ID=14334368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10269492A Pending JPH05296401A (en) 1992-04-22 1992-04-22 Exhaust heat recoverying boiler system and its main steam temperature controller

Country Status (1)

Country Link
JP (1) JPH05296401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736669A2 (en) * 1995-04-05 1996-10-09 General Electric Company Steamed cooled gas turbine
WO2012039225A1 (en) * 2010-09-24 2012-03-29 株式会社 豊田自動織機 Rankine cycle device
CN110186022A (en) * 2019-06-03 2019-08-30 上海国际化建工程咨询有限公司 A kind of high temperature vertical type coiler waste heat boiler suitable for by-product superheated steam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736669A2 (en) * 1995-04-05 1996-10-09 General Electric Company Steamed cooled gas turbine
EP0736669A3 (en) * 1995-04-05 1997-09-17 Gen Electric Steamed cooled gas turbine
WO2012039225A1 (en) * 2010-09-24 2012-03-29 株式会社 豊田自動織機 Rankine cycle device
CN110186022A (en) * 2019-06-03 2019-08-30 上海国际化建工程咨询有限公司 A kind of high temperature vertical type coiler waste heat boiler suitable for by-product superheated steam

Similar Documents

Publication Publication Date Title
CA2718367C (en) Direct heating organic ranking cycle
US4858562A (en) Reheat type waste heat recovery boiler and power generation plant
US4207842A (en) Mixed-flow feedwater heater having a regulating device
DK152448B (en) STEAM GENERATOR SYSTEM
JPS6239648B2 (en)
KR102627385B1 (en) Once-through evaporator systems
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
JPS6214047B2 (en)
JPH10292902A (en) Main steam temperature controller
JP5276973B2 (en) Once-through exhaust heat recovery boiler
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
KR102627373B1 (en) Once-through evaporator systems
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH09195718A (en) Main steam temperature control device
US3242678A (en) Apparatus and method for obtaining high temperature low pressure vapor from a high temperature high pressure vapor source
JPH0842802A (en) Device for controlling generating quantity of intermediate/low pressure steam in exhaust gas boiler
JPS63682B2 (en)
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JPH01280604A (en) Method of improving efficiency of steam process
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JPH05209503A (en) Compound generating plant having steam drum