JPH05209503A - Compound generating plant having steam drum - Google Patents

Compound generating plant having steam drum

Info

Publication number
JPH05209503A
JPH05209503A JP1593592A JP1593592A JPH05209503A JP H05209503 A JPH05209503 A JP H05209503A JP 1593592 A JP1593592 A JP 1593592A JP 1593592 A JP1593592 A JP 1593592A JP H05209503 A JPH05209503 A JP H05209503A
Authority
JP
Japan
Prior art keywords
steam
pressure
drum
turbine
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1593592A
Other languages
Japanese (ja)
Inventor
Junichi Tanji
順一 丹治
Akiyoshi Nakajima
章喜 中島
Tsugio Hashimoto
継男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1593592A priority Critical patent/JPH05209503A/en
Publication of JPH05209503A publication Critical patent/JPH05209503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To simply and quickly carry out the initial pressure changeover operation at the time of start/stop of a gas turbine unit, enhance the speed of response to a load change demand and obviate the wasteful release of main steam energy by jointly communicating steam drums with a plurality of heat-exchangers. CONSTITUTION:In a compound generating plant, a compressor 2 and a generator 3 are connected to a gas turbine 1. The plant is provided with a plurality of heat- exchangers 4-6 in which steam is generated by exchanging heat with the exhaust gas of the gas turbine 1, a plurality of steam drums 12-14 for reserving steam, and a plurality of steam turbines 7-9 in which heated steam is used. In this case, the respective steam drums 7-9 are jointly communicated with the respective heat-exchangers 4-6. For instance, the steam sent from a high-pressure steam drum 12 through a high- pressure drum steam pipe 18 and that sent from a low-pressure steam drum 14 through a low-pressure drum steam pipe 20 are heated via the heat-exchanger 4 respectively, and are sent to the steam turbine side through respective high-pressure and low-pressure main steam pipes 21, 23. Thus, the initial pressure changeover operation at the time of start/stop of respective gas turbine units can be simply and quickly carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンの排熱を
回収する形式の蒸気ドラムを有する複合発電プラントに
係り、特に、ガスタービンの起動/停止を伴う負荷変化
時の応答時間短縮と蒸気ドラムの水位変動低減に寄与す
る複合発電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant having a steam drum of a type for recovering exhaust heat of a gas turbine, and more particularly to shortening a response time when a load changes accompanying start / stop of a gas turbine and steam. The present invention relates to a combined cycle power plant that contributes to reducing fluctuations in the water level of a drum.

【0002】[0002]

【従来の技術】排熱回収形式の火力複合発電プラント
は、ガスタービンの高温排気ガスを熱交換器の伝熱管群
からなる排熱回収ボイラに通して蒸気を発生させ、発生
した蒸気を蒸気ドラムに蓄え、蓄えた蒸気を加熱して蒸
気タービンの導入蒸気とする構成をとる。従来技術によ
る排熱回収形複合発電プラントの技術的内容は、例え
ば、東北電力(株)東新潟火力発電所第3号系列、10
90MWコンバインドプラントの設計と試運転実績、三
菱重工技報Vol.22,No.3(1985−5)に詳
細に報告されている。
2. Description of the Related Art In an exhaust heat recovery type combined cycle power plant, a high temperature exhaust gas of a gas turbine is passed through an exhaust heat recovery boiler consisting of a heat transfer tube group of a heat exchanger to generate steam, and the generated steam is steam drum. The steam stored in the steam turbine is heated and the steam is introduced into the steam turbine. The technical contents of the conventional exhaust heat recovery type combined cycle power plant are, for example, Tohoku Electric Power Co., Inc. Higashi Niigata Thermal Power Station No. 3 series, 10
Details of the design and test operation of the 90 MW combined plant are reported in detail in Mitsubishi Heavy Industries Technical Report Vol. 22, No. 3 (1985-5).

【0003】従来技術による複合発電プラントの構成例
として、この文献の多軸非再熱型とは異なるが、ガスタ
ービン3台,蒸気タービン1台からなる多軸再熱型プラ
ントの場合を図2に示す。従来プラントでは、各ガスタ
ービンに付属して設置されている排熱回収ボイラの熱交
換器毎に蒸気ドラムを設け、それぞれのガスタービンの
排気ガスと熱交換して昇温昇圧している。ガスタービン
の運転は、圧縮器2による圧縮空気で天然ガスを燃焼さ
せ、ガスタービン1へ導くことにより行われる。ガスタ
ービン入口のガス温度は約1200℃近くに達し、排気
ガス温度は約600℃である。蒸気ドラムは、蒸気ター
ビンを構成する高圧,中圧,低圧タービン等の異なる導
入蒸気圧力に合わせた多重圧構成とし、ガスタービン排
ガス熱容量とドラム水位変動の制限値から決まる容量に
設計されている。この場合は三重圧構成であるので、蒸
気ドラムを各熱交換器毎に3台、例えば、熱交換器4に
は高圧蒸気ドラム50A,中圧蒸気ドラム51A,低圧
蒸気ドラム52Aを設置している。各蒸気ドラムには、
排気ガスと熱交換するために下降水管と蒸発管からなる
循環水管が付属しており、自然循環によって水を循環さ
せて加熱し蒸気を発生させる。発生した蒸気はそれぞれ
の蒸気圧力ごとに蒸気ドラムに蓄え、熱交換器を通して
加熱して、主蒸気管で蒸気タービン側へ送る。ただし、
中圧蒸気ドラム51Aの蒸気は再熱蒸気管59の高圧蒸
気タービン7の排出蒸気と結合し、熱交換器を通して加
熱し、中圧主蒸気管22で蒸気タービン側へ送る。熱交
換器4からの各主蒸気管は、蒸気タービンを構成する高
圧蒸気タービン7,中圧蒸気タービン8,低圧蒸気ター
ビン9にそれぞれ蒸気を導入する高圧主蒸気母管24,
中圧主蒸気母管25,低圧主蒸気母管26の各ヘッダ
で、他の熱交換器5,熱交換器6からの主蒸気管と結合
する。ここでガスタービン起動/停止等の場合、各蒸気
ドラムからの主蒸気が蒸気タービンへ通気可能な蒸気の
温度圧力条件を満足しない間は主蒸気隔離弁を閉止し、
タービンバイパス弁で流量調整しつつ再熱蒸気管または
復水器へ逃がす。例えば、ガスタービン1を追加起動す
る場合、ガスタービン負荷が定格に達して排気ガスによ
る十分な加熱を得、高圧蒸気ドラム50Aの蒸気圧力が
高圧主蒸気母管24の通気条件に達すると、高圧主蒸気
隔離弁27を全開して高圧タービンバイパス弁53を閉
止し、他の第2,第3ユニットの主蒸気管からの高圧主
蒸気と合流させてタービン加減弁30により流量調整さ
せ、圧力制御を行わせる。高圧蒸気タービン7の排気
は、再加熱して使用するために、高圧タービン排気母管
46から再熱器入口止弁36および再熱蒸気管59を通
して熱交換器4へ送る。復水器11の復水は、復水ポン
プ37により昇圧して給水管60により熱交換器4へ送
り、加熱昇温して各蒸気ドラムへ給水する。各蒸気ドラ
ムでは、給水流量調整弁により給水流量を調節して、蒸
気ドラム水位を運転の制限値以内に制御する。
As an example of the configuration of a combined cycle power plant according to the prior art, a multi-axis reheat type plant consisting of three gas turbines and one steam turbine, which is different from the multi-axis non-reheat type in this document, is shown in FIG. Shown in. In a conventional plant, a steam drum is provided for each heat exchanger of an exhaust heat recovery boiler that is attached to each gas turbine, and heat is exchanged with the exhaust gas of each gas turbine to increase the temperature and pressure. The operation of the gas turbine is performed by burning the natural gas with the compressed air from the compressor 2 and guiding the natural gas to the gas turbine 1. The gas temperature at the inlet of the gas turbine reaches nearly 1200 ° C and the exhaust gas temperature is approximately 600 ° C. The steam drum has a multi-pressure structure adapted to different introduced steam pressures such as high-pressure, medium-pressure, and low-pressure turbines constituting the steam turbine, and is designed to have a capacity determined by the heat capacity of the gas turbine exhaust gas and the limit value of the drum water level fluctuation. In this case, because of the triple pressure configuration, three steam drums are provided for each heat exchanger, for example, the heat exchanger 4 is provided with a high-pressure steam drum 50A, an intermediate-pressure steam drum 51A, and a low-pressure steam drum 52A. .. Each steam drum has
A circulating water pipe consisting of a descending water pipe and an evaporation pipe is attached to exchange heat with the exhaust gas, and water is circulated by natural circulation to heat and generate steam. The generated steam is stored in a steam drum for each steam pressure, heated through a heat exchanger, and sent to the steam turbine side through the main steam pipe. However,
The steam of the medium-pressure steam drum 51A is combined with the exhaust steam of the high-pressure steam turbine 7 of the reheat steam pipe 59, heated through a heat exchanger, and sent to the steam turbine side by the medium-pressure main steam pipe 22. Each main steam pipe from the heat exchanger 4 includes a high-pressure main steam mother pipe 24 for introducing steam into a high-pressure steam turbine 7, an intermediate-pressure steam turbine 8, and a low-pressure steam turbine 9, which constitute a steam turbine,
The headers of the medium pressure main steam main pipe 25 and the low pressure main steam main pipe 26 are connected to the main steam pipes from the other heat exchangers 5 and 6. Here, in the case of gas turbine start / stop, etc., the main steam isolation valve is closed while the main steam from each steam drum does not satisfy the temperature and pressure conditions of steam that can be ventilated to the steam turbine.
The flow is adjusted to the turbine bypass valve and released to the reheat steam pipe or condenser. For example, when the gas turbine 1 is additionally started up, when the gas turbine load reaches the rating to obtain sufficient heating by the exhaust gas and the steam pressure of the high-pressure steam drum 50A reaches the ventilation condition of the high-pressure main steam mother pipe 24, the high pressure is increased. The main steam isolation valve 27 is fully opened and the high pressure turbine bypass valve 53 is closed, and the high pressure main steam from the main steam pipes of the other second and third units is merged and the flow rate is adjusted by the turbine control valve 30 to control the pressure. To perform. The exhaust of the high-pressure steam turbine 7 is sent from the high-pressure turbine exhaust mother pipe 46 through the reheater inlet stop valve 36 and the reheat steam pipe 59 to the heat exchanger 4 for reheating and use. Condensed water in the condenser 11 is pressurized by the condensate pump 37 and sent to the heat exchanger 4 by the water supply pipe 60, heated and heated to supply water to each steam drum. In each steam drum, the feed water flow rate is adjusted by the feed water flow rate control valve to control the water level of the steam drum within the operation limit value.

【0004】[0004]

【発明が解決しようとする課題】複数台のガスタービン
を使用する複合発電プラントは、ガスタービン効率が出
力によって大きく変化するが、プラント出力に見合った
ガスタービンの運転台数を選ぶことにより、常に高いプ
ラント効率が確保できる。このためには、プラント負荷
変化要求に対応する際の運用面で、ガスタービンの運転
台数の迅速で容易な切り替え操作を可能とする必要があ
る。しかし、ガスタービンユニットの起動/停止時に
は、ユニットの熱交換器および蒸気ドラムからの発生蒸
気を先行ユニットの主蒸気圧力に等しくして通気する初
圧切換操作が必要である。このための操作手順は複雑で
かつ所要時間も長いので、負荷変化要求への応答速度が
制限されており、かつその間にはタービンバイパス弁開
により主蒸気を逃がすので、主蒸気エネルギも無駄に失
われている。またユニット負荷上昇時および初圧切換え
時に蒸気ドラムの圧力,ボイドが変化するので、蒸気ド
ラムの水位変動を制限値以内に抑えるために負荷変化率
は低く制限されている。
In a combined cycle power plant using a plurality of gas turbines, the gas turbine efficiency greatly changes depending on the output, but it is always high by selecting the number of operating gas turbines that matches the plant output. Plant efficiency can be secured. To this end, it is necessary to enable a quick and easy switching operation of the number of operating gas turbines in terms of operation when responding to a plant load change request. However, at the time of starting / stopping the gas turbine unit, an initial pressure switching operation is required in which steam generated from the heat exchanger and steam drum of the unit is made equal to the main steam pressure of the preceding unit and ventilated. Since the operation procedure for this is complicated and the required time is long, the response speed to the load change request is limited, and during that time, the main steam is released by opening the turbine bypass valve, so the main steam energy is also wasted. It is being appreciated. Further, since the pressure and voids of the steam drum change when the unit load increases and the initial pressure is changed, the load change rate is limited to a low level in order to keep the fluctuation of the water level of the steam drum within the limit values.

【0005】本発明の第1の目的は、ガスタービンユニ
ットの起動/停止時の初圧切換操作を簡単化して所要時
間を短縮することにより負荷変化要求への応答速度を向
上させ、かつ切換操作間のタービンバイパス弁開による
無駄な主蒸気エネルギ放出を不必要とするような複合発
電プラントを提供することにある。本発明の第2の目的
は、ユニット負荷上昇時および初圧切換え時の蒸気ドラ
ムの水位変動を少なくして、プラントの負荷変化率を従
来より高く設定可能な複合発電プラントを提供すること
にある。
A first object of the present invention is to improve the response speed to a load change request by simplifying the initial pressure switching operation at the time of starting / stopping the gas turbine unit and shortening the required time, and performing the switching operation. An object of the present invention is to provide a combined cycle power generation plant that does not needlessly release wasteful main steam energy by opening the turbine bypass valve between. A second object of the present invention is to provide a combined power generation plant capable of setting the load change rate of the plant higher than before by reducing fluctuations in the water level of the steam drum at the time of unit load increase and initial pressure switching. ..

【0006】[0006]

【課題を解決するための手段】上記目的は、複合発電プ
ラントの構成を、プラントの複数台からなるガスタービ
ンユニットにそれぞれ付属している熱交換器に、ガスタ
ービンの排気ガスと熱交換させて発生させた蒸気を蓄え
るための蒸気ドラムを互いに共有させ、前記蒸気ドラム
を、蒸気タービンを構成する通気圧力の異なるタービン
毎にそれぞれ単一台だけ設置する構成とすることにより
達成される。
The object of the present invention is to allow a heat exchanger attached to a gas turbine unit composed of a plurality of plant units to exchange heat with exhaust gas of a gas turbine. This is achieved by sharing steam drums for storing the generated steam with each other and installing a single steam drum for each turbine having different ventilation pressures constituting the steam turbine.

【0007】なお、本発明は、再熱/非再熱および多軸
/一軸を問わず、蒸気ドラム設置の複合発電プラントに
採用可能である。
The present invention can be applied to a combined power generation plant having a steam drum, regardless of reheat / non-reheat and multi-axis / single axis.

【0008】[0008]

【作用】本発明の作用を説明する。The function of the present invention will be described.

【0009】蒸気ドラムを各ガスタービンユニットにそ
れぞれ付属している排熱回収ボイラの熱交換器を共通に
して集約したことにより、ユニット起動(又は停止)の
場合もその発生蒸気圧力は他ユニットのものと常に等し
いので、初圧切換操作が不必要または所要時間が大幅に
短縮可能となり、ガスタービンの出力上昇(又は下降)に
追従させて発生蒸気量を変化させることができる。した
がって、蒸気タービンの制御系構成および起動/停止運
転操作も簡単化できる。また、蒸気ドラム一台当たりの
容量は従来よりも増加するので、主蒸気流量外乱に対す
る圧力制御安定性,負荷追従速応性および、ドラム水位
安定性も向上する。
Since the heat exchangers of the exhaust heat recovery boilers attached to the respective gas turbine units are integrated in common for the steam drums, the steam pressure generated at the time of starting (or stopping) the units is different from that of other units. Since it is always the same as the above, the initial pressure switching operation is unnecessary or the required time can be shortened significantly, and the amount of generated steam can be changed by following the increase (or decrease) in the output of the gas turbine. Therefore, the control system configuration and the start / stop operation of the steam turbine can be simplified. Further, since the capacity per steam drum is increased as compared with the conventional one, the pressure control stability against the main steam flow disturbance, the load following speed response, and the drum water level stability are also improved.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0011】第1の実施例を図1に示す。図1は、ガス
タービン3台,蒸気タービン1台からなる多軸再熱型の
複合発電プラントの構成を示したものである。ガスター
ビンの第1ユニットでは、圧縮器2による圧縮空気で天
然ガスを燃焼させてガスタービン1の駆動エネルギと
し、その排気ガスをダクトで熱交換器4へ導く。以下、
ガスタービンおよび熱交換器関係では主に第1ユニット
について説明するが、他の第2,第3ユニットでも同様
である。この実施例では、蒸気タービンが高圧蒸気ター
ビン7,中圧蒸気タービン8,低圧蒸気タービン9から
なる三重圧構成であるので、蒸気ドラムを高圧蒸気ドラ
ム12,中圧蒸気ドラム13,低圧蒸気ドラム14の、
計3台を設置している。蒸気タービンが複数台の場合
は、その台数とタービンの通気圧力に対応させた数の蒸
気ドラムを設置する。高圧,中圧,低圧の各蒸気ドラム
には、排気ガスと熱交換するために下降水管と蒸発管か
らなる循環水管が付属している。高圧蒸気ドラム12に
付属している高圧ドラム循環水管15は、図1では各循
環水管とも単管のように省略して示しているが、ドラム
を出て各ユニットの熱交換器へ分岐して下降水管とな
り、上昇部分で多数の伝熱管からなる蒸発管となって各
熱交換器を出て、再び結合してドラムへ戻るループ構造
である。蒸気ドラムから出た循環水は、熱交換器で加熱
されて蒸発管部分で気相,液相からなる二相流となって
蒸気のボイドを含むので、密度差による自然循環力によ
ってドラム水が循環加熱される。蒸発管より蒸気ドラム
へ入った二相流は気水分離器で蒸気と飽和水に分離さ
れ、発生した蒸気は蒸気ドラムに蓄えられる。
The first embodiment is shown in FIG. FIG. 1 shows the configuration of a multi-axis reheat type combined power generation plant including three gas turbines and one steam turbine. In the first unit of the gas turbine, natural gas is burned by the compressed air from the compressor 2 to generate driving energy for the gas turbine 1, and the exhaust gas is guided to the heat exchanger 4 by a duct. Less than,
Regarding the gas turbine and the heat exchanger, the first unit will be mainly described, but the same applies to the other second and third units. In this embodiment, the steam turbine has a triple pressure structure including the high-pressure steam turbine 7, the medium-pressure steam turbine 8, and the low-pressure steam turbine 9. Therefore, the steam drums are the high-pressure steam drum 12, the medium-pressure steam drum 13, and the low-pressure steam drum 14. of,
A total of 3 units are installed. If there are multiple steam turbines, install as many steam drums as the number of steam turbines and the ventilation pressure of the turbines. Each high-pressure, medium-pressure, and low-pressure steam drum is equipped with a circulating water pipe consisting of a descending water pipe and an evaporation pipe for exchanging heat with exhaust gas. Although the high-pressure drum circulating water pipe 15 attached to the high-pressure steam drum 12 is omitted in FIG. 1 like each circulating water pipe is shown as a single pipe, it exits the drum and branches to the heat exchanger of each unit. It has a loop structure that serves as a downcomer pipe and as an evaporating pipe consisting of a large number of heat transfer pipes in the ascending portion, exits each heat exchanger, rejoins, and returns to the drum. The circulating water discharged from the steam drum is heated by a heat exchanger and becomes a two-phase flow consisting of a gas phase and a liquid phase in the evaporation pipe portion and contains voids of steam. Circulatingly heated. The two-phase flow entering the steam drum from the evaporation pipe is separated into steam and saturated water by the steam separator, and the generated steam is stored in the steam drum.

【0012】本発明では、集約化した蒸気ドラムの容量
は、主に複数台のガスタービンユニットを集約した排ガ
ス熱容量によって決まるので、従来の各ユニット毎に設
置された蒸気ドラムの容量よりも増加し、ドラム水位変
動の安定性も向上する。一方、本発明では集約化した蒸
気ドラムから各ユニットの熱交換器へ循環水管を分岐す
るので、従来プラントのように蒸気ドラムを各ユニット
の熱交換器へ付属させた構成に比べて循環水管がやや長
くなるが、熱的な損失は配管を保温された排気ダクト内
に通すことにより問題無く少なくでき、流動の圧力損失
増加は配管径を多少大きくすれば問題ない程度に抑える
ことができる。また、ユニットが冷温停止している場合
は、このユニットの熱交換器へ通じる循環水管の隔離弁
(図1では省略)を閉止すれば、余分な熱損失を防ぐこ
とができる。
In the present invention, the capacity of the integrated steam drum is mainly determined by the heat capacity of the exhaust gas in which a plurality of gas turbine units are integrated. Therefore, the capacity of the integrated steam drum is larger than the capacity of the conventional steam drum installed in each unit. The stability of drum water level fluctuation is also improved. On the other hand, in the present invention, since the circulating water pipe is branched from the integrated steam drum to the heat exchanger of each unit, the circulating water pipe can be compared to the conventional plant in which the steam drum is attached to the heat exchanger of each unit. Although it becomes a little longer, thermal loss can be reduced without problems by passing the pipe through a heat-insulated exhaust duct, and increase in flow pressure loss can be suppressed to a non-problem level by slightly increasing the pipe diameter. Further, when the unit is stopped at a cold temperature, an extra heat loss can be prevented by closing the isolation valve (not shown in FIG. 1) of the circulating water pipe leading to the heat exchanger of this unit.

【0013】高圧蒸気ドラム12、および低圧蒸気ドラ
ム14に蓄えられた蒸気を、それぞれ高圧ドラム蒸気管
18と低圧ドラム蒸気管20により、熱交換器4を通し
て加熱し、高圧主蒸気管21と低圧主蒸気管23で蒸気
タービン側へ送る。また、中圧蒸気ドラム13の蒸気
は、熱交換器を通して加熱した後再熱蒸気管47の高圧
蒸気タービン7の排気と結合し、再び熱交換器を通して
加熱して中圧主蒸気管22で蒸気タービン側へ送る。熱
交換器4からの各主蒸気管は、蒸気タービンを構成する
高圧蒸気タービン7,中圧蒸気タービン8,低圧蒸気タ
ービン9にそれぞれ蒸気を導入する高圧主蒸気母管2
4,中圧主蒸気母管25,低圧主蒸気母管26の各ヘッ
ダで、他の熱交換器5,熱交換器6からの主蒸気管と結
合する。ガスタービンのユニット起動/停止等の場合、
各ユニットの熱交換器からの主蒸気が蒸気タービンへ通
気可能な蒸気の温度圧力条件を満足しない間は、主蒸気
隔離弁を閉止して通気せず熱的な問題の発生を防ぐ必要
があるが、本発明のプラント構成では同一の蒸気ドラム
により供給元の蒸気圧力が等しいので、通気条件に達す
るまでの時間遅れは小さい。このため、図1に示すよう
に、従来プラントで必要であったような、タービンバイ
パス弁で流量調整しつつ再熱蒸気管または復水器へ蒸気
を逃がす蒸気バイパス管を、各熱交換器からの主蒸気管
に設ける必要がなく、負荷調整のためのタービンバイパ
ス弁を主蒸気母管に設けるので、タービン制御系を大幅
に簡単化でき、かつ負荷制御性能も向上する。もちろ
ん、熱的な問題をより重視して、従来プラントの配管構
成と同様に各主蒸気管から再熱蒸気管または復水器へ蒸
気を逃がす蒸気バイパス管を設けても、本発明の蒸気ド
ラム構成をとることは何ら問題なく可能である。実施例
で例えば、ガスタービン1を追加起動する場合、ガスタ
ービン負荷が定格に達する以前で排気ガスによる十分な
加熱が得られない場合でも、高圧主蒸気隔離弁27を負
荷変化率に合わせて徐々に開操作し、熱交換器4へ通す
蒸気を排気ガスの保有熱エネルギに見合った蒸気流量に
することにより、高圧主蒸気管21の蒸気圧力温度を先
行ユニットの主蒸気条件に等しくして通気することがで
きる。高圧主蒸気母管24の通気条件に達すると、他の
第2,第3ユニットの主蒸気管からの高圧主蒸気と合流
させてタービン加減弁30により主蒸気流量制御させ
る。高圧蒸気タービン7の排気は、再加熱して使用する
ために、高圧タービン排気母管46から再熱器入口止弁
36および再熱蒸気管47を通して熱交換器4へ送る。
同様に中圧主蒸気管22の蒸気圧力温度を先行ユニット
の主蒸気条件に等しくすると、他の第2,第3ユニット
の主蒸気管からの中圧主蒸気と合流させて中間加減弁3
1により流量制御させる。中圧蒸気タービン8の排気
は、低圧主蒸気母管26からの低圧蒸気と合流させて低
圧蒸気タービン9へ通気する。
The steam stored in the high-pressure steam drum 12 and the low-pressure steam drum 14 is heated through the heat exchanger 4 by the high-pressure drum steam pipe 18 and the low-pressure drum steam pipe 20, respectively. It is sent to the steam turbine side through the steam pipe 23. The steam in the medium-pressure steam drum 13 is heated through the heat exchanger and then combined with the exhaust gas of the high-pressure steam turbine 7 in the reheat steam pipe 47, heated again through the heat exchanger, and steamed in the medium-pressure main steam pipe 22. Send to the turbine side. Each main steam pipe from the heat exchanger 4 is a high-pressure main steam mother pipe 2 that introduces steam into a high-pressure steam turbine 7, an intermediate-pressure steam turbine 8, and a low-pressure steam turbine 9 that form a steam turbine.
4, headers of the medium-pressure main steam mother pipe 25 and the low-pressure main steam mother pipe 26 are connected to the main steam pipes from the other heat exchangers 5 and 6. When starting / stopping a gas turbine unit,
As long as the main steam from the heat exchanger of each unit does not satisfy the temperature and pressure conditions of steam that can be ventilated to the steam turbine, it is necessary to close the main steam isolation valve to prevent ventilation and prevent thermal problems. However, in the plant configuration of the present invention, since the steam pressures of the supply sources are the same due to the same steam drum, the time delay until reaching the ventilation condition is small. Therefore, as shown in FIG. 1, a steam bypass pipe, which is required in a conventional plant and which allows steam to escape to a reheat steam pipe or a condenser while adjusting the flow rate with a turbine bypass valve, is provided from each heat exchanger. Since it is not necessary to provide it in the main steam pipe, and a turbine bypass valve for load adjustment is provided in the main steam mother pipe, the turbine control system can be greatly simplified and the load control performance is also improved. Of course, with a greater emphasis on thermal problems, even if a steam bypass pipe for releasing steam from each main steam pipe to the reheat steam pipe or the condenser is provided as in the conventional plant piping configuration, the steam drum of the present invention is also provided. The configuration is possible without any problems. In the embodiment, for example, when the gas turbine 1 is additionally started, the high-pressure main steam isolation valve 27 is gradually adjusted according to the load change rate even if sufficient heating by exhaust gas cannot be obtained before the gas turbine load reaches the rated value. The steam pressure of the high-pressure main steam pipe 21 is made equal to the main steam condition of the preceding unit, and the steam is passed through the heat exchanger 4 at a steam flow rate that matches the heat energy of the exhaust gas. can do. When the ventilation condition of the high-pressure main steam mother pipe 24 is reached, the high-pressure main steam from the main steam pipes of the other second and third units is combined and the turbine control valve 30 controls the main steam flow rate. The exhaust of the high-pressure steam turbine 7 is sent from the high-pressure turbine exhaust mother pipe 46 through the reheater inlet stop valve 36 and the reheat steam pipe 47 to the heat exchanger 4 for reheating and use.
Similarly, when the steam pressure temperature of the intermediate pressure main steam pipe 22 is made equal to the main steam condition of the preceding unit, the intermediate pressure control valve 3 is made to join with the intermediate pressure main steam from the main steam pipes of the other second and third units.
The flow rate is controlled by 1. The exhaust of the medium-pressure steam turbine 8 merges with the low-pressure steam from the low-pressure main steam mother pipe 26 and is ventilated to the low-pressure steam turbine 9.

【0014】復水器11の復水は、復水ポンプ37によ
り昇圧し、低圧給水加熱器38によって加熱昇温した
後、低圧蒸気ドラム14へ給水する。さらに、高圧給水
ポンプ39と中圧給水ポンプ40でそれぞれ昇圧して加
熱昇温し、高圧,中圧の各蒸気ドラムへ給水する。各蒸
気ドラムでは、給水流量調整弁により給水流量を調節し
て、蒸気ドラム水位を運転の制限値以内に制御する。本
発明によれば、図1に示す実施例のように、集約化した
蒸気ドラムに応じて給水ポンプの容量を増加して台数を
削減可能であるが、もちろん、従来プラントのように、
各ユニットの熱交換器毎に給水ポンプを設置し、熱交換
器で給水を加熱する構成としても特に問題はない。
Condensed water in the condenser 11 is pressurized by the condensate pump 37, heated and heated by the low pressure feed water heater 38, and then fed to the low pressure steam drum 14. Further, the high-pressure water supply pump 39 and the medium-pressure water supply pump 40 respectively increase the pressure to heat and raise the temperature, and supply water to the high-pressure and medium-pressure steam drums. In each steam drum, the feed water flow rate is adjusted by the feed water flow rate control valve to control the water level of the steam drum within the operation limit value. According to the present invention, as in the embodiment shown in FIG. 1, it is possible to increase the capacity of the water supply pumps and reduce the number of the water supply pumps according to the integrated steam drum, but of course, as in the conventional plant,
There is no particular problem even if a water supply pump is installed for each heat exchanger of each unit and the water is heated by the heat exchanger.

【0015】第2の実施例を図3に示す。図3は、ガス
タービン4台,蒸気タービン1台からなる多軸再熱型の
複合発電プラントの構成を示したものである。この実施
例では、ガスタービンユニットの熱交換器が2台ずつで
蒸気ドラムを共有させる構成としている。この場合は、
蒸気タービンが三重圧構成であるので、第1,第2ユニ
ットの熱交換器が共有する蒸気ドラムとして、高圧蒸気
ドラム12A,中圧蒸気ドラム13A,低圧蒸気ドラム
14Aの計3台を設置している。高圧,中圧,低圧の各
蒸気ドラムには、排気ガスと熱交換するために下降水管
と蒸発管からなる循環水管が付属していることは、第1
の実施例に同様である。各蒸気ドラムに付属している循
環水管は、全て単管のように省略して図示しているが、
ドラムを出て各ユニットの熱交換器へ分岐して下降水管
となり、上昇部分で多数の伝熱管からなる蒸発管となっ
て各熱交換器を出、再び結合してドラムへ戻るループ構
造であることも第1の実施例に同様であり、その蒸気発
生の原理も変わらない。以下、ガスタービンおよび熱交
換器関係では主に第1,第2ユニットについて説明する
が、他の第3,第4ユニットも同様である。
The second embodiment is shown in FIG. FIG. 3 shows the configuration of a multi-shaft reheat type combined cycle power generation plant including four gas turbines and one steam turbine. In this embodiment, two heat exchangers of the gas turbine unit share the steam drum. in this case,
Since the steam turbine has a triple pressure configuration, three high pressure steam drums 12A, a medium pressure steam drum 13A, and a low pressure steam drum 14A are installed as steam drums shared by the heat exchangers of the first and second units. There is. Each high-pressure, medium-pressure, and low-pressure steam drum is equipped with a circulating water pipe consisting of a descending water pipe and an evaporation pipe for exchanging heat with exhaust gas.
It is similar to the embodiment. The circulating water pipes attached to each steam drum are abbreviated as single pipes, but
It is a loop structure that exits the drum and branches to the heat exchanger of each unit to become a descending water pipe, and at the rising part becomes an evaporation pipe consisting of a number of heat transfer pipes, exits each heat exchanger, rejoins and returns to the drum. This is also the same as in the first embodiment, and the principle of steam generation does not change. Hereinafter, the first and second units will be mainly described in relation to the gas turbine and the heat exchanger, but the same applies to the other third and fourth units.

【0016】高圧蒸気ドラム12A、および低圧蒸気ド
ラム14Aに蓄えられた蒸気を、熱交換器4と熱交換器
5に通して加熱し、高圧主蒸気管21Aと低圧主蒸気管
23Aで蒸気タービン側へ送る。また、中圧蒸気ドラム1
3Aの蒸気は同様に熱交換器を通して加熱した後、再熱
蒸気管59Aで高圧蒸気タービン7の排気と結合し、再
び熱交換器を通して加熱し、中圧主蒸気管22Aで蒸気
タービン側へ送る。熱交換器4および熱交換器5からの
加熱蒸気を結合して送る各圧力の主蒸気管は、蒸気ター
ビンを構成する高圧蒸気タービン7,中圧蒸気タービン
8,低圧蒸気タービン9にそれぞれ蒸気を導入する高圧
主蒸気母管24,中圧主蒸気母管25,低圧主蒸気母管
26の各ヘッダで、他の熱交換器6,熱交換器80から
の主蒸気管と結合する。本実施例では、部分的に蒸気ド
ラムを集約しているので、蒸気ドラムを共有するユニッ
トグループの、ガスタービンの運転状態が異なるグルー
プ間では主蒸気の圧力温度状態が異なる。したがって、
ガスタービン起動/停止等の場合、各蒸気ドラムからの
主蒸気が蒸気タービンへ通気可能な温度圧力条件を満足
しない間は主蒸気隔離弁を閉止し、タービンバイパス弁
で流量調整しつつ再熱蒸気管または復水器へ逃がす。す
なわち、この実施例では、タービン制御系の構成は従来
と同様に、各熱交換器グループからの主蒸気管にバイパ
ス管を結合しているので、通気可能な蒸気の温度圧力条
件を満足させるための初圧切り替え操作は、従来プラン
トの切り替え操作と同様である。復水器11の復水は、
復水ポンプ37により昇圧して給水管60A,給水管6
0Bにより熱交換器4と熱交換器6へ送り、加熱昇温し
て各蒸気ドラムへ給水する。各蒸気ドラムでは、給水流
量調整弁により給水流量を調節して、蒸気ドラム水位を
運転の制限値以内に制御する。
The steam stored in the high-pressure steam drum 12A and the low-pressure steam drum 14A is heated by passing through the heat exchanger 4 and the heat exchanger 5, and the high-pressure main steam pipe 21A and the low-pressure main steam pipe 21A are heated.
Send to the steam turbine side at 23A. Also, the medium pressure steam drum 1
Similarly, the steam of 3A is heated through the heat exchanger, then combined with the exhaust of the high-pressure steam turbine 7 through the reheat steam pipe 59A, heated through the heat exchanger again, and sent to the steam turbine side through the intermediate-pressure main steam pipe 22A. .. The main steam pipes of respective pressures, which combine and send the heated steam from the heat exchanger 4 and the heat exchanger 5, respectively send steam to the high-pressure steam turbine 7, the intermediate-pressure steam turbine 8, and the low-pressure steam turbine 9 which constitute the steam turbine. The headers of the high-pressure main steam mother pipe 24, the medium-pressure main steam mother pipe 25, and the low-pressure main steam mother pipe 26 to be introduced are connected to the main steam pipes from the other heat exchangers 6 and 80. In this embodiment, since the steam drums are partially integrated, the pressure temperature state of the main steam is different between the unit groups that share the steam drums but have different gas turbine operating states. Therefore,
When starting / stopping the gas turbine, reheat steam while closing the main steam isolation valve and adjusting the flow rate with the turbine bypass valve while the main steam from each steam drum does not satisfy the temperature and pressure conditions that allow ventilation to the steam turbine. Release to a pipe or condenser. That is, in this embodiment, since the bypass pipe is connected to the main steam pipes from each heat exchanger group in the configuration of the turbine control system in the same manner as in the conventional case, in order to satisfy the temperature and pressure conditions of the vaporizable steam. The initial pressure switching operation of is similar to the switching operation of the conventional plant. Condensate of the condenser 11
The water pressure is increased by the condensate pump 37, and the water supply pipe 60A and the water supply pipe 6
It is sent to the heat exchanger 4 and the heat exchanger 6 by 0B, heated and heated to supply water to each steam drum. In each steam drum, the feed water flow rate is adjusted by the feed water flow rate control valve to control the water level of the steam drum within the operation limit value.

【0017】本発明の第2の実施例によれば、複数台ユ
ニットの蒸気ドラムを部分的に集約しているので、従来
プラントに比較しては、主蒸気配管や各種弁等、特に蒸
気タービン回りの配管,機器の数が少なく、プラント建
設コストを低減可能である。また、ガスタービンの台数
切替えを伴う負荷変更要求に対しても、起動/停止ユニ
ットを適切に選定することにより初圧切替え操作を削減
して所要時間を短縮し、負荷変化性能を向上できる。
According to the second embodiment of the present invention, since the steam drums of a plurality of units are partially integrated, compared with the conventional plant, the main steam pipes, various valves, etc., especially the steam turbine. The number of surrounding pipes and equipment is small, and plant construction costs can be reduced. Also, in response to a load change request involving switching of the number of gas turbines, by properly selecting the start / stop unit, the initial pressure switching operation can be reduced, the required time can be shortened, and the load change performance can be improved.

【0018】本発明の第1の実施例による複合発電プラ
ントにおいて、ガスタービン1台の停止を伴う負荷降下
時のシミュレーションによる応答を図4に示す。この例
は、ユニット運転台数の3台から2台への切替えを伴う
もので、100%負荷から67%負荷への変更を示す。
従来プラントの場合は、第1ユニットの負荷降下および
停止から決まる主蒸気流量変化に従って、蒸気タービン
負荷が降下し、プラント負荷も同様な変化率で降下す
る。これに対して本発明の場合は、タービン制御系の負
荷制御動作によりタービンバイパス弁が開して不要な主
蒸気を放出するので、蒸気タービン負荷の降下が速く、
整定時間も従来プラントのt2からt1へと大幅に短縮
できる。その結果、プラント負荷降下要求時の応答性能
も改善できていることがわかる。
FIG. 4 shows a response obtained by a simulation when the load is lowered accompanying the stop of one gas turbine in the combined cycle power plant according to the first embodiment of the present invention. This example involves switching the unit operating number from 3 to 2, and shows a change from 100% load to 67% load.
In the case of the conventional plant, the steam turbine load drops according to the change in the main steam flow rate determined by the load drop and stop of the first unit, and the plant load also drops at the same rate of change. On the other hand, in the case of the present invention, the turbine bypass valve is opened by the load control operation of the turbine control system to release unnecessary main steam, so that the steam turbine load drops quickly,
The settling time can also be greatly reduced from t2 of the conventional plant to t1. As a result, it can be seen that the response performance when the plant load drop request is improved.

【0019】本発明の第1の実施例による複合発電プラ
ントにおいて、ガスタービン1台の起動を伴う負荷上昇
時のシミュレーションによる応答を図5に示す。この例
は、ガスタービンのユニット運転台数の2台から3台へ
の切り替えを伴うもので、67%負荷から100%負荷
への変更を示す。従来プラントの場合は、第1ユニット
の起動に伴う初圧切換操作が必要であり、かつその間ユ
ニット負荷が定格に達するまではタービンバイパス弁開
により主蒸気を逃がすので、負荷変化要求への応答速度
が制限されている。通気条件成立後にタービンバイパス
弁閉操作により通気を開始して主蒸気流量が増加し、蒸
気タービン負荷が上昇する。したがって、プラント負荷
はユニット負荷に伴って上昇した後一定出力となり、蒸
気タービン負荷の上昇に伴って定格値まで上昇する。こ
れに対して本発明の場合は、起動ユニット熱交換器から
の主蒸気が通気条件に達する時間が短く、初圧切換所要
時間が短縮できるので、蒸気タービン負荷の上昇が速
い。よって、整定時間も従来プラントのt2からt1へ
と大幅に短縮でき、プラント負荷上昇要求時の応答性能
を改善できていることがわかる。
FIG. 5 shows a response by simulation at the time of load increase accompanying the start-up of one gas turbine in the combined power plant according to the first embodiment of the present invention. This example involves switching the unit operating number of the gas turbine from two to three, and shows a change from 67% load to 100% load. In the case of the conventional plant, the initial pressure switching operation accompanying the start-up of the first unit is necessary, and the main steam is released by opening the turbine bypass valve until the unit load reaches the rating during that time, so the response speed to the load change request Are limited. After the ventilation conditions are satisfied, ventilation is started by closing the turbine bypass valve, the main steam flow rate increases, and the steam turbine load increases. Therefore, the plant load increases with the unit load and then becomes a constant output, and increases with the steam turbine load to the rated value. On the other hand, in the case of the present invention, the time required for the main steam from the startup unit heat exchanger to reach the ventilation condition is short and the initial pressure switching required time can be shortened, so the steam turbine load rises quickly. Therefore, it can be seen that the settling time can be greatly reduced from t2 of the conventional plant to t1 and the response performance when the plant load increase is requested can be improved.

【0020】本発明の第1の実施例による複合発電プラ
ントにおいて、主蒸気流量外乱を入力した場合の、蒸気
ドラム水位のシミュレーションによる応答を図6に示
す。この例は、起動ユニットのガスタービン負荷および
蒸気タービン負荷を急激に上昇させるような主蒸気流量
外乱を入力して、蒸気ドラムの圧力,水位の応答を見た
ものである。本発明のプラント応答は、従来プラントよ
りも蒸気ドラム容量が増加しているの、圧力変動が小さ
く、したがってドラム水位の変動も少なくなって、ドラ
ム安定性は更に向上している。
FIG. 6 shows a simulation response of the water level of the steam drum when the main steam flow disturbance is input in the combined cycle power plant according to the first embodiment of the present invention. In this example, the response of the pressure and water level of the steam drum is observed by inputting the main steam flow disturbance that rapidly increases the gas turbine load and the steam turbine load of the starting unit. According to the plant response of the present invention, since the steam drum capacity is increased as compared with the conventional plant, the pressure fluctuation is small and therefore the fluctuation of the drum water level is also small, and the drum stability is further improved.

【0021】[0021]

【発明の効果】本発明によれば、複数台ユニットの蒸気
ドラムを集約化しているので、ガスタービンの台数切替
えを伴う負荷変更要求に対して、初圧切替え操作を大幅
に削減して切替え所要時間を短縮し、負荷変化性能を向
上できる。また、集約化した蒸気ドラムの容量は、従来
の各ユニット毎に設置された蒸気ドラムの容量よりも増
加するので、蒸気ドラムの水位変動も低減され水位安定
性もさらに向上する。また従来プラントに比較して、主
蒸気配管や各種弁等特に蒸気タービン回りの配管,機器
の数が少なく、プラント建設コストも低減可能である。
According to the present invention, since the steam drums of a plurality of units are integrated, it is possible to significantly reduce the initial pressure switching operation in response to a load change request involving switching of the number of gas turbines. Time can be shortened and load change performance can be improved. Further, since the capacity of the integrated steam drum is larger than the capacity of the steam drum installed in each conventional unit, the water level fluctuation of the steam drum is reduced and the water level stability is further improved. Further, compared to the conventional plant, the number of main steam pipes, various valves such as pipes around the steam turbine, and the number of devices are small, and the plant construction cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例で、蒸気ドラムを熱交換
器が共有する複合発電プラントの系統図。
FIG. 1 is a system diagram of a combined cycle power generation plant in which a steam drum is shared by a heat exchanger in a first embodiment of the present invention.

【図2】従来技術による多軸再熱型の複合発電プラント
の系統図。
FIG. 2 is a system diagram of a multi-axis reheat type combined cycle power plant according to a conventional technique.

【図3】本発明の第2の実施例で、蒸気ドラムを部分的
に集約した複合発電プラントの系統図。
FIG. 3 is a system diagram of an integrated power plant in which a steam drum is partially integrated according to a second embodiment of the present invention.

【図4】本発明の第1の実施例による複合発電プラント
において、ガスタービン1台の停止を伴う負荷降下時の
応答特性図。
FIG. 4 is a response characteristic diagram at the time of load drop accompanying the stop of one gas turbine in the combined cycle power plant according to the first embodiment of the present invention.

【図5】本発明の第1の実施例による複合発電プラント
において、ガスタービン1台の起動を伴う負荷上昇時の
応答特性図。
FIG. 5 is a response characteristic diagram at the time of load increase accompanying the startup of one gas turbine in the combined cycle power plant according to the first embodiment of the present invention.

【図6】本発明の第1の実施例による複合発電プラント
において、主蒸気流量外乱入力時の蒸気ドラム水位の応
答特性図。
FIG. 6 is a response characteristic diagram of the steam drum water level when the main steam flow disturbance is input in the combined cycle power plant according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ガスタービン、2…圧縮器、3…発電機、4,5,
6…熱交換器、7…高圧蒸気タービン、8…中圧蒸気タ
ービン、9…低圧蒸気タービン、10…発電機、11…
復水器、12,12A,12B…高圧蒸気ドラム、1
3,13A,13B…中圧蒸気ドラム、14,14A,1
4B…低圧蒸気ドラム。
1 ... Gas turbine, 2 ... Compressor, 3 ... Generator, 4, 5,
6 ... Heat exchanger, 7 ... High pressure steam turbine, 8 ... Medium pressure steam turbine, 9 ... Low pressure steam turbine, 10 ... Generator, 11 ...
Condenser, 12, 12A, 12B ... High-pressure steam drum, 1
3,13A, 13B ... Medium pressure steam drum, 14,14A, 1
4B ... Low pressure steam drum.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数のガスタービンと、前記ガスタービン
の排気ガスと熱交換して蒸気を発生させる複数の熱交換
器と、発生した蒸気を蓄える蒸気ドラムと、蓄えた蒸気
を加熱して使用する蒸気タービンとからなる複合発電プ
ラントにおいて、前記蒸気ドラムを前記複数台の熱交換
器が共有する構成を特徴とする複合発電プラント。
1. A plurality of gas turbines, a plurality of heat exchangers for exchanging heat with exhaust gas of the gas turbine to generate steam, a steam drum for storing the generated steam, and heating the stored steam for use. In the combined power generation plant including the steam turbine, the combined power generation plant is characterized in that the steam drum is shared by the plurality of heat exchangers.
【請求項2】請求項1において、前記複数台の熱交換器
で同一の前記蒸気ドラムを共有しており、前記蒸気ター
ビンを構成するタービンによって異なる導入蒸気圧力に
対応する蒸気圧力の蒸気ドラムを、それぞれ蒸気タービ
ンの台数に等しく設置する複合発電プラント。
2. The steam drum of claim 1, wherein the plurality of heat exchangers share the same steam drum, and steam drums having steam pressures corresponding to different introduced steam pressures differ depending on turbines constituting the steam turbine. , A combined power plant with equal number of steam turbines.
【請求項3】請求項1において、前記熱交換器全体を複
数の熱交換器の組に分けてそれぞれが共有する蒸気ドラ
ムを設置し、前記蒸気ドラムの蒸気を前記熱交換器に通
して導入蒸気圧力が異なるタービン毎に接続している主
蒸気配管母管に導く構成の複合発電プラント。
3. The heat exchanger according to claim 1, wherein the entire heat exchanger is divided into a plurality of heat exchanger groups, and a steam drum shared by the heat exchangers is installed. The steam of the steam drum is introduced through the heat exchanger. A combined cycle power plant configured to lead to a main steam pipe mother pipe connected to each turbine with different steam pressure.
【請求項4】請求項1において、前記高圧蒸気タービン
の排出蒸気を、中圧蒸気ドラムの蒸気を前記熱交換器に
通して加熱した蒸気と加え合わせ、再び前記熱交換器を
通して加熱して得られた蒸気を中圧タービンの導入蒸気
とする再熱プラント構成の複合発電プラント。
4. The high-pressure steam turbine exhaust steam as claimed in claim 1, which is obtained by adding steam from an intermediate-pressure steam drum to steam heated through the heat exchanger and heating the steam again through the heat exchanger. A combined cycle power plant with a reheat plant that uses the generated steam as the steam introduced into the medium-pressure turbine.
【請求項5】請求項2において、前記蒸気ドラムの蒸気
を前記熱交換器に通し、その蒸気を主蒸気配管母管に導
いて前記蒸気タービンの導入蒸気とし、前記蒸気を前記
タービンからバイパスさせるために前記主蒸気配管母管
より分岐するバイパス配管を設けた複合発電プラント。
5. The steam according to claim 2, wherein the steam of the steam drum is passed through the heat exchanger, the steam is guided to a main steam pipe mother pipe to be introduced steam of the steam turbine, and the steam is bypassed from the turbine. Therefore, a combined cycle power plant is provided with a bypass pipe branching from the main steam pipe mother pipe.
【請求項6】請求項1において、蒸気圧力が異なる前記
蒸気ドラム毎に分岐させて給水する給水配管を設け、か
つ蒸気圧力に応じて給水を昇圧するための給水ポンプと
昇温するための給水加熱器を前記給水配管に付加した構
成の複合発電プラント。
6. The water supply pipe according to claim 1, wherein a water supply pipe for branching water is provided for each of the steam drums having different steam pressures, and a water supply pump for increasing the supply water in accordance with the steam pressure and a water supply for raising the temperature. A combined cycle power plant having a configuration in which a heater is added to the water supply pipe.
JP1593592A 1992-01-31 1992-01-31 Compound generating plant having steam drum Pending JPH05209503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1593592A JPH05209503A (en) 1992-01-31 1992-01-31 Compound generating plant having steam drum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1593592A JPH05209503A (en) 1992-01-31 1992-01-31 Compound generating plant having steam drum

Publications (1)

Publication Number Publication Date
JPH05209503A true JPH05209503A (en) 1993-08-20

Family

ID=11902630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1593592A Pending JPH05209503A (en) 1992-01-31 1992-01-31 Compound generating plant having steam drum

Country Status (1)

Country Link
JP (1) JPH05209503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157966A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Method and device for starting combined cycle power generation plant
CN103573304A (en) * 2013-11-12 2014-02-12 中国电力工程顾问集团西南电力设计院 Thermal power plant generator set adopting superheat to control drain valve on reheat steam pipeline
CN109826681A (en) * 2019-02-02 2019-05-31 华电电力科学研究院有限公司 A kind of the industrial heating system and its operation method integrated for Combined cycle gas-steam turbine unit steam extraction
CN114183808A (en) * 2021-11-25 2022-03-15 广西电网有限责任公司电力科学研究院 Non-contact heat exchange steam supply system for extracting steam at different steam temperatures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157966A (en) * 2010-02-02 2011-08-18 General Electric Co <Ge> Method and device for starting combined cycle power generation plant
CN103573304A (en) * 2013-11-12 2014-02-12 中国电力工程顾问集团西南电力设计院 Thermal power plant generator set adopting superheat to control drain valve on reheat steam pipeline
CN109826681A (en) * 2019-02-02 2019-05-31 华电电力科学研究院有限公司 A kind of the industrial heating system and its operation method integrated for Combined cycle gas-steam turbine unit steam extraction
CN109826681B (en) * 2019-02-02 2023-09-08 华电电力科学研究院有限公司 Industrial heating system for gas-steam combined cycle unit steam extraction integration and operation method thereof
CN114183808A (en) * 2021-11-25 2022-03-15 广西电网有限责任公司电力科学研究院 Non-contact heat exchange steam supply system for extracting steam at different steam temperatures

Similar Documents

Publication Publication Date Title
WO2020181675A1 (en) Flexible coal-fired power generation system, and operation method therefor
US20070017207A1 (en) Combined Cycle Power Plant
JP2009092372A (en) Supercritical steam combined cycle and its method
JP2010090894A (en) Apparatus for steam attemperation using fuel gas heater water discharge to reduce feedwater pump size
JPS6239648B2 (en)
JPH08260912A (en) Combined cycle power plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
US11719156B2 (en) Combined power generation system with feedwater fuel preheating arrangement
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
US4277944A (en) Method and apparatus for regeneratively superheating auxiliary steam
JPH05209503A (en) Compound generating plant having steam drum
US4277943A (en) Method and apparatus for supplying steam to a turbine
CN113623032B (en) Coal-fired boiler flue gas heat storage and power generation integrated system and operation method
WO2020255692A1 (en) Power generation plant and method for storing excess energy in power generation plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPS60138214A (en) Gas turbine composite cycle power generating plant
JP2587419B2 (en) Supercritical once-through boiler
JP2007183068A (en) Once-through exhaust heat recovery boiler
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
EP3318733B1 (en) Feedwater bypass system for a desuperheater
EP3306044A1 (en) Fast frequency response systems with thermal storage for combined cycle power plants
JPH02259301A (en) Waste heat recovery boiler
JP2019173696A (en) Combined cycle power generation plant, and operation method of the same
CN113464226B (en) System and method for quick response of unit frequency modulation
JP2019027387A (en) Combined cycle power generation plant, and its operation method and modification method