JPH03282102A - Exhaust heat recovery boiler and controller of temperature reducing device used for it - Google Patents

Exhaust heat recovery boiler and controller of temperature reducing device used for it

Info

Publication number
JPH03282102A
JPH03282102A JP2083216A JP8321690A JPH03282102A JP H03282102 A JPH03282102 A JP H03282102A JP 2083216 A JP2083216 A JP 2083216A JP 8321690 A JP8321690 A JP 8321690A JP H03282102 A JPH03282102 A JP H03282102A
Authority
JP
Japan
Prior art keywords
steam
temperature
reheater
pressure
superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2083216A
Other languages
Japanese (ja)
Inventor
Takayuki Nagashima
孝幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2083216A priority Critical patent/JPH03282102A/en
Publication of JPH03282102A publication Critical patent/JPH03282102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To prevent the reheated steam that flows via an attemperator even when a large volume of steam is drawn from reducing its superheating by dividing the heat transfer face of a reheater into two parts, a second reheater and a first reheater and providing an attemperator in an intermediate position of those two reheaters. CONSTITUTION:The heat transfer faces of a high pressure superheater and a reheater are divided into two parts, and a high pressure superheater 12, first and second reheaters 4, 42, and high pressure superheater 14 are arranged in this order from the upstream side of the exhaust gas, and attemperators 36 and 35 are respectively provided in the passages between the reheaters 41 and 42 and between the superheaters 12 and 14. When the volume of bleeding becomes large, the flow rate of the steam that flows through the reheaters 41 and 42 drops and the flow rate of the cooling water becomes large in order to keep the temperature of the outlet steam below limit value, but with the installation of the attemperators 36 the temperature of the steam that flows into the attemperators 36 is kept high, and the temperature at the outlet of the attemperator does not fall lower than a limit value even if the flow rate of the water increases. An attemperator controller which controls the temperature of the outlet steam of the superheaters and reheaters detects the generator load by a load detector 45 and detected loads are converted to signals, and the deviation values are given from its output signals and the output signal of a temperature sensor 47 for the temperature of the outlet steam of the high pressure second superheater 12, and the deviation values are converted to flow rate instruction signals and change the opening of an adjustment valve 43.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は再熱形排熱回収ボイラに係り、特に再熱器入口
から多量の蒸気を抽出する場合に再熱器入口に備えられ
る減温器の出口蒸気の過熱度の低下を抑制するのに好適
な排熱回収ボイラに関する。また、本発明はその排熱回
収ボイラに使用する減温器制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a reheat type waste heat recovery boiler, and particularly when extracting a large amount of steam from the reheater inlet. The present invention relates to an exhaust heat recovery boiler suitable for suppressing a decrease in the degree of superheating of the outlet steam of a desuperheater provided in a boiler. The present invention also relates to a desuperheater control device used in the exhaust heat recovery boiler.

(従来の技術) ガスタービンの入口ガス温度の高温化の動きに歩調を合
わせてコンバインドサイクル発電プラントの排熱回収ボ
イラをガスタービンの高温の排ガスを最も効率よく利用
する3圧力式再熱形排熱回収ボイラとして構成する試み
がある。この3圧力式再熱形排熱回収ボイラの概略の構
成は次のようになっている。すなわち、第7図に示され
るように全体を符号11で示される排熱回収ボイラは排
ガス上流側から高圧第2過熱器12、再熱器13、高圧
第1過熱器14、高圧蒸発器15、低圧過熱器16、高
圧第2節炭器17、中圧過熱器18、中圧蒸発器19、
中圧節炭器20、・高圧第1節炭器21、低圧蒸発器2
2、および低圧節炭器23を順次配置したものである。
(Conventional technology) In keeping with the trend toward higher gas turbine inlet gas temperatures, the exhaust heat recovery boiler of the combined cycle power generation plant has been developed to make the most efficient use of the high-temperature exhaust gas of the gas turbine. There are attempts to configure it as a heat recovery boiler. The general configuration of this three-pressure reheat type waste heat recovery boiler is as follows. That is, as shown in FIG. 7, the exhaust heat recovery boiler, which is generally designated by the reference numeral 11, includes, from the exhaust gas upstream side, a high-pressure second superheater 12, a reheater 13, a high-pressure first superheater 14, a high-pressure evaporator 15, low pressure superheater 16, high pressure second economizer 17, medium pressure superheater 18, medium pressure evaporator 19,
Medium pressure economizer 20, high pressure first economizer 21, low pressure evaporator 2
2, and a low-pressure economizer 23 are arranged in sequence.

高圧、中圧および低圧蒸発器15.19.22にはそれ
ぞれ高圧蒸気ドラム24、中圧蒸気ドラム25および低
圧蒸気ドラム25が付属しており、それぞれ高圧給水ポ
ンプ27、中圧給水ポンプ28および低圧給水ポンプ2
9で昇圧され、高圧第1節炭器21、高圧第2j85炭
器17、中圧節炭器20および低圧節炭器23を通して
送られる給水が供給され、そこから高圧蒸発器15、中
圧蒸発器19および低圧蒸発器22に送られ、伝熱面を
介して排ガスの熱を受は取り、蒸発させられる。これら
の蒸気は高圧蒸発器15で生成される高圧蒸気が高圧第
1過熱器14、高圧第2過熱器12を経て、また中圧蒸
発器19で生成される中圧蒸気が中圧過熱器18と再熱
器13とを経て全体を符号30で示す蒸気タービンの作
動媒体として高圧タービン31および中圧タービン32
にそれぞれ導かれ、さらに低圧蒸発器22からの蒸気は
低圧過熱器16を経て低圧タービン33に導入される。
The high-pressure, medium-pressure and low-pressure evaporators 15, 19, 22 are each equipped with a high-pressure steam drum 24, an intermediate-pressure steam drum 25 and a low-pressure steam drum 25, respectively a high-pressure feed water pump 27, a medium-pressure feed water pump 28 and a low-pressure Water pump 2
9, the feed water is fed through the first high-pressure economizer 21, the second high-pressure economizer 17, the intermediate-pressure economizer 20, and the low-pressure economizer 23. The exhaust gas is sent to the vessel 19 and the low-pressure evaporator 22, where it receives and removes the heat of the exhaust gas through the heat transfer surface and is evaporated. The high-pressure steam generated in the high-pressure evaporator 15 passes through the high-pressure first superheater 14 and the high-pressure second superheater 12, and the medium-pressure steam generated in the medium-pressure evaporator 19 passes through the medium-pressure superheater 18. and a reheater 13, a high pressure turbine 31 and an intermediate pressure turbine 32 are used as the working medium of a steam turbine, generally designated by the reference numeral 30.
The steam from the low-pressure evaporator 22 is further introduced into the low-pressure turbine 33 via the low-pressure superheater 16.

なお、高圧タービン31の排気は中圧蒸発器19から導
かれる中圧蒸気と混合されて再熱器13に導かれ、再度
加熱されて温度を高めて後、中圧タービン32に供給さ
れる。
Note that the exhaust gas from the high-pressure turbine 31 is mixed with intermediate-pressure steam led from the intermediate-pressure evaporator 19 and led to the reheater 13, where it is heated again to raise the temperature and then supplied to the intermediate-pressure turbine 32.

一般に、ガスタービン34の排ガス温度が高くなると、
過熱蒸気温度および再熱蒸気温度が高くなり過ぎ、これ
を最高使用温度以下に下げる必要が生しる。このため、
高圧第2過熱器12および再熱器13の入口側に減温器
35.36を設けて、そこを通過する蒸気に冷却水を混
合し、温度を下げることが行なわれる。
Generally, when the exhaust gas temperature of the gas turbine 34 increases,
The superheated steam temperature and reheated steam temperature become too high, and it becomes necessary to lower them below the maximum operating temperature. For this reason,
Attemperators 35 and 36 are provided on the inlet sides of the high-pressure second superheater 12 and the reheater 13, and cooling water is mixed with the steam passing through the attemperators to lower the temperature.

なお、図中、符号37は抽気連絡管、38は復水器、3
9は発電機をそれぞれ示している・。
In addition, in the figure, numeral 37 is a bleed air connection pipe, 38 is a condenser, and 3
9 indicates a generator.

(発明が解決しようとする課題) 通常、このような排熱回収ボイラを用いたコンバインド
サイクル発電プラントではガスタービン34、排熱回収
ボイラ11、蒸気タービン30、発電機39からなるユ
ニットを複数台設けて構成され、プラントの起動時には
運転中のユニットから起動するユニットに対して抽出蒸
気を送って蒸気タービンの駆動蒸気としたり、あるいは
補助蒸気や蒸気タービン冷却蒸気とすることが行なわれ
る。この場合、蒸気タービンの駆動蒸気には再熱器13
の入口側から抽出される中圧蒸気の一部が抽気連絡管3
7を通して送られ、また補助蒸気には低圧タービン33
へ流れる低圧蒸気の一部が抽気連絡管(図示せず)を通
してそれぞれ供給される。ところが、起動するユニット
が複数台にわたる場合、多量の蒸気を抽出してそれぞれ
起動するユニットの蒸気タービンに供給しなければなら
ず、このため再熱器13に流入する蒸気流量の減少が避
けられなくなって再熱器13の出口に流れた蒸気の温度
が上昇してしまう。これを防止するには減温器36に供
給される冷却水量を増して蒸気温度を下げればよいが、
再熱器13に送られる蒸気は高圧タービン31の排気と
中圧過熱器18の出口蒸気との混合蒸気であるため、蒸
気の過熱度がそれ程高くなく、このため、再熱器13出
口の蒸気温度を下げようとして減温器36に多量の冷却
水を供給すると、減温器36の出口を通過した蒸気の温
度が大きく低下し、再熱器13に流入する蒸気の過熱度
か制限値以下に下かってしまう。すなわち、第8図は減
温器冷却水量に対する減温器出口蒸気温度の変化を示し
たものである。
(Problem to be Solved by the Invention) Normally, in a combined cycle power plant using such an exhaust heat recovery boiler, a plurality of units each consisting of a gas turbine 34, an exhaust heat recovery boiler 11, a steam turbine 30, and a generator 39 are provided. When the plant is started up, extracted steam is sent from the unit in operation to the unit to be started up to be used as driving steam for the steam turbine, or as auxiliary steam or steam for cooling the steam turbine. In this case, the reheater 13 is used for the driving steam of the steam turbine.
A part of the medium pressure steam extracted from the inlet side of the
7 and a low pressure turbine 33 for auxiliary steam.
A portion of the low-pressure steam flowing to the two is respectively supplied through a bleed connection pipe (not shown). However, if multiple units are to be started, a large amount of steam must be extracted and supplied to the steam turbines of the respective units to be started, which inevitably reduces the flow rate of steam flowing into the reheater 13. As a result, the temperature of the steam flowing to the outlet of the reheater 13 increases. To prevent this, the amount of cooling water supplied to the desuperheater 36 can be increased to lower the steam temperature.
Since the steam sent to the reheater 13 is a mixed steam of the exhaust gas of the high-pressure turbine 31 and the outlet steam of the intermediate-pressure superheater 18, the degree of superheating of the steam is not very high. If a large amount of cooling water is supplied to the desuperheater 36 in an attempt to lower the temperature, the temperature of the steam passing through the outlet of the desuperheater 36 will drop significantly, and the degree of superheating of the steam flowing into the reheater 13 will drop below the limit value. It goes down to That is, FIG. 8 shows the change in the steam temperature at the outlet of the attemperator with respect to the amount of cooling water in the attemperator.

抽気量が少ないときには、再熱器出口の蒸気温度を制限
値まで下げるために冷却水量を増加させると、再熱器出
口の蒸気温度は第8図の(ホ)から(へ)にC線に沿っ
て低下する。このとき減温器36の出口蒸気温度も第8
図の(イ)点から(ロ)点にA′線に沿って低下する。
When the amount of extracted air is small, if the amount of cooling water is increased to lower the steam temperature at the reheater outlet to the limit value, the steam temperature at the reheater outlet will change from (E) to (E) in Figure 8, line C. drop along. At this time, the outlet steam temperature of the desuperheater 36 is also
It decreases along line A' from point (a) to point (b) in the figure.

一方、抽気量が多くなると、再熱器13を流れる蒸気流
量が低下するので、再熱器出口の蒸気温度を先の抽気量
が少ない時のように制限値以下に下げようとすると、抽
気量が少ない場合より冷却水量が多くなり、減温器出口
温度は抽気量が少ないときよりも低くなる。再熱器出口
温度を第8図の(ト)から(テ)までC′線に沿って低
下させようと減温器36への冷却水量を増加させると、
減温器出口温度は第8図の(ハ)点から(ニ)点までB
′線に沿って低下し、あるところで減温器出口温度の制
限値り以下となる領域に入ってしまう。
On the other hand, as the amount of extracted air increases, the flow rate of steam flowing through the reheater 13 decreases. The amount of cooling water will be larger than when the amount of extracted air is small, and the temperature at the desuperheater outlet will be lower than when the amount of extracted air is small. When the amount of cooling water to the desuperheater 36 is increased in order to lower the reheater outlet temperature from (g) to (te) in FIG. 8 along line C',
The temperature at the outlet of the desuperheater is B from point (c) to point (d) in Figure 8.
' line, and at some point it enters a region where it becomes below the limit value of the desuperheater outlet temperature.

この現象は、特開昭61−186702号公報、特開昭
81−289201号公報、特開平1−75802号公
報に示されるように部分負荷での再熱蒸気温度の低下を
防止するように再熱器13の出口(高温側)が最も排ガ
ス温度の高い部位に配置されている排熱回収ボイラにお
いては一層顕著になり、他のユニットへ蒸気を供給する
ことができなくなってしまう。
This phenomenon is explained in Japanese Unexamined Patent Publications No. 61-186702, No. 81-289201, and Unexamined Japanese Patent Application No. 1-75802. This problem is even more noticeable in an exhaust heat recovery boiler in which the outlet (high temperature side) of the heater 13 is located at the location where the exhaust gas temperature is highest, making it impossible to supply steam to other units.

このように一部の蒸気がドレンとなって再熱器13まで
運ばれると、伝熱管は熱衝撃の繰り返しにより損傷を生
じる危険性がある。仮に、部分負荷時の再熱蒸気温度の
低下を少なくしようとして再熱器13をより高温の排ガ
ス領域に設けるならば、この現象のもたらす影響は非常
に大きくなる。
If some of the steam becomes drain and is carried to the reheater 13 in this way, there is a risk that the heat exchanger tubes will be damaged due to repeated thermal shocks. If the reheater 13 were to be installed in a higher temperature exhaust gas region in an attempt to reduce the drop in reheated steam temperature during partial load, the effect of this phenomenon would be greatly increased.

一方、一般に、冷却水の注入量は負荷変動があるとき大
きく変化する。第9図に示されるようにガスタービン3
4の排ガスの温度は75%負荷相当のときに最も高く、
これよりも負荷が高くても、低くても温度は低下して行
く。減温器36ての冷却水注入量は蒸気流量と排ガス温
度とから定まり、50%負荷相当で冷却水の注入が開始
され、75%から85%相当の負荷で最大となり、それ
以降は上述した排ガス温度の低下に伴なって徐々に低下
し、100%負荷では零になっている。こうした注入量
の大きな変化は、例えば注入量が少ないときには減温器
36に流れる冷却水の流量を調節している調節弁のチャ
タリングを引き起こし、制御動作が不安定となる。この
チャタリングが発生する負荷は50%相当のときと、1
00%負荷、つまり定格負荷のときであり、排熱回収ボ
イラ11は定格負荷付近で安定した注入量が保てなくな
る可能性がある。仮に、冷却水の注入が断続的に行なわ
れるとなれば、熱衝撃の繰り返しにより伝熱管が損傷を
受ける懸念がある。
On the other hand, generally, the amount of cooling water injected changes greatly when there is a load change. Gas turbine 3 as shown in FIG.
The temperature of the exhaust gas in No. 4 is highest when the load is equivalent to 75%,
Even if the load is higher or lower than this, the temperature will continue to drop. The amount of cooling water injected into the desuperheater 36 is determined based on the steam flow rate and the exhaust gas temperature, and cooling water injection starts at a load equivalent to 50%, reaches the maximum at a load equivalent to 75% to 85%, and thereafter is as described above. It gradually decreases as the exhaust gas temperature decreases, and reaches zero at 100% load. Such a large change in the injection amount, for example, when the injection amount is small, causes chattering of the control valve that regulates the flow rate of cooling water flowing into the attemperator 36, making the control operation unstable. This chattering occurs at a load equivalent to 50% and at a load equivalent to 1
00% load, that is, the rated load, and the exhaust heat recovery boiler 11 may not be able to maintain a stable injection amount near the rated load. If cooling water were to be injected intermittently, there is a concern that the heat exchanger tubes would be damaged by repeated thermal shocks.

本発明の目的は再熱器の入口で多量の蒸気が抽出される
場合も減温器を経て流れる再熱蒸気の過熱度が低下する
のを抑制するようにした排熱回収熱ボイラを提供するこ
とにある。
An object of the present invention is to provide a heat recovery heat boiler that suppresses a decrease in the degree of superheating of reheated steam flowing through a desuperheater even when a large amount of steam is extracted at the inlet of the reheater. There is a particular thing.

また、別の目的は通常の負荷範囲て減温器の冷却水調節
弁における不安定動作をなくすようにした減温器制御装
置を提供することにある。
Another object is to provide a desuperheater control device that eliminates unstable operation of the cooling water control valve of the desuperheater in a normal load range.

[発明の構成コ (課題を解決するための手段) 本発明に係る排熱回収ボイラは器内を流れる排ガスの方
向に倣い高圧過熱器および再熱器を順次設けてなる排熱
回収ボイラにおいて、高圧過熱器および再熱器は伝熱面
を各々2分割し、排ガスの上流側から高圧第2過熱器、
第2再熱器、第1再熱器および高圧第1過熱器の順に配
置し、減温器を高圧第1および第2過熱器を結ぶ蒸気経
路と、第1および第2再熱器を結ぶ蒸気経路とに各々設
けたことを特徴とするものである。
[Configuration of the Invention (Means for Solving the Problems) The exhaust heat recovery boiler according to the present invention is an exhaust heat recovery boiler in which a high-pressure superheater and a reheater are sequentially provided along the direction of exhaust gas flowing inside the vessel. The high-pressure superheater and reheater each divide the heat transfer surface into two, and from the upstream side of the exhaust gas, the high-pressure second superheater,
The second reheater, the first reheater, and the high-pressure first superheater are arranged in this order, and the desuperheater is connected to the steam path connecting the high-pressure first and second superheaters and the first and second reheater. It is characterized in that it is provided in each of the steam paths.

また、別の発明に係る減温器制御装置は高圧第1および
第2過熱器を結ぶ蒸気経路内と、第1および第2再熱器
を結ぶ蒸気経路内とに各々減温器を備え、過熱蒸気また
は再熱蒸気温度を適正に保持するにあたり、減温器に供
給される冷却水量を調節弁の開度を変化させて調節する
ようにした減温器制御装置において、過熱器出口蒸気温
度および再熱器出口蒸気温度の設定値を発電機の負荷信
号により切り換える手段を備えることを特徴とするもの
である。
Further, a desuperheater control device according to another invention includes desuperheaters in each of the steam path connecting the high-pressure first and second superheaters and the steam path connecting the first and second reheaters, In a desuperheater control device that adjusts the amount of cooling water supplied to the desuperheater by changing the opening degree of a control valve in order to maintain the superheated steam or reheated steam temperature appropriately, the superheater outlet steam temperature and means for switching the set value of the reheater outlet steam temperature in accordance with the load signal of the generator.

(作用) 再熱器の伝熱面は2分割により第2および第1再熱器と
して構成される。減温器は双方の再熱器の中間に備えら
れ、再熱器出口蒸気温度が減温器に供給される冷却水量
を調節して制御されるが、減温器に送られる前に再熱蒸
気は第1再熱器を通って過熱度をある程度上昇させられ
るために減温器での注入冷却水量を増すことができる。
(Function) The heat transfer surface of the reheater is divided into two parts to form a second and a first reheater. The attemperator is installed between both reheaters, and the reheater outlet steam temperature is controlled by adjusting the amount of cooling water supplied to the attemperator. The steam passes through the first reheater to increase the degree of superheat to some extent, thereby increasing the amount of cooling water injected into the attemperator.

このため、他のユニットに抽気を供給する場合に抽出蒸
気量を増加しても、排熱回収ボイラの運転に支障は生じ
ない。
Therefore, even if the amount of extracted steam is increased when supplying extracted steam to other units, no problem will occur in the operation of the exhaust heat recovery boiler.

また、第2過熱器および第2再熱器の出口蒸気温度の設
定値を発電機の負荷信号により切り換えて負荷上昇時に
は一度温度を若干上昇させ、その後規定温度に持って行
く。これにより冷却水量の増加が流れ図れ、制御動作が
不安定になるのを防止することが可能となる。そして、
定格負荷に近くなったならば出口蒸気温度の設定値を下
げて冷却水量が最低流量以上になるようにする。
Further, the set values of the outlet steam temperatures of the second superheater and the second reheater are switched according to the load signal of the generator, and when the load increases, the temperature is slightly increased once, and then brought to the specified temperature. This allows the increase in the amount of cooling water to flow smoothly and prevents the control operation from becoming unstable. and,
When the load is close to the rated load, lower the set value of the outlet steam temperature so that the amount of cooling water exceeds the minimum flow rate.

(実施例) 以下、本発明の一実施例を第1図ないし第3図を参照し
て説明する。なお、これらの図において、先の第7図に
よって説明された構成と同一のものには同じ符号を付し
て説明を省略する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 3. In these figures, the same components as those explained in FIG. 7 are given the same reference numerals, and the explanation thereof will be omitted.

第1図において、高圧過熱器および再熱器は本発明に従
うとき、伝熱面が2分割される。すなわち、伝熱面は排
ガス上流側からみて高圧第2過熱器12、第2再熱器4
1、第1再熱器42、高圧第1過熱器14の順に配置さ
れる。また、減温器36については第2再熱器41と第
1再熱器42との間の経路に介装される。なお、減温器
35は従来と同様に双方の過熱器12.14を結ぶ経路
に設けられる。
In FIG. 1, the heat transfer surface of the high pressure superheater and reheater is divided into two when according to the present invention. In other words, the heat transfer surface includes the high-pressure second superheater 12 and the second reheater 4 when viewed from the exhaust gas upstream side.
1, the first reheater 42, and the high-pressure first superheater 14 are arranged in this order. Further, the desuperheater 36 is interposed in the path between the second reheater 41 and the first reheater 42 . Note that the desuperheater 35 is provided in a path connecting both superheaters 12 and 14, as in the conventional case.

一方、これらの伝熱面の配置を平面図によって描き表わ
すと第2図に示されるようになる。
On the other hand, when the arrangement of these heat transfer surfaces is depicted in a plan view, it becomes as shown in FIG.

また、第3図は過熱器および再熱器の出口蒸気温度を制
御する減温器制御装置の構成を示している。この制御装
置は発電機負荷に応じて設定値を切り換え、実際の蒸気
温度との偏差から調節弁43.44の開度を変化させて
冷却水量の調節を行なう。
Further, FIG. 3 shows the configuration of a desuperheater control device that controls the outlet steam temperature of the superheater and reheater. This control device changes the set value according to the generator load and changes the opening degree of the control valves 43, 44 based on the deviation from the actual steam temperature to adjust the amount of cooling water.

すなわち、発電機負荷は負荷検出器45により検出され
、温度信号発生器46に入力される。この温度信号発生
器46の出力信号が高圧第2過熱器12の出口蒸気温度
を検出している温度検出器47の出力信号と温度差演算
器48にて突き合わせられ、制御偏差が求められる。こ
の偏差信号は調節器49にて流量指令信号に変換され、
増幅器50を経て調節弁43に出力されてその開度が変
えられ、冷却水量が流量指令信号に従って増減させられ
る。なお、図示は省略されているが、調節弁44にもこ
れと同じ制御装置が設けられる。
That is, the generator load is detected by the load detector 45 and input to the temperature signal generator 46 . The output signal of this temperature signal generator 46 is compared with the output signal of a temperature detector 47 detecting the outlet steam temperature of the high-pressure second superheater 12 in a temperature difference calculator 48 to obtain a control deviation. This deviation signal is converted into a flow rate command signal by the regulator 49,
The signal is outputted to the control valve 43 via the amplifier 50, and its opening degree is changed, and the amount of cooling water is increased or decreased in accordance with the flow rate command signal. Although not shown, the control valve 44 is also provided with the same control device.

次に、本実施例の作用を第4図ないし第6図を参照して
説明する。第4図は上記のように構成されたコンバイン
ドサイクル発電プラントのユニットの一つが運転されて
おり、この運転中のユニットから他の起動しようとして
いるユニットへ蒸気タービン30の駆動用蒸気として再
熱器の入口側から抽気連絡管37を通して蒸気を供給す
る場合の各部の温度の変化を示したものである。なお、
比較のために従来技術による場合の温度の変化も示して
いる。抽気量が少ないときには、再熱器出口蒸気温度を
制限値まで低下させるために冷却水量を増加させると再
熱器出口の蒸気温度は第4図の(e)点から(f)点ま
でD線に沿って低下する。このとき減温器36の出口蒸
気温度は第4図の(a)点から(b)点にA線に沿って
低下して(る。このときは冷却水量がかなり多くなって
も減温器36の出口蒸気温度は出口の制限温度を大きく
上回っており、運転上全く問題は生じない。
Next, the operation of this embodiment will be explained with reference to FIGS. 4 to 6. FIG. 4 shows one of the units of the combined cycle power plant configured as described above is in operation, and the reheater is used as driving steam for the steam turbine 30 from this operating unit to the other unit that is about to start up. This figure shows the changes in temperature of each part when steam is supplied from the inlet side of the bleed through the bleed communication pipe 37. In addition,
For comparison, the change in temperature in the case of the prior art is also shown. When the amount of extracted air is small, increasing the amount of cooling water in order to lower the steam temperature at the reheater outlet to the limit value, the steam temperature at the reheater outlet will change to line D from point (e) to point (f) in Figure 4. decreases along. At this time, the outlet steam temperature of the desuperheater 36 decreases along line A from point (a) to point (b) in FIG. The outlet steam temperature of No. 36 is much higher than the outlet limit temperature, and there is no problem in operation.

そして、抽気量が多くなると、再熱器41.42を流れ
る蒸気流量が低下するので、各再熱器41.42の出口
蒸気温度を先の抽気量が少ないときと同じように制限値
以下になるようにしようとすると、冷却水量が抽気量が
少ない場合より多くなるが、双方の再熱器41.42の
間に減温器36が設置されているので、減温器36に流
入する蒸気温度を高く保つことができる。この場合、冷
却水量の増加により再熱器出口の蒸気温度は第4図の(
g)から(h)までD′線に沿って低下し、これにより
減温器出口温度は第4図の(C)点から(d)点までB
線に沿って低下するが、冷却水量が多くなっても減温器
出口温度が制限値り以下になることはない。
When the amount of extracted air increases, the flow rate of steam flowing through the reheaters 41 and 42 decreases, so the outlet steam temperature of each reheater 41 and 42 is kept below the limit value as when the amount of extracted air is small. However, since the attemperator 36 is installed between both reheaters 41 and 42, the steam flowing into the attemperator 36 Can keep temperature high. In this case, due to the increase in the amount of cooling water, the steam temperature at the outlet of the reheater will decrease (as shown in Figure 4).
g) to (h) along line D', and as a result, the desuperheater outlet temperature decreases from point (C) to point (d) in Figure 4.
However, even if the amount of cooling water increases, the desuperheater outlet temperature will not fall below the limit value.

このように構成された排熱回収ボイラの各伝熱面での吸
熱量は第5図に示されるようになる。
The amount of heat absorbed at each heat transfer surface of the exhaust heat recovery boiler constructed in this way is shown in FIG.

次に、高圧第2過熱器12、第2再熱器41の出口の蒸
気温度制御を第3図に示される制御装置で行なう場合の
作用を説明する。
Next, the operation when the steam temperature control at the outlet of the high-pressure second superheater 12 and the second reheater 41 is performed by the control device shown in FIG. 3 will be explained.

前記のようにガスタービン34はその特性上、排熱回収
ボイラ11に流入する排ガスの温度が75%負荷相当で
ピークに達する。蒸気温度も制御しない場合は75%相
当の負荷で上限に達することになるが、この上限到達時
の蒸気温度が高くなり過ぎてしまうため、冷却水により
出口蒸気温度を制御する。第6図に示されるように出口
温度の設定値は負荷が低く保たれる間は、通常運転中の
設定値よりも高く設定しておく。このようにすると、排
ガスの温度がピーク値温度近くにならないと制御が開始
されないので、蒸気温度は負荷が上昇した場合、それに
従って上昇し、通常運転中の温度を少し越える。この通
常運転中の温度を少し越えた蒸気温度とは蒸気温度が材
料の使用限界温度より低くなるような負荷に相当し、例
えば60%負荷となったときに出口蒸気温度の設定値を
当初の設定値から通常運転中の設定値に切り換える。こ
のとき、蒸気温度は通常運転中の温度設定値を越えてい
るので、冷却水は急速に蒸気中に注入され、冷却水量が
零流量付近でハンチングを起こしたり、調節弁43.4
4がチャタリングを引き起こすようなことはなく負荷上
昇を続けられる。さらに、負荷が上昇すると、今度は排
ガス温度が低下してくるので、蒸気温度も低下し、冷却
水量が減少してくる。そこで、冷却水量が最低流量以下
になるような負荷になったときに蒸気温度の設定値を通
常運転中の温度よりもさらに低い温度に切り換えて全負
荷になったときに最低流量以上の冷却水が流れるように
する。
As described above, due to the characteristics of the gas turbine 34, the temperature of the exhaust gas flowing into the exhaust heat recovery boiler 11 reaches a peak at a load equivalent to 75%. If the steam temperature is not controlled, the upper limit will be reached at a load equivalent to 75%, but since the steam temperature will become too high when this upper limit is reached, the outlet steam temperature is controlled by cooling water. As shown in FIG. 6, the set value of the outlet temperature is set higher than the set value during normal operation while the load is kept low. In this way, control is not started until the exhaust gas temperature approaches the peak value temperature, so when the load increases, the steam temperature increases accordingly and slightly exceeds the temperature during normal operation. This steam temperature slightly exceeding the temperature during normal operation corresponds to a load where the steam temperature becomes lower than the material's service limit temperature.For example, when the load is 60%, the outlet steam temperature setting value is changed to the initial value. Switch from the set value to the set value during normal operation. At this time, since the steam temperature exceeds the temperature setting value during normal operation, cooling water is rapidly injected into the steam, causing hunting when the cooling water amount is near zero flow rate, and the control valve 43.
4 does not cause chattering and the load can continue to increase. Furthermore, when the load increases, the exhaust gas temperature decreases, so the steam temperature also decreases, and the amount of cooling water decreases. Therefore, when the load reaches a point where the amount of cooling water falls below the minimum flow rate, the steam temperature setting value is switched to a temperature lower than the temperature during normal operation, and when the load reaches full load, the cooling water flow exceeds the minimum flow rate. Let it flow.

以上の制御動作のために発電機負荷か負荷検出器45に
より検出され、予め決められた負荷(たとえば60%負
荷)で温度信号発生器46の設定値が切り換えられ、負
荷上昇した後も同様に切り換えられる。設定値と実際の
蒸気温度との偏差が生じると、正負の値に見合う流量指
令信号が調節弁43.44により出力され、これにより
冷却水量が増減させられる。
For the above control operation, the generator load is detected by the load detector 45, and the set value of the temperature signal generator 46 is switched at a predetermined load (for example, 60% load), and the same applies even after the load increases. Can be switched. When a deviation occurs between the set value and the actual steam temperature, a flow rate command signal corresponding to the positive or negative value is outputted by the control valves 43, 44, thereby increasing or decreasing the amount of cooling water.

かくして、第2および第1再熱器41.42の入口側か
ら多量の蒸気を抽出するときにも、減温器36の出口で
の蒸気の過熱度の低下を防止することができ、他のユニ
ットに多量の補助蒸気を供給することが可能である。
In this way, even when extracting a large amount of steam from the inlet sides of the second and first reheaters 41, 42, it is possible to prevent the degree of superheating of the steam at the outlet of the attemperator 36 from decreasing, and other It is possible to supply large amounts of auxiliary steam to the unit.

[発明の効果コ 以上説明したように本発明は再熱器の伝熱面を2分割し
て第2および第1再熱器として構成し、双方の再熱器の
中間に減温器を配置しているので、減温器を経て流れる
再熱蒸気の過熱度が低下するのを防止することかでき、
他のユニットの起動に臨んでは多量の補助蒸気を供給す
ることが可能になる。
[Effects of the Invention] As explained above, the present invention divides the heat transfer surface of the reheater into two to form the second and first reheaters, and places the desuperheater between both reheaters. This prevents the degree of superheating of the reheated steam flowing through the desuperheater from decreasing.
It becomes possible to supply a large amount of auxiliary steam when starting up other units.

また、過熱器出口蒸気温度および再熱器出口蒸気温度の
設定値を発電機の負荷信号により切り換えるようにして
いるから、減温器の冷却水調節弁における不安定動作を
なくすことが可能である。
In addition, since the set values of the superheater outlet steam temperature and the reheater outlet steam temperature are switched by the generator load signal, it is possible to eliminate unstable operation of the cooling water control valve of the desuperheater. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る排熱回収ボイラの一実施例を示す
構成図、第2図は伝熱面の配置の仕方を示す平面図、第
3図は本発明に係る減温器制御装置の一例を示す構成図
、第4図は冷却水量と蒸気温度との関係を示す線図、第
5図は伝熱面の吸熱量を示す線図、第6図は負荷と出口
蒸気温度設定値との関係を示す動作説明図、第7図は従
来の排熱回収ボイラの一例を示す構成図、第8図は従来
技術における冷却水量と蒸気温度との関係を示す線図、
第9図は負荷と冷却水量との関係を示す線図である。 11・・・・・・・・・排熱回収ボイラ12・・・・・
・・・高圧第2過熱器 14・・・・・・・・・高圧第1過熱器30・・・・・
・・・・蒸気タービン 34・・・・・・・・・ガスタービン 35.36・・・・・・・・・減温器 37・・・・・・・・・抽気連絡管 41・・・・・・・・・第2再熱器 42・・・・・・・・・第1再熱器 46・・・・・・・・・温度信号発生器48・・・・・
・・・温度差演算器 49・・・・・・・・・調節器
Fig. 1 is a configuration diagram showing an embodiment of the exhaust heat recovery boiler according to the present invention, Fig. 2 is a plan view showing the arrangement of heat transfer surfaces, and Fig. 3 is a desuperheater control device according to the present invention. A configuration diagram showing an example, Fig. 4 is a diagram showing the relationship between the amount of cooling water and steam temperature, Fig. 5 is a diagram showing the amount of heat absorbed by the heat transfer surface, and Fig. 6 is a diagram showing the load and outlet steam temperature setting value. 7 is a configuration diagram showing an example of a conventional exhaust heat recovery boiler, and FIG. 8 is a diagram showing the relationship between cooling water amount and steam temperature in the conventional technology.
FIG. 9 is a diagram showing the relationship between load and amount of cooling water. 11...Exhaust heat recovery boiler 12...
...High pressure second superheater 14...High pressure first superheater 30...
...... Steam turbine 34 ...... Gas turbine 35.36 ...... Desuperheater 37 ...... Bleed communication pipe 41 ... ...Second reheater 42...First reheater 46...Temperature signal generator 48...
...Temperature difference calculator 49...Adjuster

Claims (2)

【特許請求の範囲】[Claims] (1)器内を流れる排ガスの方向に倣い高圧過熱器およ
び再熱器を順次設けてなる排熱回収ボイラにおいて、前
記高圧過熱器および前記再熱器は伝熱面を各々2分割し
、排ガスの上流側から高圧第2過熱器、第2再熱器、第
1再熱器および高圧第1過熱器の順に配置し、減温器を
前記高圧第1および第2過熱器と結ぶ蒸気経路と、前記
第1および第2再熱器を結ぶ蒸気経路とにそれぞれ設け
たことを特徴とする排熱回収ボイラ。
(1) In an exhaust heat recovery boiler in which a high-pressure superheater and a reheater are sequentially installed following the direction of exhaust gas flowing inside the vessel, the high-pressure superheater and the reheater each divide the heat transfer surface into two, and the exhaust gas a high-pressure second superheater, a second reheater, a first reheater, and a high-pressure first superheater are arranged in this order from the upstream side of , and a steam path connecting the first and second reheaters.
(2)高圧第1および第2過熱器を結ぶ蒸気経路内と、
第1および第2再熱器を結ぶ蒸気経路内とに各々減温器
を備え、過熱蒸気または再熱蒸気温度を適正に保持する
にあたり、該減温器に供給される冷却水量を調節弁の開
度を変化させて調節するようにした減温器制御装置にお
いて、高圧過熱器出口蒸気温度および再熱器出口蒸気温
度の設定値を発電機の負荷信号により切り換える手段を
備えることを特徴とする減温器制御装置。
(2) In the steam path connecting the high-pressure first and second superheaters;
A desuperheater is provided in each steam path connecting the first and second reheaters, and in order to maintain an appropriate temperature of superheated steam or reheated steam, the amount of cooling water supplied to the desuperheater is controlled by a control valve. A desuperheater control device that adjusts the opening degree by changing the degree of opening, characterized by comprising means for switching the set values of the high-pressure superheater outlet steam temperature and the reheater outlet steam temperature using a generator load signal. Desuperheater control device.
JP2083216A 1990-03-30 1990-03-30 Exhaust heat recovery boiler and controller of temperature reducing device used for it Pending JPH03282102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083216A JPH03282102A (en) 1990-03-30 1990-03-30 Exhaust heat recovery boiler and controller of temperature reducing device used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083216A JPH03282102A (en) 1990-03-30 1990-03-30 Exhaust heat recovery boiler and controller of temperature reducing device used for it

Publications (1)

Publication Number Publication Date
JPH03282102A true JPH03282102A (en) 1991-12-12

Family

ID=13796123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083216A Pending JPH03282102A (en) 1990-03-30 1990-03-30 Exhaust heat recovery boiler and controller of temperature reducing device used for it

Country Status (1)

Country Link
JP (1) JPH03282102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220013B1 (en) 1999-09-13 2001-04-24 General Electric Co. Multi-pressure reheat combined cycle with multiple reheaters
US6474069B1 (en) 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
CN102364244A (en) * 2011-10-28 2012-02-29 西安热工研究院有限公司 Ultra supercritical boiler with parameter of more than 700 DEG C having secondary re-heating function
JP2017534798A (en) * 2014-10-27 2017-11-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Low load turndown for combined cycle power plants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318802A (en) * 1988-06-16 1989-12-25 Hitachi Ltd Steam temperature control system for re-heating type combined plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318802A (en) * 1988-06-16 1989-12-25 Hitachi Ltd Steam temperature control system for re-heating type combined plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220013B1 (en) 1999-09-13 2001-04-24 General Electric Co. Multi-pressure reheat combined cycle with multiple reheaters
US6474069B1 (en) 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
US6519944B2 (en) 2000-10-18 2003-02-18 General Electric Company Method of generating a transient plant power boost in a gas turbine apparatus
CN102364244A (en) * 2011-10-28 2012-02-29 西安热工研究院有限公司 Ultra supercritical boiler with parameter of more than 700 DEG C having secondary re-heating function
JP2017534798A (en) * 2014-10-27 2017-11-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Low load turndown for combined cycle power plants
US10519816B2 (en) 2014-10-27 2019-12-31 Siemens Aktiengesellschaft Low load turndown for combined cycle power plants

Similar Documents

Publication Publication Date Title
EP0178617B1 (en) Steam turbine plant having a turbine bypass system
US4858562A (en) Reheat type waste heat recovery boiler and power generation plant
RU2538994C2 (en) Method of once-through steam generator operation at steam temperature over 650-c, and once-through steam generator
US5404708A (en) Method for operating a gas and steam turbine plant and gas and steam turbine plant operating according to the method
MXPA96002485A (en) Method and conversion apparatus of a water vapor turbine energy plant with thermal regeneration cycle to a combined cycle power plant without regeneration
AU2009315819A1 (en) Method for operating a waste heat steam generator
JPS6239648B2 (en)
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
JPH10292902A (en) Main steam temperature controller
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPH0942606A (en) Once-through boiler steam temperature control device
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
JP2587419B2 (en) Supercritical once-through boiler
JP3133183B2 (en) Combined cycle power plant
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JPH09195718A (en) Main steam temperature control device
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JP2001108202A (en) Waste heat recovery boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP3745419B2 (en) Waste heat recovery boiler
JPH04110507A (en) Steam temperature controller of superheater and reheater in cogeneration power plant
JP3497553B2 (en) Multi-can thermal power plant and operating method thereof