JPH0942606A - Once-through boiler steam temperature control device - Google Patents

Once-through boiler steam temperature control device

Info

Publication number
JPH0942606A
JPH0942606A JP19487695A JP19487695A JPH0942606A JP H0942606 A JPH0942606 A JP H0942606A JP 19487695 A JP19487695 A JP 19487695A JP 19487695 A JP19487695 A JP 19487695A JP H0942606 A JPH0942606 A JP H0942606A
Authority
JP
Japan
Prior art keywords
steam temperature
steam
furnace
temperature
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19487695A
Other languages
Japanese (ja)
Inventor
Okikazu Ishiguro
興和 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19487695A priority Critical patent/JPH0942606A/en
Publication of JPH0942606A publication Critical patent/JPH0942606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a once-through boiler steam temperature control device to suppress the fluctuation in a steam temperature at the furnace water-cooled wall-outlet during lowering of a load. SOLUTION: Feed water from a boiler feed water pump 2 is fed to a furnace water-cooled wall 1 through a high pressure feed water heater 3 and an economizer 4. Steam of the furnace water-cooled wall 1 is fed through a flue vaporizer 5 and a superheated to a high pressure turbine, where a part of steam completing a work heats the heater 3 through the flow of it through a high-pressure turbine steam extraction line 10a. During fallout of a load, heat accumulation of a furnace water-cooled wall is about to increase an outlet steam temperature but a high pressure steam extraction bypass valve 10c of a high pressure turbine steam extraction bypass line 10b is regulated based on a load demand signal and a detected value a steam temperature detector 19 at a furnace water-cooled wall outlet, and by bypassing high pressure turbine steam extraction, a feed water temperature is lowered to prevent the fluctuation in the steam temperature at the furnace water-cooled wall outlet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧ベンソンボイラ等
の負荷負荷減少時に火炉水冷壁出口蒸気温度を制御する
のに好適な貫流ボイラ蒸気温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a once-through boiler steam temperature control device suitable for controlling the temperature of steam exiting a water wall of a furnace when a load load on a transformer Benson boiler or the like is reduced.

【0002】[0002]

【従来の技術】変圧ベンソンボイラは、負荷に応じてボ
イラ圧力を変化させるボイラである。この変圧ベンソン
ボイラを図3により説明する。図3は従来の変圧ベンソ
ンボイラの系統図である。この図で、1は火炉水冷壁、
2は火炉水冷壁1に給水するボイラ給水ポンプ、3はボ
イラ給水ポンプ2からの給水を加熱する給水加熱器、4
は節炭器、5は節炭器4の出口流体のスチーミングを防
止する煙道蒸発器、6は気水分離器、7は気水分離器6
で分離された蒸気を過熱する一次過熱器、8は二次過熱
器、9は三次過熱器、10は三次過熱器9からの蒸気で
駆動される高圧タービンである。11は気水分離器5で
分離された水を貯める貯水タンク、12は貯水タンク1
1の水を火炉水冷壁1へ再循環させる再循環ポンプ、1
3は再循環ポンプ12からの流量を調整するボイラ再循
環流量調整弁である。14は二次過熱器8の入口に加熱
器3からの給水の一部を供給してその出口蒸気温度を調
節する一次スプレ弁、15は三次過熱器9の入口に加熱
器3からの給水の一部を供給してその出口蒸気温度を調
節する二次スプレ弁である。10aは高圧タービン10
で仕事をした蒸気の一部を抽気してこれを加熱器3へ導
く高圧タービン抽気ラインであり、加熱器3は高圧ター
ビン抽気により給水を加熱する。このような変圧ベンソ
ンボイラの動作はよく知られているので、説明は省略す
る。
2. Description of the Related Art A variable pressure Benson boiler is a boiler that changes the boiler pressure according to the load. This transformation Benson boiler will be described with reference to FIG. FIG. 3 is a system diagram of a conventional transformer Benson boiler. In this figure, 1 is the water wall of the furnace,
Reference numeral 2 is a boiler water supply pump for supplying water to the furnace water cooling wall 1, 3 is a water supply heater for heating water supply from the boiler water supply pump 2, 4
Is a economizer, 5 is a flue evaporator for preventing steaming of the outlet fluid of the economizer 4, 6 is a steam separator, 7 is a steam separator 6
The primary superheater superheats the steam separated in 1., the secondary superheater 9, the tertiary superheater 10 and the high pressure turbine driven by the steam from the tertiary superheater 9. 11 is a water storage tank for storing the water separated by the steam separator 5, and 12 is a water storage tank 1.
A recirculation pump for recirculating the water No. 1 to the furnace water cooling wall 1,
Reference numeral 3 is a boiler recirculation flow rate adjusting valve for adjusting the flow rate from the recirculation pump 12. Reference numeral 14 is a primary spray valve that supplies a part of the feed water from the heater 3 to the inlet of the secondary superheater 8 to adjust the outlet steam temperature, and 15 is the feed water from the heater 3 to the inlet of the tertiary superheater 9. It is a secondary spray valve that supplies part of it and adjusts its outlet steam temperature. 10a is a high-pressure turbine 10
This is a high-pressure turbine extraction line that extracts a part of the steam that has worked in 1. and guides it to the heater 3. The heater 3 heats the feed water by the high-pressure turbine extraction. The operation of such a transformer Benson boiler is well known, and therefore its explanation is omitted.

【0003】[0003]

【発明が解決しようとする課題】上記ボイラの運転中、
一次スプレ弁14および二次スプレ弁15を調節してス
プレ量を増加させたとしても、ヒートバランス上、静定
状態では過熱器出口温度は一定値となり、過渡状態にお
いてのみ蒸気温度制御に効果を有するものであるのは明
らかである。
While the boiler is operating,
Even if the spray amount is increased by adjusting the primary spray valve 14 and the secondary spray valve 15, the superheater outlet temperature becomes a constant value in the static state in view of heat balance, and the steam temperature control is effective only in the transient state. It is clear that they have.

【0004】一方、上記変圧ベンソンボイラでは、低負
荷時のプラント効率を向上させるため、負荷に応じて蒸
気圧力を変える、いわゆる変圧運転が行われる。これを
図4に示す。図4は変圧ベンソンボイラにおける負荷に
対する蒸気圧力の変化の一例を示す図であり、横軸に負
荷、縦軸に蒸気圧力がとってある。負荷降下時、負荷の
減少に伴って蒸気圧力も低下するので、火炉水冷壁1の
出口蒸気温度も低下する。この場合、火炉水冷壁1の伝
熱管温度は大きな熱容量を有するため、その温度低下は
蒸気温度の低下に対して遅れをもって低下する。このた
め、火炉水冷壁1の伝熱管温度と水/蒸気温度との温度
差が大きくなり、伝熱管の蓄熱量が蒸気側に放出される
ので、火炉水冷壁1の出口蒸気温度は一時的に上昇す
る。この温度上昇は、下流側の過熱器の蒸気温度制御に
対して大きな外乱となり、当該過熱器の蒸気温度の制御
を困難にする。なお、この場合、節炭器4、火炉水冷壁
1、および各過熱器7、8、9の熱吸収量の大半は火炉
水冷壁1で占められている。
On the other hand, in the above-mentioned transformer Benson boiler, in order to improve the plant efficiency under low load, so-called transformer operation is performed in which the steam pressure is changed according to the load. This is shown in FIG. FIG. 4 is a diagram showing an example of changes in the steam pressure with respect to the load in the transformer Benson boiler, wherein the horizontal axis represents the load and the vertical axis represents the steam pressure. When the load drops, the steam pressure also decreases as the load decreases, so the outlet steam temperature of the furnace water cooling wall 1 also decreases. In this case, since the heat transfer tube temperature of the furnace water cooling wall 1 has a large heat capacity, the temperature decrease is delayed with respect to the decrease of the steam temperature. For this reason, the temperature difference between the heat transfer tube temperature of the furnace water cooling wall 1 and the water / steam temperature becomes large, and the heat storage amount of the heat transfer tube is released to the steam side. Therefore, the outlet steam temperature of the furnace water cooling wall 1 temporarily changes. To rise. This temperature rise becomes a large disturbance to the steam temperature control of the downstream superheater, and makes it difficult to control the steam temperature of the superheater. In this case, the furnace water cooling wall 1 occupies most of the heat absorption amount of the economizer 4, the furnace water cooling wall 1, and the superheaters 7, 8 and 9.

【0005】このような負荷降下時における火炉水冷壁
1の出口蒸気温度の上昇を抑える手段として、ガス再循
環流量を増加させて火炉内温度を低下させる方法と、水
燃比、即ち給水量に対する燃料量の比率を減少させる
(燃料量を絞る)方法が採用されている。しかし、前者
は、大きなガス再循環ファンを必要とし、その駆動動力
が大きく、かつ、その設置面積も大きくなるので好まし
くなく、採用を見合わせる方向にある。
As a means for suppressing the rise in the outlet steam temperature of the water cooling wall 1 of the furnace when the load drops, a method of increasing the gas recirculation flow rate to lower the temperature inside the furnace, and a fuel-fuel ratio, that is, fuel for the amount of water supplied A method of reducing the ratio of the amount of fuel (narrowing the amount of fuel) is adopted. However, the former is not preferable because it requires a large gas recirculation fan, its driving power is large, and its installation area is also large, and it is in the direction of not adopting it.

【0006】又、後者は、燃料量を絞ると火炉出口ガス
温度が低下し、燃焼ガス量も低下するので、接触伝熱部
の熱吸収量が低下する。図5は各接触伝熱部の配置図で
ある。この図で、図3に示す部分と同一部分には同一符
号が付してある。17は再熱器、18はパラレルダンパ
である。図示のように、火炉出口には、節炭器4、煙道
蒸発器5、一次過熱器7、二次過熱器8、三次過熱器
9、および各再熱器17が配置されており、燃料量を絞
ることによりこれら接触伝熱部の熱吸収量が低下するの
は明らかである。そして、これら接触伝熱部のうち、各
過熱器および煙道蒸発器5にとって熱吸収量の減少は好
都合であるが、再熱器17の熱吸収量の減少は、再熱器
17の出口蒸気温度の低下を招くという問題が生じる。
即ち、再熱器17の出口蒸気温度は専ら火炉出口ガス温
度に依存し、他の制御手段では当該温度の制御はできな
いので、再熱器17の熱吸収量の減少は直ちにその出口
蒸気温度の低下を生じ、中圧タービンへ所要の温度の上
記を供給できなくなる。
On the other hand, in the latter case, when the fuel amount is reduced, the furnace outlet gas temperature is lowered and the combustion gas amount is also lowered, so that the heat absorption amount of the contact heat transfer portion is lowered. FIG. 5 is a layout of the contact heat transfer parts. In this figure, the same parts as those shown in FIG. 3 are designated by the same reference numerals. Reference numeral 17 is a reheater, and 18 is a parallel damper. As shown in the figure, a coal economizer 4, a flue vaporizer 5, a primary superheater 7, a secondary superheater 8, a tertiary superheater 9, and each reheater 17 are arranged at the exit of the furnace. It is obvious that the heat absorption amount of these contact heat transfer parts is reduced by reducing the amount. And, of these contact heat transfer parts, it is convenient for each superheater and the flue evaporator 5 to reduce the heat absorption amount, but the reduction of the heat absorption amount of the reheater 17 is due to the outlet steam of the reheater 17. There is a problem that the temperature is lowered.
That is, the outlet steam temperature of the reheater 17 depends exclusively on the furnace outlet gas temperature, and the temperature cannot be controlled by other control means. Therefore, the decrease in the heat absorption amount of the reheater 17 immediately results in a decrease in the outlet steam temperature. This will cause a drop and will not be able to supply the required temperature to the medium pressure turbine.

【0007】本発明の目的は、上記従来技術における課
題を解決し、負荷降下時における火炉水冷壁出口蒸気温
度の変動を抑えることができる貫流ボイラ蒸気温度制御
装置を提供することにある。
An object of the present invention is to solve the above problems in the prior art and to provide a once-through boiler steam temperature control device capable of suppressing fluctuations in the steam temperature at the outlet of the water cooling wall of the furnace when the load is lowered.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、給水ポンプと、この給水ポンプから火炉
水冷壁への給水を加熱する加熱器と、この加熱器に高圧
タービン抽気を導くラインとを備えたボイラにおいて、
前記火炉水冷壁の出口蒸気温度を検出する温度検出器
と、前記ラインをバイパスするバイパスラインと、この
バイパスラインに設置されたバイパス弁と、前記温度検
出器の検出値に基づいて前記バイパス弁の開度を制御す
る制御部とを設けたことを特徴とする。
In order to achieve the above object, the present invention provides a feed water pump, a heater for heating feed water from the feed water pump to the water wall of the furnace, and a high pressure turbine bleed air for the heater. In a boiler with a guiding line,
A temperature detector that detects the outlet steam temperature of the furnace water cooling wall, a bypass line that bypasses the line, a bypass valve installed in this bypass line, and a bypass valve based on the detection value of the temperature detector. A control unit for controlling the opening is provided.

【0009】[0009]

【作用】火炉水冷壁へ供給される給水は加熱器において
高圧タービン抽気により加熱されている。負荷低下時に
火炉水冷壁の伝熱管の蓄熱量が蒸気側に放出され、火炉
水冷壁の出口蒸気温度が一時的に上昇しようとするが、
負荷要求信号の低下と火炉水冷壁出口蒸気温度に応じて
バイパス弁が調整され、バイパスラインから高圧タービ
ン抽気がバイパスされるので、加熱器における給水の加
熱が減少し、給水温度が低下して火炉水冷壁出口蒸気温
度の上昇を抑える。
The feed water supplied to the cold water wall of the furnace is heated by the high pressure turbine extraction air in the heater. When the load decreases, the heat storage amount of the heat transfer tube of the reactor water cooling wall is released to the steam side, and the outlet steam temperature of the furnace water cooling wall tends to rise temporarily,
The bypass valve is adjusted according to the decrease of the load request signal and the temperature of the steam at the outlet of the water cooling wall of the furnace, and the high-pressure turbine extraction air is bypassed from the bypass line. Suppress the rise in steam temperature at the water cooling wall outlet.

【0010】[0010]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。図1は本発明の実施例に係るボイラ蒸気温度制御
装置の要部の系統図である。この図で、図3に示す部分
と同一又は等価な部分には同一符号を付して説明を省略
する。10bは高圧タービン抽気ライン10aおよび加
熱器3をバイパスする高圧タービン抽気バイパスライ
ン、10cは高圧タービン抽気バイパスライン10bに
介在する高圧タービン抽気バイパス弁である。19は火
炉水冷壁出口蒸気温度を検出する火炉水冷壁出口蒸気温
度検出器、20は高圧タービン抽気バイパス弁10cを
制御する制御部である。図1では、図3に示す気水分離
器6、各過熱器7、8、9、高圧タービン10、貯水タ
ンク11、ボイラ再循環ポンプ12、ボイラ再循環流量
調整弁13、一次スプレ弁14、二次スプレ弁15の図
示は省略されている。
The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a system diagram of a main part of a boiler steam temperature control device according to an embodiment of the present invention. In this figure, the same or equivalent parts as those shown in FIG. Reference numeral 10b is a high pressure turbine extraction line that bypasses the high pressure turbine extraction line 10a and the heater 3, and 10c is a high pressure turbine extraction bypass valve that is interposed in the high pressure turbine extraction line 10b. Reference numeral 19 is a furnace water cooling wall outlet steam temperature detector for detecting the furnace water cooling wall outlet steam temperature, and 20 is a control unit for controlling the high pressure turbine extraction air bypass valve 10c. In FIG. 1, the steam separator 6, each superheater 7, 8, 9 shown in FIG. 3, the high pressure turbine 10, the water storage tank 11, the boiler recirculation pump 12, the boiler recirculation flow rate adjustment valve 13, the primary spray valve 14, Illustration of the secondary spray valve 15 is omitted.

【0011】図2は図1に示す制御部20のブロック図
である。この図で、21は負荷要求信号、22は火炉水
冷壁出口蒸気温度検出器19の検出信号である。23は
微分器、24は係数器、25は関数発生器、26は引算
器、27は調節計、28は加算器である。
FIG. 2 is a block diagram of the control unit 20 shown in FIG. In this figure, 21 is a load request signal, and 22 is a detection signal of the furnace water cooling wall outlet steam temperature detector 19. 23 is a differentiator, 24 is a coefficient unit, 25 is a function generator, 26 is a subtractor, 27 is a controller, and 28 is an adder.

【0012】次に、本実施例の動作を説明する。負荷要
求信号21は微分器23に入力され、この微分器23の
出力信号は負荷要求信号21の変化(低下)が急激なほ
ど大きくなる。微分器23の信号は係数器24に入力さ
れ、所定の係数(制御ゲイン)が乗算されて加算器28
に出力される。一方、負荷要求信号21は関数発生器2
5に入力され、関数発生器25は当該負荷要求信号21
に対応した火炉水冷壁出口蒸気温度設定値信号を作成す
る。引算器26は、火炉水冷壁出口蒸気温度検出器19
で検出された火炉水冷壁出口蒸気温度信号と、関数発生
器25で作成された火炉水冷壁出口蒸気温度設定値信号
との差を演算し、この差の信号は調節計27を経て補正
信号として加算器28へ入力される。加算器28は係数
器24からの信号を、これに調節計27からの差の信号
を加算することにより補正し、この補正された信号を高
圧タービン抽気バイパス弁10cに出力する。
Next, the operation of this embodiment will be described. The load request signal 21 is input to the differentiator 23, and the output signal of the differentiator 23 increases as the load request signal 21 changes (decreases) rapidly. The signal of the differentiator 23 is input to the coefficient unit 24, is multiplied by a predetermined coefficient (control gain), and is added by the adder 28.
Is output to On the other hand, the load request signal 21 is the function generator 2
5, the function generator 25 outputs the load request signal 21
Create a furnace water cooling wall outlet steam temperature setting value signal corresponding to. The subtractor 26 is a furnace water cooling wall outlet steam temperature detector 19
The difference between the furnace water cooling wall outlet steam temperature signal detected in step S4 and the furnace water cooling wall outlet steam temperature set value signal created by the function generator 25 is calculated, and the difference signal is passed through the controller 27 as a correction signal. It is input to the adder 28. The adder 28 corrects the signal from the coefficient unit 24 by adding the signal of the difference from the controller 27 to this, and outputs the corrected signal to the high-pressure turbine extraction air bypass valve 10c.

【0013】上記本実施例の構成により、高圧タービン
抽気バイパス弁10cの開度は、負荷要求信号21の低
下の度合いが大きければ大きいほど、かつ、火炉水冷壁
出口蒸気温度が高ければ高いほど、大きくなり、高圧タ
ービン抽気バイパスライン10bのバイパス流量を大き
くして加熱器3の出口給水温度を低下させる。このた
め、特に負荷の急速降下時、前述のように伝熱管の蓄熱
量が蒸気側に放出され、火炉水冷壁1における水/蒸気
の熱吸収量が静特性時の値より増加しても、加熱器3の
出口給水温度が静特性時の温度よりも低下しているの
で、火炉水冷壁出口蒸気温度の変動を抑え、これを設定
値の近傍に維持することができ、ひいては、各部蒸気温
度の挙動(変化)が静特性に近い範囲に維持されること
になり、タービンをはじめ、ボイラ各部構造物の寿命消
費を低減することができる。
With the configuration of the present embodiment, the opening degree of the high-pressure turbine extraction bypass valve 10c increases as the degree of decrease of the load request signal 21 increases and the furnace water cooling wall outlet steam temperature increases. It increases, and the bypass flow rate of the high pressure turbine extraction air bypass line 10b is increased to lower the outlet feed water temperature of the heater 3. Therefore, especially when the load rapidly drops, the heat storage amount of the heat transfer tube is released to the steam side as described above, and even if the heat absorption amount of water / steam in the furnace water cooling wall 1 is increased from the static characteristic value, Since the outlet water supply temperature of the heater 3 is lower than the temperature at the static characteristic, it is possible to suppress the fluctuation of the furnace water cooling wall outlet steam temperature and maintain it near the set value. The behavior (change) of is maintained in the range close to the static characteristic, and it is possible to reduce the life consumption of the turbine and various parts of the boiler.

【0014】又、これにより、節炭器4の出口流体のス
チーミングを防止することもできるので、火炉水冷壁に
おける流動不安定を防止することができ、かつ、煙道蒸
発器の伝熱面積を低減することもできる。さらに、火炉
水冷壁出口蒸気温度が設定値の近傍に維持されることに
より、過熱器および再熱器の熱吸収量は、スプレ弁1
4、15による過熱器スプレ流量とパラレルダンパ20
により容易に制御することができる。
Further, as a result, the steaming of the outlet fluid of the economizer 4 can be prevented, so that the flow instability in the water wall of the furnace can be prevented and the heat transfer area of the flue evaporator can be prevented. Can also be reduced. Further, the heat absorption amount of the superheater and the reheater can be reduced by maintaining the steam temperature at the outlet of the water cooling wall of the furnace near the set value.
Superheater spray flow rate by 4 and 15 and parallel damper 20
Can be controlled more easily.

【0015】なお、上記実施例の説明では、変圧ベンソ
ンボイラについて説明したが、これに限ることはなく、
本発明は貫流ボイラ全般に適用することができるのは明
らかである。又、上記実施例の説明では、ボイラの負荷
下降時について説明したが、負荷上昇時には、火炉に供
給された熱量の一部は火炉水冷壁1の昇温に利用される
ので火炉水冷壁1の出口蒸気温度の上昇には遅れを伴う
ものの、これに対しては、水燃比を減少させて(燃料量
を増加させて)火炉水冷壁出口蒸気温度の昇温を加速さ
せるとともに、パラレルダンパ20によるパラレルガス
パスのうち再熱器側のガス流量配分を減少させることに
より、燃料量増加に伴う再熱器出口蒸気温度の上昇を抑
えることで対処することができる。
In the description of the above embodiment, the transformer Benson boiler has been described, but the present invention is not limited to this.
It is obvious that the present invention can be applied to once-through boilers in general. Further, in the description of the above-mentioned embodiments, when the load of the boiler is decreased, but when the load is increased, a part of the heat quantity supplied to the furnace is used for raising the temperature of the furnace water cooling wall 1, so that Although there is a delay in the rise of the outlet steam temperature, the water vapor ratio is decreased (the amount of fuel is increased) to accelerate the temperature rise of the furnace water cooling wall outlet steam temperature while the parallel damper 20 is used. By reducing the gas flow rate distribution on the reheater side in the parallel gas path, it is possible to cope with the increase in the reheater outlet steam temperature due to the increase in the fuel amount.

【0016】[0016]

【発明の効果】以上述べたように、本発明では、高圧タ
ービン抽気を導くラインをバイパスするバイパスライン
を設け、このバイパスラインの流量を制御するようにし
たので、負荷の降下時、加熱器の出口給水温度を低下さ
せて火炉水冷壁出口蒸気温度の変動を抑え、これを設定
値の近傍に維持することができ、ひいては、各部蒸気温
度の挙動(変化)が静特性に近い範囲に維持されること
になり、タービンをはじめ、ボイラ各部構造物の寿命消
費を低減することができる。又、これにより、節炭器4
の出口流体のスチーミングを防止することもできるの
で、火炉水冷壁における流動不安定を防止することがで
き、かつ、煙道蒸発器の伝熱面積を低減することもでき
る。さらに、火炉水冷壁出口蒸気温度が設定値の近傍に
維持されることにより、過熱器および再熱器の熱吸収量
は、スプレ弁による過熱器スプレ流量とパラレルダンパ
20により容易に制御することができる。
As described above, in the present invention, the bypass line for bypassing the line for introducing the high pressure turbine bleed air is provided, and the flow rate of this bypass line is controlled. Therefore, when the load drops, the heater By lowering the outlet water temperature, fluctuations in the furnace water cooling wall outlet steam temperature can be suppressed and maintained near the set value, which in turn maintains the behavior (change) of steam temperature in each part within a range close to static characteristics. Therefore, it is possible to reduce the life consumption of the turbine and other parts of the boiler. Also, by this, the economizer 4
Since it is also possible to prevent steaming of the outlet fluid of (1), it is possible to prevent flow instability in the water wall of the furnace, and it is also possible to reduce the heat transfer area of the flue evaporator. Further, since the furnace water cooling wall outlet steam temperature is maintained near the set value, the heat absorption amount of the superheater and the reheater can be easily controlled by the superheater spray flow rate by the spray valve and the parallel damper 20. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るボイラ蒸気温度制御装置
の要部の系統図である。
FIG. 1 is a system diagram of a main part of a boiler steam temperature control device according to an embodiment of the present invention.

【図2】図1に示す制御部のブロック図である。FIG. 2 is a block diagram of a control unit shown in FIG.

【図3】従来のボイラ蒸気温度制御装置の系統図であ
る。
FIG. 3 is a system diagram of a conventional boiler steam temperature control device.

【図4】変圧ベンソンボイラにおける負荷に対する蒸気
圧力の変化の一例を示す図である。
FIG. 4 is a diagram showing an example of changes in steam pressure with respect to load in a transformer Benson boiler.

【図5】各接触伝熱部の配置図である。FIG. 5 is a layout view of each contact heat transfer section.

【符号の説明】[Explanation of symbols]

1 火炉水冷壁 2 ボイラ給水ポンプ 3 高圧給水過熱器 4 節炭器 5 煙道蒸発器 10a 高圧タービン抽気ライン 10b 高圧タービン抽気バイパスライン 10c 高圧タービン抽気バイパス弁 19 火炉水冷壁出口蒸気温度検出器 20 制御部 1 furnace water cold wall 2 boiler feed water pump 3 high pressure feed water superheater 4 coal economizer 5 flue evaporator 10a high pressure turbine extraction line 10b high pressure turbine extraction bypass line 10c high pressure turbine extraction bypass valve 19 furnace water cooling wall outlet steam temperature detector 20 control Department

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 給水ポンプと、この給水ポンプから火炉
水冷壁への給水を加熱する加熱器と、この加熱器に高圧
タービン抽気を導くラインとを備えたボイラにおいて、
前記火炉水冷壁の出口蒸気温度を検出する温度検出器
と、前記ラインをバイパスするバイパスラインと、この
バイパスラインに設置されたバイパス弁と、負荷要求信
号および前記温度検出器の検出値に基づいて前記バイパ
ス弁の開度を制御する制御部とを設けたことを特徴とす
る貫流ボイラ蒸気温度制御装置。
1. A boiler provided with a feed water pump, a heater for heating feed water from the feed water pump to a water wall of a furnace, and a line for introducing high-pressure turbine bleed air to the heater,
A temperature detector that detects the outlet steam temperature of the furnace water cooling wall, a bypass line that bypasses the line, a bypass valve installed in the bypass line, a load request signal, and a detection value of the temperature detector based on A once-through boiler steam temperature control device comprising: a control unit that controls the opening degree of the bypass valve.
【請求項2】 請求項1において、前記制御部は、前記
負荷要求信号を微分して当該負荷要求信号の変化の速さ
に応じた値を出力する微分手段と、前記負荷要求信号に
応じて前記火炉水冷壁の出口蒸気温度の設定値を作成す
る設定値作成手段と、この設定値作成手段で作成された
設定値と前記温度検出器で検出された検出値との偏差を
演算する第1の演算手段と、前記微分手段から出力され
た値を前記第1の演算手段で演算された偏差で補正して
前記バイパス弁へ出力する第2の演算手段とで構成され
ていることを特徴とする貫流ボイラ蒸気温度制御装置。
2. The differentiating device according to claim 1, wherein the control unit differentiates the load request signal and outputs a value corresponding to a speed of change of the load request signal; Set value creating means for creating a set value of the outlet steam temperature of the furnace water cooling wall, and a first for calculating a deviation between the set value created by the set value creating means and the detected value detected by the temperature detector. And a second calculating means for correcting the value output from the differentiating means with the deviation calculated by the first calculating means and outputting the corrected value to the bypass valve. Once-through boiler steam temperature control device.
JP19487695A 1995-07-31 1995-07-31 Once-through boiler steam temperature control device Pending JPH0942606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19487695A JPH0942606A (en) 1995-07-31 1995-07-31 Once-through boiler steam temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19487695A JPH0942606A (en) 1995-07-31 1995-07-31 Once-through boiler steam temperature control device

Publications (1)

Publication Number Publication Date
JPH0942606A true JPH0942606A (en) 1997-02-14

Family

ID=16331789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19487695A Pending JPH0942606A (en) 1995-07-31 1995-07-31 Once-through boiler steam temperature control device

Country Status (1)

Country Link
JP (1) JPH0942606A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029680A1 (en) * 2005-09-05 2007-03-15 The Tokyo Electric Power Company, Incorporated Vapor generation system
JP2007071419A (en) * 2005-09-05 2007-03-22 Tokyo Electric Power Co Inc:The Steam generating system
JP2007120914A (en) * 2005-10-31 2007-05-17 Tokyo Electric Power Co Inc:The Vapor generation system
JP2007263505A (en) * 2006-03-29 2007-10-11 Tokyo Electric Power Co Inc:The Controller of coal burning boiler
JP2011137631A (en) * 2011-03-03 2011-07-14 Tokyo Electric Power Co Inc:The Steam generating system
CN104061564A (en) * 2014-07-16 2014-09-24 中国电力工程顾问集团华东电力设计院 0# high-pressure heater system with back heating crossing units
CN104990060A (en) * 2015-07-24 2015-10-21 东方电气集团东方锅炉股份有限公司 Passive protection device for steam cooler system
CN105605551A (en) * 2016-03-14 2016-05-25 西安热工研究院有限公司 System and method for heating boiler feed water through steam turbine bypass steam
JP2017072313A (en) * 2015-10-07 2017-04-13 Jfeエンジニアリング株式会社 Superheating device
JP2017072312A (en) * 2015-10-07 2017-04-13 Jfeエンジニアリング株式会社 Superheating device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029680A1 (en) * 2005-09-05 2007-03-15 The Tokyo Electric Power Company, Incorporated Vapor generation system
JP2007071419A (en) * 2005-09-05 2007-03-22 Tokyo Electric Power Co Inc:The Steam generating system
JP2007120914A (en) * 2005-10-31 2007-05-17 Tokyo Electric Power Co Inc:The Vapor generation system
JP2007263505A (en) * 2006-03-29 2007-10-11 Tokyo Electric Power Co Inc:The Controller of coal burning boiler
JP2011137631A (en) * 2011-03-03 2011-07-14 Tokyo Electric Power Co Inc:The Steam generating system
CN104061564A (en) * 2014-07-16 2014-09-24 中国电力工程顾问集团华东电力设计院 0# high-pressure heater system with back heating crossing units
CN104061564B (en) * 2014-07-16 2016-06-01 中国电力工程顾问集团华东电力设计院有限公司 Across No. 0 high pressure heater system of unit backheat
CN104990060A (en) * 2015-07-24 2015-10-21 东方电气集团东方锅炉股份有限公司 Passive protection device for steam cooler system
JP2017072313A (en) * 2015-10-07 2017-04-13 Jfeエンジニアリング株式会社 Superheating device
JP2017072312A (en) * 2015-10-07 2017-04-13 Jfeエンジニアリング株式会社 Superheating device
CN105605551A (en) * 2016-03-14 2016-05-25 西安热工研究院有限公司 System and method for heating boiler feed water through steam turbine bypass steam

Similar Documents

Publication Publication Date Title
JP5840032B2 (en) Power generation system and steam temperature control method thereof
JPH0942606A (en) Once-through boiler steam temperature control device
JPH0417324B2 (en)
JP4117733B2 (en) Method and apparatus for boiler reheat steam temperature control
JPH10292902A (en) Main steam temperature controller
JPH0688605A (en) Controlling device for temperature of steam in boiler
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2006071166A (en) Steam temperature control device for once-through boiler
JP2931141B2 (en) Control method and apparatus for variable-pressure Benson boiler
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
JP2001108202A (en) Waste heat recovery boiler
JPH06159603A (en) Control device for waste heat steam generator
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPS6291703A (en) Steaming preventive device for fuel economizer
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
JPH11351512A (en) Reheat steam temperature controller for boiler
JPH11241807A (en) Controller for boiler
JPH0722563Y2 (en) Boiler equipment
JPH1038213A (en) Two stage spray type main vapor temperature controller
JPH1073205A (en) Controller for once-through boiler
JPH1151306A (en) Boiler and control method therefor
JP2625422B2 (en) Boiler control device
JPH01127806A (en) Boiler steam temperature controller
JP2002168406A (en) Reheat steam temperature controller for boiler