JP2017072312A - Superheating device - Google Patents

Superheating device Download PDF

Info

Publication number
JP2017072312A
JP2017072312A JP2015199250A JP2015199250A JP2017072312A JP 2017072312 A JP2017072312 A JP 2017072312A JP 2015199250 A JP2015199250 A JP 2015199250A JP 2015199250 A JP2015199250 A JP 2015199250A JP 2017072312 A JP2017072312 A JP 2017072312A
Authority
JP
Japan
Prior art keywords
superheater
temperature
superheated steam
tertiary
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015199250A
Other languages
Japanese (ja)
Other versions
JP6504525B2 (en
Inventor
清▲猗▼ 張
Qing-Yi Chang
清▲猗▼ 張
協司 岡崎
Kyoji Okazaki
協司 岡崎
香山 貴弘
Takahiro Kayama
貴弘 香山
彰人 菅野
Akihito Sugano
彰人 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2015199250A priority Critical patent/JP6504525B2/en
Publication of JP2017072312A publication Critical patent/JP2017072312A/en
Application granted granted Critical
Publication of JP6504525B2 publication Critical patent/JP6504525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a superheating device capable of preventing corrosion of a superheater tube in a simple control process, without measuring a tube wall temperature of the superheater with a thermometer.SOLUTION: A superheating device 1 includes: a primary desuperheater 9 configured to supply cooling water to superheated steam fed to a secondary superheater 3 and degrease a temperature of superheated steam; a second superheater inlet thermometer 11 configured to measure a secondary superheater inlet temperature that is a temperature of superheated steam subjected to temperature decrease by the primary desuperheater 9 and fed to the secondary superheater 3; a primary controller 15 configured to adjust a supply amount of cooling water in the primary desuperheater 9 based on the measurement temperature of the secondary superheater inlet thermometer 11; a second desuperheater 12 configured to supply cooling water to superheated steam fed to a tertiary superheater 4 and decrease a temperature of superheated stem; a tertiary superheater outlet thermometer 14 configured to measure a tertiary superheater outlet temperature that is a temperature of superheated steam superheated by the tertiary superheater 4 and fed to a steam reservoir; and a secondary controller 16 configured to adjust a supply amount of cooling water in the secondary desuperheater 12 based on the measurement temperature of the tertiary superheater outlet thermometer 14.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物処理炉から排出される排ガスから熱回収するボイラに設けられ、排ガスとの熱交換により過熱管内の蒸気を過熱する複数の過熱器が直列に配された過熱装置に関する。   The present invention relates to a superheater in which a plurality of superheaters that are provided in a boiler that recovers heat from exhaust gas discharged from a waste treatment furnace and that superheats steam in a superheater tube by heat exchange with the exhaust gas are arranged in series.

廃棄物処理炉、例えば、ごみや産業廃棄物を焼却する焼却炉等に併設される熱回収ボイラに設けられた過熱装置は、過熱管群を有する過熱器がボイラ内に配されている。したがって、該過熱管群が、上記廃棄物処理炉から排出される排ガスに含まれる腐食性ガスと高温下で接触することにより腐食(高温腐食)する場合がある。そのため、過熱管群の材料には耐食性が求められるが、高価な高耐食性材料を使用すると、設備費用が嵩むという問題が生じる。   In a superheater provided in a heat recovery boiler provided in a waste treatment furnace, for example, an incinerator for incinerating garbage or industrial waste, a superheater having a superheater tube group is arranged in the boiler. Accordingly, the superheated tube group may corrode (high temperature corrosion) by contacting with a corrosive gas contained in the exhaust gas discharged from the waste treatment furnace at a high temperature. For this reason, the material of the superheated tube group is required to have corrosion resistance. However, when an expensive high corrosion resistance material is used, there is a problem that equipment costs increase.

そこで、過熱管群の高温腐食を防止するために、例えば特許文献1のように、過熱器の管壁温度を制御することが知られている。この特許文献1では、ボイラ内にて、高温過熱器、中温過熱器そして低温過熱器の三つの過熱器が、排ガスの上流側から順に配されている。これら三つの過熱器は過熱管同士が直列して接続されており、低温過熱器、中温過熱器そして高温過熱器の順に過熱管内を蒸気が流れることにより、該蒸気が排ガスとの熱交換により過熱され、過熱蒸気が生成されるようになっている。   Then, in order to prevent the high temperature corrosion of a superheated tube group, controlling the tube wall temperature of a superheater like patent document 1, for example is known. In this patent document 1, in a boiler, three superheaters, a high temperature superheater, an intermediate temperature superheater, and a low temperature superheater, are arranged in order from the upstream side of exhaust gas. In these three superheaters, superheater tubes are connected in series. Steam flows through the superheater tube in the order of a low-temperature superheater, medium-temperature superheater, and high-temperature superheater. Thus, superheated steam is generated.

また、低温過熱器と中温過熱器との接続位置には一次減温器がそして中温過熱器と高温過熱器との接続位置には二次減温器が設けられており、各減温器が過熱蒸気に冷却水を供給することにより、該過熱蒸気を冷却して過熱蒸気温度を制御するようになっている。このような特許文献1では、高温過熱器の入口付近での過熱蒸気温度および中温過熱器の出口付近での過熱管壁温度をそれぞれ計測し、それらの計測温度に基づいて一次減温器からの冷却水の供給量を調整する。また、高温過熱器の出口付近での過熱蒸気温度および過熱管壁温度をそれぞれ計測し、それらの計測温度に基づいて二次減温器からの冷却水の供給量を調整する。   A primary desuperheater is provided at the connection position between the low temperature superheater and the intermediate temperature superheater, and a secondary desuperheater is provided at the connection position between the intermediate temperature superheater and the high temperature superheater. By supplying cooling water to the superheated steam, the superheated steam is cooled to control the temperature of the superheated steam. In such a patent document 1, the superheated steam temperature near the inlet of the high-temperature superheater and the superheated tube wall temperature near the outlet of the intermediate-temperature superheater are respectively measured, and from the primary desuperheater based on those measured temperatures. Adjust the cooling water supply. In addition, the superheated steam temperature and the superheated tube wall temperature near the outlet of the high-temperature superheater are measured, and the supply amount of the cooling water from the secondary desuperheater is adjusted based on these measured temperatures.

特許文献1では、このようにして各減温器からの冷却水の供給量ひいては過熱蒸気の温度を調整して、ボイラ内の高温下で排ガスに含まれる腐食性ガスと接触する高温過熱器および中温過熱器のそれぞれの管壁温度を所定温度以下に抑えることにより、各過熱器の管壁の高温腐食を防止することとしている。   In Patent Document 1, in this way, the amount of cooling water supplied from each desuperheater, and thus the temperature of superheated steam, is adjusted, and a high temperature superheater that comes into contact with corrosive gas contained in exhaust gas at a high temperature in the boiler and By suppressing the tube wall temperature of each medium temperature superheater to a predetermined temperature or less, high temperature corrosion of the tube wall of each superheater is prevented.

特開平05−280707JP 05-280707

特許文献1では、各減温器からの冷却水の供給量は、二種類の計測温度、すなわち過熱蒸気の温度および過熱管の管壁温度の両方に基づいて制御されるので、一種類の計測温度に基づいて冷却水の供給量が制御される場合と比べて制御工程が複雑となり、コストが嵩んでしまう。また、過熱器の管壁温度を計測するためには、該管壁温度の計測位置で過熱管に温度計を設ける必要があるが、この温度計はボイラ内で高温下に配されることとなるので、該温度計自体が損傷しやすいという問題がある。   In Patent Document 1, the amount of cooling water supplied from each temperature reducer is controlled on the basis of two types of measurement temperatures, that is, the temperature of the superheated steam and the wall temperature of the superheated tube. Compared with the case where the supply amount of the cooling water is controlled based on the temperature, the control process becomes complicated and the cost increases. In addition, in order to measure the tube wall temperature of the superheater, it is necessary to provide a thermometer on the superheater tube at the measurement position of the tube wall temperature, and this thermometer is disposed at a high temperature in the boiler. Therefore, there is a problem that the thermometer itself is easily damaged.

本発明は、このような事情に鑑み、過熱器の管壁温度を計測する必要がなく、簡単な制御工程で過熱管の腐食を防止できる過熱装置を提供することを課題としている。   In view of such circumstances, it is an object of the present invention to provide a superheater that does not require measurement of the tube wall temperature of the superheater and can prevent corrosion of the superheater tube with a simple control process.

本発明に係る過熱装置は、廃棄物処理炉から排出される排ガスから熱回収するボイラに設けられ、排ガスとの熱交換により過熱管内の蒸気を過熱する複数の過熱器が直列に配された過熱装置であって、上記複数の過熱器は、過熱装置外から供給される蒸気を過熱して過熱蒸気を生成する一次過熱器と、該一次過熱器よりも高温下に配され該一次過熱器を経た過熱蒸気を過熱する二次過熱器と、該二次過熱器よりも低温下に配され該二次過熱器を経た過熱蒸気を過熱した後に過熱装置外へ送る三次過熱器とを有している。   The superheater according to the present invention is a superheater provided in a boiler that recovers heat from exhaust gas discharged from a waste treatment furnace, and a plurality of superheaters that superheat the steam in the superheater tube by heat exchange with the exhaust gas are arranged in series. The plurality of superheaters includes a primary superheater that superheats steam supplied from outside the superheater to generate superheated steam, and a temperature higher than that of the primary superheater. A secondary superheater that superheats the superheated steam that has passed through, and a tertiary superheater that is arranged at a lower temperature than the secondary superheater and that superheats the superheated steam that has passed through the secondary superheater and then sends it to the outside of the superheater. Yes.

かかる過熱装置において、本発明では、上記二次過熱器に送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する一次減温器と、一次減温器で減温され二次過熱器に送られる過熱蒸気の温度である二次過熱器入口温度を計測する二次過熱器入口温度計と、上記二次過熱器入口温度が所定の二次過熱器入口設定温度となるように、上記二次過熱器入口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整する一次制御装置と、上記三次過熱器に送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する二次減温器と、上記三次過熱器で過熱され過熱装置外へ送られる過熱蒸気の温度である三次過熱器出口温度を計測する三次過熱器出口温度計と、上記三次過熱器出口温度が所定の三次過熱器出口設定温度となるように、上記三次過熱器出口温度計の計測温度に基いて上記二次減温器での冷却水の供給量を調整する二次制御装置とを備えることを特徴としている。   In such a superheater, in the present invention, the primary superheater that supplies cooling water to the superheated steam sent to the secondary superheater to reduce the temperature of the superheated steam, and the secondary superheater that is reduced in temperature by the primary cooler. A secondary superheater inlet thermometer that measures the temperature of the secondary superheater inlet that is the temperature of the superheated steam sent to the heater, and the secondary superheater inlet temperature is a predetermined secondary superheater inlet set temperature, A primary control device that adjusts the supply amount of cooling water in the primary desuperheater based on the temperature measured by the secondary superheater inlet thermometer, and cooling water is supplied to superheated steam sent to the tertiary superheater. A secondary desuperheater that reduces the temperature of the superheated steam, a tertiary superheater outlet thermometer that measures the temperature of the superheated steam that is superheated by the tertiary superheater and sent to the outside of the superheater, and the above Adjust the temperature so that the tertiary superheater outlet temperature becomes the predetermined tertiary superheater outlet set temperature. Based on the measured temperature of the tertiary superheater outlet thermometer is characterized in that it comprises a secondary control unit and for adjusting the supply amount of the cooling water in the secondary desuperheater above.

本発明では、上述のように、一次制御装置が二次過熱器入口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整することにより、二次過熱器入口温度が調整される。また、二次制御装置が三次過熱器出口温度計の計測温度に基いて上記二次減温器での冷却水の供給量を調整することにより、上記三次過熱器出口温度が調整される。このように、本発明では、過熱蒸気の温度のみに基づいて減温器からの冷却水の供給量が調整されるようになっているので、従来のように過熱蒸気の温度のみならず過熱器の管壁の温度にも基づいて冷却水の供給量が調整される場合と比べて、冷却水の供給量の制御工程が簡単となる。また、本発明では、過熱器の管壁温度を温度計で計測する必要がないため、該温度計が損傷するという事態が生じることがない。   In the present invention, as described above, the primary control device adjusts the supply amount of the cooling water in the primary desuperheater based on the measured temperature of the secondary superheater inlet thermometer, thereby the secondary superheater inlet temperature. Is adjusted. Further, the secondary controller adjusts the supply amount of the cooling water in the secondary desuperheater based on the temperature measured by the tertiary superheater outlet thermometer, thereby adjusting the tertiary superheater outlet temperature. In this way, in the present invention, the amount of cooling water supplied from the temperature reducer is adjusted based only on the temperature of the superheated steam, so that not only the temperature of the superheated steam but the superheater as in the prior art. As compared with the case where the supply amount of the cooling water is adjusted based on the temperature of the pipe wall, the control process of the supply amount of the cooling water is simplified. Moreover, in this invention, since it is not necessary to measure the tube wall temperature of a superheater with a thermometer, the situation where this thermometer is damaged does not arise.

以上のように、本発明によると、各減温器からの冷却水の供給量が過熱蒸気の温度のみに基づいて調整されるので、従来のように過熱蒸気の温度のみならず過熱器の管壁の温度にも基づいて冷却水の供給量が調整される場合と比べて、過熱管の高温腐食防止のための冷却水の供給量の制御工程が簡単となり、コストを抑制することができる。また、過熱器の管壁温度を温度計で計測する必要がないため、該温度計が損傷するという事態が生じることがない。   As described above, according to the present invention, the amount of cooling water supplied from each desuperheater is adjusted based only on the temperature of the superheated steam. Compared with the case where the supply amount of the cooling water is adjusted based on the wall temperature, the control process of the supply amount of the cooling water for preventing the high temperature corrosion of the superheated pipe is simplified, and the cost can be suppressed. Moreover, since it is not necessary to measure the tube wall temperature of a superheater with a thermometer, the thermometer is not damaged.

本発明の実施形態に係る過熱装置の概要構成を示すブロック図である。It is a block diagram showing the outline composition of the superheater concerning the embodiment of the present invention.

以下、添付図面の図1にもとづき、本発明の一実施形態装置を説明する。   Hereinafter, an apparatus according to an embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

図1は、本発明の実施形態に係る過熱装置1の概要構成を示すブロック図である。該過熱装置1は、例えば廃棄物焼却炉等の廃棄物処理炉(図示せず)に併設され該廃棄物処理炉から排出される排ガスから熱回収するボイラ(図示せず)に設けられている。該過熱装置1は、ボイラ内に配され排ガスとの熱交換により過熱管内の蒸気を過熱する一次過熱器2、二次過熱器3および三次過熱器4(以下、必要に応じて「過熱器2,3,4」と総称する)を有している。   FIG. 1 is a block diagram showing a schematic configuration of a superheater 1 according to an embodiment of the present invention. The superheater 1 is provided, for example, in a boiler (not shown) that is attached to a waste treatment furnace (not shown) such as a waste incinerator and recovers heat from exhaust gas discharged from the waste treatment furnace. . The superheater 1 includes a primary superheater 2, a secondary superheater 3, and a tertiary superheater 4 (hereinafter referred to as “superheater 2 as necessary”, which are disposed in a boiler and superheat steam in a superheater pipe by heat exchange with exhaust gas. , 3, 4 ").

過熱器2,3,4は、過熱管同士が接続管6,7で接続されており、蒸気が一次過熱器2,二次過熱器3そして三次過熱器4の順に過熱管を流れながら過熱されるようになっている。具体的には、一次過熱器2と二次過熱器3とが接続管6で接続され、二次過熱器3と三次過熱器4とが接続管7で接続されている。また、一次過熱器2には、ボイラドラム(図示せず)から蒸気を受けるための導入管5が接続されており、三次過熱器4には、蒸気だめ(図示せず)へ過熱蒸気を送るための送出管8が接続されている。   The superheaters 2, 3, 4 are connected to each other through connecting pipes 6, 7, and the steam is heated while flowing through the superheater tubes in the order of the primary superheater 2, the secondary superheater 3, and the tertiary superheater 4. It has become so. Specifically, the primary superheater 2 and the secondary superheater 3 are connected by a connecting pipe 6, and the secondary superheater 3 and the tertiary superheater 4 are connected by a connecting pipe 7. The primary superheater 2 is connected to an introduction pipe 5 for receiving steam from a boiler drum (not shown), and the tertiary superheater 4 sends superheated steam to a steam sump (not shown). For this purpose, a delivery pipe 8 is connected.

本実施形態では、ボイラ内にて、排ガスの流れ方向で、二次過熱器3、三次過熱器4、一次過熱器2の順に配されている。つまり、二次過熱器3が三次過熱器4および一次過熱器2よりも高温下に配されているとともに、三次過熱器4が一次過熱器2よりも高温下に配されている。このような構成において、各過熱器2,3,4は、まず、一次過熱器2が、導入管5を経てボイラドラムから供給される蒸気を過熱して過熱蒸気を生成し、次に、二次過熱器3が、一次過熱器2を経た過熱蒸気を接続管6から受けて該過熱蒸気を過熱し、さらに、三次過熱器4が、二次過熱器3を経た過熱蒸気を接続管7から受けて該過熱蒸気をさらに過熱した後に、送出管8で蒸気だめへ送るようになっている。該蒸気だめへ送られた過熱蒸気は十分に高温となっており、該過熱蒸気の保有する熱エネルギーが、例えばタービン(図示せず)による発電等に利用される。   In the present embodiment, the secondary superheater 3, the tertiary superheater 4, and the primary superheater 2 are arranged in this order in the flow direction of the exhaust gas in the boiler. That is, the secondary superheater 3 is arranged at a higher temperature than the tertiary superheater 4 and the primary superheater 2, and the tertiary superheater 4 is arranged at a higher temperature than the primary superheater 2. In such a configuration, each of the superheaters 2, 3, 4 firstly generates a superheated steam by the primary superheater 2 heating the steam supplied from the boiler drum via the introduction pipe 5, and then The secondary superheater 3 receives the superheated steam that has passed through the primary superheater 2 from the connection pipe 6 and superheats the superheated steam. Further, the tertiary superheater 4 receives the superheated steam that has passed through the secondary superheater 3 from the connection pipe 7. In response to this, the superheated steam is further superheated and then sent to the steam sump by the delivery pipe 8. The superheated steam sent to the steam sump has a sufficiently high temperature, and the thermal energy possessed by the superheated steam is used, for example, for power generation by a turbine (not shown).

図1に見られるように、接続管6には、一次過熱器2から二次過熱器3へ送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する一次減温器9が設けられている。該一次減温器9からの冷却水によって上記過熱蒸気が十分に減温されることにより、該二次過熱器3がボイラ内で高温下に配されていても、該二次過熱器3の過熱管の管壁が過剰に高温となることがなくなり、該二次過熱器3の過熱管の高温腐食が良好に防止される。   As shown in FIG. 1, the connecting pipe 6 is provided with a primary temperature reducer 9 that supplies cooling water to the superheated steam sent from the primary superheater 2 to the secondary superheater 3 to reduce the temperature of the superheated steam. It has been. Even if the secondary superheater 3 is arranged at a high temperature in the boiler, the temperature of the superheated steam is sufficiently reduced by the cooling water from the primary temperature reducer 9. The tube wall of the superheater tube does not become excessively hot, and high-temperature corrosion of the superheater tube of the secondary superheater 3 is well prevented.

一次減温器9からの冷却水の供給量は、該一次減温器9に接続された一次流量調整弁10の開度が後述の一次制御装置15によって調整されることにより制御される。具体的には、一次制御装置15は、一次流量調整弁10の開度を大きくして冷却水の供給量を増加させることにより過熱蒸気をさらに減温し、一次流量調整弁10の開度を小さくして冷却水の供給量を減少させることにより過熱蒸気の減温を抑制する。   The amount of cooling water supplied from the primary temperature reducer 9 is controlled by adjusting the opening degree of the primary flow rate adjusting valve 10 connected to the primary temperature reducer 9 by a primary controller 15 described later. Specifically, the primary control device 15 further reduces the temperature of the superheated steam by increasing the amount of cooling water supplied by increasing the degree of opening of the primary flow rate regulating valve 10, and the degree of opening of the primary flow rate regulating valve 10. Decreasing the amount of cooling water supplied to reduce the temperature of superheated steam.

また、接続管6には、過熱蒸気の流れ方向での一次減温器9よりも下流側に、一次減温器9で減温され二次過熱器3に送られる過熱蒸気の温度である二次過熱器入口温度を計測する二次過熱器入口温度計11が設けられている。   Further, the connecting pipe 6 has a temperature of the superheated steam that is cooled by the primary temperature reducer 9 and sent to the secondary superheater 3 downstream of the primary temperature reducer 9 in the flow direction of the superheated steam. A secondary superheater inlet thermometer 11 for measuring the secondary superheater inlet temperature is provided.

接続管7には、二次過熱器3から三次過熱器4へ送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する二次減温器12が設けられている。該二次減温器12からの冷却水によって上記過熱蒸気が十分に減温されることにより、該三次過熱器4がボイラ内で高温下に配されていても、該三次過熱器4の過熱管の管壁が過剰に高温となることがなくなり、該三次過熱器4の過熱管の高温腐食が良好に防止される。   The connection pipe 7 is provided with a secondary temperature reducer 12 that supplies cooling water to the superheated steam sent from the secondary superheater 3 to the tertiary superheater 4 to reduce the temperature of the superheated steam. Even when the tertiary superheater 4 is disposed at a high temperature in the boiler, the superheated steam is sufficiently reduced by the cooling water from the secondary temperature reducer 12, so that the superheater of the tertiary superheater 4 is superheated. The tube wall of the tube is not excessively heated, and high-temperature corrosion of the superheated tube of the tertiary superheater 4 is well prevented.

二次減温器12からの冷却水の供給量は、該二次減温器12に接続された二次流量調整弁13の開度が後述の二次制御装置16によって調整されることにより制御される。具体的には、二次制御装置16は、二次流量調整弁13の開度を大きくして冷却水の供給量を増加させることにより過熱蒸気をさらに減温し、二次流量調整弁13の開度を小さくして冷却水の供給量を減少させることにより過熱蒸気の減温を抑制する。   The supply amount of the cooling water from the secondary temperature reducer 12 is controlled by adjusting the opening degree of the secondary flow rate adjusting valve 13 connected to the secondary temperature reducer 12 by a secondary control device 16 described later. Is done. Specifically, the secondary control device 16 further reduces the temperature of the superheated steam by increasing the opening amount of the secondary flow rate adjustment valve 13 and increasing the supply amount of the cooling water. Decreasing the temperature of the superheated steam by reducing the amount of cooling water supplied by reducing the opening.

接続管7には、過熱蒸気の流れ方向での二次減温器12よりも上流位置に、二次過熱器3から送られる過熱蒸気の温度である二次過熱器出口温度を計測する二次過熱器出口温度計(図示せず)が設けられてもよい。該二次過熱器出口温度計を設けることにより、二次過熱器出口温度が適正な温度となっているかどうかを確認することができる。また、送出管8には、三次過熱器4で過熱され蒸気だめへ送られる過熱蒸気の温度である三次過熱器出口温度を計測する三次過熱器出口温度計14が設けられている。   The connecting pipe 7 measures the secondary superheater outlet temperature, which is the temperature of the superheated steam sent from the secondary superheater 3, at a position upstream of the secondary desuperheater 12 in the superheated steam flow direction. A superheater outlet thermometer (not shown) may be provided. By providing the secondary superheater outlet thermometer, it can be confirmed whether the secondary superheater outlet temperature is an appropriate temperature. The delivery pipe 8 is provided with a tertiary superheater outlet thermometer 14 for measuring the tertiary superheater outlet temperature, which is the temperature of the superheated steam that is superheated by the tertiary superheater 4 and sent to the sump.

本実施形態に係る過熱装置1は、さらに、二次過熱器入口温度計11の計測温度に基いて一次減温器9での冷却水の供給量を調整する一次制御装置15と、三次過熱器出口温度計14の計測温度に基いて二次減温器12での冷却水の供給量を調整する二次制御装置16とを有している。   The superheater 1 according to the present embodiment further includes a primary controller 15 that adjusts the amount of cooling water supplied from the primary desuperheater 9 based on the temperature measured by the secondary superheater inlet thermometer 11, and a tertiary superheater. And a secondary control device 16 that adjusts the supply amount of the cooling water in the secondary temperature reducer 12 based on the temperature measured by the outlet thermometer 14.

本実施形態では、二次過熱器入口温度および三次過熱器出口温度のそれぞれについて、二次過熱器入口設定温度および三次過熱器出口設定温度が目標値として予め設定されている。また、三次過熱器出口設定温度から三次過熱器出口温度計14の計測温度を差し引いて得られる三次過熱器出口温度差について、許容可能な最大値としての三次過熱器出口最大許容温度差および許容可能な最小値としての三次過熱器出口最小許容温度差が予め設定されている。   In the present embodiment, for each of the secondary superheater inlet temperature and the tertiary superheater outlet temperature, the secondary superheater inlet set temperature and the tertiary superheater outlet set temperature are preset as target values. In addition, regarding the tertiary superheater outlet temperature difference obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer 14 from the set temperature of the tertiary superheater outlet, the maximum allowable temperature difference of the tertiary superheater outlet as an allowable maximum value and allowable The minimum allowable temperature difference of the tertiary superheater outlet as a minimum value is set in advance.

一次制御装置15は、二次過熱器入口設定温度から二次過熱器入口温度計の計測温度を差し引いた温度差(以下、「二次過熱器入口温度差」という)を算出し、該二次過熱器入口温度差をなくすように、すなわち、二次過熱器入口温度が所定の二次過熱器入口設定温度となるように、一次流量調整弁10の開度を調整して、一次減温器9からの冷却水の供給量を制御する。   The primary control device 15 calculates a temperature difference obtained by subtracting the measured temperature of the secondary superheater inlet thermometer from the set temperature of the secondary superheater inlet (hereinafter referred to as “secondary superheater inlet temperature difference”). The primary desuperheater is adjusted by adjusting the opening of the primary flow rate adjusting valve 10 so as to eliminate the temperature difference of the superheater inlet, that is, so that the secondary superheater inlet temperature becomes a predetermined secondary superheater inlet set temperature. The supply amount of the cooling water from 9 is controlled.

本実施形態では、二次過熱器入口設定温度は、二次過熱器3の過熱管における高温腐食の発生を防止できる程度の低い温度に設定されている。二次過熱器入口設定温度は所定の温度幅をもつ温度範囲として設定されていてもよい。一次減温器9からの十分な量の冷却水によって過熱蒸気が十分に減温されることにより、二次過熱器3がボイラ内で高温下に配されていても、二次過熱器3の過熱管の管壁が過剰に高温となることがなくなり、二次過熱器3の過熱管の高温腐食が良好に防止される。また、二次過熱器3の過熱管の管壁の温度が下がることにより、排ガスとの温度差が大きくなり伝熱率が高くなる効果がある。   In the present embodiment, the secondary superheater inlet set temperature is set to a low temperature that can prevent the occurrence of high-temperature corrosion in the superheater tube of the secondary superheater 3. The secondary superheater inlet set temperature may be set as a temperature range having a predetermined temperature range. Even if the secondary superheater 3 is disposed at a high temperature in the boiler by sufficiently reducing the temperature of the superheated steam by a sufficient amount of cooling water from the primary temperature reducer 9, the secondary superheater 3 The tube wall of the superheater tube does not become excessively hot, and high-temperature corrosion of the superheater tube of the secondary superheater 3 is well prevented. Moreover, when the temperature of the tube wall of the superheater tube of the secondary superheater 3 is lowered, there is an effect that the temperature difference with the exhaust gas is increased and the heat transfer rate is increased.

二次制御装置16は、三次過熱器出口設定温度から三次過熱器出口温度計14の計測温度を差し引いて三次過熱器出口温度差を算出し、該三次過熱器出口温度差をなくすように、すなわち、三次過熱器出口温度が所定の三次過熱器出口設定温度となるように、二次流量調整弁13の開度を調整して、二次減温器12での冷却水の供給量を制御する。   The secondary control device 16 calculates the tertiary superheater outlet temperature difference by subtracting the measured temperature of the tertiary superheater outlet thermometer 14 from the tertiary superheater outlet set temperature, so as to eliminate the tertiary superheater outlet temperature difference, that is, The amount of cooling water supplied from the secondary desuperheater 12 is controlled by adjusting the opening of the secondary flow rate adjustment valve 13 so that the tertiary superheater outlet temperature becomes a predetermined tertiary superheater outlet set temperature. .

本実施形態では、三次過熱器出口設定温度は、三次過熱器4から蒸気だめへ送出される過熱蒸気が十分な熱エネルギーを保有することを可能とする程度の高温に設定されている。なお、上記三次過熱器出口設定温度は所定の温度幅をもつ温度範囲として設定されていてもよい。   In this embodiment, the tertiary superheater outlet set temperature is set to a high temperature that allows the superheated steam sent from the tertiary superheater 4 to the steam sump to have sufficient thermal energy. The tertiary superheater outlet set temperature may be set as a temperature range having a predetermined temperature range.

本実施形態では、二次過熱器入口温度および三次過熱器出口温度に基づいて、すなわち過熱蒸気の温度のみに基づいて各減温器9,12からの冷却水の供給量が調整されるようになっているので、従来のように過熱蒸気の温度のみならず過熱器の管壁の温度にも基づいて冷却水の供給量が調整される場合と比べて、制御工程が簡単となり、コストを抑制できる。また、本実施形態では、上記管壁の温度を計測するための温度計をボイラ内で高温下に配する必要がないので、該温度計が損傷するという事態が生じることがない。   In the present embodiment, the supply amount of the cooling water from each of the temperature reducers 9 and 12 is adjusted based on the secondary superheater inlet temperature and the tertiary superheater outlet temperature, that is, based only on the temperature of the superheated steam. As a result, the control process is simplified and costs are reduced compared to the conventional case where the supply amount of cooling water is adjusted based not only on the temperature of superheated steam but also on the temperature of the tube wall of the superheater. it can. Moreover, in this embodiment, since it is not necessary to arrange the thermometer for measuring the temperature of the said tube wall under high temperature in a boiler, the situation where this thermometer does not arise does not arise.

本実施形態では、一次過熱器2,二次過熱器3そして三次過熱器4の合計三つの過熱器が直列に配されていることとしたが、これに代えて、一次過熱器と二次過熱器との間や二次過熱器3と三次過熱器4との間に他の過熱器が直列に配されていてもよい。   In the present embodiment, a total of three superheaters, a primary superheater 2, a secondary superheater 3, and a tertiary superheater 4, are arranged in series. Instead, the primary superheater and the secondary superheater are arranged. Another superheater may be arranged in series between the secondary superheater 3 and the tertiary superheater 4.

1 過熱装置
2 一次過熱器
3 二次過熱器
4 三次過熱器
9 一次減温器
11 二次過熱器入口温度計
12 二次減温器
14 三次過熱器出口温度計
15 一次制御装置
16 二次制御装置
DESCRIPTION OF SYMBOLS 1 Superheater 2 Primary superheater 3 Secondary superheater 4 Tertiary superheater 9 Primary desuperheater 11 Secondary superheater inlet thermometer 12 Secondary desuperheater 14 Tertiary superheater outlet thermometer 15 Primary controller 16 Secondary control apparatus

Claims (1)

廃棄物処理炉から排出される排ガスから熱回収するボイラに設けられ、排ガスとの熱交換により過熱管内の蒸気を過熱する複数の過熱器が直列に配された過熱装置であって、
上記複数の過熱器は、過熱装置外から供給される蒸気を過熱して過熱蒸気を生成する一次過熱器と、該一次過熱器よりも高温下に配され該一次過熱器を経た過熱蒸気を過熱する二次過熱器と、該二次過熱器よりも低温下に配され該二次過熱器を経た過熱蒸気を過熱した後に過熱装置外へ送る三次過熱器とを有している過熱装置において、
上記二次過熱器に送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する一次減温器と、
一次減温器で減温され二次過熱器に送られる過熱蒸気の温度である二次過熱器入口温度を計測する二次過熱器入口温度計と、
上記二次過熱器入口温度が所定の二次過熱器入口設定温度となるように、上記二次過熱器入口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整する一次制御装置と、
上記三次過熱器に送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する二次減温器と、
上記三次過熱器で過熱され過熱装置外へ送られる過熱蒸気の温度である三次過熱器出口温度を計測する三次過熱器出口温度計と、
上記三次過熱器出口温度が所定の三次過熱器出口設定温度となるように、上記三次過熱器出口温度計の計測温度に基いて上記二次減温器での冷却水の供給量を調整する二次制御装置とを備えることを特徴とする過熱装置。
A superheater in which a plurality of superheaters that are provided in a boiler that recovers heat from exhaust gas discharged from a waste treatment furnace and superheats steam in a superheater tube by heat exchange with exhaust gas are arranged in series,
The plurality of superheaters includes a primary superheater that superheats steam supplied from outside the superheater to generate superheated steam, and superheats superheated steam that is disposed at a higher temperature than the primary superheater and that passes through the primary superheater. A superheater having a secondary superheater and a tertiary superheater that is arranged at a lower temperature than the secondary superheater and that superheats the superheated steam that has passed through the secondary superheater and sends the superheated steam outside the superheater,
A primary desuperheater that supplies cooling water to the superheated steam sent to the secondary superheater to reduce the temperature of the superheated steam;
A secondary superheater inlet thermometer that measures the secondary superheater inlet temperature, which is the temperature of the superheated steam that is reduced in temperature by the primary desuperheater and sent to the secondary superheater;
Adjust the supply amount of cooling water in the primary desuperheater based on the measured temperature of the secondary superheater inlet thermometer so that the secondary superheater inlet temperature becomes a predetermined secondary superheater inlet set temperature A primary control device,
A secondary desuperheater that supplies cooling water to the superheated steam sent to the tertiary superheater to reduce the temperature of the superheated steam;
A tertiary superheater outlet thermometer for measuring a tertiary superheater outlet temperature, which is a temperature of superheated steam that is heated by the tertiary superheater and sent to the outside of the superheater;
Adjusting the supply amount of cooling water in the secondary desuperheater based on the measured temperature of the tertiary superheater outlet thermometer so that the tertiary superheater outlet temperature becomes a predetermined tertiary superheater outlet set temperature; A superheater comprising: a next control device.
JP2015199250A 2015-10-07 2015-10-07 Overheater Active JP6504525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199250A JP6504525B2 (en) 2015-10-07 2015-10-07 Overheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199250A JP6504525B2 (en) 2015-10-07 2015-10-07 Overheater

Publications (2)

Publication Number Publication Date
JP2017072312A true JP2017072312A (en) 2017-04-13
JP6504525B2 JP6504525B2 (en) 2019-04-24

Family

ID=58537222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199250A Active JP6504525B2 (en) 2015-10-07 2015-10-07 Overheater

Country Status (1)

Country Link
JP (1) JP6504525B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448926A (en) * 2017-07-20 2017-12-08 中国神华能源股份有限公司 Fired power generating unit reheat steam temperature control system and method
CN107620947A (en) * 2017-08-28 2018-01-23 浙江海洋大学 A kind of desuperheating water of superheater water system
CN110207097A (en) * 2019-05-31 2019-09-06 四川陆亨能源科技有限公司 A kind of efficient stable wear-resisting type superheater device
WO2021039311A1 (en) * 2019-08-30 2021-03-04 住友重機械工業株式会社 Boiler system, control method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602114U (en) * 1983-06-16 1985-01-09 株式会社東芝 Steam temperature control device
JPH05280704A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Configuration of superheater in heat recovery boiler
JPH05280707A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Superheater of waste heat recovery boiler in refuse incinerator
JPH0942606A (en) * 1995-07-31 1997-02-14 Babcock Hitachi Kk Once-through boiler steam temperature control device
US20080302102A1 (en) * 2007-06-07 2008-12-11 Emerson Process Management Power & Water Solutions, Inc. Steam Temperature Control in a Boiler System Using Reheater Variables

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602114U (en) * 1983-06-16 1985-01-09 株式会社東芝 Steam temperature control device
JPH05280704A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Configuration of superheater in heat recovery boiler
JPH05280707A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Superheater of waste heat recovery boiler in refuse incinerator
JPH0942606A (en) * 1995-07-31 1997-02-14 Babcock Hitachi Kk Once-through boiler steam temperature control device
US20080302102A1 (en) * 2007-06-07 2008-12-11 Emerson Process Management Power & Water Solutions, Inc. Steam Temperature Control in a Boiler System Using Reheater Variables

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448926A (en) * 2017-07-20 2017-12-08 中国神华能源股份有限公司 Fired power generating unit reheat steam temperature control system and method
CN107620947A (en) * 2017-08-28 2018-01-23 浙江海洋大学 A kind of desuperheating water of superheater water system
CN107620947B (en) * 2017-08-28 2019-05-21 浙江海洋大学 A kind of desuperheating water of superheater water system
CN110207097A (en) * 2019-05-31 2019-09-06 四川陆亨能源科技有限公司 A kind of efficient stable wear-resisting type superheater device
CN110207097B (en) * 2019-05-31 2023-12-26 四川陆亨能源科技有限公司 Efficient stable wear-resistant superheater device
WO2021039311A1 (en) * 2019-08-30 2021-03-04 住友重機械工業株式会社 Boiler system, control method, and program

Also Published As

Publication number Publication date
JP6504525B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
JP6504525B2 (en) Overheater
US9841185B2 (en) Steam temperature control using model-based temperature balancing
JP2013540231A5 (en)
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP2020085415A5 (en)
JP5370457B2 (en) Heating medium boiler
US10975771B2 (en) Gas turbine combined cycle plant and method for controlling gas turbine combined cycle plant
ITMI20090709A1 (en) METHOD AND APPARATUS FOR IMPROVING THE EFFICIENCY OF A HEAT GENERATOR FOR INDUSTRIAL OR DOMESTIC USE
JP2017072313A (en) Superheating device
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
EP3473820A1 (en) Method and installation of cogenertion in heat plants, especially those equipped with water-tube boilers
RU2738154C2 (en) Method for preliminary heating of fluid medium upstream of furnace
KR102678499B1 (en) Control device of once-through boiler, power plant and control method of once-through boiler
JP6685852B2 (en) Plant control equipment
JP5936965B2 (en) Steam supply system
JP2008292119A (en) Power generator
JP4453858B2 (en) Steam temperature control method and apparatus for once-through boiler
JP2016156516A5 (en)
JP2007155287A (en) Feed water heating control device for thermal power generation plant and its control method
JP2015175535A (en) Heat recovery device at waste incineration disposal facility and heat recovery adjusting method
JP2017219248A (en) Reheating system
JP6828612B2 (en) Binary power generation system
JP6092402B2 (en) Flexible operation of power plants
JP6117081B2 (en) Slow heat exchanger and boiler having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6504525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190317

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350