JP2017072313A - Superheating device - Google Patents

Superheating device Download PDF

Info

Publication number
JP2017072313A
JP2017072313A JP2015199251A JP2015199251A JP2017072313A JP 2017072313 A JP2017072313 A JP 2017072313A JP 2015199251 A JP2015199251 A JP 2015199251A JP 2015199251 A JP2015199251 A JP 2015199251A JP 2017072313 A JP2017072313 A JP 2017072313A
Authority
JP
Japan
Prior art keywords
superheater
temperature
outlet
tertiary
secondary superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015199251A
Other languages
Japanese (ja)
Inventor
清▲猗▼ 張
Qing-Yi Chang
清▲猗▼ 張
協司 岡崎
Kyoji Okazaki
協司 岡崎
香山 貴弘
Takahiro Kayama
貴弘 香山
彰人 菅野
Akihito Sugano
彰人 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2015199251A priority Critical patent/JP2017072313A/en
Publication of JP2017072313A publication Critical patent/JP2017072313A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superheating device capable of preventing corrosion of a superheater tube in a simple control process, without measuring a tube wall temperature of the superheater with a thermometer.SOLUTION: A primary controller 15 of a superheating device 1 compares a secondary superheater inlet temperature difference obtained by subtracting a measurement temperature of a secondary superheater inlet thermometer 11 from a predetermined secondary superheater inlet setting temperature with a secondary superheater outlet temperature difference obtained by subtracting a measurement temperature of a secondary superheater outlet thermometer 18 from a predetermined secondary superheater outlet setting temperature; when the secondary superheater inlet temperature difference is made larger, adjusts a supply amount of cooling water in a primary desuperheater 9 based on the measurement temperature of the secondary superheater inlet thermometer 11 so that the secondary superheater inlet temperature becomes the secondary superheater inlet setting temperature; and when the secondary superheater outlet temperature difference is made larger, adjusts the supply amount of cooling water in the primary desuperheater 9 based on the measurement temperature of the secondary superheater outlet thermometer 18 so that the secondary superheater outlet temperature becomes the secondary superheater outlet setting temperature.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物処理炉から排出される排ガスから熱回収するボイラに設けられ、排ガスとの熱交換により過熱管内の蒸気を過熱する複数の過熱器が直列に配された過熱装置に関する。   The present invention relates to a superheater in which a plurality of superheaters that are provided in a boiler that recovers heat from exhaust gas discharged from a waste treatment furnace and that superheats steam in a superheater tube by heat exchange with the exhaust gas are arranged in series.

廃棄物処理炉、例えば、ごみや産業廃棄物を焼却する焼却炉等に併設される熱回収ボイラに設けられた過熱装置は、過熱管群を有する過熱器がボイラ内に配されている。したがって、該過熱管群が、上記廃棄物処理炉から排出される排ガスに含まれる腐食性ガスと高温下で接触することにより腐食(高温腐食)する場合がある。そのため、過熱管群の材料には耐食性が求められるが、高価な高耐食性材料を使用すると、設備費用が嵩むという問題が生じる。   In a superheater provided in a heat recovery boiler provided in a waste treatment furnace, for example, an incinerator for incinerating garbage or industrial waste, a superheater having a superheater tube group is arranged in the boiler. Accordingly, the superheated tube group may corrode (high temperature corrosion) by contacting with a corrosive gas contained in the exhaust gas discharged from the waste treatment furnace at a high temperature. For this reason, the material of the superheated tube group is required to have corrosion resistance. However, when an expensive high corrosion resistance material is used, there is a problem that equipment costs increase.

そこで、過熱管群の高温腐食を防止するために、例えば特許文献1のように、過熱器の管壁温度を制御することが知られている。この特許文献1では、ボイラ内にて、高温過熱器、中温過熱器そして低温過熱器の三つの過熱器が、排ガスの上流側から順に配されている。これら三つの過熱器は過熱管同士が直列して接続されており、低温過熱器、中温過熱器そして高温過熱器の順に過熱管内を蒸気が流れることにより、該蒸気が排ガスとの熱交換により過熱され、過熱蒸気が生成されるようになっている。   Then, in order to prevent the high temperature corrosion of a superheated tube group, controlling the tube wall temperature of a superheater like patent document 1, for example is known. In this patent document 1, in a boiler, three superheaters, a high temperature superheater, an intermediate temperature superheater, and a low temperature superheater, are arranged in order from the upstream side of exhaust gas. In these three superheaters, superheater tubes are connected in series. Steam flows through the superheater tube in the order of a low-temperature superheater, medium-temperature superheater, and high-temperature superheater. Thus, superheated steam is generated.

また、低温過熱器と中温過熱器との接続位置には一次減温器がそして中温過熱器と高温過熱器との接続位置には二次減温器が設けられており、各減温器が過熱蒸気に冷却水を供給することにより、該過熱蒸気を冷却して過熱蒸気温度を制御するようになっている。このような特許文献1では、高温過熱器の入口付近での過熱蒸気温度および中温過熱器の出口付近での過熱管壁温度をそれぞれ計測し、それらの計測温度に基づいて一次減温器からの冷却水の供給量を調整する。また、高温過熱器の出口付近での過熱蒸気温度および過熱管壁温度をそれぞれ計測し、それらの計測温度に基づいて二次減温器からの冷却水の供給量を調整する。   A primary desuperheater is provided at the connection position between the low temperature superheater and the intermediate temperature superheater, and a secondary desuperheater is provided at the connection position between the intermediate temperature superheater and the high temperature superheater. By supplying cooling water to the superheated steam, the superheated steam is cooled to control the temperature of the superheated steam. In such a patent document 1, the superheated steam temperature near the inlet of the high-temperature superheater and the superheated tube wall temperature near the outlet of the intermediate-temperature superheater are respectively measured, and from the primary desuperheater based on those measured temperatures. Adjust the cooling water supply. In addition, the superheated steam temperature and the superheated tube wall temperature near the outlet of the high-temperature superheater are measured, and the supply amount of the cooling water from the secondary desuperheater is adjusted based on these measured temperatures.

特許文献1では、このようにして各減温器からの冷却水の供給量ひいては過熱蒸気の温度を調整して、ボイラ内の高温下で排ガスに含まれる腐食性ガスと接触する高温過熱器および中温過熱器のそれぞれの管壁温度を所定温度以下に抑えることにより、各過熱器の管壁の高温腐食を防止することとしている。   In Patent Document 1, in this way, the amount of cooling water supplied from each desuperheater, and thus the temperature of superheated steam, is adjusted, and a high temperature superheater that comes into contact with corrosive gas contained in exhaust gas at a high temperature in the boiler and By suppressing the tube wall temperature of each medium temperature superheater to a predetermined temperature or less, high temperature corrosion of the tube wall of each superheater is prevented.

特開平05−280707JP 05-280707

特許文献1では、各減温器からの冷却水の供給量は、二種類の計測温度、すなわち過熱蒸気の温度および過熱器の管壁温度の両方に基づいて制御されるので、一種類の計測温度に基づいて冷却水の供給量が制御される場合と比べて制御工程が複雑となり、コストが嵩んでしまう。また、過熱器の管壁温度を計測するためには、該管壁温度の計測位置で過熱管に温度計を設ける必要があるが、この温度計はボイラ内で高温下に配されることとなるので、該温度計自体が損傷しやすいという問題がある。   In Patent Document 1, the amount of cooling water supplied from each temperature reducer is controlled based on two types of measurement temperatures, that is, the temperature of the superheated steam and the temperature of the tube wall of the superheater. Compared with the case where the supply amount of the cooling water is controlled based on the temperature, the control process becomes complicated and the cost increases. In addition, in order to measure the tube wall temperature of the superheater, it is necessary to provide a thermometer on the superheater tube at the measurement position of the tube wall temperature, and this thermometer is disposed at a high temperature in the boiler. Therefore, there is a problem that the thermometer itself is easily damaged.

本発明は、このような事情に鑑み、過熱器の管壁温度を計測する必要がなく、簡単な制御工程で過熱管の腐食を防止できる過熱装置を提供することを課題としている。   In view of such circumstances, it is an object of the present invention to provide a superheater that does not require measurement of the tube wall temperature of the superheater and can prevent corrosion of the superheater tube with a simple control process.

本発明に係る過熱装置は、廃棄物処理炉から排出される排ガスから熱回収するボイラに設けられ、排ガスとの熱交換により過熱管内の蒸気を過熱する複数の過熱器が直列に配された過熱装置であって、上記複数の過熱器は、過熱装置外から供給される蒸気を過熱して過熱蒸気を生成する一次過熱器と、該一次過熱器よりも高温下に配され該一次過熱器を経た過熱蒸気を過熱する二次過熱器と、該二次過熱器よりも低温下に配され該二次過熱器を経た過熱蒸気を過熱した後に過熱装置外へ送る三次過熱器とを有している。   The superheater according to the present invention is a superheater provided in a boiler that recovers heat from exhaust gas discharged from a waste treatment furnace, and a plurality of superheaters that superheat the steam in the superheater tube by heat exchange with the exhaust gas are arranged in series. The plurality of superheaters includes a primary superheater that superheats steam supplied from outside the superheater to generate superheated steam, and a temperature higher than that of the primary superheater. A secondary superheater that superheats the superheated steam that has passed through, and a tertiary superheater that is arranged at a lower temperature than the secondary superheater and that superheats the superheated steam that has passed through the secondary superheater and then sends it to the outside of the superheater. Yes.

かかる過熱装置において、本発明では、上記二次過熱器に送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する一次減温器と、一次減温器で減温され二次過熱器に送られる過熱蒸気の温度である二次過熱器入口温度を計測する二次過熱器入口温度計と、二次過熱器で過熱された過熱蒸気の温度である二次過熱器出口温度を計測する二次過熱器出口温度計と、上記二次過熱器入口温度計の計測温度あるいは二次過熱器出口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整する一次制御装置と、上記三次過熱器で過熱され過熱装置外へ送られる過熱蒸気の温度である三次過熱器出口温度を計測する三次過熱器出口温度計と、上記三次過熱器出口温度が所定の三次過熱器出口設定温度となるように、上記三次過熱器出口温度計の計測温度に基いて上記二次減温器での冷却水の供給量を調整する二次制御装置とを備え、上記一次制御装置は、所定の二次過熱器入口設定温度から二次過熱器入口温度計の計測温度を差し引いて得られる二次過熱器入口温度差と、所定の二次過熱器出口設定温度から二次過熱器出口温度計の計測温度を差し引いて得られる二次過熱器出口温度差とを比較して、上記二次過熱器入口温度差の方が大きいときには、上記二次過熱器入口温度が上記二次過熱器入口設定温度となるように、上記二次過熱器入口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整し、上記二次過熱器出口温度差の方が大きいときには、上記二次過熱器出口温度が上記二次過熱器出口設定温度となるように、上記二次過熱器出口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整し、上記二次過熱器出口設定温度が、二次過熱器の過熱管群の高温腐食を回避する温度範囲と上記三次過熱器出口設定温度範囲とに基づき設定されることを特徴としている。   In such a superheater, in the present invention, the primary superheater that supplies cooling water to the superheated steam sent to the secondary superheater to reduce the temperature of the superheated steam, and the secondary superheater that is reduced in temperature by the primary cooler. The secondary superheater inlet thermometer that measures the temperature of the superheated steam that is sent to the heater, and the secondary superheater outlet temperature that is the temperature of the superheated steam that is superheated by the secondary superheater The amount of cooling water supplied to the primary desuperheater is adjusted based on the measured temperature of the secondary superheater outlet thermometer and the measured temperature of the secondary superheater inlet thermometer or the measured temperature of the secondary superheater outlet thermometer A primary control device, a tertiary superheater outlet thermometer for measuring a tertiary superheater outlet temperature that is a temperature of superheated steam that is superheated by the tertiary superheater and sent to the outside of the superheater, and the tertiary superheater outlet temperature is a predetermined tertiary The above-mentioned tertiary superheater outlet temperature is set so as to be the superheater outlet set temperature. A secondary control device that adjusts the supply amount of cooling water in the secondary desuperheater based on the measured temperature of the meter, and the primary control device is configured to perform secondary superheating from a predetermined secondary superheater inlet set temperature. Secondary superheater obtained by subtracting the measured temperature of the secondary superheater outlet thermometer from the secondary superheater inlet temperature difference obtained by subtracting the measured temperature of the inlet thermometer and the predetermined secondary superheater outlet set temperature Compared with the outlet temperature difference, when the secondary superheater inlet temperature difference is larger, the secondary superheater inlet temperature is set so that the secondary superheater inlet temperature becomes the secondary superheater inlet set temperature. The amount of cooling water supplied in the primary desuperheater is adjusted based on the temperature measured by the thermometer, and when the secondary superheater outlet temperature difference is larger, the secondary superheater outlet temperature is set to the secondary superheater. The temperature measured by the secondary superheater outlet thermometer so that the set outlet temperature is Based on the temperature of the secondary superheater outlet set temperature to avoid high temperature corrosion of the superheater tube group of the secondary superheater and the tertiary superheater outlet It is characterized in that it is set based on the set temperature range.

本発明では、上述のように、二次過熱器出口温度差よりも二次過熱器入口温度差の方が大きいときには、一次制御装置が二次過熱器入口温度計の計測温度に基いて一次減温器での冷却水の供給量を調整することにより、上記二次過熱器入口温度が調整される。また、二次過熱器入口温度差よりも二次過熱器出口温度差の方が大きいときには、一次制御装置が二次過熱器出口温度計の計測温度に基いて一次減温器での冷却水の供給量を調整することにより、上記二次過熱器出口温度が調整される。また、二次制御装置が三次過熱器出口温度計の計測温度に基いて二次減温器での冷却水の供給量を調整することにより、三次過熱器出口温度が調整される。   In the present invention, as described above, when the secondary superheater inlet temperature difference is larger than the secondary superheater outlet temperature difference, the primary controller reduces the primary reduction based on the measured temperature of the secondary superheater inlet thermometer. The secondary superheater inlet temperature is adjusted by adjusting the amount of cooling water supplied in the warmer. In addition, when the secondary superheater outlet temperature difference is larger than the secondary superheater inlet temperature difference, the primary controller determines that the cooling water in the primary desuperheater is based on the measured temperature of the secondary superheater outlet thermometer. The secondary superheater outlet temperature is adjusted by adjusting the supply amount. Further, the secondary control device adjusts the supply amount of the cooling water in the secondary desuperheater based on the measured temperature of the tertiary superheater outlet thermometer, thereby adjusting the tertiary superheater outlet temperature.

このように、本発明では、過熱蒸気の温度のみに基づいて減温器からの冷却水の供給量が調整されるようになっているので、従来のように過熱蒸気の温度のみならず過熱器の管壁の温度にも基づいて冷却水の供給量が調整される場合と比べて、冷却水の供給量の制御工程が簡単となる。また、本発明では、過熱器の管壁温度を温度計で計測する必要がないため、該温度計が損傷するという事態が生じることがない。   In this way, in the present invention, the amount of cooling water supplied from the temperature reducer is adjusted based only on the temperature of the superheated steam, so that not only the temperature of the superheated steam but the superheater as in the prior art. As compared with the case where the supply amount of the cooling water is adjusted based on the temperature of the pipe wall, the control process of the supply amount of the cooling water is simplified. Moreover, in this invention, since it is not necessary to measure the tube wall temperature of a superheater with a thermometer, the situation where this thermometer is damaged does not arise.

本発明において、過熱装置は、三次過熱器出口設定温度から三次過熱器出口温度計の計測温度を差し引いて得られる三次過熱器出口温度差に基づいて、二次過熱器出口設定温度を補正する補正装置をさらに有し、該補正装置は、上記三次過熱器出口温度差が所定の三次過熱器出口最大許容温度差より大きいときには、二次過熱器出口設定温度を高くする補正を行い、上記三次過熱器出口温度差が所定の三次過熱器出口最小許容温度差よりも小さいときには、二次過熱器出口設定温度を低くする補正を行うようになっていてもよい。   In the present invention, the superheater corrects the secondary superheater outlet set temperature based on the tertiary superheater outlet temperature difference obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer from the tertiary superheater outlet set temperature. And a correction device that corrects the secondary superheater outlet set temperature to be higher when the tertiary superheater outlet temperature difference is larger than a predetermined tertiary superheater outlet maximum allowable temperature difference. When the heater outlet temperature difference is smaller than a predetermined tertiary superheater outlet minimum allowable temperature difference, correction for lowering the secondary superheater outlet set temperature may be performed.

このように補正装置が上記三次過熱器出口温度差に基づいて二次過熱器出口設定温度を補正することにより、該三次過熱器出口温度差を三次過熱器出口最大許容温度差と三次過熱器出口最小許容温度差との間の範囲内に維持でき、三次過熱器からの過熱蒸気を適正な温度として、該過熱蒸気に十分な熱エネルギーを保有させることができる。   In this way, the correction device corrects the secondary superheater outlet set temperature based on the above-mentioned tertiary superheater outlet temperature difference, thereby obtaining the tertiary superheater outlet temperature difference and the tertiary superheater outlet maximum allowable temperature difference and the tertiary superheater outlet temperature. It can be maintained within a range between the minimum allowable temperature difference, and the superheated steam from the tertiary superheater can be set to an appropriate temperature so that the superheated steam has sufficient heat energy.

本発明において、一次制御装置は、二次過熱器入口温度差が所定の二次過熱器入口最大許容温度差より小さいときには、上記二次過熱器入口温度が上記二次過熱器入口設定温度となるように、上記二次過熱器入口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整する第一制御モードでの制御を行い、第一制御モードでの制御を行っているときに、所定の三次過熱器出口設定温度から三次過熱器出口温度計の計測温度を差し引いて得られる三次過熱器出口温度差が所定の三次過熱器出口最大許容温度差より大きいときには、二次過熱器出口温度差に基いて、上記二次過熱器出口温度が上記二次過熱器出口設定温度となるように、上記一次減温器での冷却水の供給量を調整する第二制御モードでの制御を行い、第二制御モードでの制御を行っているときに、三次過熱器出口温度差が所定の三次過熱器入口最小許容温度差より小さくなれば、第一制御モードでの制御を行うようになっていてもよい。   In the present invention, when the primary superheater inlet temperature difference is smaller than a predetermined secondary superheater inlet maximum allowable temperature difference, the primary superheater inlet temperature becomes the secondary superheater inlet set temperature. As described above, the control in the first control mode for adjusting the supply amount of the cooling water in the primary desuperheater is performed based on the measured temperature of the secondary superheater inlet thermometer, and the control in the first control mode is performed. When the tertiary superheater outlet temperature difference obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer from the predetermined tertiary superheater outlet set temperature is larger than the predetermined tertiary superheater outlet maximum allowable temperature difference, Second control that adjusts the supply amount of cooling water in the primary desuperheater so that the secondary superheater outlet temperature becomes the secondary superheater outlet set temperature based on the secondary superheater outlet temperature difference Control in mode, second control mode When performing the control of, the tertiary superheater outlet temperature difference becomes smaller than the predetermined tertiary superheater inlet minimum allowable temperature difference, it may be adapted to perform control in the first control mode.

このように、二次過熱器入口温度差が所定の二次過熱器入口最大許容温度差より小さくなっている通常時には、二次過熱器入口温度計の計測温度に基いて一次減温器での冷却水の供給量を調整する第一制御モードでの制御を行い、三次過熱器出口温度計の計測温度が低下し過ぎて三次過熱器出口温度差が所定の三次過熱器出口最大許容温度差より大きくなったときには、二次過熱器出口温度差に基いて、二次過熱器出口温度が二次過熱器出口設定温度となるように、一次減温器での冷却水の供給量を減少するように調整する第二制御モードでの制御を行い、第二制御モードでの制御を行っているときに、三次過熱器出口温度差が所定の三次過熱器入口最小許容温度差より小さくなれば、第一制御モードでの制御を行うようにすることにより、過熱管の高温腐食防止のための冷却水の供給量の制御を確実に行うことができるとともに、三次過熱器出口温度を三次過熱器出口設定温度に近い適正な温度に維持することができ、三次過熱器からの過熱蒸気に十分な熱エネルギーを保有させることができる。   In this way, at the normal time when the secondary superheater inlet temperature difference is smaller than the predetermined secondary superheater inlet maximum allowable temperature difference, based on the measured temperature of the secondary superheater inlet thermometer, Control in the first control mode that adjusts the cooling water supply amount, the measured temperature of the tertiary superheater outlet thermometer is too low, and the tertiary superheater outlet temperature difference is larger than the predetermined tertiary superheater outlet maximum allowable temperature difference When it becomes larger, the supply amount of cooling water in the primary desuperheater is decreased so that the secondary superheater outlet temperature becomes the secondary superheater outlet set temperature based on the difference in temperature of the secondary superheater outlet. When the control in the second control mode is adjusted and the control in the second control mode is performed, if the tertiary superheater outlet temperature difference becomes smaller than the predetermined tertiary superheater inlet minimum allowable temperature difference, By controlling in one control mode, It is possible to reliably control the amount of cooling water supplied to prevent hot corrosion of the heat pipe, and to maintain the tertiary superheater outlet temperature at an appropriate temperature close to the set temperature of the tertiary superheater outlet. The superheated steam from the vessel can have sufficient thermal energy.

以上のように、本発明によると、各減温器からの冷却水の供給量が過熱蒸気の温度のみに基づいて調整されるので、従来のように過熱蒸気の温度のみならず過熱器の管壁の温度にも基づいて冷却水の供給量が調整される場合と比べて、過熱管の高温腐食防止のための冷却水の供給量の制御工程が簡単となり、コストを抑制することができる。また、過熱器の管壁温度を温度計で計測する必要がないため、該温度計が損傷するという事態が生じることがない。   As described above, according to the present invention, the amount of cooling water supplied from each desuperheater is adjusted based only on the temperature of the superheated steam. Compared with the case where the supply amount of the cooling water is adjusted based on the wall temperature, the control process of the supply amount of the cooling water for preventing the high temperature corrosion of the superheated pipe is simplified, and the cost can be suppressed. Moreover, since it is not necessary to measure the tube wall temperature of a superheater with a thermometer, the thermometer is not damaged.

本発明の実施形態に係る過熱装置の概要構成を示すブロック図である。It is a block diagram showing the outline composition of the superheater concerning the embodiment of the present invention. 制御モードの選択の工程を示すフローチャートである。It is a flowchart which shows the process of selection of control mode. 第一制御モードでの制御工程を示すフローチャートである。It is a flowchart which shows the control process in 1st control mode. 二次過熱器出口設定温度の補正の工程を示すフローチャートである。It is a flowchart which shows the process of correction | amendment of secondary superheater exit preset temperature.

以下、添付図面の図1にもとづき、本発明の一実施形態装置を説明する。   Hereinafter, an apparatus according to an embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

図1は、本発明の実施形態に係る過熱装置1の概要構成を示すブロック図である。該過熱装置1は、例えば廃棄物焼却炉等の廃棄物処理炉(図示せず)に併設され該廃棄物処理炉から排出される排ガスから熱回収するボイラ(図示せず)に設けられている。該過熱装置1は、ボイラ内に配され排ガスとの熱交換により過熱管内の蒸気を過熱する一次過熱器2、二次過熱器3および三次過熱器4(以下、必要に応じて「過熱器2,3,4」と総称する)を有している。   FIG. 1 is a block diagram showing a schematic configuration of a superheater 1 according to an embodiment of the present invention. The superheater 1 is provided, for example, in a boiler (not shown) that is attached to a waste treatment furnace (not shown) such as a waste incinerator and recovers heat from exhaust gas discharged from the waste treatment furnace. . The superheater 1 includes a primary superheater 2, a secondary superheater 3, and a tertiary superheater 4 (hereinafter referred to as “superheater 2 as necessary”, which are disposed in a boiler and superheat steam in a superheater pipe by heat exchange with exhaust gas. , 3, 4 ").

過熱器2,3,4は、過熱管同士が接続管6,7で接続されており、蒸気が一次過熱器2,二次過熱器3そして三次過熱器4の順に過熱管を流れながら過熱されるようになっている。具体的には、一次過熱器2と二次過熱器3とが接続管6で接続され、二次過熱器3と三次過熱器4とが接続管7で接続されている。また、一次過熱器2には、ボイラドラム(図示せず)から蒸気を受けるための導入管5が接続されており、三次過熱器4には、蒸気だめ(図示せず)へ過熱蒸気を送るための送出管8が接続されている。   The superheaters 2, 3, 4 are connected to each other through connecting pipes 6, 7, and the steam is heated while flowing through the superheater tubes in the order of the primary superheater 2, the secondary superheater 3, and the tertiary superheater 4. It has become so. Specifically, the primary superheater 2 and the secondary superheater 3 are connected by a connecting pipe 6, and the secondary superheater 3 and the tertiary superheater 4 are connected by a connecting pipe 7. The primary superheater 2 is connected to an introduction pipe 5 for receiving steam from a boiler drum (not shown), and the tertiary superheater 4 sends superheated steam to a steam sump (not shown). For this purpose, a delivery pipe 8 is connected.

本実施形態では、ボイラ内にて、排ガスの流れ方向で、二次過熱器3、三次過熱器4、一次過熱器2の順に配されている。つまり、二次過熱器3が三次過熱器4および一次過熱器2よりも高温下に配されているとともに、三次過熱器4が一次過熱器2よりも高温下に配されている。このような構成において、各過熱器2,3,4は、まず、一次過熱器2が、導入管5を経て過熱装置1外から供給される蒸気を過熱して過熱蒸気を生成し、次に、二次過熱器3が、一次過熱器2を経た過熱蒸気を接続管6から受けて該過熱蒸気を過熱し、さらに、三次過熱器4が、二次過熱器3を経た過熱蒸気を接続管7から受けて該過熱蒸気をさらに過熱した後に、送出管8で蒸気だめへ送るようになっている。該蒸気だめへ送られた過熱蒸気は十分に高温となっており、該過熱蒸気の保有する熱エネルギーが、例えばタービン(図示せず)による発電等に利用される。   In the present embodiment, the secondary superheater 3, the tertiary superheater 4, and the primary superheater 2 are arranged in this order in the flow direction of the exhaust gas in the boiler. That is, the secondary superheater 3 is arranged at a higher temperature than the tertiary superheater 4 and the primary superheater 2, and the tertiary superheater 4 is arranged at a higher temperature than the primary superheater 2. In such a configuration, each of the superheaters 2, 3, 4 is firstly heated by the primary superheater 2 to superheat steam supplied from outside the superheater 1 through the introduction pipe 5, and then generates superheated steam. The secondary superheater 3 receives the superheated steam passed through the primary superheater 2 from the connection pipe 6 and superheats the superheated steam, and the tertiary superheater 4 connects the superheated steam passed through the secondary superheater 3 to the connection pipe. 7, the superheated steam is further superheated and then sent to the steam sump by the delivery pipe 8. The superheated steam sent to the steam sump has a sufficiently high temperature, and the thermal energy possessed by the superheated steam is used, for example, for power generation by a turbine (not shown).

図1に見られるように、接続管6には、一次過熱器2から二次過熱器3へ送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する一次減温器9が設けられている。該一次減温器9からの冷却水によって上記過熱蒸気が十分に減温されることにより、該二次過熱器3がボイラ内で高温下に配されていても、該二次過熱器3の過熱管の管壁が過剰に高温となることがなくなり、該二次過熱器3の過熱管の高温腐食が良好に防止される。   As shown in FIG. 1, the connecting pipe 6 is provided with a primary temperature reducer 9 that supplies cooling water to the superheated steam sent from the primary superheater 2 to the secondary superheater 3 to reduce the temperature of the superheated steam. It has been. Even if the secondary superheater 3 is arranged at a high temperature in the boiler, the temperature of the superheated steam is sufficiently reduced by the cooling water from the primary temperature reducer 9. The tube wall of the superheater tube does not become excessively hot, and high-temperature corrosion of the superheater tube of the secondary superheater 3 is well prevented.

一次減温器9からの冷却水の供給量は、該一次減温器9に接続された一次流量調整弁10の開度が後述の一次制御装置15によって調整されることにより制御される。具体的には、一次制御装置15は、一次流量調整弁10の開度を大きくして冷却水の供給量を増加させることにより過熱蒸気をさらに減温し、一次流量調整弁10の開度を小さくして冷却水の供給量を減少させることにより過熱蒸気の減温を抑制する。   The amount of cooling water supplied from the primary temperature reducer 9 is controlled by adjusting the opening degree of the primary flow rate adjusting valve 10 connected to the primary temperature reducer 9 by a primary controller 15 described later. Specifically, the primary control device 15 further reduces the temperature of the superheated steam by increasing the amount of cooling water supplied by increasing the degree of opening of the primary flow rate regulating valve 10, and the degree of opening of the primary flow rate regulating valve 10. Decreasing the amount of cooling water supplied to reduce the temperature of superheated steam.

また、接続管6には、過熱蒸気の流れ方向での一次減温器9よりも下流側に、一次減温器9で減温され二次過熱器3に送られる過熱蒸気の温度である二次過熱器入口温度を計測する二次過熱器入口温度計11が設けられている。   Further, the connecting pipe 6 has a temperature of the superheated steam that is cooled by the primary temperature reducer 9 and sent to the secondary superheater 3 downstream of the primary temperature reducer 9 in the flow direction of the superheated steam. A secondary superheater inlet thermometer 11 for measuring the secondary superheater inlet temperature is provided.

接続管7には、二次過熱器3から三次過熱器4へ送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する二次減温器12が設けられている。該二次減温器12からの冷却水によって上記過熱蒸気が十分に減温されることにより、該三次過熱器4がボイラ内で高温下に配されていても、該三次過熱器4の過熱管の管壁が過剰に高温となることがなくなり、該三次過熱器4の過熱管の高温腐食が良好に防止される。   The connection pipe 7 is provided with a secondary temperature reducer 12 that supplies cooling water to the superheated steam sent from the secondary superheater 3 to the tertiary superheater 4 to reduce the temperature of the superheated steam. Even when the tertiary superheater 4 is disposed at a high temperature in the boiler, the superheated steam is sufficiently reduced by the cooling water from the secondary temperature reducer 12, so that the superheater of the tertiary superheater 4 is superheated. The tube wall of the tube is not excessively heated, and high-temperature corrosion of the superheated tube of the tertiary superheater 4 is well prevented.

二次減温器12からの冷却水の供給量は、該二次減温器12に接続された二次流量調整弁13の開度が後述の二次制御装置16によって調整されることにより制御される。具体的には、二次制御装置16は、二次流量調整弁13の開度を大きくして冷却水の供給量を増加させることにより過熱蒸気をさらに減温し、二次流量調整弁13の開度を小さくして冷却水の供給量を減少させることにより過熱蒸気の減温を抑制する。   The supply amount of the cooling water from the secondary temperature reducer 12 is controlled by adjusting the opening degree of the secondary flow rate adjusting valve 13 connected to the secondary temperature reducer 12 by a secondary control device 16 described later. Is done. Specifically, the secondary control device 16 further reduces the temperature of the superheated steam by increasing the opening amount of the secondary flow rate adjustment valve 13 and increasing the supply amount of the cooling water. Decreasing the temperature of the superheated steam by reducing the amount of cooling water supplied by reducing the opening.

接続管7には、過熱蒸気の流れ方向での二次減温器12よりも上流側に、二次過熱器3で過熱された過熱蒸気の温度である二次過熱器出口温度を計測する二次過熱器出口温度計18が設けられている。また、送出管8には、三次過熱器4で過熱され蒸気だめへ送られる過熱蒸気の温度である三次過熱器出口温度を計測する三次過熱器出口温度計14が設けられている。   The connecting pipe 7 measures the secondary superheater outlet temperature, which is the temperature of the superheated steam superheated by the secondary superheater 3, upstream of the secondary desuperheater 12 in the superheated steam flow direction. A next superheater outlet thermometer 18 is provided. The delivery pipe 8 is provided with a tertiary superheater outlet thermometer 14 for measuring the tertiary superheater outlet temperature, which is the temperature of the superheated steam that is superheated by the tertiary superheater 4 and sent to the sump.

本実施形態に係る過熱装置1は、さらに、二次過熱器入口温度計11の計測温度あるいは二次過熱器出口温度計18の計測温度に基いて一次減温器9での冷却水の供給量を調整する一次制御装置15と、三次過熱器出口温度計14の計測温度に基いて二次減温器12での冷却水の供給量を調整する二次制御装置16と、後述の二次過熱器出口設定温度を補正する補正装置17とを有している。   The superheater 1 according to the present embodiment further supplies the cooling water supply amount in the primary desuperheater 9 based on the measured temperature of the secondary superheater inlet thermometer 11 or the measured temperature of the secondary superheater outlet thermometer 18. A primary control device 15 that adjusts the amount of cooling water, a secondary control device 16 that adjusts the amount of cooling water supplied from the secondary desuperheater 12 based on the temperature measured by the tertiary superheater outlet thermometer 14, and a secondary superheater described later. And a correction device 17 for correcting the set outlet outlet temperature.

本実施形態では、二次過熱器入口温度、二次過熱器出口温度、三次過熱器出口温度のそれぞれについて、二次過熱器入口設定温度、二次過熱器出口設定温度、三次過熱器出口設定温度が目標値として予め設定されている。また、二次過熱器入口設定温度から二次過熱器入口温度計11の計測温度を差し引いて得られる二次過熱器入口温度差そして二次過熱器出口設定温度から二次過熱器出口温度計18の計測温度を差し引いて得られる二次過熱器出口温度差のそれぞれについて、許容可能な最大値としての二次過熱器入口最大許容温度差および二次過熱器出口最大許容温度差が予め設定されている。さらに、三次過熱器出口設定温度から三次過熱器出口温度計14の計測温度を差し引いて得られる三次過熱器出口温度差について、許容可能な最大値としての三次過熱器出口最大許容温度差および許容可能な最小値としての三次過熱器出口最小許容温度差が予め設定されている。   In the present embodiment, for each of the secondary superheater inlet temperature, secondary superheater outlet temperature, and tertiary superheater outlet temperature, the secondary superheater inlet set temperature, the secondary superheater outlet set temperature, the tertiary superheater outlet set temperature. Is preset as a target value. Further, the secondary superheater outlet thermometer 18 is obtained from the secondary superheater inlet temperature difference obtained by subtracting the measured temperature of the secondary superheater inlet thermometer 11 from the secondary superheater inlet set temperature and the secondary superheater outlet set temperature. For each secondary superheater outlet temperature difference obtained by subtracting the measured temperature, the maximum allowable temperature difference at the secondary superheater inlet and the maximum allowable temperature difference at the secondary superheater outlet are preset as allowable maximum values. Yes. Further, regarding the tertiary superheater outlet temperature difference obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer 14 from the set temperature of the tertiary superheater outlet, the maximum allowable temperature difference of the tertiary superheater outlet as the maximum allowable value and the allowable The minimum allowable temperature difference of the tertiary superheater outlet as a minimum value is set in advance.

一次制御装置15は、二次過熱器入口温度差と二次過熱器入口最大許容温度差との大小関係そして二次過熱器出口温度差と二次過熱器出口最大許容温度差との大小関係に基づいて、通常時における制御モードとしての第一制御モードと非常時における制御モードとしての第二制御モードのうちのいずれかを選択し、選択した制御モードで一次減温器9からの冷却水の供給量を制御する。   The primary controller 15 determines the magnitude relationship between the secondary superheater inlet temperature difference and the secondary superheater inlet maximum allowable temperature difference and the magnitude relationship between the secondary superheater outlet temperature difference and the secondary superheater outlet maximum allowable temperature difference. Based on the first control mode as the control mode in normal time and the second control mode as the control mode in emergency, the cooling water from the primary temperature reducer 9 is selected in the selected control mode. Control the supply amount.

図2は、制御モードの選択の工程を示すフローチャートである。まず、一次制御装置15が、二次過熱器入口設定温度から二次過熱器入口温度計11の計測温度を差し引いて二次過熱器入口温度差を算出する(S1)。二次過熱器入口温度差が二次過熱器入口最大許容温度差よりも小さいときには、一次制御装置15は、通常時として第一制御モードを選択して、後述するように、該第一制御モードで一次減温器9での冷却水の供給量を制御する(S2)。   FIG. 2 is a flowchart showing a control mode selection process. First, the primary controller 15 subtracts the measured temperature of the secondary superheater inlet thermometer 11 from the set temperature of the secondary superheater inlet to calculate the secondary superheater inlet temperature difference (S1). When the secondary superheater inlet temperature difference is smaller than the secondary superheater inlet maximum allowable temperature difference, the primary controller 15 selects the first control mode as a normal time and, as will be described later, the first control mode Then, the supply amount of the cooling water in the primary temperature reducer 9 is controlled (S2).

第一制御モードでの制御を行っているときに、所定の三次過熱器出口設定温度から三次過熱器出口温度計の計測温度を差し引いて得られる三次過熱器出口温度差が所定の三次過熱器出口最大許容温度差より大きいときには(S3のY)、一次制御装置15は、第二制御モードを選択して、後述するように、該第二制御モードで一次減温器9での冷却水の供給量を制御する(S4)。一方、三次過熱器出口温度差が三次過熱器出口最大許容温度差よりも小さいときには(S3のN)、一次制御装置15は、第一制御モードを選択して第一制御モードでの制御を続行する。第二制御モードでの制御を行っているときに、三次過熱器出口温度差が所定の三次過熱器出口最小許容温度差より小さいときには(S5のY)、一次制御装置15は、第一制御モードを選択して、後述するように、該第一制御モードで一次減温器9での冷却水の供給量を制御する(S6)。一方、三次過熱器出口温度差が三次過熱器出口最小許容温度差よりも大きいときには(S5のN)、一次制御装置15は、第二制御モードを選択して第二制御モードでの制御を続行する。   When performing control in the first control mode, the temperature difference of the tertiary superheater outlet obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer from the predetermined tertiary superheater outlet set temperature is the predetermined tertiary superheater outlet When the difference is larger than the maximum allowable temperature difference (Y in S3), the primary control device 15 selects the second control mode and supplies the cooling water in the primary temperature reducer 9 in the second control mode, as will be described later. The amount is controlled (S4). On the other hand, when the tertiary superheater outlet temperature difference is smaller than the tertiary superheater outlet maximum allowable temperature difference (N in S3), the primary controller 15 selects the first control mode and continues the control in the first control mode. To do. When performing the control in the second control mode, when the tertiary superheater outlet temperature difference is smaller than the predetermined tertiary superheater outlet minimum allowable temperature difference (Y in S5), the primary control device 15 is in the first control mode. As described later, the supply amount of the cooling water in the primary temperature reducer 9 is controlled in the first control mode (S6). On the other hand, when the tertiary superheater outlet temperature difference is larger than the tertiary superheater outlet minimum allowable temperature difference (N in S5), the primary controller 15 selects the second control mode and continues control in the second control mode. To do.

次に、一次制御装置15による制御工程を第一制御モードそして第二制御モードでの順に説明する。   Next, the control process by the primary controller 15 will be described in the order of the first control mode and the second control mode.

<第一制御モード>
第一制御モードにおいて、一次制御装置15は、図3に基づいて後述するように、二次過熱器入口温度差および二次過熱器出口温度差を算出し、両者を比較して、上記二次過熱器入口温度差の方が大きいときには、上記二次過熱器入口温度計11の計測温度に基いて上記一次減温器9での冷却水の供給量を調整し、上記二次過熱器出口温度差の方が大きいときには、上記二次過熱器出口温度計18の計測温度に基いて上記一次減温器9での冷却水の供給量を調整する。
<First control mode>
In the first control mode, the primary controller 15 calculates the secondary superheater inlet temperature difference and the secondary superheater outlet temperature difference, as described later with reference to FIG. When the superheater inlet temperature difference is larger, the supply amount of the cooling water in the primary desuperheater 9 is adjusted based on the measured temperature of the secondary superheater inlet thermometer 11, and the secondary superheater outlet temperature is adjusted. When the difference is larger, the supply amount of the cooling water in the primary temperature reducer 9 is adjusted based on the temperature measured by the secondary superheater outlet thermometer 18.

図3は、第一制御モードでの制御工程を示すフローチャートである。まず、一次制御装置15は、二次過熱器入口設定温度から二次過熱器入口温度計11の計測温度を差し引いて二次過熱器入口温度差を算出する(S1)。また、一次制御装置15は、二次過熱器出口設定温度から二次過熱器出口温度計18の計測温度を差し引いて二次過熱器出口温度差を算出する(S2)。このS1とS2は、どちらが先に実行されてもよく、また、同時に実行されてもよい。   FIG. 3 is a flowchart showing a control process in the first control mode. First, the primary controller 15 calculates the secondary superheater inlet temperature difference by subtracting the measured temperature of the secondary superheater inlet thermometer 11 from the set temperature of the secondary superheater inlet (S1). Moreover, the primary control apparatus 15 calculates a secondary superheater exit temperature difference by subtracting the measured temperature of the secondary superheater exit thermometer 18 from the secondary superheater exit set temperature (S2). Either S1 or S2 may be executed first or may be executed simultaneously.

一次制御装置15は、S1で算出された二次過熱器入口温度差とS2で算出された二次過熱器出口温度差とを比較して、二次過熱器入口温度差の方が大きいときには(S3のY)、二次過熱器入口温度が二次過熱器入口設定温度となるように、二次過熱器入口温度計11の計測温度に基いて一次減温器9での冷却水の供給量を調整する(S4)。一方、二次過熱器出口温度差の方が大きいときには(S3のN)、一次制御装置15は、二次過熱器出口温度が二次過熱器出口設定温度となるように、二次過熱器出口温度計18の計測温度に基いて一次減温器9での冷却水の供給量を調整する(S5)。   The primary controller 15 compares the secondary superheater inlet temperature difference calculated in S1 with the secondary superheater outlet temperature difference calculated in S2, and when the secondary superheater inlet temperature difference is larger ( Y of S3), the supply amount of cooling water in the primary desuperheater 9 based on the measured temperature of the secondary superheater inlet thermometer 11 so that the secondary superheater inlet temperature becomes the secondary superheater inlet set temperature Is adjusted (S4). On the other hand, when the secondary superheater outlet temperature difference is larger (N in S3), the primary controller 15 sets the secondary superheater outlet temperature so that the secondary superheater outlet temperature becomes the secondary superheater outlet set temperature. Based on the temperature measured by the thermometer 18, the supply amount of the cooling water in the primary temperature reducer 9 is adjusted (S5).

本実施形態では、二次過熱器入口設定温度は、二次過熱器3の過熱管における高温腐食の発生を防止できる程度の低い温度に設定されている。二次過熱器入口設定温度は所定の温度幅をもつ温度範囲として設定されていてもよい。   In the present embodiment, the secondary superheater inlet set temperature is set to a low temperature that can prevent the occurrence of high-temperature corrosion in the superheater tube of the secondary superheater 3. The secondary superheater inlet set temperature may be set as a temperature range having a predetermined temperature range.

また、本実施形態では、二次過熱器出口設定温度は、三次過熱器4から蒸気だめへ送出される過熱蒸気が十分な熱エネルギーを保有することを可能とする程度の高温に設定されている。後述するように、この二次過熱器出口設定温度は、三次過熱器出口温度差に基づいて、補正装置17によって補正されるようになっている。なお、上記二次過熱器入口設定温度は所定の温度幅をもつ温度範囲として設定されていてもよい。   Further, in the present embodiment, the secondary superheater outlet set temperature is set to a high temperature that allows the superheated steam sent from the tertiary superheater 4 to the steam sump to have sufficient thermal energy. . As will be described later, the secondary superheater outlet set temperature is corrected by the correction device 17 based on the tertiary superheater outlet temperature difference. The secondary superheater inlet set temperature may be set as a temperature range having a predetermined temperature range.

本実施形態では、二次過熱器入口温度差と二次過熱器出口温度差とを比較して、大きい方の温度差を小さくするように、すなわち設定温度から低くなり過ぎた方の過熱蒸気を昇温するように、一次減温器9での冷却水の供給量を調整するようになっている。したがって、二次過熱器3の過熱管の高温腐食の防止そして三次過熱器4からの過熱蒸気の十分な熱エネルギーの確保という二つの効果を両方とも確実に得ることができる。   In this embodiment, the secondary superheater inlet temperature difference and the secondary superheater outlet temperature difference are compared, and the larger temperature difference is reduced, i.e., the superheated steam that has become too low from the set temperature. The supply amount of the cooling water in the primary temperature reducer 9 is adjusted so as to increase the temperature. Therefore, both of the two effects of preventing the high temperature corrosion of the superheated tube of the secondary superheater 3 and ensuring sufficient thermal energy of the superheated steam from the tertiary superheater 4 can be surely obtained.

二次制御装置16は、三次過熱器出口設定温度から三次過熱器出口温度計14の計測温度を差し引いて三次過熱器出口温度差を算出し、該三次過熱器出口温度差をなくすように、すなわち、三次過熱器出口温度が所定の三次過熱器出口設定温度となるように、二次流量調整弁13の開度を調整して、二次減温器12での冷却水の供給量を制御する。   The secondary control device 16 calculates the tertiary superheater outlet temperature difference by subtracting the measured temperature of the tertiary superheater outlet thermometer 14 from the tertiary superheater outlet set temperature, so as to eliminate the tertiary superheater outlet temperature difference, that is, The amount of cooling water supplied from the secondary desuperheater 12 is controlled by adjusting the opening of the secondary flow rate adjustment valve 13 so that the tertiary superheater outlet temperature becomes a predetermined tertiary superheater outlet set temperature. .

本実施形態では、三次過熱器出口設定温度は、三次過熱器4から過熱装置1外へ送出される過熱蒸気が十分な熱エネルギーを保有することを可能とする程度の高温に設定されている。なお、上記三次過熱器出口設定温度は所定の温度幅をもつ温度範囲として設定されていてもよい。   In this embodiment, the tertiary superheater outlet set temperature is set to a high temperature that allows the superheated steam delivered from the tertiary superheater 4 to the outside of the superheater 1 to have sufficient thermal energy. The tertiary superheater outlet set temperature may be set as a temperature range having a predetermined temperature range.

<第二制御モード>
第一制御モードでの制御を行っているときに、所定の三次過熱器出口設定温度から三次過熱器出口温度計の計測温度を差し引いて得られる三次過熱器出口温度差が所定の三次過熱器出口最大許容温度差より大きいときには、一次制御装置15は、第二制御モードを選択して実行する。第二制御モードにおいて、一次制御装置15は、二次過熱器出口温度差に基いて、上記二次過熱器出口温度が上記二次過熱器出口設定温度となるように、上記一次減温器での冷却水の供給量を調整する。つまり、第二制御モードでは、三次過熱器出口温度が設定温度から低くなり過ぎてしまった状況において、二次過熱器出口温度差が小さくなるように、一次減温器での冷却水の供給量を調整する。この結果、二次過熱器出口温度が二次過熱器出口設定温度に近づくので、三次過熱器出口温度も三次過熱器出口設定温度に近い適正な温度に維持することができ、三次過熱器からの過熱蒸気に十分な熱エネルギーを確実に保有させることができる。
<Second control mode>
When performing control in the first control mode, the temperature difference of the tertiary superheater outlet obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer from the predetermined tertiary superheater outlet set temperature is the predetermined tertiary superheater outlet When larger than the maximum allowable temperature difference, the primary control device 15 selects and executes the second control mode. In the second control mode, the primary control device 15 is the primary desuperheater so that the secondary superheater outlet temperature becomes the secondary superheater outlet set temperature based on the secondary superheater outlet temperature difference. Adjust the amount of cooling water supplied. In other words, in the second control mode, in the situation where the tertiary superheater outlet temperature has become too low from the set temperature, the amount of cooling water supplied by the primary desuperheater is reduced so that the secondary superheater outlet temperature difference becomes small. Adjust. As a result, since the secondary superheater outlet temperature approaches the secondary superheater outlet set temperature, the tertiary superheater outlet temperature can also be maintained at an appropriate temperature close to the tertiary superheater outlet set temperature, and from the tertiary superheater. It is possible to ensure that the superheated steam has sufficient thermal energy.

本実施形態では、二次過熱器入口温度、二次過熱器出口温度および三次過熱器出口温度に基づいて、すなわち過熱蒸気の温度のみに基づいて各減温器9,12からの冷却水の供給量が調整されるようになっているので、従来のように過熱蒸気の温度のみならず過熱器の管壁の温度にも基づいて冷却水の供給量が調整される場合と比べて、制御工程が簡単となり、コストを抑制できる。また、本実施形態では、上記管壁の温度を計測するための温度計をボイラ内で高温下に配する必要がないので、該温度計が損傷するという事態が生じることがない。   In this embodiment, based on the secondary superheater inlet temperature, the secondary superheater outlet temperature, and the tertiary superheater outlet temperature, that is, based on only the temperature of the superheated steam, the cooling water is supplied from each of the temperature reducers 9 and 12. Since the amount is adjusted, the control process is compared to the case where the supply amount of cooling water is adjusted based not only on the temperature of the superheated steam but also on the temperature of the tube wall of the superheater as in the past. Can be simplified and the cost can be reduced. Moreover, in this embodiment, since it is not necessary to arrange the thermometer for measuring the temperature of the said tube wall under high temperature in a boiler, the situation where this thermometer does not arise does not arise.

補正装置17は、二次制御装置16によって算出された三次過熱器出口温度差を、三次過熱器出口温度最大許容温度差および三次過熱器出口温度最小許容温度差と比較して、その比較結果に基づいて、二次過熱器出口設定温度を補正する。該二次過熱器出口設定温度の補正は、定期的に所定のタイミングで行われてもよく、また、連続的に行われてもよい。   The correction device 17 compares the tertiary superheater outlet temperature difference calculated by the secondary control device 16 with the tertiary superheater outlet temperature maximum allowable temperature difference and the tertiary superheater outlet temperature minimum allowable temperature difference, and determines the comparison result. Based on this, the secondary superheater outlet set temperature is corrected. The correction of the secondary superheater outlet set temperature may be periodically performed at a predetermined timing or may be continuously performed.

図4は、二次過熱器入口設定温度の補正の工程を示すフローチャートである。以下、この図4に基づいて二次過熱器出口設定温度の補正を説明する。まず、二次制御装置16が、三次過熱器出口設定温度から三次過熱器出口温度計14の計測温度を差し引いて三次過熱器出口温度差を算出する(S1)。   FIG. 4 is a flowchart showing a process of correcting the secondary superheater inlet set temperature. Hereinafter, the correction of the secondary superheater outlet set temperature will be described with reference to FIG. First, the secondary control device 16 calculates the tertiary superheater outlet temperature difference by subtracting the measured temperature of the tertiary superheater outlet thermometer 14 from the tertiary superheater outlet set temperature (S1).

S1で算出された三次過熱器出口温度差が三次過熱器出口最大許容温度差よりも大きいとき(S2のY)、すなわち、三次過熱器出口温度が低くなり過ぎているときには、補正装置17は二次過熱器出口設定温度を高くする補正を行う(S3)。このような補正を行うことにより、二次過熱器3からの過熱蒸気が昇温され、その結果、三次過熱器4からの過熱蒸気も昇温され、三次過熱器出口温度を許容可能な温度範囲内に維持できる。   When the tertiary superheater outlet temperature difference calculated in S1 is larger than the tertiary superheater outlet maximum allowable temperature difference (Y of S2), that is, when the tertiary superheater outlet temperature is too low, the correction device 17 Correction for increasing the next superheater outlet set temperature is performed (S3). By performing such correction, the temperature of the superheated steam from the secondary superheater 3 is increased. As a result, the temperature of the superheated steam from the tertiary superheater 4 is also increased, and the temperature range in which the tertiary superheater outlet temperature can be allowed. Can be maintained within.

また、S1で算出された三次過熱器出口温度差が三次過熱器出口最大許容温度差よりも小さいとき(S2のN)、すなわち、三次過熱器出口温度が高くなり過ぎているときには、三次過熱器出口温度差が三次過熱器出口最小許容温度差よりも小さければ(S4のY)、補正装置17は二次過熱器出口設定温度を低くする補正を行う(S5)。このような補正を行うことにより、二次過熱器3からの過熱蒸気が減温され、その結果、三次過熱器4からの過熱蒸気も減温され、三次過熱器出口温度を許容可能な温度範囲内に維持できる。一方、三次過熱器出口温度差が三次過熱器出口最小許容温度差よりも大きければ(S4のN)、補正装置17は二次過熱器出口設定温度を補正しない。   Further, when the tertiary superheater outlet temperature difference calculated in S1 is smaller than the tertiary superheater outlet maximum allowable temperature difference (N of S2), that is, when the tertiary superheater outlet temperature is too high, the tertiary superheater If the outlet temperature difference is smaller than the tertiary superheater outlet minimum allowable temperature difference (Y in S4), the correction device 17 performs correction to lower the secondary superheater outlet set temperature (S5). By performing such correction, the temperature of the superheated steam from the secondary superheater 3 is reduced. As a result, the temperature of the superheated steam from the tertiary superheater 4 is also reduced, and the temperature range in which the tertiary superheater outlet temperature is allowable. Can be maintained within. On the other hand, if the tertiary superheater outlet temperature difference is larger than the tertiary superheater outlet minimum allowable temperature difference (N in S4), the correction device 17 does not correct the secondary superheater outlet set temperature.

本実施形態では、上述したように補正装置17が三次過熱器出口温度差に基づいて二次過熱器入口設定温度を補正するので、三次過熱器出口温度差を三次過熱器出口最大許容温度差と三次過熱器出口最小許容温度差との間の範囲内に維持でき、三次過熱器4からの過熱蒸気を適正な温度として、該過熱蒸気に十分な熱エネルギーを保有させることができる。   In this embodiment, since the correction device 17 corrects the secondary superheater inlet set temperature based on the tertiary superheater outlet temperature difference as described above, the tertiary superheater outlet temperature difference is set to the tertiary superheater outlet maximum allowable temperature difference. It can be maintained within a range between the minimum allowable temperature difference at the outlet of the tertiary superheater, and the superheated steam from the tertiary superheater 4 can be set to an appropriate temperature so that the superheated steam has sufficient thermal energy.

本実施形態では、一次過熱器2,二次過熱器3そして三次過熱器4の合計三つの過熱器が直列に配されていることとしたが、これに代えて、一次過熱器と二次過熱器との間や二次過熱器3と三次過熱器4との間に他の過熱器が配されていてもよい。   In the present embodiment, a total of three superheaters, a primary superheater 2, a secondary superheater 3, and a tertiary superheater 4, are arranged in series. Instead, the primary superheater and the secondary superheater are arranged. Another superheater may be disposed between the secondary superheater 3 and the secondary superheater 3 and the tertiary superheater 4.

1 過熱装置
2 一次過熱器
3 二次過熱器
4 三次過熱器
9 一次減温器
11 二次過熱器入口温度計
12 二次減温器
14 三次過熱器出口温度計
15 一次制御装置
16 二次制御装置
17 補正装置
18 三次過熱器入口温度計
DESCRIPTION OF SYMBOLS 1 Superheater 2 Primary superheater 3 Secondary superheater 4 Tertiary superheater 9 Primary desuperheater 11 Secondary superheater inlet thermometer 12 Secondary desuperheater 14 Tertiary superheater outlet thermometer 15 Primary controller 16 Secondary control Device 17 Correction device 18 Tertiary superheater inlet thermometer

Claims (3)

廃棄物処理炉から排出される排ガスから熱回収するボイラに設けられ、排ガスとの熱交換により過熱管内の蒸気を過熱する複数の過熱器が直列に配された過熱装置であって、
上記複数の過熱器は、過熱装置外から供給される蒸気を過熱して過熱蒸気を生成する一次過熱器と、該一次過熱器よりも高温下に配され該一次過熱器を経た過熱蒸気を過熱する二次過熱器と、該二次過熱器よりも低温下に配され該二次過熱器を経た過熱蒸気を過熱した後に過熱装置外へ送る三次過熱器とを有している過熱装置において、
上記二次過熱器に送られる過熱蒸気に冷却水を供給して該過熱蒸気を減温する一次減温器と、
一次減温器で減温され二次過熱器に送られる過熱蒸気の温度である二次過熱器入口温度を計測する二次過熱器入口温度計と、
二次過熱器で過熱された過熱蒸気の温度である二次過熱器出口温度を計測する二次過熱器出口温度計と、
上記二次過熱器入口温度計の計測温度あるいは二次過熱器出口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整する一次制御装置と、
上記三次過熱器で過熱され過熱装置外へ送られる過熱蒸気の温度である三次過熱器出口温度を計測する三次過熱器出口温度計と、
上記三次過熱器出口温度が所定の三次過熱器出口設定温度となるように、上記三次過熱器出口温度計の計測温度に基いて上記二次減温器での冷却水の供給量を調整する二次制御装置とを備え、
上記一次制御装置は、所定の二次過熱器入口設定温度から二次過熱器入口温度計の計測温度を差し引いて得られる二次過熱器入口温度差と、所定の二次過熱器出口設定温度から二次過熱器出口温度計の計測温度を差し引いて得られる二次過熱器出口温度差とを比較して、上記二次過熱器入口温度差の方が大きいときには、上記二次過熱器入口温度が上記二次過熱器入口設定温度となるように、上記二次過熱器入口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整し、上記二次過熱器出口温度差の方が大きいときには、上記二次過熱器出口温度が上記二次過熱器出口設定温度となるように、上記二次過熱器出口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整し、上記二次過熱器出口設定温度が、二次過熱器の過熱管群の高温腐食を回避する温度範囲と上記三次過熱器出口設定温度範囲とに基づき設定されることを特徴とする過熱装置。
A superheater in which a plurality of superheaters that are provided in a boiler that recovers heat from exhaust gas discharged from a waste treatment furnace and superheats steam in a superheater tube by heat exchange with exhaust gas are arranged in series,
The plurality of superheaters includes a primary superheater that superheats steam supplied from outside the superheater to generate superheated steam, and superheats superheated steam that is disposed at a higher temperature than the primary superheater and that passes through the primary superheater. A superheater having a secondary superheater and a tertiary superheater that is arranged at a lower temperature than the secondary superheater and that superheats the superheated steam that has passed through the secondary superheater and sends the superheated steam outside the superheater,
A primary desuperheater that supplies cooling water to the superheated steam sent to the secondary superheater to reduce the temperature of the superheated steam;
A secondary superheater inlet thermometer that measures the secondary superheater inlet temperature, which is the temperature of the superheated steam that is reduced in temperature by the primary desuperheater and sent to the secondary superheater;
A secondary superheater outlet thermometer for measuring a secondary superheater outlet temperature which is a temperature of superheated steam superheated by the secondary superheater;
A primary control device that adjusts the supply amount of cooling water in the primary desuperheater based on the measured temperature of the secondary superheater inlet thermometer or the measured temperature of the secondary superheater outlet thermometer;
A tertiary superheater outlet thermometer for measuring a tertiary superheater outlet temperature, which is a temperature of superheated steam that is heated by the tertiary superheater and sent to the outside of the superheater;
Adjusting the supply amount of cooling water in the secondary desuperheater based on the measured temperature of the tertiary superheater outlet thermometer so that the tertiary superheater outlet temperature becomes a predetermined tertiary superheater outlet set temperature; With the next control device,
The primary control device is based on the difference between the secondary superheater inlet temperature difference obtained by subtracting the measured temperature of the secondary superheater inlet thermometer from the predetermined secondary superheater inlet set temperature and the predetermined secondary superheater outlet set temperature. Compared with the secondary superheater outlet temperature difference obtained by subtracting the measured temperature of the secondary superheater outlet thermometer, when the secondary superheater inlet temperature difference is larger, the secondary superheater inlet temperature is Adjust the supply amount of cooling water in the primary desuperheater based on the measured temperature of the secondary superheater inlet thermometer so that the secondary superheater inlet set temperature, and the secondary superheater outlet temperature When the difference is larger, the cooling at the primary desuperheater is based on the measured temperature of the secondary superheater outlet thermometer so that the secondary superheater outlet temperature becomes the set temperature of the secondary superheater outlet. Adjust the water supply amount so that the secondary superheater outlet set temperature is Superheater, characterized in that is set based on the temperature range and the tertiary superheater outlet set temperature range to avoid high-temperature corrosion of the superheating tube group of vessels.
三次過熱器出口設定温度から三次過熱器出口温度計の計測温度を差し引いて得られる三次過熱器出口温度差に基づいて、二次過熱器出口設定温度を補正する補正装置をさらに有し、
該補正装置は、上記三次過熱器出口温度差が所定の三次過熱器出口最大許容温度差より大きいときには、二次過熱器出口設定温度を高くする補正を行い、上記三次過熱器出口温度差が所定の三次過熱器出口最小許容温度差よりも小さいときには、二次過熱器出口設定温度を低くする補正を行うこととする請求項1に記載の過熱装置。
A correction device for correcting the secondary superheater outlet set temperature based on the tertiary superheater outlet temperature difference obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer from the tertiary superheater outlet set temperature;
The correction device performs correction to increase the secondary superheater outlet set temperature when the tertiary superheater outlet temperature difference is larger than a predetermined tertiary superheater outlet maximum allowable temperature difference, and the tertiary superheater outlet temperature difference is predetermined. 2. The superheater according to claim 1, wherein when the temperature difference is smaller than the minimum allowable temperature difference at the third superheater outlet, correction for lowering the secondary superheater outlet set temperature is performed.
一次制御装置は、二次過熱器入口温度差が所定の二次過熱器入口最大許容温度差より小さいときには、上記二次過熱器入口温度が上記二次過熱器入口設定温度となるように、上記二次過熱器入口温度計の計測温度に基いて上記一次減温器での冷却水の供給量を調整する第一制御モードでの制御を行い、第一制御モードでの制御を行っているときに、所定の三次過熱器出口設定温度から三次過熱器出口温度計の計測温度を差し引いて得られる三次過熱器出口温度差が所定の三次過熱器出口最大許容温度差より大きいときには、二次過熱器出口温度差に基いて、上記二次過熱器出口温度が上記二次過熱器出口設定温度となるように、上記一次減温器での冷却水の供給量を調整する第二制御モードでの制御を行い、第二制御モードでの制御を行っているときに、三次過熱器出口温度差が所定の三次過熱器入口最小許容温度差より小さくなれば、第一制御モードでの制御を行うこととする請求項1または請求項2に記載の過熱装置。   When the primary controller inlet temperature difference is smaller than a predetermined secondary superheater inlet maximum allowable temperature difference, the primary controller is configured so that the secondary superheater inlet temperature becomes the secondary superheater inlet set temperature. When the control in the first control mode is performed to adjust the cooling water supply amount in the primary desuperheater based on the temperature measured by the secondary superheater inlet thermometer, and the control in the first control mode is performed When the tertiary superheater outlet temperature difference obtained by subtracting the measured temperature of the tertiary superheater outlet thermometer from the predetermined tertiary superheater outlet set temperature is larger than the predetermined tertiary superheater outlet maximum allowable temperature difference, the secondary superheater Control in the second control mode for adjusting the cooling water supply amount in the primary desuperheater so that the secondary superheater outlet temperature becomes the secondary superheater outlet set temperature based on the outlet temperature difference And perform control in the second control mode. 3. The superheater according to claim 1, wherein the control in the first control mode is performed if the temperature difference at the outlet of the tertiary superheater becomes smaller than a predetermined minimum allowable temperature difference at the inlet of the tertiary superheater. .
JP2015199251A 2015-10-07 2015-10-07 Superheating device Pending JP2017072313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199251A JP2017072313A (en) 2015-10-07 2015-10-07 Superheating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199251A JP2017072313A (en) 2015-10-07 2015-10-07 Superheating device

Publications (1)

Publication Number Publication Date
JP2017072313A true JP2017072313A (en) 2017-04-13

Family

ID=58537300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199251A Pending JP2017072313A (en) 2015-10-07 2015-10-07 Superheating device

Country Status (1)

Country Link
JP (1) JP2017072313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207097A (en) * 2019-05-31 2019-09-06 四川陆亨能源科技有限公司 A kind of efficient stable wear-resisting type superheater device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579902A (en) * 1978-12-13 1980-06-16 Hitachi Ltd Boiler controller
JPS56151803A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Control system of starting boiler plant
JPS602114U (en) * 1983-06-16 1985-01-09 株式会社東芝 Steam temperature control device
JPH05280707A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Superheater of waste heat recovery boiler in refuse incinerator
JPH05280704A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Configuration of superheater in heat recovery boiler
JPH06257711A (en) * 1993-03-05 1994-09-16 Yokogawa Electric Corp Steam temperature control device
JPH0942606A (en) * 1995-07-31 1997-02-14 Babcock Hitachi Kk Once-through boiler steam temperature control device
US20080302102A1 (en) * 2007-06-07 2008-12-11 Emerson Process Management Power & Water Solutions, Inc. Steam Temperature Control in a Boiler System Using Reheater Variables
JP2015068586A (en) * 2013-09-30 2015-04-13 中国電力株式会社 Spray control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579902A (en) * 1978-12-13 1980-06-16 Hitachi Ltd Boiler controller
JPS56151803A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Control system of starting boiler plant
JPS602114U (en) * 1983-06-16 1985-01-09 株式会社東芝 Steam temperature control device
JPH05280707A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Superheater of waste heat recovery boiler in refuse incinerator
JPH05280704A (en) * 1992-03-31 1993-10-26 Hitachi Zosen Corp Configuration of superheater in heat recovery boiler
JPH06257711A (en) * 1993-03-05 1994-09-16 Yokogawa Electric Corp Steam temperature control device
JPH0942606A (en) * 1995-07-31 1997-02-14 Babcock Hitachi Kk Once-through boiler steam temperature control device
US20080302102A1 (en) * 2007-06-07 2008-12-11 Emerson Process Management Power & Water Solutions, Inc. Steam Temperature Control in a Boiler System Using Reheater Variables
JP2015068586A (en) * 2013-09-30 2015-04-13 中国電力株式会社 Spray control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207097A (en) * 2019-05-31 2019-09-06 四川陆亨能源科技有限公司 A kind of efficient stable wear-resisting type superheater device
CN110207097B (en) * 2019-05-31 2023-12-26 四川陆亨能源科技有限公司 Efficient stable wear-resistant superheater device

Similar Documents

Publication Publication Date Title
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
CA2747950C (en) Dynamic tuning of dynamic matrix control of steam temperature
US9217565B2 (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
TWI465674B (en) Method for operation a once-through steam generator and forced-flow steam generator
JP6504525B2 (en) Overheater
JP4526558B2 (en) Steam temperature control method and control device for marine boiler
CN106016229B (en) The main-stream control method and apparatus of supercritical circulating fluidized bed boiler unit
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP2017072313A (en) Superheating device
JP5370457B2 (en) Heating medium boiler
JP6685852B2 (en) Plant control equipment
JP7465641B2 (en) Once-through boiler control device, power plant, and once-through boiler control method
JP2019124436A (en) Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler
US10975771B2 (en) Gas turbine combined cycle plant and method for controlling gas turbine combined cycle plant
JP2008292119A (en) Power generator
JP2006125760A (en) Exhaust heat recovery boiler and its control system
JP4453858B2 (en) Steam temperature control method and apparatus for once-through boiler
KR102678499B1 (en) Control device of once-through boiler, power plant and control method of once-through boiler
JP2001108202A (en) Waste heat recovery boiler
US11333348B2 (en) Exhaust gas cooler
JPH10148305A (en) Boiler control device
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JP6707058B2 (en) Waste heat boiler, waste heat recovery system, and waste heat recovery method
JP2007155287A (en) Feed water heating control device for thermal power generation plant and its control method
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190304