JP2019124436A - Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler - Google Patents

Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler Download PDF

Info

Publication number
JP2019124436A
JP2019124436A JP2018007217A JP2018007217A JP2019124436A JP 2019124436 A JP2019124436 A JP 2019124436A JP 2018007217 A JP2018007217 A JP 2018007217A JP 2018007217 A JP2018007217 A JP 2018007217A JP 2019124436 A JP2019124436 A JP 2019124436A
Authority
JP
Japan
Prior art keywords
low pressure
pressure economizer
feed water
temperature
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018007217A
Other languages
Japanese (ja)
Inventor
博成 田中
Hironari Tanaka
博成 田中
真介 井戸
Shinsuke Ido
真介 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018007217A priority Critical patent/JP2019124436A/en
Priority to CN201910037987.7A priority patent/CN110056849B/en
Publication of JP2019124436A publication Critical patent/JP2019124436A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

To provide a water feed method of an exhaust heat recovery boiler capable of preventing heat exchanger tubes from corrosion by setting the feed water temperature appropriately even in a condition in which SOconcentration in flue gas changes without need for an external heat source such as a heat source in another system during operation of the exhaust heat recovery boiler.SOLUTION: A water feed method of an exhaust heat recovery boiler 1 comprises: a low-pressure economizer feed water process for supplying feed water to a low-pressure economizer 3; a low-pressure economizer discharge process for discharging the feed water supplied to the low-pressure economizer 3 from the low-pressure economizer 3; and a low-pressure economizer bypass process in which based on the measurement result of Sox concentration measuring means 61, setting the target feed water temperature of the feed water temperature supplied to the low-pressure economizer 3, and bypassing the feed water supplied to the low-pressure economizer 3 in the low-pressure economizer feed water process.SELECTED DRAWING: Figure 1

Description

本開示は、排熱回収ボイラの給水方法及び排熱回収ボイラに関するものである。   The present disclosure relates to a water supply method for an exhaust heat recovery boiler and an exhaust heat recovery boiler.

従来、排熱回収ボイラは、例えばガスタービン等と組み合わせて構成されるコンバインドサイクル発電プラントに使用されている。コンバインドサイクル発電プラントでは、ガスタービンによって発電機を回転駆動して発電し、さらに、ガスタービンから排出される燃焼排ガスの排熱を利用して蒸気を発生させる。この蒸気を蒸気タービンへ供給することで発電機の回転駆動にさらに利用して、蒸気タービンによる発電を追加することができる。従って、コンバインドサイクル発電プラントは、高効率で環境に優しい発電プラントとして注目されている。   BACKGROUND ART Conventionally, a waste heat recovery boiler is used, for example, in a combined cycle power plant configured in combination with a gas turbine or the like. In a combined cycle power plant, a gas turbine rotationally drives a generator to generate electric power, and furthermore, steam is generated using exhaust heat of combustion exhaust gas discharged from the gas turbine. By supplying this steam to the steam turbine, it is possible to further utilize the rotational drive of the generator to add power generation by the steam turbine. Therefore, combined cycle power plants are attracting attention as highly efficient and environmentally friendly power plants.

このようなコンバインドサイクル発電プラントにおける排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)は、ガスタービンや燃焼装置等の熱を発生させ利用する装置から排出される燃焼排ガスの排熱を利用して蒸気を発生させる装置として知られている。排熱回収ボイラの一例としては、例えば下記の特許文献1,2に記載のものが報告されている。   A heat recovery steam generator (HRSG: Heat Recovery Steam Generator) in such a combined cycle power plant is a steam using exhaust heat of combustion exhaust gas discharged from a device such as a gas turbine or a combustion device that generates and uses heat. Is known as a device that generates As an example of the exhaust heat recovery boiler, for example, those described in Patent Documents 1 and 2 below have been reported.

特開2005−9792号公報JP 2005-9792 A 特許第5613921号公報Patent No. 5613921 gazette

排熱回収ボイラは、ガスタービン等から排出される燃焼排ガスの熱エネルギーにより給水・蒸気系統を加熱することで熱回収を行う。排熱回収ボイラは、このような熱回収を行うに当たり、燃焼排ガスで給水を順次加熱する複数の熱交換器を備えている。このような排熱回収ボイラの燃焼排ガス流れにおける最下流に設けた熱交換器(低圧節炭器)においては、供給される給水の温度が酸露点温度以下になると、伝熱管表面も同程度の温度に低下して露結した燃焼排ガス中の水分が、燃焼排ガスに含まれるSOと反応してHSOを生じることがある。この場合、生じたHSOにより伝熱管が腐食する可能性がある。従って、供給される給水の温度を酸露点温度以上に保つ必要がある。 The exhaust heat recovery boiler recovers heat by heating the feed water / steam system with the thermal energy of the combustion exhaust gas discharged from a gas turbine or the like. The exhaust heat recovery boiler is provided with a plurality of heat exchangers that sequentially heat the feed water with the combustion exhaust gas when performing such heat recovery. In the heat exchanger (low pressure economizer) provided at the most downstream side in the flue gas flow of such an exhaust heat recovery boiler, when the temperature of the supplied water becomes equal to or lower than the acid dew point temperature, The moisture in the flue gas, which has been lowered to the temperature and exposed, may react with SO x contained in the flue gas to produce H 2 SO 4 . In this case, the resulting H 2 SO 4 may corrode the heat transfer tube. Therefore, it is necessary to keep the temperature of the supplied water supplied above the acid dew point temperature.

このような伝熱管の腐食を防止するために、例えば特許文献1では、他系統にある加熱源(脱気器)を利用して排熱回収ボイラへの給水を加熱し、燃焼排ガス中のSO濃度に応じて低圧節炭器(燃焼排ガスが低温となる後流側)入口の給水温度が酸露点温度以下とならないよう温度制御を行っている。 In order to prevent such corrosion of the heat transfer tube, for example, in Patent Document 1, the feed water to the waste heat recovery boiler is heated using a heating source (a deaerator) in another system, and SO in the combustion exhaust gas (2 ) The temperature control is performed so that the feed water temperature at the inlet of the low-pressure economizer (the downstream side where the combustion exhaust gas is at a low temperature) inlet temperature does not fall below the acid dew point temperature according to the concentration.

一方、特許文献2では、ガスタービンが停止している期間に、伝熱管に付着した硫安又は酸性硫安が湿分を吸収して腐食が生じることを防止し、伝熱管の腐食を防ぐことを課題としている。この課題を解決するために、特許文献2は、低圧節炭器で加熱された給水を再度低圧節炭器の入口側へ循環される循環ライン、及び給水が低圧節炭器をバイパスして中圧/高圧節炭器の給水系統へ向かうバイパスラインを備え、低圧節炭器入口の給水温度が酸露点温度以下とならないよう温度制御している。   On the other hand, in Patent Document 2, it is an object to prevent the corrosion of the heat transfer tube by preventing that the ammonium sulfate or the acid ammonium sulfate attached to the heat transfer tube absorbs the moisture and causes the corrosion while the gas turbine is stopped. And In order to solve this problem, Patent Document 2 discloses a circulation line in which the feed water heated by the low pressure economizer is again circulated to the inlet side of the low pressure economizer, and the feed water bypasses the low pressure economizer. A bypass line to the water supply system of the pressure / high pressure economizer is provided, and temperature control is performed so that the feed water temperature at the low pressure economizer inlet does not fall below the acid dew point temperature.

しかしながら、特許文献1では、給水温度の加熱のために、他系統にある加熱源を必要としていた。また、特許文献2では、ガスタービンが停止している期間における伝熱管の腐食防止を課題としており、ガスタービン運転時のような燃焼排ガス中のSO濃度が変化する条件における伝熱管の腐食への対策については考慮されていなかった。 However, in patent document 1, the heating source which exists in another system | strain was required for heating of feed water temperature. In Patent Document 2, has an object of preventing corrosion of heat transfer tube in a period in which the gas turbine is stopped, the corrosion of the heat transfer tube in a condition of varying SO 2 concentration in the combustion exhaust gas, such as during gas turbine operation Was not considered.

本開示は、このような事情に鑑みてなされたものであって、排熱回収ボイラの運転時において、他系統にある加熱源等外部からの熱源を必要とせず、燃焼排ガス中のSO濃度が変化する条件においても給水温度を適切な温度に設定して、伝熱管の腐食を防止することができる排熱回収ボイラの給水方法及び排熱回収ボイラを提供することを目的とする。 The present disclosure has been made in view of such circumstances, and does not require an external heat source such as a heating source in another system during operation of the exhaust heat recovery boiler, and the concentration of SO 2 in combustion exhaust gas It is an object of the present invention to provide an exhaust heat recovery boiler water supply method and an exhaust heat recovery boiler capable of preventing corrosion of a heat transfer pipe by setting the feed water temperature to an appropriate temperature even under the condition of changing.

上記課題を解決するために、本開示は以下の手段を採用する。
本開示の幾つかの実施形態に係る排熱回収ボイラの給水方法は、燃焼排ガスで給水を加熱する少なくとも1つの節炭器と、該節炭器のうち前記燃焼排ガスが最も低温側となる位置に配置した低圧節炭器を通過した前記燃焼排ガス中のSOx濃度を測定するSOx濃度測定手段と、を備える排熱回収ボイラの給水方法において、前記低圧節炭器に、前記給水を供給する低圧節炭器給水供給工程と、前記低圧節炭器に供給された前記給水を前記低圧節炭器から排出する低圧節炭器給水排出工程と、前記SOx濃度測定手段の測定結果に基づいて前記低圧節炭器に供給される給水温度の目標給水温度を設定し、前記低圧節炭器給水供給工程において前記低圧節炭器に供給される前記給水をバイパスする低圧節炭器バイパス工程と、を備える。
In order to solve the above-mentioned subject, this indication adopts the following means.
In the water supply method for a waste heat recovery boiler according to some embodiments of the present disclosure, at least one economizer for heating feedwater with flue gas, and a position of the economizer where the flue gas is at the lowest temperature side And a SOx concentration measuring means for measuring the concentration of SOx in the flue gas passing through the low pressure economizer arranged in the low pressure economizer. The economizer feed water supply process, the low pressure economizer feed water discharge process for discharging the feed water supplied to the low pressure economizer from the low pressure economizer, and the low pressure based on the measurement result of the SOx concentration measuring means Setting a target feed water temperature of feed water temperature supplied to the economizer, and bypassing the water supply supplied to the low pressure economizer in the low pressure economizer water supply step; .

本開示の幾つかの実施形態に係る排熱回収ボイラの給水方法は、SOx濃度測定手段の測定結果に基づいて低圧節炭器に供給される給水温度の目標給水温度を設定し、低圧節炭器給水供給工程において低圧節炭器に供給される給水をバイパスする低圧節炭器バイパス工程を備えることを特徴とする。低圧節炭器に供給される給水をバイパスすることにより、低圧節炭器への温度の低い給水の供給流量を減らすことができる。これにより、低圧節炭器入口の給水温度を高くすることができる。また、SOx濃度測定手段の測定結果に基づいて低圧節炭器に供給される給水温度の目標給水温度を設定して、給水のバイパスを行うことで、リアルタイムのSOx濃度に基づいて低圧節炭器入口の給水温度を変更することが可能となる。また、本開示の排熱回収ボイラの給水方法においては、低圧節炭器に供給される給水をバイパスするだけで低圧節炭器入口の給水温度を高くすることができる。従って、外部から蒸気等の熱を加えて給水温度を高くする必要がないため、新たな設備を設けることなく給水温度を制御することが可能となる。   In the water supply method for a waste heat recovery boiler according to some embodiments of the present disclosure, a target water supply temperature of the water supplied to the low pressure economizer is set based on the measurement result of the SOx concentration measurement unit, The low pressure economizer bypass step bypasses the feed water supplied to the low pressure economizer in the water supply process. By bypassing the feedwater supplied to the low pressure economizer, the low temperature feedwater supply flow rate to the low pressure economizer can be reduced. Thereby, the feed water temperature at the low pressure economizer inlet can be raised. Also, by setting the target feed water temperature of the feed water temperature supplied to the low pressure economizer based on the measurement result of the SOx concentration measurement means and performing water supply bypass, the low pressure economizer based on the SOx concentration in real time It is possible to change the inlet water temperature. Moreover, in the water supply method of the exhaust heat recovery boiler of the present disclosure, the water supply temperature at the inlet of the low pressure economizer can be raised simply by bypassing the water supplied to the low pressure economizer. Therefore, it is not necessary to apply heat such as steam from the outside to raise the feed water temperature, so it is possible to control the feed water temperature without providing new equipment.

上記実施形態において、前記SOx濃度測定手段の測定結果に基づいて設定した前記目標給水温度に対して、前記低圧節炭器に供給される給水温度の調整に当たり、前記低圧節炭器バイパス工程を行う前に、前記低圧節炭器から排出された前記給水を前記低圧節炭器に戻す低圧節炭器循環工程を行うことが好ましい。   In the above embodiment, the low-pressure economizer bypass step is performed when adjusting the temperature of the feedwater supplied to the low-pressure economizer with respect to the target water supply temperature set based on the measurement result of the SOx concentration measurement unit. It is preferable to perform a low pressure economizer circulating step of returning the feed water discharged from the low pressure economizer to the low pressure economizer before.

低圧節炭器循環工程により、低圧節炭器から排出された給水を低圧節炭器に戻すことが可能となる。これにより、設定した目標給水温度に対して、低圧節炭器に供給される給水温度の調整に当たって、低圧節炭器入口の給水温度を高くすることができる。また、低圧節炭器循環工程を低圧節炭器バイパス工程の前に行うことで、低圧節炭器循環工程を行っても低圧節炭器入口の給水温度が上がらなかった場合に低圧節炭器バイパス工程を行うという運用が可能となる。即ち、低圧節炭器循環工程のみでは目標給水温度まで熱量が不足している場合、不足した熱量を低圧節炭器バイパス工程で補うことができる。   The low pressure economizer circulation process makes it possible to return the feed water discharged from the low pressure economizer to the low pressure economizer. Thus, the feed water temperature at the inlet of the low pressure economizer can be raised in adjusting the feed water temperature supplied to the low pressure economizer with respect to the set target water supply temperature. In addition, by performing the low pressure economizer circulation process before the low pressure economizer bypass process, even if the low pressure economizer circulation process is performed, if the feed water temperature at the low pressure economizer inlet does not rise, the low pressure economizer An operation of performing a bypass process is possible. That is, when the heat quantity is insufficient up to the target feed water temperature only in the low pressure economizer circulating process, the insufficient heat quantity can be compensated by the low pressure economizer bypass process.

本開示の幾つかの実施形態に係る排熱回収ボイラの給水方法においては、前記SOx濃度測定手段の測定結果に基づいて酸露点温度を設定し、前記低圧節炭器に供給される給水温度の前記目標給水温度は前記酸露点温度に所定の余裕温度を加えて設定され、前記目標給水温度となるように前記低圧節炭器循環工程、及び/又は前記低圧節炭器バイパス工程を行う。   In the water supply method of the exhaust heat recovery boiler according to some embodiments of the present disclosure, the acid dew point temperature is set based on the measurement result of the SOx concentration measurement means, and the temperature of the water supply temperature supplied to the low pressure economizer The target feed water temperature is set by adding a predetermined margin temperature to the acid dew point temperature, and the low pressure economizer circulation step and / or the low pressure economizer bypass step is performed to achieve the target feed water temperature.

目標給水温度は、露点温度から余裕を持った温度(余裕温度)を加えて設定されるため、給水温度を適切な温度に設定することが可能となる。即ち、現在のSOx濃度から現在の酸露点温度を算出し、この酸露点温度から余裕を持たせた目標給水温度を設定し、この目標給水温度に基づいた給水温度の制御を行うことが可能となる。このように、排熱回収ボイラの運転時において、現在の酸露点温度に基づいた給水温度制御を行うことが可能となるため、給水温度を適切な温度に設定することが可能となる。これにより、伝熱管の腐食を防止しながら、ボイラの性能を可能な限り向上させることができる。   Since the target feed water temperature is set by adding a temperature (margin temperature) having a margin from the dew point temperature, it is possible to set the feed water temperature to an appropriate temperature. That is, it is possible to calculate the current acid dew point temperature from the current SOx concentration, set a target water supply temperature having a margin from the acid dew point temperature, and control the water supply temperature based on the target water supply temperature. Become. As described above, it is possible to perform feedwater temperature control based on the current acid dew point temperature at the time of operation of the exhaust heat recovery boiler, so it is possible to set the feedwater temperature to an appropriate temperature. Thereby, the performance of the boiler can be improved as much as possible while preventing the corrosion of the heat transfer tubes.

本開示の幾つかの実施形態に係る排熱回収ボイラの給水方法においては、前記目標給水温度を、前記燃焼排ガス中のSOx濃度に応じて段階的に変化させる。   In the water supply method of the exhaust heat recovery boiler according to some embodiments of the present disclosure, the target water supply temperature is changed stepwise according to the SOx concentration in the combustion exhaust gas.

これにより、各流調弁への開度指令によって開閉がチャタリングする(短い時間間隔で弁の開閉を繰り返す)ことを抑制できるため、系統全体の制御系を安定化させることができる。   As a result, it is possible to prevent the opening and closing from chattering (repeating the opening and closing of the valve at short time intervals) according to the opening degree command to each flow regulating valve, so that the control system of the entire system can be stabilized.

前記燃焼排ガス中のSOx濃度又は前記低圧節炭器に供給される前記給水の温度と前記目標給水温度との差に応じて、前記低圧節炭器バイパス工程において前記低圧節炭器をバイパスさせる前記給水のバイパス流量を段階的に増加させる。   The low pressure economizer is bypassed in the low pressure economizer bypass step according to the SOx concentration in the flue gas or the difference between the temperature of the feedwater supplied to the low pressure economizer and the target water supply temperature. Gradually increase the feed water bypass flow rate.

これにより、バイパス流量を調整する流調弁への開度指令によって開閉がチャタリングする(短い時間間隔で弁の開閉を繰り返す)ことを抑制できるため、安定化させることができる。   As a result, it is possible to prevent the opening and closing from chattering (repeated opening and closing of the valve at short time intervals) by the opening degree command to the flow regulating valve that adjusts the bypass flow rate, and therefore it is possible to stabilize.

本開示の幾つかの実施形態に係る排熱回収ボイラは、燃焼排ガスで給水を加熱する少なくとも1つの節炭器と、該節炭器のうち前記燃焼排ガスが最も低温側となる位置に配置した低圧節炭器を通過した前記燃焼排ガス中のSOx濃度を測定するSOx濃度測定手段と、を備え、前記低圧節炭器には、前記低圧節炭器に前記給水を供給する低圧節炭器給水供給ラインと、前記低圧節炭器に供給された前記給水を前記低圧節炭器から排出する低圧節炭器給水排出ラインと、前記低圧節炭器給水供給ラインから分岐して、前記低圧節炭器給水排出ラインに接続され、前記低圧節炭器に供給される前記給水をバイパスする低圧節炭器バイパスラインと、が設けられ、前記SOx濃度測定手段の出力に基づいて前記低圧節炭器に供給される給水温度の目標給水温度を設定し、前記低圧節炭器バイパスラインの使用を切り換える制御部が設けられる。   In a waste heat recovery boiler according to some embodiments of the present disclosure, at least one economizer for heating feed water with flue gas, and the economizer among which the flue gas is at the lowest temperature side are disposed. And SOx concentration measuring means for measuring the concentration of SOx in the flue gas passing through the low pressure economizer, the low pressure economizer is supplied with the feed water to the low pressure economizer. A feed line, a low pressure economizer feed water discharge line for discharging the feed water supplied to the low pressure economizer from the low pressure economizer, a branch from the low pressure economizer feed water supply line, And a low pressure economizer bypass line for bypassing the water supply supplied to the low pressure economizer, the low pressure economizer being connected to the low pressure economizer based on the output of the SOx concentration measuring means. The eye of the water supply temperature supplied Set the water temperature, the control unit is provided for switching the use of the low pressure economizer bypass line.

本開示の幾つかの実施形態に係る排熱回収ボイラにおいては、SOx濃度測定手段の出力に基づいて設定した目標給水温度に対して、低圧節炭器に供給される給水温度の調整に当たり、低圧節炭器バイパスラインの使用を切り換える制御部が設けられることを特徴とする。低圧節炭器に供給される給水をバイパスすることにより、低圧節炭器への温度の低い給水の供給流量を減らすことができる。これにより、低圧節炭器入口の給水温度を高くすることができる。また、制御部がSOx濃度測定手段の出力に基づいて低圧節炭器に供給される給水温度の目標給水温度を設定し、給水のバイパスを行うことで、リアルタイムのSOx濃度に基づいて低圧節炭器入口の給水温度を変更することが可能となる。また、本開示の排熱回収ボイラにおいては、低圧節炭器バイパスラインにより低圧節炭器に供給される給水をバイパスするだけで低圧節炭器入口の給水温度を高くすることができる。従って、外部から蒸気等の熱を加えて給水温度を高くする必要がないため、新たな設備を設けることなく給水温度を制御することが可能となる。   In a waste heat recovery boiler according to some embodiments of the present disclosure, adjustment of the temperature of the feedwater supplied to the low pressure economizer with respect to the target feedwater temperature set based on the output of the SOx concentration measurement means is a low pressure A controller is provided to switch the use of the economizer bypass line. By bypassing the feedwater supplied to the low pressure economizer, the low temperature feedwater supply flow rate to the low pressure economizer can be reduced. Thereby, the feed water temperature at the low pressure economizer inlet can be raised. In addition, the control unit sets the target feed water temperature of the feed water temperature supplied to the low pressure economizer based on the output of the SOx concentration measurement means, and bypasses the feed water, thereby reducing the low pressure coal charcoal based on the SOx concentration in real time. It is possible to change the feed water temperature at the inlet of the unit. Moreover, in the exhaust heat recovery boiler of the present disclosure, the feed water temperature at the low pressure economizer inlet can be increased simply by bypassing the feed water supplied to the low pressure economizer by the low pressure economizer bypass line. Therefore, it is not necessary to apply heat such as steam from the outside to raise the feed water temperature, so it is possible to control the feed water temperature without providing new equipment.

上記実施形態において、前記低圧節炭器給水排出ラインから分岐して、前記低圧節炭器給水供給ラインに接続され、前記低圧節炭器から排出された前記給水を前記低圧節炭器に戻す低圧節炭器循環ラインがさらに設けられ、前記制御部は、前記SOx濃度測定手段の出力に基づいて前記低圧節炭器に供給される給水温度の調整にあたり、前記低圧節炭器バイパスラインを使用したバイパス流量調整へ切り換える前に、前記低圧節炭器循環ラインを使用した循環流量調整へ切り換えることが好ましい。   In the above embodiment, a low pressure branch from the low pressure economizer feed water discharge line is connected to the low pressure economizer water supply feed line and returns the feed water discharged from the low pressure economizer to the low pressure economizer An economizer circulation line is further provided, and the control unit uses the low pressure economizer bypass line to adjust the temperature of the feed water supplied to the low pressure economizer based on the output of the SOx concentration measuring means. Before switching to bypass flow control, it is preferable to switch to circulation flow control using the low pressure economizer circulating line.

低圧節炭器循環ラインにより、低圧節炭器から排出された給水を低圧節炭器に戻すことが可能となる。これにより、低圧節炭器入口の給水温度を高くすることができる。また、設定した目標給水温度に対して、低圧節炭器に供給される給水温度の調整に当たって、低圧節炭器バイパスラインの使用を切り換える前に、低圧節炭器循環ラインを使用した循環流量調整へ切り換えることで、低圧節炭器から排出された給水を低圧節炭器に戻しても低圧節炭器入口の給水温度が上がらなかった場合に、低圧節炭器バイパスラインを使用したバイパス流量調整をするという運用が可能となる。即ち、低圧節炭器循環ラインの使用のみでは目標給水温度まで熱量が不足している場合、不足した熱量を低圧節炭器バイパスラインの使用で補うことができる。このように、給水温度を適切な温度に設定することが可能となり、ボイラの性能を可能な限り向上させることができる。   The low pressure economizer circulation line enables the feed water discharged from the low pressure economizer to be returned to the low pressure economizer. Thereby, the feed water temperature at the low pressure economizer inlet can be raised. In addition, before adjusting the use of the low pressure economizer bypass line in adjusting the feed water temperature supplied to the low pressure economizer with respect to the set target water supply temperature, the circulation flow rate adjustment using the low pressure economizer circulation line If the feed water temperature at the low pressure economizer inlet does not rise even if the feed water discharged from the low pressure economizer is returned to the low pressure economizer by switching to the low pressure economizer, bypass flow adjustment using the low pressure economizer bypass line It is possible to operate to That is, when the amount of heat is insufficient up to the target feed water temperature only by the use of the low pressure economizer circulation line, the insufficient heat can be compensated by the use of the low pressure economizer bypass line. Thus, the feed water temperature can be set to an appropriate temperature, and the performance of the boiler can be improved as much as possible.

本開示の排熱回収ボイラの給水方法及び排熱回収ボイラによれば、排熱回収ボイラの運転時において、外部から蒸気等の熱を加えずに給水温度を適切な温度に設定することができる。これにより、ボイラの性能を可能な限り向上させることができる。   According to the waste heat recovery boiler water supply method and the waste heat recovery boiler of the present disclosure, the feed water temperature can be set to an appropriate temperature without applying heat such as steam from the outside during operation of the waste heat recovery boiler . Thereby, the performance of the boiler can be improved as much as possible.

本開示の一実施形態に係る排熱回収ボイラの構成を示す概略的な系統図である。It is a schematic diagram showing the composition of the exhaust heat recovery boiler concerning one embodiment of this indication. 本開示の一実施形態に係る排熱回収ボイラの低圧節炭器及びその付近の具体的な構成を示す系統図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a systematic diagram which shows the low-pressure economizer of the exhaust heat recovery boiler which concerns on one Embodiment of this indication, and the concrete structure of the vicinity. 本開示の一実施形態に係る排熱回収ボイラの給水方法を示すフローチャートである。It is a flow chart which shows a water supply method of a waste heat recovery boiler concerning one embodiment of this indication. 酸露点温度、酸露点温度+余裕温度、及び目標給水温度の関係を表すグラフである。It is a graph showing the relation of acid dew point temperature, acid dew point temperature + margin temperature, and target feed water temperature. (a)低圧節炭器の入口給水温度と時間経過との関係、(b)低圧節炭器の出口温度と時間経過との関係、及び(c)バイパス流量と時間経過との関係をそれぞれ表すグラフである。(A) The relationship between the inlet feed water temperature and time course of the low pressure economizer, (b) the relationship between the outlet temperature and time course of the low pressure economizer, and (c) the relationship between bypass flow rate and time course It is a graph.

以下に、本開示に係る排熱回収ボイラの給水方法及び排熱回収ボイラの一実施形態について、図面を参照して説明する。なお、以下では、燃焼排ガスとしてガスタービンからの燃焼排ガスを適用した排熱回収ボイラを一例として説明するが、これに限定されない。即ち、燃焼排ガスとしてボイラ等からの燃焼排ガスを適用しても良い。   Hereinafter, an embodiment of a water supply method for a waste heat recovery boiler and a waste heat recovery boiler according to the present disclosure will be described with reference to the drawings. In addition, although the waste heat recovery boiler which applied the combustion exhaust gas from a gas turbine as combustion exhaust gas is demonstrated below as an example, it is not limited to this. That is, the combustion exhaust gas from a boiler or the like may be applied as the combustion exhaust gas.

〔排熱回収ボイラ〕
以下、本開示の一実施形態に係る排熱回収ボイラについて、図1及び図2を用いて説明する。
図1は本開示の一実施形態に係る排熱回収ボイラの構成を示す概略的な系統図である。
[Waste heat recovery boiler]
Hereinafter, a waste heat recovery boiler according to an embodiment of the present disclosure will be described using FIGS. 1 and 2.
FIG. 1 is a schematic system diagram showing a configuration of a waste heat recovery boiler according to an embodiment of the present disclosure.

ガスタービン(図示せず)からの燃焼排ガス(図中にガス流れとして示す)が導入される燃焼排ガス流路には、図1に示すような排熱回収ボイラ1が設けられている。排熱回収ボイラ1へ燃焼排ガスが流入する入口付近の燃焼排ガスの温度は例えば550℃〜650℃程度になっている。なお、排熱回収ボイラ1内の燃焼排ガス流路は本明細書では水平方向にガスが流れる燃焼排ガス流路として説明しているが、燃焼排ガス流路は鉛直方向に向いたものでも良い。   A waste heat recovery boiler 1 as shown in FIG. 1 is provided in a flue gas passage into which flue gas (shown as a gas flow in the drawing) from a gas turbine (not shown) is introduced. The temperature of the flue gas near the inlet where the flue gas flows into the waste heat recovery boiler 1 is, for example, about 550 ° C. to 650 ° C. Although the flue gas passage in the exhaust heat recovery boiler 1 is described as a flue gas passage in which gas flows in the horizontal direction in the present specification, the flue gas passage may be directed in the vertical direction.

排熱回収ボイラ1で熱回収された後の燃焼排ガスは、排熱回収ボイラ1を介し、煙突2から大気に放出される。この煙突2の入口には、排熱回収ボイラ1から排出された燃焼排ガス中のSOx濃度を測定するSOx濃度測定手段61が設けられている。このSOx濃度測定手段61は、例えば燃焼排ガス中のSO濃度を測定する。SOが水分と反応してHSOを生じる場合、SOはSOになる。SOからSOに変わる転換率は一般的に約5%であることが分かっているため、SOの濃度を測定することで間接的にSOの濃度を把握することができる。なお、SOx濃度測定手段61が設けられる場所は、煙突2の入口に限らず、後述する低圧節炭器3を通過した燃焼排ガスのSOx濃度を計測できる場所であればよく限定するものではない。 The combustion exhaust gas after heat recovery by the exhaust heat recovery boiler 1 is discharged to the atmosphere from the chimney 2 via the exhaust heat recovery boiler 1. At the inlet of the chimney 2, SOx concentration measurement means 61 for measuring the concentration of SOx in the combustion exhaust gas discharged from the exhaust heat recovery boiler 1 is provided. The SOx concentration measuring means 61 measures, for example, the concentration of SO 2 in the combustion exhaust gas. If the SO x yields a H 2 SO 4 reacts with water, SO x becomes SO 3. Since it is known that conversion vary from SO 2 to SO 3 is generally about 5%, it is possible to grasp the concentration of indirectly SO 3 by measuring the concentration of SO 2. The place where the SOx concentration measurement means 61 is provided is not limited to the entrance of the chimney 2 and is not limited as long as it can measure the SOx concentration of the combustion exhaust gas passing through the low pressure economizer 3 described later.

排熱回収ボイラ1は、複数の熱交換器を備えており、例えば低圧節炭器3、低圧蒸発器4、中圧節炭器5、中圧蒸発器6、低圧過熱器7、高圧節炭器8、中圧過熱器9、脱硝装置10、高圧蒸発器11、高圧一次過熱器12、一次再熱器13、二次再熱器14、及び高圧二次過熱器15を備えている。これらは燃焼排ガス流路の最下流側から最上流に向けて順次配置されている。また、低圧蒸発器4、中圧蒸発器6、及び高圧蒸発器11の鉛直上方には、それぞれ低圧汽水分離ドラム16、中圧汽水分離ドラム17、及び高圧汽水分離ドラム18が配置されている。これら低圧、中圧及び高圧の汽水分離ドラム16,17,18により、低圧蒸発器4、中圧蒸発器6、及び高圧蒸発器11から供給される汽水混合物から蒸気と水が分離される。   The waste heat recovery boiler 1 is provided with a plurality of heat exchangers, and for example, a low pressure economizer 3, a low pressure evaporator 4, an intermediate pressure economizer 5, an intermediate pressure evaporator 6, a low pressure superheater 7, a high pressure economizing coal. And a high pressure primary superheater 12, a primary reheater 13, a secondary reheater 14, and a high pressure secondary superheater 15. These are sequentially disposed from the most downstream side to the most upstream side of the flue gas passage. A low pressure steam separation drum 16, a medium pressure steam separation drum 17, and a high pressure steam separation drum 18 are disposed vertically above the low pressure evaporator 4, the medium pressure evaporator 6, and the high pressure evaporator 11, respectively. Steam and water are separated from the brackish water mixture supplied from the low pressure evaporator 4, the medium pressure evaporator 6, and the high pressure evaporator 11 by the low pressure, medium pressure and high pressure steam separation drums 16, 17, 18.

低圧節炭器3、中圧節炭器5、及び高圧節炭器8には、それぞれ低圧給水流量調整弁21、中圧給水流量調整弁22、及び高圧給水流量調整弁23を有する低圧、中圧及び高圧汽水分離ドラム給水管25,26,27等がそれぞれ配置されている。これらにより、低圧節炭器3、中圧節炭器5、及び高圧節炭器8から低圧、中圧及び高圧の汽水分離ドラム16,17,18に汽水混合物を供給する際の流量が調整される。   The low pressure economizer 3, the medium pressure economizer 5 and the high pressure economizer 8 have a low pressure feed flow control valve 21, a medium pressure feed flow control valve 22, and a high pressure feed flow control valve 23, respectively. Pressure and high pressure brackish water separation drum feed pipes 25, 26, 27 and so on are respectively disposed. Thus, the flow rate of the brackish water mixture is adjusted from the low pressure economizer 3, the medium pressure economizer 5 and the high pressure economizer 8 to the low pressure, medium pressure and high pressure brackish water separating drums 16, 17, 18 Ru.

また、低圧節炭器3には、低圧節炭器3に供給された給水を低圧節炭器3から排出する低圧節炭器給水排出ライン(高中圧給水連絡管)42が設けられており、この低圧節炭器給水排出ライン42は高中圧給水ポンプ37に接続されている。この低圧節炭器給水排出ライン42の途中には、上記の低圧汽水分離ドラム給水管25が接続されており、低圧汽水分離ドラム給水管25を介して低圧蒸発器4に接続されている。高中圧給水ポンプ37は、中圧節炭器入口連絡管39を介して中圧節炭器5に接続され、高圧節炭器給水供給管40を介して高圧節炭器8に接続される。また、高中圧給水ポンプ37の設置部より上流側の低圧節炭器給水排出ライン42には給水温度計53が設けられている。   In addition, the low pressure economizer 3 is provided with a low pressure economizer feed water discharge line (high medium pressure water supply communication pipe) 42 for discharging the feed water supplied to the low pressure economizer 3 from the low pressure economizer 3, The low pressure economizer feed water discharge line 42 is connected to a high and medium pressure water feed pump 37. The low pressure steam water separation drum feed pipe 25 is connected midway of the low pressure economizer feed water discharge line 42 and is connected to the low pressure evaporator 4 via the low pressure steam separation drum water feed pipe 25. The high and medium pressure feed pump 37 is connected to the medium pressure economizer 5 via the medium pressure economizer inlet connection pipe 39 and is connected to the high pressure economizer 8 via the high pressure economizer feed water supply pipe 40. A water supply thermometer 53 is provided in the low pressure economizer feed water discharge line 42 on the upstream side of the installation portion of the high / medium pressure water supply pump 37.

蒸気タービンで蒸気のエネルギを発電機(図示せず)の回転に変換することにより発電に利用された後の蒸気は、復水器28に供給される。復水器28で凝縮された水は、復水器28出口から給水系統32に設けられた復水ポンプ29を経由する。その後、給水系統32の後半部分に設けられた低圧給水ポンプ33と低圧給水止め弁34を順次経由して低圧節炭器給水供給ライン(低圧節炭器入口給水配管)46から低圧節炭器3に給水として導入される。   Steam used for power generation by converting steam energy into rotation of a generator (not shown) in a steam turbine is supplied to a condenser. The water condensed by the condenser 28 passes from the outlet of the condenser 28 through a condensate pump 29 provided in the water supply system 32. Thereafter, the low pressure economizer water supply line (low pressure economizer inlet water supply pipe) 46 is sequentially connected to the low pressure economizer 3 via the low pressure water supply pump 33 and the low pressure water supply stop valve 34 provided in the second half of the water supply system 32 sequentially. Introduced as water supply.

起動時及び運転中は、低圧節炭器3ではガスタービンからの燃焼排ガスにより給水が加熱され、その一部は低圧給水流量調整弁21を設けた低圧汽水分離ドラム給水管25を経由して低圧汽水分離ドラム16から低圧蒸発器4に供給される。また、低圧節炭器3で加熱された残りの給水は、低圧節炭器給水排出ライン42を介して高中圧給水ポンプ37に送られ、高中圧給水ポンプ37で昇圧される。高中圧給水ポンプ37の中段から抽出した給水は、中圧給水止め弁38を設けた中圧節炭器入口連絡管39から中圧節炭器5に送られる。また、高中圧給水ポンプ37で高圧まで昇圧された給水は高圧給水止め弁41を有する高圧節炭器給水供給管40を経由して高圧節炭器8に供給される。   During startup and operation, the feed water is heated by the combustion exhaust gas from the gas turbine in the low pressure economizer 3, and a part of the feed water is supplied via the low pressure steam water separation drum feed pipe 25 provided with the low pressure feed water flow control valve 21 It is supplied to the low pressure evaporator 4 from the steam separation drum 16. Further, the remaining feed water heated by the low pressure economizer 3 is sent to the high and medium pressure feed water pump 37 through the low pressure economizer feed water discharge line 42 and is pressurized by the high and medium pressure feed water pump 37. The feed water extracted from the middle stage of the high / medium pressure feed pump 37 is sent to the medium pressure economizer 5 from the medium pressure economizer inlet connection pipe 39 provided with the medium pressure feed water stop valve 38. Further, the feed water pressurized to a high pressure by the high / medium pressure feed pump 37 is supplied to the high pressure economizer 8 via the high pressure economizer feed water supply pipe 40 having the high pressure feed stop valve 41.

このような排熱回収ボイラ1においては、低圧蒸発器4で加熱された給水は低圧汽水分離ドラム16で汽水分離され、分離された蒸気は低圧過熱器7に送られ、分離された水は再び低圧蒸発器4に送られる。低圧過熱器7で過熱された蒸気は蒸気タービンに供給される。   In such a waste heat recovery boiler 1, the feed water heated by the low pressure evaporator 4 is separated by the low pressure steam water separation drum 16, the separated steam is sent to the low pressure superheater 7, and the separated water is again separated It is sent to the low pressure evaporator 4. The steam superheated by the low pressure superheater 7 is supplied to the steam turbine.

中圧節炭器5で加熱された給水は、中圧給水流量調整弁22を設けた中圧汽水分離ドラム給水管26を経由して中圧汽水分離ドラム17から中圧蒸発器6に供給される。中圧蒸発器6で加熱された給水は、中圧汽水分離ドラム17で汽水分離され、蒸気は中圧過熱器9に送られ、水は再び中圧蒸発器6に送られる。中圧過熱器9で過熱された蒸気は一次再熱器13、二次再熱器14に順次送られた後、蒸気タービンに供給される。高圧節炭器8に送られた高圧給水は、高圧給水流量調整弁23を有する高圧汽水分離ドラム給水管27を経由して高圧汽水分離ドラム18から高圧蒸発器11に供給される。高圧蒸発器11で加熱された給水は、高圧汽水分離ドラム18で汽水分離され、蒸気は高圧一次過熱器12、高圧二次過熱器15に送られて過熱された後に、蒸気タービンに供給される。高圧汽水分離ドラム18で分離された水は、再び高圧蒸発器11に送られる。
また、中圧過熱器9と高圧蒸発器11の間には脱硝装置10が配置されており、脱硝装置10には排熱回収ボイラ1の運転中にガス流れの上流側からアンモニアが噴射される。
The feed water heated by the medium pressure economizer 5 is supplied from the medium pressure steam water separation drum 17 to the medium pressure evaporator 6 via the medium pressure steam water separation drum water supply pipe 26 provided with the medium pressure water supply flow control valve 22. Ru. The feed water heated by the medium pressure evaporator 6 is separated by steam by the medium pressure steam water separation drum 17, the steam is sent to the medium pressure superheater 9, and the water is sent again to the medium pressure evaporator 6. The steam superheated by the medium pressure superheater 9 is sequentially sent to the primary reheater 13 and the secondary reheater 14 and then supplied to the steam turbine. The high pressure feed water sent to the high pressure economizer 8 is supplied from the high pressure steam separation drum 18 to the high pressure evaporator 11 via the high pressure steam separation drum feed pipe 27 having the high pressure feed flow control valve 23. The feed water heated by the high-pressure evaporator 11 is separated by steam by the high-pressure steam separation drum 18, and the steam is sent to the high-pressure primary superheater 12 and the high-pressure secondary superheater 15 and is supplied to the steam turbine after being superheated. . The water separated by the high pressure brackish water separation drum 18 is sent to the high pressure evaporator 11 again.
Further, the denitration device 10 is disposed between the medium pressure superheater 9 and the high pressure evaporator 11, and ammonia is injected to the denitration device 10 from the upstream side of the gas flow during operation of the exhaust heat recovery boiler 1 .

なお、高圧節炭器給水供給管40における、高中圧給水ポンプ37と高圧給水止め弁41との間の部分には、流量計70と逆止弁75が設けられている。低圧汽水分離ドラム給水管25と中圧節炭器入口連絡管39には流量計71,72がそれぞれ設けられている。また、中圧節炭器入口連絡管39と給水系統32にも逆止弁76,78がそれぞれ設けられている。   A flow meter 70 and a check valve 75 are provided in a portion between the high medium pressure water supply pump 37 and the high pressure water supply stop valve 41 in the high pressure economizer water supply pipe 40. Flow meters 71 and 72 are respectively provided in the low pressure brackish water separation drum feed pipe 25 and the medium pressure economizer inlet connection pipe 39. Further, check valves 76 and 78 are also provided in the medium pressure economizer inlet communication pipe 39 and the water supply system 32, respectively.

低圧節炭器給水供給ライン46と低圧節炭器給水排出ライン42との間には、低圧節炭器3に供給される給水をバイパスする低圧節炭器バイパスライン50と、低圧節炭器3から排出された給水を低圧節炭器3に戻す低圧節炭器循環ライン43とが設けられている。   Between the low pressure economizer feed water supply line 46 and the low pressure economizer feed water discharge line 42, a low pressure economizer bypass line 50 for bypassing the feed water supplied to the low pressure economizer 3, and the low pressure economizer 3 And a low pressure economizer circulation line 43 for returning the feed water discharged from the low pressure economizer 3 to the low pressure economizer 3.

低圧節炭器バイパスライン50には、復水器28からの温度の低い給水が流入可能となっている。即ち、低圧節炭器バイパスライン50には、復水器28からの給水を供給する低圧給水止め弁34を有する給水系統32を接続している。低圧節炭器バイパスライン50の途中には、バイパス弁51が設けられている。
また、低圧節炭器循環ライン43の途中には、低圧節炭器循環ポンプ44及び調整弁45が設けられている。
Low temperature feed water from the condenser 28 can flow into the low pressure economizer bypass line 50. That is, the low pressure economizer bypass line 50 is connected to a water supply system 32 having a low pressure water supply stop valve 34 for supplying the water supply from the condenser 28. A bypass valve 51 is provided in the middle of the low pressure economizer bypass line 50.
Also, in the middle of the low pressure economizer circulation line 43, a low pressure economizer circulation pump 44 and a control valve 45 are provided.

排熱回収ボイラ1には、SOx濃度測定手段61の出力に基づいて、低圧節炭器バイパスライン50の使用や低圧節炭器循環ライン43の使用を切り換える制御部60が設けられる。低圧節炭器バイパスライン50を使用したバイパス流量の調整や低圧節炭器循環ライン43を使用した循環流量の調整への切り換えは、バイパス弁51や調整弁45の開閉及び開度制御により行われる。なお、図1中の制御部60は、SOx濃度測定手段61の出力の他に、給水温度計53の出力も受信している。   The exhaust heat recovery boiler 1 is provided with a control unit 60 that switches the use of the low pressure economizer bypass line 50 and the use of the low pressure economizer circulation line 43 based on the output of the SOx concentration measurement means 61. The bypass flow rate adjustment using the low pressure economizer bypass line 50 and switching to the circulation flow rate adjustment using the low pressure economizer circulation line 43 are performed by opening and closing control of the bypass valve 51 and the adjustment valve 45 and opening control . In addition to the output of the SOx concentration measuring means 61, the control unit 60 in FIG. 1 also receives the output of the water supply thermometer 53.

制御部60は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。   The control unit 60 includes, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like. Then, a series of processes for realizing various functions are stored in the form of a program, for example, in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM etc. Thus, various functions are realized. The program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, or may be distributed via a wired or wireless communication means. Etc. may be applied. The computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like.

次に、図2を示して本実施形態に係る排熱回収ボイラの低圧節炭器及びその付近の系統についてより詳しく説明する。
図2は本実施形態に係る排熱回収ボイラの低圧節炭器及びその付近の具体的な構成を示す系統図である。なお、図1と同一の構成要素については、同一の符号を付してその重複した説明を省略する。
Next, referring to FIG. 2, the low pressure economizer of the exhaust heat recovery boiler according to the present embodiment and the system in the vicinity thereof will be described in more detail.
FIG. 2 is a system diagram showing a specific configuration of the low pressure economizer of the exhaust heat recovery boiler according to the present embodiment and the vicinity thereof. In addition, about the component same as FIG. 1, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.

低圧節炭器3は、排熱回収ボイラ1が備える複数の節炭器のうちで通過する燃焼排ガスが最も低温側となる位置に設けられた節炭器である。排熱回収ボイラ1においては、図2に示すように、低圧節炭器給水供給ライン46から分岐して、低圧節炭器給水排出ライン42に接続され、低圧節炭器3に供給される給水をバイパスする低圧節炭器バイパスライン50が設けられている。また、低圧節炭器給水排出ライン42から分岐して、低圧節炭器給水供給ライン46に接続され、低圧節炭器3から排出された給水を低圧節炭器3に戻す低圧節炭器循環ライン43がさらに設けられている。   The low-pressure economizer 3 is an economizer provided at a position where the flue gas passing through among the economizers provided in the exhaust heat recovery boiler 1 is at the lowest temperature side. In the waste heat recovery boiler 1, as shown in FIG. 2, the feed water branched from the low pressure economizer feed water supply line 46 is connected to the low pressure economizer feed water discharge line 42 and supplied to the low pressure economizer 3 A low pressure economizer bypass line 50 is provided to bypass the In addition, the low pressure economizer circulation which is branched from the low pressure economizer feed water discharge line 42 and connected to the low pressure economizer water supply feed line 46 and returns the feed water discharged from the low pressure economizer 3 to the low pressure economizer 3 A line 43 is further provided.

図2に示すように、低圧節炭器給水供給ライン46と低圧節炭器バイパスライン50との分岐点は、低圧節炭器給水供給ライン46への低圧節炭器循環ライン43の合流点に対して、低圧節炭器給水供給ライン46の上流側に位置している。また、低圧節炭器給水排出ライン42への低圧節炭器バイパスライン50の合流点は、低圧節炭器給水排出ライン42と低圧節炭器循環ライン43との分岐点に対して、低圧節炭器給水排出ライン42の下流側に位置している。   As shown in FIG. 2, the branch point between the low pressure economizer feed water supply line 46 and the low pressure economizer bypass line 50 is at the junction of the low pressure economizer circulation line 43 to the low pressure economizer water supply line 46. On the other hand, it is located upstream of the low pressure economizer feed water supply line 46. In addition, the junction point of the low pressure economizer bypass line 50 to the low pressure economizer feed water discharge line 42 is the low pressure node relative to the junction of the low pressure economizer feed water discharge line 42 and the low pressure economizer circulation line 43. It is located downstream of the coal feeder water discharge line 42.

低圧節炭器給水供給ライン46の低圧節炭器3への入口付近には、低圧節炭器3へ供給される給水の温度を測定する低圧節炭器入口給水温度計62が設けられている。また、低圧節炭器給水排出ライン42の低圧節炭器3からの出口付近には、低圧節炭器出口給水温度計63が設けられている。低圧節炭器入口給水温度計62及び低圧節炭器出口給水温度計63の出力は、制御部60に送られるように構成されている。制御部60は、SOx濃度測定手段61の出力の他に、これらの温度計の出力に基づいて、低圧給水止め弁34、調整弁45、及びバイパス弁51の開閉及び開度を制御する。本実施形態に係る排熱回収ボイラ1においては、低圧節炭器3の入口付近を流通する給水の温度は、例えば概ね80〜100℃程度に保たれ、低圧節炭器3の出口付近を流通する給水の温度は、例えば概ね140〜160℃程度に保たれる。   Near the inlet to the low pressure economizer 3 of the low pressure economizer feed water supply line 46, a low pressure economizer inlet water supply thermometer 62 for measuring the temperature of the feed water supplied to the low pressure economizer 3 is provided . Further, a low pressure economizer outlet water supply thermometer 63 is provided in the vicinity of the outlet from the low pressure economizer 3 of the low pressure economizer water supply discharge line 42. Outputs of the low pressure economizer inlet water supply thermometer 62 and the low pressure economizer outlet water supply thermometer 63 are configured to be sent to the control unit 60. The control unit 60 controls the opening / closing and the opening degree of the low pressure water supply stop valve 34, the adjustment valve 45, and the bypass valve 51 based on the output of these thermometers in addition to the output of the SOx concentration measuring means 61. In the exhaust heat recovery boiler 1 according to the present embodiment, the temperature of the water supplied in the vicinity of the inlet of the low pressure economizer 3 is maintained at, for example, about 80 to 100 ° C. The temperature of the supplied water is maintained, for example, at about 140 to 160.degree.

制御部60は、SOx濃度測定手段61の出力に基づいて、低圧節炭器バイパスライン50や低圧節炭器循環ライン43を使用した循環流量の調整へ切り換える。なお、制御部60は、SOx濃度測定手段61の出力に基づいて低圧節炭器3へ供給される給水の温度を調整する場合は、低圧節炭器バイパスライン50を使用したバイパス流量の調整へ切り換える前に、低圧節炭器循環ライン43を使用した循環流量の調整へ切り換えるように制御を行う。これにより、後述するように、低圧節炭器3の給水温度は、低圧節炭器循環ライン43により低圧節炭器3内での熱バランスにより給水温度を精度よく制御できる。また、給水温度を大きな変化幅で変更して制御するには、低圧節炭器バイパスライン50により低圧節炭器3を流通する給水流量を減少させることで、燃焼排ガスとの交換熱量に対して給水温度を上昇する効果が大きくなる。即ち、低圧節炭器3の給水温度は、まず低圧節炭器循環ライン43により精度良く制御し、さらに給水温度の昇温が必要な際には、給水温度の昇温効果の大きな低圧節炭器バイパスライン50により段階的に制御することで、効率的な制御が可能となる。
制御部60による制御の詳細については、後述する排熱回収ボイラの給水方法にて説明する。
The control unit 60 switches to adjustment of the circulation flow rate using the low pressure economizer bypass line 50 and the low pressure economizer circulation line 43 based on the output of the SOx concentration measurement means 61. When the control unit 60 adjusts the temperature of the feed water supplied to the low pressure economizer 3 based on the output of the SOx concentration measurement means 61, the control of the bypass flow rate using the low pressure economizer bypass line 50 Before switching, control is performed to switch to adjustment of the circulation flow rate using the low pressure economizer circulation line 43. Thereby, as described later, the feed water temperature of the low pressure economizer 3 can control the feed water temperature accurately by the heat balance in the low pressure economizer 3 through the low pressure economizer circulation line 43. Also, in order to change and control the feed water temperature with a large change range, the flow rate of the feed water flowing through the low pressure economizer 3 is reduced by the low pressure economizer bypass line 50 to reduce the amount of heat exchange with the combustion exhaust gas. The effect of raising the water supply temperature is enhanced. That is, the feed water temperature of the low pressure economizer 3 is first accurately controlled by the low pressure economizer circulation line 43, and when it is necessary to further raise the feed water temperature, the low pressure eco The stepwise control by the device bypass line 50 enables efficient control.
The details of the control by the control unit 60 will be described in the water supply method of the exhaust heat recovery boiler described later.

〔排熱回収ボイラの給水方法〕
次に、本開示の排熱回収ボイラの給水方法の一例について説明する。
本開示の幾つかの実施形態に係る排熱回収ボイラの給水方法は、燃焼排ガスで給水を順次加熱する少なくとも1つの節炭器と、該節炭器のうち燃焼排ガスが最も低温側となる位置に配置した低圧節炭器を通過した燃焼排ガス中のSOx濃度を測定するSOx濃度測定手段と、を備える排熱回収ボイラの給水方法である。また、本開示の幾つかの実施形態に係る排熱回収ボイラの給水方法は、低圧節炭器給水供給工程と、低圧節炭器給水排出工程と、低圧節炭器バイパス工程と、を有する。低圧節炭器給水供給工程においては、少なくとも1つの節炭器のうち通過する燃焼排ガスが最も低温側となる位置に設けられた低圧節炭器に、給水を供給する。低圧節炭器給水排出工程においては、低圧節炭器に供給された給水を低圧節炭器から排出する。低圧節炭器バイパス工程においては、SOx濃度測定手段の測定結果に基づいて、低圧節炭器給水供給工程において低圧節炭器に供給される給水をバイパスする。
[Water supply method of waste heat recovery boiler]
Next, an example of the water supply method of the exhaust heat recovery boiler of the present disclosure will be described.
In the water supply method of a waste heat recovery boiler according to some embodiments of the present disclosure, at least one economizer for sequentially heating the water supply with the combustion exhaust gas, and the position where the combustion exhaust gas is at the lowest temperature among the economizers And SOx concentration measuring means for measuring the concentration of SOx in the flue gas passing through the low pressure economizer arranged in the above. Moreover, the water supply method of the exhaust heat recovery boiler according to some embodiments of the present disclosure includes a low pressure economizer feed water supply process, a low pressure economizer feed water discharge process, and a low pressure economizer bypass process. In the low pressure economizer feed water supply step, the water supply is supplied to the low pressure economizer provided at a position where the flue gas passing through is at the lowest temperature side among the at least one economizer. In the low pressure economizer feed water discharge step, the feed water supplied to the low pressure economizer is discharged from the low pressure economizer. In the low pressure economizer bypass step, the feed water supplied to the low pressure economizer is bypassed in the low pressure economizer water supply process based on the measurement result of the SOx concentration measurement means.

なお、以下では、図2に示す排熱回収ボイラ1において、本開示の排熱回収ボイラの給水方法を適用する場合を一例として説明するが、これに限定されない。   In addition, although the case where the feed water method of the waste heat recovery boiler of this indication is applied is demonstrated to an example in the waste heat recovery boiler 1 shown in FIG. 2 below, it is not limited to this.

(低圧節炭器給水供給工程)
低圧節炭器給水供給工程においては、低圧節炭器3に給水を供給する。具体的には、給水系統32に設けられた低圧給水止め弁34を開くことにより、給水(例えば50〜60℃程度)が給水系統32から低圧節炭器給水供給ライン46に流入し、低圧節炭器3に供給される。
(Low pressure economizer feed water supply process)
In the low pressure economizer feed process, the low pressure economizer 3 is supplied with water. Specifically, by opening the low-pressure feed stop valve 34 provided in the feed system 32, feed water (for example, about 50 to 60 ° C.) flows from the feed system 32 into the low-pressure economizer feed water supply line 46, The coal vessel 3 is supplied.

(低圧節炭器給水排出工程)
低圧節炭器給水排出工程においては、低圧節炭器給水供給工程において低圧節炭器3に供給された給水が低圧節炭器3から排出される。この給水の排出は、低圧節炭器3に供給された給水を低圧節炭器給水排出ライン42に流すことによって行われる。
(Low pressure economizer feed water discharge process)
In the low pressure economizer feed water discharge step, the feed water supplied to the low pressure economizer 3 in the low pressure economizer feed water supply step is discharged from the low pressure economizer 3. Discharge of the feed water is performed by flowing the feed water supplied to the low pressure economizer 3 to the low pressure economizer feed water discharge line 42.

(低圧節炭器バイパス工程)
低圧節炭器バイパス工程においては、SOx濃度測定手段61の測定結果に基づいて(SOx濃度測定手段61の測定結果を見ながら)、低圧節炭器給水供給工程において低圧節炭器3に供給される給水をバイパスする。具体的には、SOx濃度測定手段61及び低圧節炭器入口給水温度計62の測定結果に基づくと、低圧節炭器3に供給される給水の温度が酸露点温度以下もしくは後述する目標給水温度(TI)以下であると判断される場合、低圧節炭器バイパス工程を行う。この低圧節炭器バイパス工程においては、バイパス弁51を開いて開度を制御することにより、給水系統32から低圧節炭器3に供給される給水の一部をバイパスして低圧節炭器給水排出ライン42に送る。これにより、低圧節炭器3に供給される給水の流量が減少し、燃焼排ガスからの交換熱量に対して低圧節炭器3の給水温度を上昇させることが可能となる。
(Low pressure economizer bypass process)
In the low pressure economizer bypass step, the low pressure economizer 3 is supplied in the low pressure economizer feed water supply process based on the measurement result of the SOx concentration measurement means 61 (while looking at the measurement result of the SOx concentration measurement means 61). Bypass the water supply. Specifically, based on the measurement results of the SOx concentration measurement means 61 and the low pressure economizer inlet water supply thermometer 62, the temperature of the water supplied to the low pressure economizer 3 is equal to or lower than the acid dew point temperature or the target water temperature to be described later If determined to be less than (TI 0 ), the low pressure economizer bypass step is performed. In the low pressure economizer bypass step, a part of the water supplied from the water supply system 32 to the low pressure economizer 3 is bypassed to control the low pressure economizer feed water by opening the bypass valve 51 to control the opening degree. Send to discharge line 42. As a result, the flow rate of the feed water supplied to the low pressure economizer 3 decreases, and it becomes possible to raise the feed water temperature of the low pressure economizer 3 with respect to the heat exchange amount from the combustion exhaust gas.

(低圧節炭器循環工程)
なお、上記の低圧節炭器バイパス工程を行う前に、SOx濃度測定手段61の測定結果に基づいて、低圧節炭器3から排出された給水を低圧節炭器3に戻す低圧節炭器循環工程が行われる。具体的には、SOx濃度測定手段61及び低圧節炭器入口給水温度計62の測定結果に基づくと、低圧節炭器3に供給される給水の温度が酸露点温度以下もしくは後述する目標給水温度(TI)以下になると判断される場合、上記の低圧節炭器バイパス工程を行う前に低圧節炭器循環工程を行う。この低圧節炭器循環工程においては、調整弁45を開いて開度を制御することにより、低圧節炭器3から排出された給水を低圧節炭器循環ポンプ44に送り、低圧節炭器循環ライン43に流入させる。低圧節炭器循環ライン43に流入した給水は、低圧節炭器給水供給ライン46に送られて、再び低圧節炭器3に供給される。これにより、低圧節炭器3から排出された昇温された給水が低圧節炭器3の入口に供給される給水に混合されるので、低圧節炭器3の給水温度を上昇させることが可能となる。
(Low pressure economizer circulation process)
In addition, before performing the above-mentioned low pressure economizer bypass step, the low pressure economizer circulation which returns the feed water discharged from the low pressure economizer 3 to the low pressure economizer 3 based on the measurement result of the SOx concentration measuring means 61. A process is performed. Specifically, based on the measurement results of the SOx concentration measurement means 61 and the low pressure economizer inlet water supply thermometer 62, the temperature of the water supplied to the low pressure economizer 3 is equal to or lower than the acid dew point temperature or the target water temperature to be described later If it is judged that the value becomes (TI 0 ) or less, the low pressure economizer circulating process is performed before the above-mentioned low pressure economizer bypass process. In the low pressure economizer circulating process, the feed water discharged from the low pressure economizer 3 is sent to the low pressure economizer circulating pump 44 by controlling the opening degree by opening the control valve 45, and the low pressure economizer circulating It flows into the line 43. The feed water flowing into the low pressure economizer circulation line 43 is sent to the low pressure economizer feed water supply line 46 and is again supplied to the low pressure economizer 3. As a result, the temperature-increased feed water discharged from the low pressure economizer 3 is mixed with the feed water supplied to the inlet of the low pressure economizer 3, so the feed water temperature of the low pressure economizer 3 can be raised. It becomes.

以上説明した各工程は、制御部60の制御により行われる。   Each process described above is performed under the control of the control unit 60.

ここで、図3のフローチャートを示して、低圧節炭器循環工程及び低圧節炭器バイパス工程の詳細についてより具体的に説明する。   Here, the details of the low pressure economizer circulating process and the low pressure economizer bypass process will be more specifically described with reference to the flowchart of FIG. 3.

図3に示されるステップS1では、排熱回収ボイラ(HRSG)1の出口(即ち、煙突2の入口)の燃焼排ガスに含まれるSO濃度をSOx濃度測定手段61により検出する。このときのSO濃度は、排熱回収ボイラ1に燃焼排ガスを流通させるガスタービン(図示せず)の通常の稼働状態では、例えば0.7〜1.1ppm程度の範囲で検出される。 In step S1 shown in FIG. 3, the SO 2 concentration measurement means 61 detects the concentration of SO 2 contained in the flue gas from the outlet of the heat recovery steam generator (HRSG) 1 (ie, the inlet of the chimney 2). The SO 2 concentration at this time is detected, for example, in the range of about 0.7 to 1.1 ppm in a normal operating state of a gas turbine (not shown) that causes the exhaust gas to flow through the exhaust heat recovery boiler 1.

次のステップS2では、ステップS1で測定されたSO濃度から、酸露点温度(TA)を算出する。酸露点温度の算出は既存の推算式により行う。このときの酸露点温度は、例えば95℃〜120℃程度の範囲で算出される。 In the next step S2, the acid dew point temperature (TA) is calculated from the SO 2 concentration measured in step S1. The acid dew point temperature is calculated by the existing estimation formula. The acid dew point temperature at this time is calculated, for example, in the range of about 95 ° C. to 120 ° C.

次のステップS3では、ステップS2で算出された酸露点温度(TA)から目標給水温度(TI)を設定する。目標給水温度の設定は、例えばTA+αという式に基づいて行われる。この計算式において、αは酸露点温度から余裕を持った温度(余裕温度)を表す。αは、計測誤差も含めて例えば5〜10℃の範囲で設定される。なお、目標給水温度(TI)の設定は、一次関数的に設定するのではなく、燃焼排ガス中のSO濃度に応じて段階的に変化する、ある程度の幅を持たせた段階的な設定とする。 In the next step S3, a target feed water temperature (TI 0 ) is set from the acid dew point temperature (TA) calculated in step S2. The setting of the target feed water temperature is performed based on, for example, the equation TA + α. In this formula, α represents a temperature (margin temperature) having a margin from the acid dew point temperature. α is set, for example, in the range of 5 to 10 ° C. including the measurement error. The setting of the target feed water temperature (TI 0 ) is not set as a linear function, but changes stepwise according to the concentration of SO 2 in the combustion exhaust gas. I assume.

次のステップS4では、低圧節炭器入口給水温度計62により給水温度(TI)を計測する。   In the next step S4, the feed water temperature (TI) is measured by the low pressure economizer inlet feed water thermometer 62.

次のステップS5では、上記のステップで得られた目標給水温度(TI)と給水温度(TI)とに基づいて、調整弁45(給水温度調整弁)で低圧節炭器循環ライン43に流す給水の流量を制御する。具体的には、給水温度(TI)が目標給水温度(TI)以上になるように流量制御を行う。 In the next step S5, based on the target feed water temperature (TI 0 ) and the feed water temperature (TI) obtained in the above step, the control valve 45 (feed water temperature control valve) is caused to flow to the low pressure economizer circulation line 43 Control the water flow rate. Specifically, flow control is performed so that the feed water temperature (TI) becomes equal to or higher than the target feed water temperature (TI 0 ).

次のステップS6では、ステップS5を行った結果、給水温度(TI)が目標給水温度(TI)未満かどうかを判定する。給水温度(TI)が目標給水温度(TI)以上(即ち、No判定)の場合、低圧節炭器循環ライン43の使用のみで給水温度(TI)を目標給水温度(TI)以上にできることが分かる。従って、ステップS5に戻り、引き続き低圧節炭器循環ライン43の使用のみで給水温度制御を行う。 In the next step S6, as a result of performing step S5, it is determined whether the feed water temperature (TI) is less than the target feed water temperature (TI 0 ). If the feed water temperature (TI) is equal to or higher than the target feed water temperature (TI 0 ) (that is, the determination is No), the feed water temperature (TI) can be raised to the target feed water temperature (TI 0 ) only by using the low pressure economizer circulation line 43 I understand. Therefore, the process returns to step S5, and the feed water temperature control is continuously performed only by using the low pressure economizer circulation line 43.

一方、給水温度(TI)が目標給水温度(TI)未満(即ち、Yes判定)の場合、低圧節炭器循環ライン43の使用のみでは給水温度(TI)を目標給水温度(TI)以上にできないことが分かる。従って、次のステップS7に進み、低圧節炭器バイパスライン50を使用する。 On the other hand, if the feed water temperature (TI) is less than the target feed water temperature (TI 0 ) (that is, the determination is Yes), the feed water temperature (TI) is higher than the target feed water temperature (TI 0 ) only by using the low pressure economizer circulation line 43 I understand that I can not Therefore, the low pressure economizer bypass line 50 is used in the next step S7.

次のステップS7では、低圧節炭器バイパスライン50を使用し、低圧節炭器バイパスライン50に流れる給水の流量を増加させる。低圧節炭器バイパスライン50に流れる給水の流量制御は、バイパス弁51の開度制御により行う。低圧節炭器バイパスライン50に流れる給水の流量は、低圧節炭器3に供給され流通する給水流量を減少させることで、燃焼排ガスとの交換熱量に対する給水温度上昇への効果が大きくなる。これにより、燃焼排ガスからの交換熱量に対して低圧節炭器3の給水温度(TI)を上昇することが可能となる。この流量制御は、制御のハンチング(チャタリング)を防止して安定化させるため、急速な温度変化をさせず、温度が整定してから次の流量に変化するように段階的に行ってもよい。即ち、低圧節炭器バイパスライン50に流れる給水の流量を、微量ずつ、段階的に増加させてもよい。また、低圧節炭器バイパスライン50に流れる給水の流量は、チャタリングの抑制が可能となる範囲で増加させればよい。   In the next step S7, the low pressure economizer bypass line 50 is used to increase the flow rate of the feed water flowing to the low pressure economizer bypass line 50. Flow control of the feed water flowing to the low pressure economizer bypass line 50 is performed by opening control of the bypass valve 51. The flow rate of the feed water flowing to the low pressure economizer bypass line 50 decreases the flow rate of the feed water supplied to the low pressure economizer 3 to increase the effect on the feed water temperature rise with respect to the heat exchange with the flue gas. This makes it possible to raise the feed water temperature (TI) of the low pressure economizer 3 with respect to the heat exchange amount from the combustion exhaust gas. This flow rate control may be performed stepwise so that the temperature settles and then changes to the next flow rate without rapid temperature change, in order to prevent and stabilize control hunting (chattering). That is, the flow rate of the feed water flowing to the low pressure economizer bypass line 50 may be increased stepwise by a small amount. Further, the flow rate of the feed water flowing to the low pressure economizer bypass line 50 may be increased as long as the chattering can be suppressed.

次のステップS8では、低圧節炭器バイパスライン50に流れる給水の流量(バイパスライン流量)が上限流量以上であるか否かを判定する。バイパスライン流量が上限流量未満(即ち、No判定)の場合、ステップS4に戻り、再び給水温度(TI)の計測を行う。一方、バイパスライン流量が上限流量以上(即ち、YES判定)の場合、次のステップS9に進む。なお、バイパスライン流量の上限流量の値は、バイパス弁51の開度の制御性(CV値)より設定する。   In the next step S8, it is determined whether the flow rate of the feedwater (bypass line flow rate) flowing through the low pressure economizer bypass line 50 is equal to or more than the upper limit flow rate. If the bypass line flow rate is less than the upper limit flow rate (i.e., the determination is No), the process returns to step S4, and the feed water temperature (TI) is measured again. On the other hand, if the bypass line flow rate is equal to or higher than the upper limit flow rate (that is, YES determination), the process proceeds to the next step S9. The value of the upper limit flow rate of the bypass line flow rate is set from the controllability (CV value) of the opening degree of the bypass valve 51.

次のステップS9では、給水温度(TI)が目標給水温度(TI)未満かどうかを判定し、給水温度(TI)が目標給水温度(TI)未満であった場合、制御部60が警報を発して作業者に給水温度(TI)が目標給水温度(TI)に調整できないことを通知する。 In the next step S9, the feed water temperature (TI) is to determine whether less than the target water temperature (TI 0), when the feed water temperature (TI) is less than the target water temperature (TI 0), the control unit 60 is alarm To notify the worker that the water supply temperature (TI) can not be adjusted to the target water supply temperature (TI 0 ).

ここで、上記ステップS3における目標給水温度(TI)の段階的な設定方法について、図4を示してより具体的に説明する。
図4は、酸露点温度を一点鎖線で、酸露点温度+余裕温度を破線で、及び目標給水温度を実線で示し、これらと燃焼排ガス中のSO濃度との関係を表すグラフである。
Here, a stepwise setting method of the target feed water temperature (TI 0 ) in the step S3 will be described more specifically with reference to FIG.
FIG. 4 is a graph showing the relationship between the acid dew point temperature, the acid dew point temperature + the margin temperature, and the target feed water temperature, with a dashed dotted line and a solid line, respectively, and the SO 2 concentration in the combustion exhaust gas.

図4に示すように、燃焼排ガス中のSO濃度が高くなるほど酸露点温度は高くなっていく。従って、酸露点温度に余裕温度を加えた温度(酸露点温度+余裕温度)も燃焼排ガス中のSO濃度が高くなるほど高くなっていく。 As shown in FIG. 4, the higher the concentration of SO 2 in the combustion exhaust gas, the higher the acid dew point temperature. Therefore, the temperature (acid dew point temperature + margin temperature) obtained by adding the margin temperature to the acid dew point temperature also increases as the SO 2 concentration in the combustion exhaust gas increases.

目標給水温度は、酸露点温度+余裕温度に基づいて、特定のSO濃度範囲においては一定温度となるように段階的に設定する。例えば図4に示すように、T1,T2,T3,T4の4段階の目標給水温度を設定すればよい。なお、目標給水温度の段階数は特に限定されない。 The target feed water temperature is set stepwise so as to be a constant temperature in a specific SO 2 concentration range based on the acid dew point temperature + the margin temperature. For example, as shown in FIG. 4, four stages of target feed water temperatures T1, T2, T3 and T4 may be set. The number of stages of the target feed water temperature is not particularly limited.

次に、上記ステップS7におけるバイパスライン流量の段階的な制御方法について、図5を示してより具体的に説明する。
図5(a)は低圧節炭器の入口給水温度と時間経過との関係、図5(b)は低圧節炭器の出口温度と時間経過との関係、図5(c)はバイパス流量と時間経過との関係をそれぞれ表すグラフである。図5はSO濃度が高く給水温度(TI)と目標給水温度(TI)の差がある場合、もしくは時間経過とともにSO濃度が増加する場合に、バイパスライン流量を段階的に増加させる一例である。
Next, the step-by-step control method of the bypass line flow rate in step S7 will be described more specifically with reference to FIG.
5 (a) shows the relationship between the inlet feed water temperature of the low pressure economizer and time course, FIG. 5 (b) shows the relationship between the outlet temperature of the low pressure economizer and time course, and FIG. 5 (c) shows the bypass flow rate and It is a graph showing the relation with time passage, respectively. Fig. 5 shows an example in which the bypass line flow rate is increased stepwise when the SO 2 concentration is high and there is a difference between the feed water temperature (TI) and the target feed water temperature (TI 0 ) or the SO 2 concentration increases with time. It is.

低圧節炭器循環ライン43を使用した循環流量の調整のみでは給水温度(TI)を目標給水温度(TI)以上にできないことが分かったとき、バイパスライン流量(バイパス流量)を増加させる制御を行う。このとき、まず、図5(c)の通り、SO濃度に対して低圧節炭器3の入口給水温度(TI)を上昇する必要があると判断された際に(図3のステップS7に相当)、バイパス弁51の開度を段階的に大きくしてバイパス流量を増加させる。バイパス流量の増加制御は、低圧節炭器3の入口給水温度(TI)が目標給水温度(TI)に到達させるまで、上限流量を超えない範囲で、段階的に流量を増加させて一定流量となるように制御する(図3のステップS8に相当)。例えば、図5(c)に示すように、5段階のバイパス流量に段階的に変更させる制御を行えばよい。なお、バイパス流量制御の段階数は特に限定されず、燃焼排ガス中のSOx濃度又は低圧節炭器3に供給される給水の温度と目標給水温度(TI)との差に応じて、低圧節炭器バイパスライン50に流れる給水の流量を段階的に制御すればよい。低圧節炭器バイパスライン50に流れる給水の流量は、SO濃度が低い又は給水温度(TI)と目標給水温度(TI)との差が小さい場合には、チャタリングの抑制が可能となる範囲で増加させればよい。また、給水温度(TI)の昇温速度を上げたい場合には、チャタリングの抑制が可能となる範囲で低圧節炭器バイパスライン50に流れる給水の流量を増加させてもよい。 If it is found that the feed water temperature (TI) can not be raised above the target feed water temperature (TI 0 ) only by adjusting the circulation flow rate using the low pressure economizer circulation line 43, control to increase the bypass line flow (bypass flow) Do. At this time, first, as shown in FIG. 5C, when it is determined that the inlet feed water temperature (TI) of the low pressure economizer 3 needs to be increased with respect to the SO 2 concentration (in step S7 of FIG. Correspondingly, the opening degree of the bypass valve 51 is gradually increased to increase the bypass flow rate. The increase control of the bypass flow rate is performed by gradually increasing the flow rate in a range that does not exceed the upper limit flow rate until the inlet feed water temperature (TI) of the low pressure economizer 3 reaches the target feed water temperature (TI 0 ). It controls so that (It corresponds to FIG.3 S8). For example, as shown in FIG. 5C, control may be performed in which the bypass flow rate is changed in five stages. The number of stages of bypass flow control is not particularly limited, and the low pressure node may be selected according to the SOx concentration in the combustion exhaust gas or the temperature of the water supplied to the low pressure economizer 3 and the target water supply temperature (TI 0 ). The flow rate of the feed water flowing to the charcoal box bypass line 50 may be controlled stepwise. The flow rate of the feedwater flowing to the low pressure economizer bypass line 50 is a range in which chattering can be suppressed when the SO 2 concentration is low or the difference between the feedwater temperature (TI) and the target feedwater temperature (TI 0 ) is small. It should be increased by When it is desired to increase the temperature increase rate of the feed water temperature (TI), the flow rate of the feed water flowing through the low pressure economizer bypass line 50 may be increased as long as chattering can be suppressed.

低圧節炭器バイパスライン50に流れるバイパス流量を増やすと、低圧節炭器3へ供給される温度の低い給水系統32からの給水の供給が減少する。このため、低圧節炭器バイパスライン50に流れる給水の流量に応じて、低圧節炭器3に供給され流通する給水流量を減少させることで、燃焼排ガスとの交換熱量に対して給水温度上昇の効果が大きくなる。これにより、燃焼排ガスからの交換熱量に対して低圧節炭器3の入口給水温度(TI)を上昇させることが可能となる。図5(c)に示すように、時間の経過の最初では、低圧節炭器バイパスライン50を使用したバイパス流量の調整は行わず、バイパス流量がゼロである。図5(a)の両矢印Aの領域においては、低圧節炭器循環ライン43を使用した循環流量の調整により給水温度(TI)の制御を行っている。しかしながら、低圧節炭器循環ライン43を使用した循環流量の調整のみでは給水温度(TI)を目標給水温度(TI)に到達させることができないことがある。このときは、不足熱量(図5(a)の両矢印Bで示す温度差)を低圧節炭器バイパスライン50を使用したバイパス流量の調整により補う必要がある。 When the bypass flow rate flowing to the low pressure economizer bypass line 50 is increased, the supply of water supplied from the low temperature water supply system 32 supplied to the low pressure economizer 3 is reduced. For this reason, according to the flow rate of the feed water flowing to the low pressure economizer bypass line 50, the feed water temperature supplied to the low pressure economizer 3 and circulated is reduced to increase the feed water temperature relative to the heat exchange with the flue gas. The effect is greater. Thereby, it becomes possible to raise the inlet feed water temperature (TI) of the low pressure economizer 3 with respect to the heat exchange amount from the combustion exhaust gas. As shown in FIG. 5C, at the beginning of the passage of time, the bypass flow rate is not adjusted using the low pressure economizer bypass line 50, and the bypass flow rate is zero. In the region of the double arrow A in FIG. 5A, the feed water temperature (TI) is controlled by adjusting the circulation flow rate using the low pressure economizer circulation line 43. However, the feedwater temperature (TI) may not be able to reach the target feedwater temperature (TI 0 ) only by adjusting the circulation flow rate using the low pressure economizer circulation line 43. At this time, it is necessary to compensate for the insufficient heat amount (the temperature difference shown by the double arrow B in FIG. 5A) by adjusting the bypass flow rate using the low pressure economizer bypass line 50.

このとき、図5(a)の両矢印Aの領域より以降の時間の経過に対しては、図5(c)に示すように、時間の経過とともに段階的にバイパス流量が増加するような、低圧節炭器バイパスライン50を使用してバイパス流量を増やす調整を行う。これにより、図5(a)に示すように、バイパス流量の増加に伴い、低圧節炭器3の入口の給水温度(TI)は上昇し、昇温速度も上昇する。即ち、給水温度を大きな変化幅で変更して制御するには、低圧節炭器バイパスライン50により低圧節炭器3を流通する給水流量を減少させる方が、燃焼排ガスとの熱交換量に対して給水温度を上昇させる効果は、低圧節炭器循環ライン43を使用した循環流量の調整よりも大きい。   At this time, as shown in FIG. 5 (c), the bypass flow rate increases stepwise with the passage of time, as shown in FIG. The low pressure economizer bypass line 50 is used to make adjustments to increase the bypass flow. As a result, as shown in FIG. 5A, the feed water temperature (TI) at the inlet of the low pressure economizer 3 rises with the increase of the bypass flow rate, and the temperature rise rate also rises. That is, in order to change and control the feed water temperature with a large change range, the flow rate of the feed water flowing through the low pressure economizer 3 is decreased by the low pressure economizer bypass line 50 with respect to the heat exchange amount with the combustion exhaust gas. The effect of raising the feed water temperature is greater than the adjustment of the circulation flow rate using the low pressure economizer circulation line 43.

図5(a)及び図5(b)に示すように、低圧節炭器3の入口の給水温度(TI)と出口の給水温度(T0)は連動して変化する。この理由としては、バイパス流量を増やすと低圧節炭器3へ流入する給水量が減少し、低圧節炭器3での燃焼排ガスとの交換熱量が大きく変わらないため、この交換熱量に対して低圧節炭器3の出口温度(T0)が上昇する。これにより、低圧節炭器循環ライン43を流通する給水の温度が上昇し、温度が上昇した給水を低圧節炭器3に戻すこととなるからである。   As shown in FIGS. 5 (a) and 5 (b), the feed water temperature (TI) at the inlet of the low pressure economizer 3 and the feed water temperature (T0) at the outlet change in conjunction with each other. The reason for this is that if the bypass flow rate is increased, the amount of feed water flowing into the low pressure economizer 3 decreases, and the heat exchange amount with the flue gas in the low pressure economizer 3 does not change significantly. The outlet temperature (T0) of the economizer 3 rises. As a result, the temperature of the feedwater flowing through the low pressure economizer circulation line 43 rises, and the feedwater having the elevated temperature is returned to the low pressure economizer 3.

なお、バイパス流量を増やしたタイミングから所定時間の遅れの後に低圧節炭器3の入口の給水温度(TI)と出口の給水温度(T0)が増加する。即ち、バイパス流量を増やした直後に低圧節炭器3の入口や出口の給水温度がすぐに上昇するわけではなく、時間遅れを伴う。このため低圧節炭器循環ライン43を使用した循環流量の調整により給水温度(TI)の制御を先立って行っている。   The feed water temperature (TI) at the inlet of the low pressure economizer 3 and the feed water temperature (T0) at the outlet increase after a predetermined time delay from the timing when the bypass flow rate is increased. That is, immediately after the bypass flow rate is increased, the temperature of the feed water at the inlet and the outlet of the low pressure economizer 3 does not immediately rise, but there is a time delay. Therefore, control of the feed water temperature (TI) is performed in advance by adjusting the circulation flow rate using the low pressure economizer circulation line 43.

以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
上記したように、本実施形態の排熱回収ボイラ1においては、SOx濃度測定手段61の出力に基づいて、低圧節炭器循環ライン43を使用した循環流量の調整と、低圧節炭器バイパスライン50を使用したバイパス流量の調整とを切り換える制御部60が設けられることを特徴とする。低圧節炭器3の給水温度は、低圧節炭器循環ライン43により低圧節炭器3から排出された昇温された給水が、低圧節炭器3の入口に供給される給水に混合されるので、低圧節炭器3内での熱バランスにより給水温度を精度よく上昇させる制御が可能となる。また、給水温度をより大きな変化幅で変更して制御するには、低圧節炭器3に供給される給水をバイパスすることにより、低圧節炭器3への温度の低い給水の供給流量を減らすことができ、燃焼排ガスからの熱交換量に対して低圧節炭器3入口の給水温度を大きく上昇させることができ、段階的にバイパス流量を増加させることで安定した制御を行うことが可能となる。即ち、低圧節炭器3の給水温度は、まず低圧節炭器循環ライン43により精度良く制御し、さらに給水温度の昇温が必要な際には、給水温度の昇温効果の大きな低圧節炭器バイパスライン50により段階的に制御することで、効率的な制御が可能となる。
According to the configuration described above, according to the present embodiment, the following effects can be obtained.
As described above, in the exhaust heat recovery boiler 1 of the present embodiment, adjustment of the circulation flow rate using the low pressure economizer circulation line 43 based on the output of the SOx concentration measurement means 61, and the low pressure economizer bypass line A control unit 60 is provided to switch between the adjustment of the bypass flow rate using 50 and the like. The feed water temperature of the low pressure economizer 3 is mixed with the feed water supplied to the inlet of the low pressure economizer 3 with the temperature-increased feed water discharged from the low pressure economizer 3 by the low pressure economizer circulation line 43 Because of this, the heat balance in the low pressure economizer 3 makes it possible to control the temperature of the feed water to rise accurately. Moreover, in order to change and control the feed water temperature with a larger change range, the feed flow rate of the low temperature feed water to the low pressure economizer 3 is reduced by bypassing the feed water supplied to the low pressure economizer 3 It is possible to greatly increase the feed water temperature at the inlet of the low pressure economizer 3 with respect to the amount of heat exchange from the combustion exhaust gas, and to perform stable control by gradually increasing the bypass flow rate Become. That is, the feed water temperature of the low pressure economizer 3 is first accurately controlled by the low pressure economizer circulation line 43, and when it is necessary to further raise the feed water temperature, the low pressure eco The stepwise control by the device bypass line 50 enables efficient control.

また、制御部60がSOx濃度測定手段61の出力に基づいて給水のバイパスを行うことで、リアルタイムのSOx濃度に基づいて低圧節炭器3入口の給水温度を変更することが可能となる。即ち、現在のSOx濃度から現在の酸露点温度を算出し、この酸露点温度から余裕を持たせた目標給水温度を設定し、この目標給水温度に基づいた給水温度の制御を行うことが可能となる。このように、現在の酸露点温度に基づいた給水温度制御を行うことが可能となるため、給水温度を適切な温度に設定することが可能となる。これにより、低圧節炭器3の伝熱管の腐食を防止することができ、その際の給水温度を適切にするのでボイラの性能を可能な限り向上させることができる。   Further, the control unit 60 bypasses the water supply based on the output of the SOx concentration measuring means 61, so that it is possible to change the water supply temperature at the inlet of the low pressure economizer 3 based on the SOx concentration in real time. That is, it is possible to calculate the current acid dew point temperature from the current SOx concentration, set a target water supply temperature having a margin from the acid dew point temperature, and control the water supply temperature based on the target water supply temperature. Become. Thus, since it becomes possible to perform feedwater temperature control based on the current acid dew point temperature, it becomes possible to set the feedwater temperature to an appropriate temperature. Thereby, the corrosion of the heat transfer tube of the low pressure economizer 3 can be prevented, and the feed water temperature at that time can be made appropriate, so the performance of the boiler can be improved as much as possible.

また、本開示の排熱回収ボイラ1においては、低圧節炭器バイパスライン50により低圧節炭器3に供給される給水をバイパスするだけで低圧節炭器3入口の給水温度を高くすることができる。従って、他系統にある加熱源等外部から蒸気等の熱源を加えて給水温度を高くする必要がないため、新たな設備を設けることなく、低圧節炭器3付近の既存の構成を利用して、低圧節炭器3内での熱バランスにより給水温度を制御することが可能となり、ボイラの性能を可能な限り向上させることができる。従って、本開示の排熱回収ボイラ1は他系統の応答の影響を受けないので制御応答性に優れている。   Further, in the exhaust heat recovery boiler 1 of the present disclosure, the feed water temperature at the inlet of the low pressure economizer 3 can be increased simply by bypassing the feed water supplied to the low pressure economizer 3 by the low pressure economizer bypass line 50. it can. Therefore, it is not necessary to increase the feed water temperature by adding a heat source such as steam from an external source such as a heat source in another system to raise the feed water temperature, so using the existing configuration near the low pressure economizer 3 without providing new equipment. The heat balance in the low pressure economizer 3 makes it possible to control the feed water temperature, and the performance of the boiler can be improved as much as possible. Therefore, the exhaust heat recovery boiler 1 of the present disclosure is excellent in control response because it is not affected by the response of the other system.

また、低圧節炭器循環ライン43により、低圧節炭器3から排出された給水を低圧節炭器3に戻すことが可能となる。これにより、低圧節炭器3入口の給水温度を高くすることができる。また、低圧節炭器バイパスライン50の使用を切り換える前に、低圧節炭器循環ライン43の使用を切り換えることができる。これにより、低圧節炭器3から排出された給水を低圧節炭器3に戻しても低圧節炭器3入口の給水温度が上がらなかった場合に低圧節炭器バイパスライン50を使用するという運用が可能となる。即ち、低圧節炭器循環ライン43の使用のみでは目標給水温度まで熱量が不足している場合、不足した熱量を低圧節炭器バイパスライン50の使用で補うことができる。   Further, the low pressure economizer circulation line 43 enables the feed water discharged from the low pressure economizer 3 to be returned to the low pressure economizer 3. Thereby, the feed water temperature at the inlet of the low pressure economizer 3 can be raised. Moreover, before switching the use of the low pressure economizer bypass line 50, the use of the low pressure economizer circulation line 43 can be switched. Thereby, the operation of using the low pressure economizer bypass line 50 when the feed water temperature at the inlet of the low pressure economizer 3 does not rise even if the feed water discharged from the low pressure economizer 3 is returned to the low pressure economizer 3 Is possible. That is, when the heat quantity is insufficient up to the target feed water temperature only by the use of the low pressure economizer circulation line 43, the insufficient heat quantity can be compensated by the use of the low pressure economizer bypass line 50.

また、上記したように、本実施形態の排熱回収ボイラ1の給水方法においては、SOx濃度測定手段61の測定結果に基づいて、低圧節炭器給水供給工程において、低圧節炭器循環ライン43を使用した低圧節炭器循環工程に加えて、低圧節炭器3に供給される給水をバイパスする低圧節炭器バイパス工程を有することを特徴とする。低圧節炭器3に供給される給水をバイパスすることにより、低圧節炭器3への温度の低い給水の供給を減らすことができる。これにより、低圧節炭器3入口の給水温度を高くすることができる。   Further, as described above, in the water supply method of the exhaust heat recovery boiler 1 of the present embodiment, the low pressure economizer circulation line 43 in the low pressure economizer feed water supply process based on the measurement result of the SOx concentration measurement means 61. In addition to the low pressure economizer circulating process using the above, the low pressure economizer bypass process bypassing the feed water supplied to the low pressure economizer 3 is characterized. By bypassing the feed water supplied to the low pressure economizer 3, the supply of low temperature feed water to the low pressure economizer 3 can be reduced. Thereby, the feed water temperature at the inlet of the low pressure economizer 3 can be raised.

SOx濃度測定手段61の測定結果に基づいて給水のバイパスを行うことで、リアルタイムのSOx濃度に基づいて低圧節炭器3入口の給水温度を変更することが可能となる。即ち、現在のSOx濃度から現在の酸露点温度を算出し、この酸露点温度から余裕を持たせた目標給水温度を設定し、この目標給水温度に基づいた給水温度の制御を行うことが可能となる。このように、現在の酸露点温度に基づいた給水温度制御を行うことが可能となるため、給水温度を適切な温度に設定することが可能となる。これにより、ボイラの性能を可能な限り向上させながら、低圧節炭器3の伝熱管の腐食を防止することができる。   By bypassing the water supply based on the measurement result of the SOx concentration measurement means 61, it is possible to change the water supply temperature at the inlet of the low pressure economizer 3 based on the SOx concentration in real time. That is, it is possible to calculate the current acid dew point temperature from the current SOx concentration, set a target water supply temperature having a margin from the acid dew point temperature, and control the water supply temperature based on the target water supply temperature. Become. Thus, since it becomes possible to perform feedwater temperature control based on the current acid dew point temperature, it becomes possible to set the feedwater temperature to an appropriate temperature. Thereby, corrosion of the heat transfer tube of the low pressure economizer 3 can be prevented while improving the performance of the boiler as much as possible.

特に、目標給水温度を段階的に設定することで、各流調弁への開度指令が開閉をチャタリングする(短い時間間隔で弁の開閉を繰り返す)ことを抑制できるため、系統全体の制御系を安定化させることができる。   In particular, by setting the target feed water temperature in stages, it is possible to prevent the opening degree command to each flow control valve from chattering opening and closing (repeated opening and closing of the valve at short time intervals), so the control system of the entire system Can be stabilized.

本開示の排熱回収ボイラ1の給水方法においては、低圧節炭器3に供給される給水をバイパスするだけで低圧節炭器3入口の給水温度を高くすることができる。従って、外部から蒸気等の熱を加えて給水温度を高くする必要がないため、新たな設備を設けることなく給水温度を制御することが可能となる。また、バイパス流量を段階的に増加するよう制御することで、上記同様チャタリングの抑制が可能となる。   In the water supply method of the exhaust heat recovery boiler 1 of the present disclosure, the water supply temperature at the inlet of the low pressure economizer 3 can be increased simply by bypassing the water supply supplied to the low pressure economizer 3. Therefore, it is not necessary to apply heat such as steam from the outside to raise the feed water temperature, so it is possible to control the feed water temperature without providing new equipment. Further, by controlling the bypass flow rate to increase stepwise, chattering can be suppressed as described above.

また、低圧節炭器循環工程により、低圧節炭器3から排出された給水を低圧節炭器3に戻すことが可能となる。これにより、低圧節炭器3入口の給水温度を高くすることができる。また、低圧節炭器循環工程を低圧節炭器バイパス工程の前に行うことで、低圧節炭器循環工程を行っても低圧節炭器3入口の給水温度が上がらなかった場合に低圧節炭器バイパス工程を行うという運用が可能となる。即ち、低圧節炭器循環工程のみでは目標給水温度まで熱量が不足している場合、不足した熱量を低圧節炭器バイパス工程で補うことができる。   In addition, the low pressure economizer circulating process makes it possible to return the feed water discharged from the low pressure economizer 3 to the low pressure economizer 3. Thereby, the feed water temperature at the inlet of the low pressure economizer 3 can be raised. In addition, by performing the low pressure economizer circulation process before the low pressure economizer bypass process, even if the low pressure economizer circulation process is performed, if the feed water temperature at the inlet of the low pressure economizer 3 does not rise, It is possible to operate the device bypass process. That is, when the heat quantity is insufficient up to the target feed water temperature only in the low pressure economizer circulating process, the insufficient heat quantity can be compensated by the low pressure economizer bypass process.

1 排熱回収ボイラ
2 煙突
3 低圧節炭器
4 低圧蒸発器
5 中圧節炭器
6 中圧蒸発器
7 低圧過熱器
8 高圧節炭器
9 中圧過熱器
10 脱硝装置
11 高圧蒸発器
12 高圧一次過熱器
13 一次再熱器
14 二次再熱器
15 高圧二次過熱器
16 低圧汽水分離ドラム
17 中圧汽水分離ドラム
18 高圧汽水分離ドラム
21 低圧給水流量調整弁
22 中圧給水流量調整弁
23 高圧給水流量調整弁
25 低圧汽水分離ドラム給水管
26 中圧汽水分離ドラム給水管
27 高圧汽水分離ドラム給水管
28 復水器
29 復水ポンプ
32 給水系統
33 低圧給水ポンプ
34 低圧給水止め弁
37 高中圧給水ポンプ
38 中圧給水止め弁
39 中圧節炭器入口連絡管
40 高圧節炭器給水供給管
41 高圧給水止め弁
42 低圧節炭器給水排出ライン(高中圧給水連絡管)
43 低圧節炭器循環ライン
44 低圧節炭器循環ポンプ
45 調整弁
46 低圧節炭器給水供給ライン(低圧節炭器入口給水配管)
50 低圧節炭器バイパスライン
51 バイパス弁
53 給水温度計
60 制御部
61 SOx濃度測定手段
62 低圧節炭器入口給水温度計
63 低圧節炭器出口給水温度計
70,71,72 流量計
75,76,78 逆止弁
1 exhaust heat recovery boiler 2 chimney 3 low pressure economizer 4 low pressure evaporator 5 medium pressure economizer 6 medium pressure evaporator 7 low pressure superheater 8 high pressure economizer 9 medium pressure superheater 10 denitration device 11 high pressure evaporator 12 high pressure Primary superheater 13 Primary reheater 14 Secondary reheater 15 High pressure secondary superheater 16 Low pressure steam separation drum 17 Medium pressure steam separation drum 18 High pressure steam separation drum 21 Low pressure feed flow control valve 22 Medium pressure feed flow control valve 23 High pressure feed water flow control valve 25 Low pressure steam water separation drum feed pipe 26 Medium pressure steam water separation drum feed pipe 27 High pressure steam water separation drum feed pipe 28 Condenser 29 Condenser pump 32 Feed water system 33 Low pressure feed pump 34 Low pressure feed stop valve 37 High medium pressure Water supply pump 38 Medium pressure water supply stop valve 39 Medium pressure economizer inlet communication pipe 40 High pressure economizer coal supply water supply pipe 41 High pressure water supply stop valve 42 Low pressure economizer feed water discharge line (high medium pressure water supply communication pipe)
43 low pressure economizer circulation line 44 low pressure economizer circulation pump 45 control valve 46 low pressure economizer feed water supply line (low pressure economizer inlet water supply piping)
Reference Signs List 50 low pressure economizer bypass line 51 bypass valve 53 water supply thermometer 60 control unit 61 SOx concentration measurement means 62 low pressure economizer inlet water supply thermometer 63 low pressure economizer outlet water supply thermometer 70, 71, 72 flow meter 75, 76 , 78 Check valve

Claims (7)

燃焼排ガスで給水を加熱する少なくとも1つの節炭器と、該節炭器のうち前記燃焼排ガスが最も低温側となる位置に配置した低圧節炭器を通過した前記燃焼排ガス中のSOx濃度を測定するSOx濃度測定手段と、を備える排熱回収ボイラの給水方法において、
前記低圧節炭器に、前記給水を供給する低圧節炭器給水供給工程と、
前記低圧節炭器に供給された前記給水を前記低圧節炭器から排出する低圧節炭器給水排出工程と、
前記SOx濃度測定手段の測定結果に基づいて前記低圧節炭器に供給される給水温度の目標給水温度を設定し、前記低圧節炭器給水供給工程において前記低圧節炭器に供給される前記給水をバイパスする低圧節炭器バイパス工程と、
を備えることを特徴とする排熱回収ボイラの給水方法。
Measurement of SOx concentration in the flue gas passing through at least one economizer which heats the feed water with flue gas, and a low pressure economizer arranged at a position where the flue gas is on the lowest temperature side of the economizer And a SOx concentration measuring means for
A low pressure economizer feed water supply process for supplying the water supply to the low pressure economizer;
A low pressure economizer feed water discharging step for discharging the feed water supplied to the low pressure economizer from the low pressure economizer;
The target feed water temperature of the feed water temperature supplied to the low pressure economizer is set based on the measurement result of the SOx concentration measurement means, and the water supplied to the low pressure economizer in the low pressure economizer water supply step. Low pressure economizer bypass process to bypass the
A water supply method for an exhaust heat recovery boiler, comprising:
前記SOx濃度測定手段の測定結果に基づいて設定した前記目標給水温度に対して、前記低圧節炭器に供給される給水温度の調整に当たり、前記低圧節炭器バイパス工程を行う前に、前記低圧節炭器から排出された前記給水を前記低圧節炭器に戻す低圧節炭器循環工程を行うことを特徴とする請求項1に記載の排熱回収ボイラの給水方法。   When adjusting the temperature of the feed water supplied to the low pressure economizer with respect to the target feed water temperature set based on the measurement result of the SOx concentration measuring means, the low pressure before performing the low pressure economizer bypass step The low-pressure economizer circulating step of returning the feedwater discharged from the economizer to the low-pressure economizer is performed, the water supply method of the exhaust heat recovery boiler according to claim 1. 前記SOx濃度測定手段の測定結果に基づいて酸露点温度を設定し、前記低圧節炭器に供給される給水温度の前記目標給水温度は前記酸露点温度に所定の余裕温度を加えて設定され、前記目標給水温度となるように前記低圧節炭器循環工程、及び/又は、前記低圧節炭器バイパス工程を行うことを特徴とする請求項2に記載の排熱回収ボイラの給水方法。   The acid dew point temperature is set based on the measurement result of the SOx concentration measurement means, and the target feed water temperature of the feed water temperature supplied to the low pressure economizer is set by adding a predetermined margin temperature to the acid dew point temperature, The water supply method for an exhaust heat recovery boiler according to claim 2, wherein the low pressure economizer circulation step and / or the low pressure economizer bypass step is performed to achieve the target feed water temperature. 前記目標給水温度を、前記燃焼排ガス中のSOx濃度に応じて段階的に変化させることを特徴とする請求項3に記載の排熱回収ボイラの給水方法。   The water supply method for an exhaust heat recovery boiler according to claim 3, wherein the target water supply temperature is changed stepwise in accordance with the SOx concentration in the combustion exhaust gas. 前記燃焼排ガス中のSOx濃度又は前記低圧節炭器に供給される前記給水の温度と前記目標給水温度との差に応じて、前記低圧節炭器バイパス工程において前記低圧節炭器をバイパスさせる前記給水のバイパス流量を段階的に増加させることを特徴とする請求項1から請求項4のいずれか一項に記載の排熱回収ボイラの給水方法。   The low pressure economizer is bypassed in the low pressure economizer bypass step according to the SOx concentration in the flue gas or the difference between the temperature of the feedwater supplied to the low pressure economizer and the target water supply temperature. The feed water method of the exhaust heat recovery boiler according to any one of claims 1 to 4, wherein the bypass flow rate of the feed water is increased stepwise. 燃焼排ガスで給水を加熱する少なくとも1つの節炭器と、
該節炭器のうち前記燃焼排ガスが最も低温側となる位置に配置した低圧節炭器を通過した前記燃焼排ガス中のSOx濃度を測定するSOx濃度測定手段と、
を備え、
前記低圧節炭器には、前記低圧節炭器に前記給水を供給する低圧節炭器給水供給ラインと、前記低圧節炭器に供給された前記給水を前記低圧節炭器から排出する低圧節炭器給水排出ラインと、前記低圧節炭器給水供給ラインから分岐して、前記低圧節炭器給水排出ラインに接続され、前記低圧節炭器に供給される前記給水をバイパスする低圧節炭器バイパスラインと、が設けられ、
前記SOx濃度測定手段の出力に基づいて前記低圧節炭器に供給される給水温度の目標給水温度を設定し、前記低圧節炭器バイパスラインの使用を切り換える制御部が設けられることを特徴とする排熱回収ボイラ。
At least one economizer which heats the feed water with the flue gas;
SOx concentration measurement means for measuring the concentration of SOx in the flue gas passing through a low pressure economizer placed at a position where the flue gas is on the lowest temperature side among the economizers;
Equipped with
In the low pressure economizer, a low pressure economizer feed water supply line for supplying the water supply to the low pressure economizer, and a low pressure junction for discharging the water supplied from the low pressure economizer from the low pressure economizer A low pressure economizer which branches from a coal feeder water discharge line and the low pressure economizer water supply line and is connected to the low pressure economizer water supply discharge line and bypasses the water supplied to the low pressure economizer And a bypass line is provided,
A target water supply temperature supplied to the low pressure economizer is set based on the output of the SOx concentration measurement means, and a control unit is provided to switch the use of the low pressure economizer bypass line. Waste heat recovery boiler.
前記低圧節炭器給水排出ラインから分岐して、前記低圧節炭器給水供給ラインに接続され、前記低圧節炭器から排出された前記給水を前記低圧節炭器に戻す低圧節炭器循環ラインがさらに設けられ、
前記制御部は、前記SOx濃度測定手段の出力に基づいて設定した前記目標給水温度に対して、前記低圧節炭器に供給される給水温度の調整に当たり、前記低圧節炭器バイパスラインを使用したバイパス流量調整へ切り換える前に、前記低圧節炭器循環ラインを使用した循環流量調整へ切り換えることを特徴とする請求項6に記載の排熱回収ボイラ。
A low pressure economizer circulation line branched from the low pressure economizer feed water discharge line and connected to the low pressure economizer water supply feed line and returning the feed water discharged from the low pressure economizer to the low pressure economizer Is further provided,
The control unit uses the low pressure economizer bypass line to adjust the temperature of the water supply supplied to the low pressure economizer with respect to the target water supply temperature set based on the output of the SOx concentration measuring means. The exhaust heat recovery boiler according to claim 6, wherein the low-pressure economizer circulation line is switched to circulation flow adjustment before switching to bypass flow adjustment.
JP2018007217A 2018-01-19 2018-01-19 Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler Pending JP2019124436A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018007217A JP2019124436A (en) 2018-01-19 2018-01-19 Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler
CN201910037987.7A CN110056849B (en) 2018-01-19 2019-01-15 Water supply method for waste heat recovery boiler and waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018007217A JP2019124436A (en) 2018-01-19 2018-01-19 Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2019124436A true JP2019124436A (en) 2019-07-25

Family

ID=67316365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018007217A Pending JP2019124436A (en) 2018-01-19 2018-01-19 Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler

Country Status (2)

Country Link
JP (1) JP2019124436A (en)
CN (1) CN110056849B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001348A (en) * 2021-11-24 2022-02-01 三河发电有限责任公司 Thermodynamic system
CN115183222A (en) * 2022-06-16 2022-10-14 西安热工研究院有限公司 Coupling system for waste heat utilization of tail flue gas of waste heat boiler and natural gas heating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009792A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Waste heat recovery boiler
JP2009162449A (en) * 2008-01-09 2009-07-23 Toshiba Corp Exhaust heat recovery boiler device
JP2014206332A (en) * 2013-04-12 2014-10-30 株式会社東芝 Exhaust heat recovery boiler and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196301A (en) * 1996-01-17 1997-07-29 Babcock Hitachi Kk Exhaust heat recovery boiler and method for its operation
JP5832103B2 (en) * 2011-02-25 2015-12-16 三菱重工業株式会社 Boiler plant
JP6267028B2 (en) * 2014-03-24 2018-01-24 三菱日立パワーシステムズ株式会社 Exhaust heat recovery device, gas turbine plant equipped with the same, and exhaust heat recovery method
CN105091020B (en) * 2015-09-17 2017-04-12 郝江平 Adjustable boiler air preheating system and method integrating heat regeneration and waste heat utilization
CN105805715A (en) * 2016-03-24 2016-07-27 南通万达锅炉有限公司 Temperature-adjusting type waste heat boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009792A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Waste heat recovery boiler
JP2009162449A (en) * 2008-01-09 2009-07-23 Toshiba Corp Exhaust heat recovery boiler device
JP2014206332A (en) * 2013-04-12 2014-10-30 株式会社東芝 Exhaust heat recovery boiler and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001348A (en) * 2021-11-24 2022-02-01 三河发电有限责任公司 Thermodynamic system
CN114001348B (en) * 2021-11-24 2023-08-25 三河发电有限责任公司 Thermodynamic system
CN115183222A (en) * 2022-06-16 2022-10-14 西安热工研究院有限公司 Coupling system for waste heat utilization of tail flue gas of waste heat boiler and natural gas heating

Also Published As

Publication number Publication date
CN110056849A (en) 2019-07-26
CN110056849B (en) 2020-08-25

Similar Documents

Publication Publication Date Title
US9593844B2 (en) Method for operating a waste heat steam generator
JP4786504B2 (en) Heat medium supply facility, solar combined power generation facility, and control method thereof
JP2008032367A (en) Control method for once-through waste heat recovery boiler
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
US9518481B2 (en) Method for operating a recirculating waste heat steam generator
US8887747B2 (en) System and method for drum level control
JP5624646B1 (en) Thermal power plant and operation method of thermal power plant.
JP2016194396A (en) Exhaust heat recovery system, and operating method of exhaust heat recovery system
US3894396A (en) Control system for a power producing unit
JP2019124436A (en) Water feed method of exhaust heat recovery boiler and exhaust heat recovery boiler
JP5591377B2 (en) Steam rankin plant
WO2018198836A1 (en) Power generation plant and operation method therefor
JP2020085415A (en) Boiler system and power generation plant and operation method of boiler system
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP5818963B2 (en) Method for operating once-through boiler and boiler configured to carry out this method
JP2006125760A (en) Exhaust heat recovery boiler and its control system
Deng et al. Quantitative analysis of energy storage in different parts of combined heat and power plants
JP2008292119A (en) Power generator
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant
JPH1122421A (en) Refuse incinerating power plant
JP2012255627A (en) Blow rate calculation method and blow control method for boiler
JP2007327661A (en) Exhaust heat recovery boiler
Braun et al. Report on High-Fidelity Dynamic Modeling of a Coal-Fired Steam Power Plant
RU8082U1 (en) HEAT DIAGRAM OF A STEAM TURBINE INSTALLATION

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222