JP4526558B2 - Steam temperature control method and control device for marine boiler - Google Patents

Steam temperature control method and control device for marine boiler Download PDF

Info

Publication number
JP4526558B2
JP4526558B2 JP2007273862A JP2007273862A JP4526558B2 JP 4526558 B2 JP4526558 B2 JP 4526558B2 JP 2007273862 A JP2007273862 A JP 2007273862A JP 2007273862 A JP2007273862 A JP 2007273862A JP 4526558 B2 JP4526558 B2 JP 4526558B2
Authority
JP
Japan
Prior art keywords
temperature
steam
reheat
main steam
steam temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007273862A
Other languages
Japanese (ja)
Other versions
JP2009103344A (en
Inventor
俊郎 伊藤
善宏 山瀬
徹夫 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Plant Systems Ltd
Original Assignee
Kawasaki Plant Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Plant Systems Ltd filed Critical Kawasaki Plant Systems Ltd
Priority to JP2007273862A priority Critical patent/JP4526558B2/en
Publication of JP2009103344A publication Critical patent/JP2009103344A/en
Application granted granted Critical
Publication of JP4526558B2 publication Critical patent/JP4526558B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主蒸気温度を調整する内部緩熱器と再熱蒸気温度を調整する再熱ダンパを備えた舶用ボイラにおいて、主蒸気温度と再熱蒸気温度の両方を安定的に制御する舶用ボイラ蒸気温度制御方法に関する。   [Technical Field] The present invention relates to a marine boiler that stably controls both the main steam temperature and the reheat steam temperature in a marine boiler having an internal heat sink that adjusts the main steam temperature and a reheat damper that adjusts the reheat steam temperature. The present invention relates to a steam temperature control method.

舶用タービンに使用する再熱ボイラは、たとえば、燃焼室に煙道が接続され、煙道は再熱器パス(RHパス)と過熱器パス(SHパス)に2分割されていて、各パスにダンパが設備されたものである。再熱器パスには節炭器と第1,第2の再熱器と第3の過熱器が配置され、過熱器パスには節炭器と第1,第2,第4の過熱器が配置される。再熱ボイラには、さらに、緩熱器が組み込まれた蒸気ドラムが設けられていて、蒸気ドラムで発生する蒸気は過熱器を通って過熱され、必要に応じてスプレ弁を通じて供給される水で冷やされ、緩熱器で冷やされる蒸気とバイパス路を通る蒸気に分割され、その後に合流混合して主蒸気として高圧蒸気タービンに供給される。   A reheat boiler used for a marine turbine has, for example, a flue connected to a combustion chamber, and the flue is divided into a reheater path (RH path) and a superheater path (SH path). A damper is installed. The reheater path includes a economizer, first, second reheater, and third superheater, and the superheater path includes the economizer, first, second, and fourth superheaters. Be placed. The reheat boiler is further provided with a steam drum with a built-in heat sink, and the steam generated in the steam drum is superheated through the superheater and is supplied with water supplied through a spray valve as necessary. The steam is cooled and divided into steam that is cooled by a slow heat generator and steam that passes through the bypass, and then merged and mixed and supplied to the high-pressure steam turbine as main steam.

舶用ボイラは、過熱器に水蒸気を通してたとえば565℃12MPaの過熱蒸気を生成し主蒸気として高圧蒸気タービンを駆動すると共に、高圧蒸気タービンから環流する水蒸気を再熱器に通してたとえば545℃3MPaの蒸気とし、中圧・低圧蒸気タービンを駆動する。蒸気タービンは1軸結合され協働して推進器を駆動する。
同じ構成のボイラが並列に2缶設置される場合もある。
The marine boiler generates superheated steam of, for example, 565 ° C. and 12 MPa through steam through the superheater, drives the high-pressure steam turbine as main steam, and passes steam recirculated from the high-pressure steam turbine through the reheater, for example, steam at 545 ° C. and 3 MPa. And drive the medium and low pressure steam turbine. The steam turbine is uniaxially connected and cooperates to drive the propeller.
Two boilers having the same configuration may be installed in parallel.

従来の蒸気温度制御方法では、主蒸気の温度は、緩熱器に導く蒸気量を蒸気流量調節弁で調整することにより制御する。なお、蒸気流量調節弁における差圧を確保するため、バイパス路中にオリフィス板を設けてある。
一方、再熱蒸気は高圧蒸気タービンから環流する蒸気を再熱器パスに設置された再熱器で再熱して中圧・低圧蒸気タービンに供給するが、再熱蒸気温度は再熱器パスに設けられた再熱ダンパにより再熱器パスを流れる燃焼ガス量を調整することにより制御する。
In the conventional steam temperature control method, the temperature of the main steam is controlled by adjusting the amount of steam guided to the heat sink with a steam flow control valve. In order to secure a differential pressure in the steam flow rate control valve, an orifice plate is provided in the bypass passage.
On the other hand, the reheat steam is recirculated from the high pressure steam turbine and reheated by the reheater installed in the reheater path and supplied to the intermediate / low pressure steam turbine. It controls by adjusting the amount of combustion gas which flows through a reheater path | pass with the provided reheat damper.

このように、従来の蒸気温度制御方法は、主蒸気温度は内部緩熱器供給蒸気流量調節弁で、また再熱蒸気温度は再熱ダンパで制御するもので、制御対象と操作端を1:1に結びつけたため役割分担が明確で分かりやすい。
しかし、再熱蒸気の温度を上昇させるため再熱ダンパの開度を大きくすれば、過熱器パスの燃焼ガス量が減少して主蒸気温度が低下し、逆に再熱蒸気の温度を低下させるため再熱ダンパの開度を小さくすれば、過熱器パスの燃焼ガス量が増加して主蒸気温度が上昇する。このように、主蒸気温度と再熱蒸気温度は相互に干渉する関係にあるため、制御が難しい。
Thus, in the conventional steam temperature control method, the main steam temperature is controlled by the internal slow heat supply steam flow control valve, and the reheat steam temperature is controlled by the reheat damper. Since it is linked to 1, the division of roles is clear and easy to understand.
However, if the opening of the reheat damper is increased in order to increase the temperature of the reheat steam, the amount of combustion gas in the superheater path decreases, the main steam temperature decreases, and conversely the temperature of the reheat steam decreases. Therefore, if the opening degree of the reheat damper is reduced, the amount of combustion gas in the superheater path increases and the main steam temperature rises. As described above, the main steam temperature and the reheat steam temperature are in a relationship of interfering with each other, so that control is difficult.

特許文献1には、排ガス再循環路を備えた火力発電所のボイラについて、再熱蒸気温度の設定値との偏差に基づいて排ガス再循環ダンパの開度を制御し、さらにその偏差の積分値に基づいて過熱器側ガス分配ダンパと再熱器側ガス分配ダンパの開度を制御する、再熱蒸気温度制御装置が開示されている。ここでは、主蒸気温度は過熱器スプレで注水することにより制御される。   In Patent Document 1, the boiler of a thermal power plant equipped with an exhaust gas recirculation path controls the opening degree of the exhaust gas recirculation damper based on the deviation from the set value of the reheat steam temperature, and further, the integrated value of the deviation A reheat steam temperature control device for controlling the opening degree of the superheater side gas distribution damper and the reheater side gas distribution damper based on the above is disclosed. Here, the main steam temperature is controlled by pouring water with a superheater spray.

なお、特許文献2には、舶用ボイラにおいて、緩熱器バイパス管に設けたオリフィスを条件に応じて取り替える代わりに、ニードルバルブ機構を持つ可変流量調整装置にして手動調整を可能にした、過熱蒸気の温度制御装置が開示されている。ただし、本開示発明では、バイパス流量および緩熱器流量の調整を手動で行うことになり、不測の温度変動に対応する機能は持っていない。
特開昭58−200907号公報 特開平10−089612号公報
In Patent Document 2, in a marine boiler, instead of replacing the orifice provided in the slow heatr bypass pipe according to the conditions, a superheated steam that can be manually adjusted by using a variable flow rate adjustment device having a needle valve mechanism. A temperature control apparatus is disclosed. However, in the present disclosure, adjustment of the bypass flow rate and the heat sink flow rate is performed manually, and it does not have a function corresponding to unexpected temperature fluctuations.
JP 58-2000907 A Japanese Patent Laid-Open No. 10-089612

そこで、本発明が解決しようとする課題は、煙道が再熱器パスと過熱器パスに分割され、主蒸気は緩熱器に通す蒸気量およびスプレ量で温度制御して高圧蒸気タービンに供給し、再熱蒸気は再熱器パスの再燃ダンパの開度により温度制御して中・低圧蒸気タービンに供給する舶用ボイラについて、より効率が高く安定した運転ができる蒸気温度制御方法および装置を提供することである。   Therefore, the problem to be solved by the present invention is that the flue is divided into a reheater path and a superheater path, and the main steam is supplied to the high-pressure steam turbine by controlling the temperature by the amount of steam and the amount of spray passed through the heat sink. In addition, a steam temperature control method and device are provided that enable more efficient and stable operation of marine boilers that supply reheat steam to the medium and low pressure steam turbines by controlling the temperature according to the reheat damper opening of the reheater path. It is to be.

上記課題を解決するため、本発明の舶用ボイラの蒸気温度制御方法は、煙道が再熱器パスと過熱器パスに分割され、主蒸気は緩熱器に通す蒸気量またはスプレ量あるいはその両方で温度制御して高圧蒸気タービンに供給し、再熱蒸気は再熱器パスの再燃ダンパの開度により温度制御して中・低圧蒸気タービンに供給する舶用ボイラに適用する蒸気温度制御方法であって、再熱蒸気温度が、主蒸気と再熱蒸気の定格温度の差に基づいて決まるバイアスを主蒸気温度の実測値に加えた温度を設定値として再熱蒸気温度を制御することを特徴とする。   In order to solve the above-described problems, the steam temperature control method for a marine boiler according to the present invention is such that the flue is divided into a reheater path and a superheater path, and the main steam passes through the slow heatr and / or the spray amount. This is a steam temperature control method applied to a marine boiler that supplies temperature to the high-pressure steam turbine and supplies it to the high-pressure steam turbine. The reheat steam temperature is controlled by setting a temperature obtained by adding a bias determined based on the difference between the rated temperatures of the main steam and the reheat steam to the measured value of the main steam temperature as a set value. To do.

本蒸気温度制御方法に従えば、再熱蒸気温度が、常に主蒸気温度に対して最適な相関を持って制御されるので、燃料を変更した場合やバーナ数を変更した場合など、静特性が変化しても、安定した運転が可能である。
定格温度にしたがってボイラ諸元や熱交換器仕様を決めているので、たとえば、主蒸気温度測定値より両者の定格温度の差だけ低い値を再熱蒸気温度の設定値として温度制御すれば、タービンはもとよりボイラ各部の熱ストレスも許容範囲に収まり、安全な運転ができる。
According to this steam temperature control method, the reheat steam temperature is always controlled with an optimal correlation with the main steam temperature, so static characteristics are maintained when the fuel is changed or the number of burners is changed. Even if it changes, stable operation is possible.
Since boiler specifications and heat exchanger specifications are determined according to the rated temperature, for example, if temperature control is performed using a value that is lower than the measured value of the main steam temperature by the difference between both rated temperatures, In addition, the thermal stress of each part of the boiler is within the allowable range, and safe operation is possible.

なお、再熱蒸気温度設定値を決めるバイアスは、最適値がボイラ負荷によって異なり、たとえば、主蒸気温度が565℃、500℃、450℃、400℃と異なる場合には最適バイアスはそれぞれ−20℃、−25℃、−30℃、−35℃と変化する。なお、陸上のボイラでは、再熱蒸気温度が主蒸気温度より高いケースも存在する。このような変化に対応するため、可変バイアス装置を備えることもできる。   The optimum bias for determining the reheat steam temperature setting value differs depending on the boiler load. For example, when the main steam temperature is different from 565 ° C., 500 ° C., 450 ° C., and 400 ° C., the optimum bias is −20 ° C., respectively. , -25 ° C, -30 ° C, and -35 ° C. In on-shore boilers, there are cases where the reheat steam temperature is higher than the main steam temperature. In order to cope with such a change, a variable bias device can be provided.

また、主蒸気温度制御は、ボイラ負荷が主蒸気の定格温度以下に対応する領域においては、定格温度を上限として、所定のプラスバイアスを主蒸気温度の実測値に加えた温度を設定値として行うことが好ましい。このようにして、可能な限り定格温度に近い高い蒸気温度を保ち減温(緩熱)手段を最小とした制御を行うことができる。
なお、ボイラ負荷が主蒸気の定格温度に対応する領域においては定格温度を設定値として主蒸気の温度制御をすることになる。
In the main steam temperature control, in a region where the boiler load corresponds to the rated temperature of the main steam or less, the rated temperature is set as the upper limit, and a temperature obtained by adding a predetermined positive bias to the measured value of the main steam temperature is set as a set value. It is preferable. In this way, it is possible to perform a control that keeps the steam temperature as close to the rated temperature as possible and minimizes the temperature reduction (slow heat) means.
In the region where the boiler load corresponds to the rated temperature of the main steam, the temperature control of the main steam is performed using the rated temperature as a set value.

定格温度以下の領域では、ボイラ負荷と主蒸気温度の関係は静特性にしたがって決定される。本発明では、主蒸気温度の実測値にバイアスを加えた値を設定値とすることにより、常にこの負荷−蒸気温度の相関線より上に主蒸気温度設定値を設定するので、主蒸気温度は常時、ボイラ負荷に対応した最高値を維持して、最高の熱効率を維持することになる。   In the region below the rated temperature, the relationship between the boiler load and the main steam temperature is determined according to the static characteristics. In the present invention, the main steam temperature setting value is always set above the load-steam temperature correlation line by setting a value obtained by adding a bias to the actual measurement value of the main steam temperature. At all times, the maximum value corresponding to the boiler load is maintained, and the highest thermal efficiency is maintained.

主蒸気温度の制御は、主蒸気の一部を緩熱器に通すことにより行うことができる。また、主蒸気温度が急上昇する場合に主蒸気に水をスプレして減温するスプレ減温器を備えて、そこにスプレ水を注入して制御することができる。
さらに、過熱器の間に減温器を配置し、通常の場合に緩熱器に通す蒸気量で制御し、主蒸気設定値に所定のバイアスを加えた温度を超えるときにスプレ減温器を用いて主蒸気の減温を行うようにすることもできる。
なお、緩熱器に通す蒸気流量を確実に制御するため、緩熱器に蒸気を供給する蒸気流量調節弁と緩熱器を迂回するバイパス流路に設けたバイパス流量調節弁が互いに逆方向に作動するように構成することができる。
The main steam temperature can be controlled by passing a part of the main steam through a slow heat generator. Moreover, when the main steam temperature rises rapidly, a spray cooler for spraying water to the main steam to reduce the temperature can be provided, and spray water can be injected and controlled.
In addition, a desuperheater is placed between the superheaters, and is controlled by the amount of steam that passes through the slow-heater in normal cases. When the temperature exceeds the main steam set value plus a specified bias, the spray desuperheater is installed. It can also be used to reduce the temperature of the main steam.
In order to reliably control the flow rate of the steam that passes through the heat sink, the steam flow rate control valve that supplies the steam to the heat sink and the bypass flow rate control valve that is provided in the bypass flow path that bypasses the heat sink are in opposite directions. It can be configured to operate.

再熱モードと非再熱モードの切り替え時や、クラッシュアスターン時など、急激に主蒸気温度が上昇した場合に、緩熱器を使った温度制御では応答性が不足して十分に対処できないことがある。そこで、応答性のよいスプレを使って対処することが好ましい。なお、主蒸気温度を急激に変動させる要因を検知したときに、これを先行信号ととらえて予めスプレを使って相殺する方法を使うこともできる。   When the main steam temperature suddenly rises, such as when switching between reheat mode and non-reheat mode, or during a crash astern, temperature control using a slow-heater is insufficient to respond sufficiently There is. Therefore, it is preferable to deal with the spray with good responsiveness. It is also possible to use a method in which when a factor that causes the main steam temperature to fluctuate rapidly is detected, this is regarded as a preceding signal and canceled in advance using a spray.

なお、舶用ボイラを2基備えた船舶では、2基のボイラについて均衡を維持する必要がある。このため、再熱蒸気温度の設定値は2基の舶用ボイラのうち低い方の主蒸気温度を基準として生成され、2基の舶用ボイラに共通に提供されるようにすることが好ましい。また、主蒸気温度についても同様に、設定値は2基の舶用ボイラのうち低い方の主蒸気温度を基準として生成され、2基の舶用ボイラに共通に提供されることが好ましい。
本方式によれば、2基の蒸気温度において大きな温度差を生じることなく、減温量が最小になるので、全体としての効率が向上する。
In addition, in the ship provided with two marine boilers, it is necessary to maintain balance about two boilers. For this reason, it is preferable that the set value of the reheat steam temperature is generated on the basis of the lower main steam temperature of the two marine boilers and provided in common to the two marine boilers. Similarly, for the main steam temperature, the set value is preferably generated on the basis of the lower main steam temperature of the two marine boilers and provided in common to the two marine boilers.
According to this method, the temperature reduction amount is minimized without causing a large temperature difference between the two steam temperatures, so that the overall efficiency is improved.

また、本発明の舶用ボイラの蒸気温度制御装置は、上記課題を解決するため、2基の舶用ボイラの再熱蒸気温度制御装置の温度設定値を提供する第1の共通回路であって、2基のボイラにおける主蒸気温度の低い方を選択して出力する比較器と主蒸気と再熱蒸気の定格温度の差を設定することができる関数発生器と、比較器の出力と関数発生器の出力を加算する加算器を備えて、加算器の出力を温度設定値として2基の舶用ボイラの再熱蒸気温度制御器の設定器に提供する共通回路を備えることを特徴とする。   Moreover, in order to solve the said subject, the steam temperature control apparatus of the marine boiler of this invention is a 1st common circuit which provides the temperature setting value of the reheat steam temperature control apparatus of two marine boilers, A comparator that selects and outputs the lower main steam temperature in the main boiler, a function generator that can set the difference between the rated temperatures of the main steam and reheat steam, and the output of the comparator and the function generator An adder for adding outputs is provided, and a common circuit is provided for providing the output of the adder as a temperature set value to a setter of a reheat steam temperature controller of two marine boilers.

第1共通回路は、さらに 加算器から得られる温度設定値に対して上限値を限る上限リミッタと、前回指令した温度設定値に対して変化率を制限する変化率制限器とを備えて、算出された設定値に上限値と変化率を限る補正をかけて2基の舶用ボイラの再熱蒸気温度制御装置の温度設定値として提供するようにしてもよい。   The first common circuit further includes an upper limiter for limiting the upper limit value for the temperature set value obtained from the adder, and a change rate limiter for limiting the change rate for the previously set temperature set value. The set value may be corrected to limit the upper limit value and the rate of change and provided as the temperature set value of the reheat steam temperature control device for the two marine boilers.

さらに、2基のボイラにおける主蒸気温度の低い方を選択して出力する第2の比較器と、所定のプラスバイアスを設定することができる第2の関数発生器と、第2比較器の出力と第2関数発生器の出力を加算する第2の加算器を備えて、第2加算器の出力を温度設定値として2基の舶用ボイラの主蒸気温度制御器の設定器に提供する第2の共通回路を備えてもよい。
また、ボイラの燃焼吸気量の変化から排ガス量の変動を算定する微分回路と、過熱ダンパ開度制御信号から微分回路出力信号を差し引いて出力する減算器を備え、微分回路の主蒸気温度変動予測値を用いて過熱ダンパ開度制御信号を調整して、過熱ダンパの開度調整をするようにしてもよい。
Further, a second comparator that selects and outputs the lower one of the main steam temperatures in the two boilers, a second function generator that can set a predetermined positive bias, and an output of the second comparator And a second adder for adding the outputs of the second function generator, and providing the output of the second adder as a temperature set value to the setter of the main steam temperature controller of the two marine boilers. The common circuit may be provided.
In addition, it has a differential circuit that calculates fluctuations in the exhaust gas amount from changes in the combustion intake air amount of the boiler, and a subtractor that subtracts the differential circuit output signal from the superheat damper opening control signal and outputs it. The overheat damper opening degree control signal may be adjusted using the value to adjust the opening degree of the overheat damper.

さらに、再熱ダンパの開度測定値を入力して過熱器パス側の燃焼ガス流量配分比率を算定する演算装置と、演算装置出力信号と燃焼空気流量測定値の乗算値を算出する乗算器と、微分器と加算器から構成され乗算器出力から主蒸気温度の変動を予測する変動推定器を備え、主蒸気温度の変動予測値を用いて主蒸気流量調節弁の開度制御信号を調整して、微分回路により燃焼空気量の変化から排ガス量の変動を計算し、減算器により蒸気流量調節弁の制御信号を開度調整信号で調整して、蒸気流量調節弁の開度調整をするようにしてもよい。
なお、バイアス温度を発生する関数発生器と、主蒸気温度設定値とバイアス温度を加算する加算器を備え、主蒸気温度設定値に対して所定温度だけ高いオーバーライド値をSHスプレ温度設定値としてボイラ出口における主蒸気温度制御器の比較器に入力するようにすることができる。
Further, an arithmetic device for calculating the combustion gas flow rate distribution ratio on the superheater path side by inputting an opening measurement value of the reheat damper, a multiplier for calculating a multiplication value of the arithmetic device output signal and the combustion air flow rate measurement value, , Which is composed of a differentiator and an adder, is equipped with a fluctuation estimator that predicts fluctuations in the main steam temperature from the multiplier output, and adjusts the opening control signal of the main steam flow control valve using the predicted fluctuation in the main steam temperature Then, the differential circuit calculates the fluctuation of the exhaust gas amount from the change of the combustion air amount, and the subtractor adjusts the steam flow control valve control signal with the opening adjustment signal to adjust the opening of the steam flow control valve. It may be.
A function generator for generating a bias temperature and an adder for adding the main steam temperature set value and the bias temperature are provided, and an override value that is higher than the main steam temperature set value by a predetermined temperature is used as a boiler for the SH spray temperature set value. It can be input to a comparator of the main steam temperature controller at the outlet.

制御器の比較器においてマイナス偏差を発生させることにより、通常時はSHスプレ調節弁が全閉になるようにし、かつ、主蒸気温度が蒸気温度設定値を超えているときおよび主蒸気温度がSHスプレ設定温度を超えたときには、SHスプレ調節弁を開いて水を供給して蒸気温度を急冷する作用が発生する。
アスターン時など、ボイラ負荷が減少して主蒸気温度設定値を降下させたときは、SHスプレ温度設定値も降下する主蒸気温度設定値にスライドしてこれに所定温度だけ加えた温度にSHスプレ温度設定値を設定することが好ましい。
By generating a negative deviation in the comparator of the controller, the SH spray control valve is normally closed normally, and when the main steam temperature exceeds the steam temperature set value and when the main steam temperature is SH When the spray set temperature is exceeded, the SH spray control valve is opened and water is supplied to quench the steam temperature.
When the boiler load decreases and the main steam temperature set value drops, such as during an astern, the SH spray temperature set value slides to the main steam temperature set value that also drops, and the SH spray temperature is increased to a temperature that is added to the specified temperature. It is preferable to set the temperature set value.

以下、本発明の1実施例に係る舶用ボイラの蒸気温度制御方法について、図面を用いて詳細に説明する。
図1は本実施例における舶用ボイラ周辺の蒸気流れ図、図2は本実施例の舶用ボイラの再熱蒸気温度制御方法のブロック図、図3は再熱蒸気温度制御の設定温度を説明する線図、図4は本実施例の舶用ボイラの主蒸気温度制御方法のブロック図、図5は主蒸気温度制御の設定温度を説明する線図、図6は主蒸気のスプレ制御方法のブロック図、図7はスプレ制御温度制御の設定温度を説明する線図、図8は非再熱モードから再熱モードに切り換える手順を表すフローチャート、図9は再熱モードから非再熱モードに切り換える手順を表すフローチャートである。
Hereinafter, a steam temperature control method for a marine boiler according to an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a steam flow diagram around a marine boiler in the present embodiment, FIG. 2 is a block diagram of a reheat steam temperature control method for a marine boiler according to the present embodiment, and FIG. 3 is a diagram for explaining a set temperature of reheat steam temperature control. 4 is a block diagram of a main steam temperature control method for a marine boiler of the present embodiment, FIG. 5 is a diagram for explaining a set temperature of main steam temperature control, and FIG. 6 is a block diagram of a main steam spray control method, FIG. 7 is a diagram explaining the set temperature of the spray control temperature control, FIG. 8 is a flowchart showing a procedure for switching from the non-reheat mode to the reheat mode, and FIG. 9 is a flowchart showing a procedure for switching from the reheat mode to the non-reheat mode. It is.

本実施例は、図1に示す舶用ボイラに本発明の蒸気温度制御方法を適用した例である。
本実施例において適用の対象とする舶用ボイラ1は、バーナ12が下向きに設置された燃焼室11に再熱器パス(RHパス)14と過熱器パス(SHパス)15に分かれた煙道13が設置された再熱ボイラである。
燃焼室11には、上部に蒸気ドラム16,下部に水ドラム17が設けられ、壁に設けられた図示しない蒸発管で結合されている。また、蒸発ドラム16あるいは水ドラム17に緩熱器18が組み込まれている。
In this embodiment, the steam temperature control method of the present invention is applied to the marine boiler shown in FIG.
A marine boiler 1 to be applied in the present embodiment has a flue 13 divided into a reheater path (RH path) 14 and a superheater path (SH path) 15 in a combustion chamber 11 in which a burner 12 is installed downward. Is a reheat boiler installed.
The combustion chamber 11 is provided with a steam drum 16 at the top and a water drum 17 at the bottom, and is connected by an evaporation pipe (not shown) provided on the wall. Further, a slow heat generator 18 is incorporated in the evaporation drum 16 or the water drum 17.

煙道13の再熱器パス14には節炭器21と第1再熱器22と第2再熱器23と第3過熱器24が配置され、下流に再熱ダンパ25とRHプロテクションダンパ26、さらに再熱ダンパ25とRHプロテクションダンパ26の間に接続された空気配管27にシールエアダンパ28が設けられている。また過熱器パス15には、節炭器31と第1過熱器32と第2過熱器33と第4過熱器34が配置され、下流にSHダンパ35が設けられている。   A economizer 21, a first reheater 22, a second reheater 23, and a third superheater 24 are disposed in the reheater path 14 of the flue 13, and a reheat damper 25 and an RH protection damper 26 are arranged downstream. Further, a seal air damper 28 is provided in an air pipe 27 connected between the reheat damper 25 and the RH protection damper 26. Further, in the superheater path 15, a economizer 31, a first superheater 32, a second superheater 33, and a fourth superheater 34 are arranged, and an SH damper 35 is provided downstream.

蒸気ドラム16で発生する蒸気は、過熱器パス15の第1,第2過熱器32,33で過熱された後、必要に応じてスプレ減温器36で温度を低減させて、再熱器パス14の第3過熱器24で加温し、一部を緩熱器18に通し残りをバイパス流路37に通し、合流させて温度調整し、さらに第4過熱器34に通して目標の温度・圧力にした蒸気を高圧蒸気タービン2に供給してタービンを駆動する。   The steam generated in the steam drum 16 is superheated by the first and second superheaters 32 and 33 of the superheater path 15, and then the temperature is reduced by the spray cooler 36 as necessary, so that the reheater path. 14 is heated by the third superheater 24, a part is passed through the slow heatr 18, the rest is passed through the bypass flow path 37, the temperature is adjusted by merging, and the temperature is further passed through the fourth superheater 34. The steam having the pressure is supplied to the high-pressure steam turbine 2 to drive the turbine.

高圧蒸気タービン2で働いた後の蒸気は、再熱器パス14の第1,第2再熱器22,23に導いて再加熱した後に、中低圧蒸気タービン3に供給してタービン駆動し、図外の復水器で復水して、給水ポンプ、給水加熱器を経て再びボイラに供給し、主蒸気にして利用する。
高圧蒸気タービン2と中低圧蒸気タービン3は1軸を共有し、回転軸は推進器ギヤボックスに結合されてスクリューを駆動する。
The steam after working in the high-pressure steam turbine 2 is led to the first and second reheaters 22 and 23 of the reheater path 14 and reheated, and then supplied to the intermediate and low pressure steam turbine 3 to drive the turbine. Condensate with a condenser outside the figure, and supply to the boiler again via the feed water pump and feed water heater for use as main steam.
The high-pressure steam turbine 2 and the medium-low pressure steam turbine 3 share one shaft, and the rotating shaft is coupled to the propeller gear box to drive the screw.

本ボイラは、負荷が所定の値以上であるときには、再熱器パス14に燃焼ガスを通して再熱器22,23を使用する再熱モード(RHモード)で運転するが、船速が低下してボイラ負荷が小さくなったときには、再熱器パス14を使わない非再熱モード(NRHモード)で運転する。   When the load is equal to or higher than a predetermined value, this boiler is operated in a reheat mode (RH mode) using the reheaters 22 and 23 through the combustion gas through the reheater path 14, but the ship speed decreases. When the boiler load becomes small, the operation is performed in the non-reheat mode (NRH mode) in which the reheater path 14 is not used.

再熱モードでは、SHダンパ35とRHプロテクションダンパ26は全開、シールエアダンパ28は全閉、再熱ダンパ25は操作信号により調整された開度を有する。
また、非再熱モードでは、SHダンパ35は全開、再熱ダンパ25とRHプロテクションダンパ26は全閉、シールエアダンパ28は全開として再熱器パス14の上流端部でエアシールを行って再熱器パス14を閉止し、燃焼ガスの流通を遮断する。
In the reheat mode, the SH damper 35 and the RH protection damper 26 are fully opened, the seal air damper 28 is fully closed, and the reheat damper 25 has an opening adjusted by an operation signal.
In the non-reheat mode, the SH damper 35 is fully opened, the reheat damper 25 and the RH protection damper 26 are fully closed, and the seal air damper 28 is fully opened to perform air sealing at the upstream end of the reheater path 14 and reheat. The vessel path 14 is closed and the flow of combustion gas is shut off.

本実施例における蒸気温度制御システムは、再熱蒸気温度制御システムと、主蒸気温度制御システムと、SHスプレ制御システムと、モード切り換えシステムから構成される。   The steam temperature control system in the present embodiment includes a reheat steam temperature control system, a main steam temperature control system, an SH spray control system, and a mode switching system.

(再熱蒸気温度制御システム)
再熱蒸気温度制御システムは、基本的には、中低圧蒸気タービン3に供給する再熱蒸気の温度を温度検出器51で検出し、高圧蒸気タービン2に供給する主蒸気の温度を温度検出器61で検出して、温度調節器52により再熱ダンパ駆動器53を駆動し再熱ダンパ25の開度を調整して、主蒸気温度から導出される再熱蒸気温度設定値との偏差が無くなるように制御するものである。
(Reheat steam temperature control system)
The reheat steam temperature control system basically detects the temperature of the reheat steam supplied to the intermediate / low pressure steam turbine 3 with the temperature detector 51 and detects the temperature of the main steam supplied to the high pressure steam turbine 2 with the temperature detector. 61, the reheat damper driver 53 is driven by the temperature controller 52 to adjust the opening of the reheat damper 25, and the deviation from the reheat steam temperature set value derived from the main steam temperature is eliminated. Is to control.

再熱ダンパ25は、再熱器パス14と過熱器パス15を流れる燃焼ガス配分を調整するもので、再熱蒸気温度と主蒸気温度は再熱ダンパ25の動作に関して相反する関係にある。すなわち、再熱ダンパ25の開度を大きくして再熱蒸気温度を上昇させようとすると、過熱器パス15を通過する燃焼ガス量が減少するため主蒸気温度は下降する。また、逆に、再熱ダンパ25を操作して再熱蒸気温度を下降させようとすると、主蒸気温度は上昇することになる。   The reheat damper 25 adjusts the distribution of the combustion gas flowing through the reheater path 14 and the superheater path 15, and the reheat steam temperature and the main steam temperature have a contradictory relationship with respect to the operation of the reheat damper 25. That is, when the reheat damper 25 is increased in opening degree to increase the reheat steam temperature, the amount of combustion gas passing through the superheater path 15 decreases, so that the main steam temperature decreases. Conversely, if the reheat damper 25 is operated to lower the reheat steam temperature, the main steam temperature rises.

本実施例では、主蒸気の定格温度は565℃であり、再熱蒸気の定格温度はこれより20℃低い545℃である。なお、本ボイラの静特性上、最大負荷の所定割合以下のボイラ負荷帯においては、主蒸気温度は定格温度565℃を維持できず、緩熱器18に通じる蒸気流量調節弁63は全閉状態になって、主蒸気温度は静特性に従う温度を示すことになる。この場合でも、再熱蒸気温度は、主蒸気温度より約20℃低い状態であることが望まれる。
そこで、再熱蒸気温度は、常に主蒸気温度に対して約20℃低くなるように制御する、主蒸気・再熱蒸気温度差一定制御を基本とする。
In this embodiment, the rated temperature of the main steam is 565 ° C., and the rated temperature of the reheat steam is 545 ° C., which is 20 ° C. lower than this. In addition, due to the static characteristics of this boiler, the main steam temperature cannot be maintained at the rated temperature of 565 ° C. in the boiler load zone that is equal to or less than the predetermined ratio of the maximum load, and the steam flow rate control valve 63 leading to the heat sink 18 is fully closed. Thus, the main steam temperature shows a temperature according to the static characteristics. Even in this case, it is desired that the reheat steam temperature is about 20 ° C. lower than the main steam temperature.
Therefore, the reheat steam temperature is basically controlled so that the difference between the main steam and the reheat steam temperature is always controlled to be about 20 ° C. lower than the main steam temperature.

なお、1隻の船舶に舶用ボイラが2基設けられた場合は、2缶の再熱蒸気温度や主蒸気温度に大きな温度差が生ずることは好ましくない。
蒸気温度に差が生じないようにするため、2缶の負荷はできるだけ均等になるように運用するが、主蒸気温度については低い方に合わせた設定値を使用するが、再熱蒸気温度については、2缶のうち低い方の主蒸気温度を基準にして2缶に共通の再熱蒸気温度設定値を生成して、大きな偏差が生じないようにする。
このため、第1ボイラと第2ボイラそれぞれの再熱蒸気温度制御器52に同じ設定値を与えるための共通回路を備えて、ボイラ運用の均衡を図ることが好ましい。
In addition, when two marine boilers are provided in one ship, it is not preferable that a big temperature difference arises in the reheat steam temperature and main steam temperature of two cans.
To avoid differences in steam temperature, the load on the two cans is operated as evenly as possible, but the main steam temperature is set to the lower value, but the reheat steam temperature is A reheat steam temperature setting value common to the two cans is generated on the basis of the lower main steam temperature of the two cans so that a large deviation does not occur.
For this reason, it is preferable to provide a common circuit for giving the same set value to the reheat steam temperature controllers 52 of the first boiler and the second boiler so as to balance the boiler operation.

また、負荷変動等により燃料と共に燃焼空気流量が変化した場合は、再熱蒸気温度は影響を受けて一時的に変動する。したがって、空気流量を測定していて、空気流量の変化があったときに、再熱器パス14を流れる排ガス流量の変化を抑える方向に再熱ダンパ25を動作させれば、再熱蒸気温度の変化を抑制して安定的に推移することになる。   Further, when the combustion air flow rate is changed together with the fuel due to load fluctuation or the like, the reheat steam temperature is affected and temporarily fluctuates. Therefore, when the air flow rate is measured and there is a change in the air flow rate, if the reheat damper 25 is operated in a direction to suppress the change in the exhaust gas flow rate flowing through the reheater path 14, the reheat steam temperature The change will be suppressed and stable.

図2は再熱蒸気温度制御システムの詳細を説明するブロック図である。
1隻の船舶に舶用ボイラが2基設けられた場合は、第1ボイラと第2ボイラそれぞれの再熱蒸気温度制御器に同じ設定値を与える共通回路110を備えて、ボイラ負荷の均衡を図る。
FIG. 2 is a block diagram illustrating details of the reheat steam temperature control system.
When two marine boilers are provided in one ship, a common circuit 110 that gives the same set value to the reheat steam temperature controllers of the first boiler and the second boiler is provided to balance the boiler load. .

共通回路110は、第1ボイラの出口における主蒸気温度と第2ボイラの出口主蒸気温度を入力してより低い方の温度を選択する比較器111、再熱モード時の再熱蒸気温度設定偏差を発生する第1関数発生器112、非再熱モード時に再熱蒸気温度を十分低温とするためたとえば−200℃など大きな設定偏差を発生する第2関数発生器113、比較器111の出力と第1関数発生器112の出力の和を取る第1加算器114、比較器111の出力と第2関数発生器113の出力の和を取る第2加算器115、再熱モード時には第1加算器114の出力を選択し非再熱モード時には第2加算器115の出力を選択して出力する選択器116、選択器116の出力が装置の適正範囲を超えないように上下限値で制約するリミッタ117、さらに、選択器116の出力が装置で認められる最大変化率を超えないように制約する変化率制限器118で構成される。
共通回路110の出力は再熱蒸気温度制御器52の設定器121に入力される。船舶に舶用ボイラが2基設けられた場合は、それぞれの再熱蒸気温度制御器に同じ設定値を与える。
The common circuit 110 inputs a main steam temperature at the outlet of the first boiler and an outlet main steam temperature of the second boiler and selects a lower temperature, a reheat steam temperature setting deviation in the reheat mode. The first function generator 112 for generating the second function generator 113 for generating a large setting deviation such as -200 ° C. in order to make the reheat steam temperature sufficiently low in the non-reheat mode, and the output of the comparator 111 A first adder 114 that takes the sum of the outputs of the one function generator 112, a second adder 115 that takes the sum of the outputs of the comparator 111 and the second function generator 113, and the first adder 114 in the reheat mode. In the non-reheat mode, a selector 116 that selects and outputs the output of the second adder 115, and a limiter 117 that restricts the output of the selector 116 with an upper and lower limit value so as not to exceed the appropriate range of the apparatus. And more Consists of a change rate limiter 118 which constrains so as not to exceed the maximum rate of change output of the selector 116 is observed in the apparatus.
The output of the common circuit 110 is input to the setting device 121 of the reheat steam temperature controller 52. When two marine boilers are provided in a ship, the same set value is given to each reheat steam temperature controller.

再熱蒸気温度制御器52は、入力部に比較器122を備え、温度検出器51から温度信号を入力して設定器121の出力信号との偏差信号を制御器123に渡す。制御器123は、偏差について比例積分操作(PI)を施して適当な操作出力信号を生成する。
燃焼空気量の測定値を入力して空気量の変動を検出して再熱蒸気温度の変化を先行して予測する微分回路124と減算器125を備え、制御器123の操作出力から空気量変動の影響量を差し引いた値を入力切換器126と自動手動切換器127を介して再熱ダンパコントロールドライブ53に供給し、再熱ダンパ25を駆動する。
The reheat steam temperature controller 52 includes a comparator 122 at an input unit, inputs a temperature signal from the temperature detector 51, and passes a deviation signal from the output signal of the setting device 121 to the controller 123. The controller 123 performs a proportional integration operation (PI) on the deviation to generate an appropriate operation output signal.
A differential circuit 124 and a subtractor 125 for detecting a change in the air amount by inputting a measured value of the combustion air amount and predicting a change in the reheat steam temperature in advance are provided. A value obtained by subtracting the influence amount is supplied to the reheat damper control drive 53 via the input switch 126 and the automatic manual switch 127, and the reheat damper 25 is driven.

再熱ダンパ25の開度が大きくなれば、再熱器パス14を流れる燃焼ガス量が増大して再熱蒸気の受ける熱量が増加するので、再熱蒸気温度が上昇する。また、再熱ダンパ25の開度が小さくなれば、再熱蒸気温度は下降する。したがって、再熱蒸気温度制御システムにおける再熱ダンパ25の開度調整によって、再熱蒸気温度を主蒸気温度測定値に対して一定の相関を維持するように制御することができる。   If the opening degree of the reheat damper 25 increases, the amount of combustion gas flowing through the reheater path 14 increases and the amount of heat received by the reheat steam increases, so that the reheat steam temperature rises. Moreover, if the opening degree of the reheat damper 25 becomes small, the reheat steam temperature falls. Therefore, the reheat steam temperature can be controlled to maintain a constant correlation with the main steam temperature measurement value by adjusting the opening degree of the reheat damper 25 in the reheat steam temperature control system.

なお、入力切換器126には、制御器52からの信号の他に、再熱ダンパ25を強制的に全閉とする全閉指令信号、ボイラトリップ時や火炉パージ実施時などに未燃ガスの滞留を防止するため再熱ダンパ25を全開とする全開指令信号、再熱モード切替時に適切な初期熱量を与えるような割合の開度指令信号が入力され、選択して出力することができる。   In addition to the signal from the controller 52, the input switch 126 includes a fully closed command signal for forcibly closing the reheat damper 25, an unburned gas at the time of boiler trip or furnace purge, etc. A full-open command signal for fully opening the reheat damper 25 to prevent stagnation, and an opening command signal at a ratio that gives an appropriate initial heat amount when switching the reheat mode can be selected and output.

図3は再熱蒸気温度制御システムにおける設定値と蒸気温度の関係を示す図面である。
共通回路110により、2缶の主蒸気温度測定値の低い方を選択し、これから20℃減じた値を遷移時における再熱蒸気温度の設定値とする。
最大負荷に対して所定割合以下の定格出力より低い領域においては、主蒸気温度は図中に実線で示すようにボイラの静特性に従って負荷が減少するにつれて温度も低下する。また、定格運転が可能な最大負荷に対して所定割合以上の負荷帯においては、主蒸気温度はその定格値565℃に安定し、再熱蒸気温度設定値は主蒸気定格温度に対して所定のバイアスだけ低い再熱蒸気定格温度545℃に安定させる。なお、再熱蒸気温度設定値は、リミッタ117によりRH定格値の545℃を大きく超えない545℃+αに制限される。
FIG. 3 is a diagram showing the relationship between the set value and the steam temperature in the reheat steam temperature control system.
The common circuit 110 selects the lower measured value of the main steam temperature of the two cans, and sets the value obtained by subtracting 20 ° C. as the set value of the reheat steam temperature at the time of transition.
In a region lower than the rated output of a predetermined ratio or less with respect to the maximum load, the main steam temperature decreases as the load decreases according to the static characteristics of the boiler as shown by a solid line in the figure. Further, in a load range of a predetermined ratio or more with respect to the maximum load capable of rated operation, the main steam temperature is stabilized at the rated value of 565 ° C., and the reheat steam temperature set value is predetermined with respect to the main steam rated temperature. Stabilize the reheat steam rated temperature 545 ° C. lower by bias. Note that the reheat steam temperature set value is limited by the limiter 117 to 545 ° C. + α which does not greatly exceed the RH rated value of 545 ° C.

なお、共通回路110は、第1と第2のボイラの内、低い方の主蒸気温度、すなわち負荷が小さい方のボイラの主蒸気温度を基準として、再熱モードでは基準の主蒸気温度よりたとえば20℃低い目標値を生成して、再熱蒸気温度制御器52の設定値として供給する。採用するバイアス温度は主蒸気の定格温度と再熱蒸気の定格温度の差と同じ値であれば、タービンはもとよりボイラや熱交換器における熱ストレスなどの変化が小さくなるので好ましい。
また、非再熱モード時には、再熱器パス14を閉止するので、たとえば200℃低温に設定することにより、過渡時には変化率制御器118を経て再熱蒸気温度設定値を徐々に減少させ、再熱ダンパ25を全閉にする。
The common circuit 110 uses the lower main steam temperature of the first and second boilers, that is, the main steam temperature of the boiler with the smaller load as a reference, and in the reheat mode, for example, the reference main steam temperature is higher than the reference main steam temperature. A target value lower by 20 ° C. is generated and supplied as a set value for the reheat steam temperature controller 52. If the bias temperature to be adopted is the same value as the difference between the rated temperature of the main steam and the rated temperature of the reheat steam, it is preferable because changes in thermal stresses in the boiler and heat exchanger as well as the turbine are reduced.
Further, since the reheater path 14 is closed in the non-reheat mode, the reheat steam temperature set value is gradually decreased through the rate of change controller 118 at the time of transient by setting the reheater path 14 at a low temperature of 200 ° C., for example. The heat damper 25 is fully closed.

本実施例によれば、主蒸気温度の実測値を基準にして再熱蒸気温度設定値を決めるので、液体燃料、ガス、混焼の種々の燃料モード毎に静特性が異なり、またボイラ伝熱面に汚れが生じた場合などにも静特性が変化するが、このような静特性のずれが生じても、関数演算器などの設定変更作業なしにSH、RHの收熱量配分を最適に保ちながら、また蒸気温度が低下する中低負荷帯でも可能な限り高い蒸気温度を保つように動作し、さらに2缶のボイラの合計減温量が最小となるように動作して、ボイラ効率が最大になる運転ができる利点がある。   According to the present embodiment, the reheat steam temperature set value is determined based on the measured value of the main steam temperature, so that the static characteristics are different for various fuel modes of liquid fuel, gas, and co-firing, and the boiler heat transfer surface The static characteristics change even when the surface is soiled, etc., but even if such a deviation of the static characteristics occurs, it is possible to keep the SH and RH heat distribution optimally without changing the setting of the function calculator or the like. In addition, it operates to keep the steam temperature as high as possible even in the middle and low load zones where the steam temperature decreases, and further operates to minimize the total temperature reduction of the two boilers, maximizing the boiler efficiency. There is an advantage that can be operated.

(主蒸気温度制御システム)
主蒸気温度制御システムは、基本的には、主として内部緩熱器を流れる蒸気流量を調節することにより温度制御を行い、温度調節器62で緩熱器18で冷やされる蒸気量を調節する蒸気流量調節弁63の開度を調整して、温度検出器61で検出した主蒸気温度が所定の目標温度に合致するように制御するものである。
(Main steam temperature control system)
The main steam temperature control system basically performs temperature control mainly by adjusting the flow rate of steam flowing through the internal heat sink, and the steam flow rate for adjusting the amount of steam cooled by the heat sink 18 by the temperature controller 62. The opening degree of the control valve 63 is adjusted, and the main steam temperature detected by the temperature detector 61 is controlled so as to match a predetermined target temperature.

なお、従来は、バイパス路37に固定オリフィスを設けることにより蒸気流量調節弁63の入口と出口の間に差圧を生じさせ、これを緩熱器を流れる蒸気の推進力としてきた。しかし、RHボイラではより大きな流量範囲について制御可能であることが求められるので、従来方法では不十分であった。
そこで、本実施例では、固定オリフィスに代えてバイパス流量調節弁64を設けることにより、蒸気流量調節弁63の入口と出口の間に十分な差圧を確保した。
温度調節器62は、バイパス路37に設けたバイパス流量調節弁64を蒸気流量調節弁63と反対方向に同時に駆動することにより、蒸気流量調節弁63を有効に作動させている。
Conventionally, by providing a fixed orifice in the bypass passage 37, a differential pressure is generated between the inlet and the outlet of the steam flow control valve 63, and this is used as a propulsion force for the steam flowing through the slow heat generator. However, since the RH boiler is required to be able to control a larger flow rate range, the conventional method is insufficient.
Therefore, in this embodiment, a sufficient differential pressure is ensured between the inlet and the outlet of the steam flow control valve 63 by providing the bypass flow control valve 64 instead of the fixed orifice.
The temperature controller 62 operates the steam flow rate adjusting valve 63 effectively by simultaneously driving the bypass flow rate adjusting valve 64 provided in the bypass passage 37 in the opposite direction to the steam flow rate adjusting valve 63.

ただし、再熱蒸気温度が再熱ダンパ25により制御されるときに、過熱器パス15を流れる燃焼ガス量が変動するため、蒸気流量調節弁63は主蒸気温度偏差のみならず、最終的には再熱蒸気温度制御により生じる変動をも吸収しなければならない。   However, when the reheat steam temperature is controlled by the reheat damper 25, the amount of combustion gas flowing through the superheater path 15 fluctuates. Variations caused by reheat steam temperature control must also be absorbed.

図4は主蒸気温度制御システムの詳細を説明するブロック図である。
舶用ボイラが2基設けられた場合に備えて、第1ボイラと第2ボイラそれぞれの主蒸気温度制御器に同じ設定値を与える共通回路130を設ける。
共通回路130は、第1ボイラの主蒸気温度と第2ボイラの主蒸気温度を入力して低い方の温度を選択する比較器131、たとえば10℃など適度なバイアスを発生する第1関数発生器132、比較器131から出力される主蒸気温度測定値と第1関数発生器132から出力されるバイアス温度を加える第1加算器133、ここでは565℃である定格主蒸気温度を発生する第2関数発生器134、550℃を発生する第3関数発生器135、第2関数発生器134と第3関数発生器135のうちひとつを出力する選択器136、加算器133の出力を選択器136の出力で上限制約するリミッタ137、設定温度の変化速度を制約して過激な蒸気温度変化を防止する変化率制限器138で構成される。
FIG. 4 is a block diagram illustrating details of the main steam temperature control system.
In preparation for the case where two marine boilers are provided, a common circuit 130 that provides the same set value to the main steam temperature controllers of the first boiler and the second boiler is provided.
The common circuit 130 receives a main steam temperature of the first boiler and a main steam temperature of the second boiler and selects a lower temperature, for example, a first function generator that generates a moderate bias such as 10 ° C. 132, a first adder 133 that adds the measured main steam temperature output from the comparator 131 and the bias temperature output from the first function generator 132, in this case, a second main steam temperature that generates a rated main steam temperature of 565 ° C. Function generator 134, third function generator 135 for generating 550 ° C., second function generator 134, selector 136 for outputting one of the third function generators 135, and output of adder 133 for the output of selector 136 A limiter 137 that restricts the upper limit by output, and a rate-of-change limiter 138 that restricts the change rate of the set temperature and prevents an extreme change in steam temperature.

共通回路130の出力は主蒸気温度制御器62の設定器141に入力される。舶用ボイラが2基設けられる場合は、第2のボイラの主蒸気温度制御器の設定器にも同じ出力が供給される。
主蒸気温度制御器62は、入力部に比較器142を備え、温度検出器61から主蒸気温度信号を入力して設定器141の出力信号との偏差信号を制御器143に渡す。制御器143は、偏差について比例積分操作(PI)を施して適当な操作出力信号を生成する。
The output of the common circuit 130 is input to the setting device 141 of the main steam temperature controller 62. When two marine boilers are provided, the same output is supplied to the setting device of the main steam temperature controller of the second boiler.
The main steam temperature controller 62 includes a comparator 142 at the input unit, inputs the main steam temperature signal from the temperature detector 61, and passes a deviation signal from the output signal of the setting device 141 to the controller 143. The controller 143 performs a proportional integration operation (PI) on the deviation to generate an appropriate operation output signal.

また、操作出力信号には、燃焼ガス変動に起因する主蒸気温度変動を予測して抑制するため、先行操作を加味している。過熱器パスにおける燃焼ガス流量の代替変数として、燃焼室11の燃焼空気流量を使うのでは十分でなく、燃焼空気流量の測定値に過熱器パスの燃焼ガス流量配分を乗じた値を先行操作量関数として使用する。   In addition, the operation output signal includes a prior operation in order to predict and suppress the main steam temperature fluctuation caused by the combustion gas fluctuation. It is not sufficient to use the combustion air flow rate in the combustion chamber 11 as a substitute variable of the combustion gas flow rate in the superheater path, and the value obtained by multiplying the measured value of the combustion air flow rate by the combustion gas flow rate distribution in the superheater path. Use as a function.

このため、再熱ダンパ25の開度を入力して燃焼ガス流量の過熱器パス15側配分比率推定値を算定する演算装置144、演算装置の出力と燃焼空気流量の測定値を乗じる乗算器145、乗算器145の出力を入力して主蒸気温度の変動を先行して予測する微分回路146と第2加算器147を備え、制御器143の操作出力と第2加算器147から出力される主蒸気温度変動予測値を加えて補正する第3加算器148、補正した操作信号を入力切換器149と自動手動切換器150を介して蒸気流量調節弁63に供給する。なお、自動手動切換器150の出力は、信号変換器151で逆相変換されてバイパス流量調節弁64に供給され、緩熱器18に流す蒸気量を広範に調節できるようにバイパス路37に発生する差圧を調整する。   For this reason, an arithmetic unit 144 for calculating the distribution ratio estimated value of the combustion gas flow rate by inputting the opening degree of the reheat damper 25, and a multiplier 145 for multiplying the output of the arithmetic unit and the measured value of the combustion air flow rate. , A differential circuit 146 that inputs the output of the multiplier 145 and predicts the fluctuation of the main steam temperature in advance, and a second adder 147, the operation output of the controller 143 and the main output from the second adder 147. A third adder 148 that corrects by adding the steam temperature fluctuation predicted value and supplies the corrected operation signal to the steam flow rate adjustment valve 63 via the input switch 149 and the automatic manual switch 150. The output of the automatic manual switching device 150 is reverse-phase converted by the signal converter 151 and supplied to the bypass flow rate adjustment valve 64, and is generated in the bypass passage 37 so that the amount of steam flowing through the slow heat generator 18 can be adjusted widely. Adjust the differential pressure.

なお、入力切換器149には、第3加算器148からの信号の他に、蒸気流量調節弁63を強制的に全閉とする全閉指令信号が入力され、選択して出力することができる。
また、蒸気流量調節弁63とバイパス流量調節弁6は、制御器から切り離して手動調整する場合にも逆相動作をさせる必要があるので、信号変換器151は機械的に逆相変換させる機構を有するものであることが好ましい。
In addition to the signal from the third adder 148, the input switch 149 receives a full-close command signal for forcibly and fully closing the steam flow rate control valve 63, and can select and output it. .
Further, since the steam flow rate adjusting valve 63 and the bypass flow rate adjusting valve 6 need to be operated in reverse phase even when manually adjusting by separating from the controller, the signal converter 151 has a mechanism for mechanically performing reverse phase conversion. It is preferable to have it.

図5は主蒸気温度制御システムにおける設定値と蒸気温度の関係を示す図面である。
低負荷時には、共通回路130により、2缶の主蒸気温度測定値の低い方を選択し、これを基準としてたとえば10℃プラスのバイアスを持たせた値を遷移時における主蒸気温度の設定値とする。なお、高負荷状態において、主蒸気温度を定格温度に保持するためには、緩熱器に蒸気の一部を通すなどして減温する必要がある。
FIG. 5 is a drawing showing the relationship between the set value and the steam temperature in the main steam temperature control system.
When the load is low, the lower one of the measured values of the main steam temperature of the two cans is selected by the common circuit 130, and a value with a bias of 10 ° C. plus, for example, is used as the reference value for the main steam temperature at the time of transition. To do. In order to maintain the main steam temperature at the rated temperature in a high load state, it is necessary to reduce the temperature by passing a part of the steam through a slow heat generator.

これにより、燃料モードの切換、バーナ本数の変化、火炉汚れ等により静特性に変化があっても、蒸気温度が定格温度に届かない最大負荷の所定割合以下の中・低負荷領域においては、可能な限り主蒸気温度を高く保持して効率を維持するようになっている。また、蒸気流量調節弁は、低負荷領域において、動的に蒸気温度が急増する場合を除き、静的には全閉状態を保つ。   As a result, even if there is a change in static characteristics due to fuel mode switching, change in the number of burners, dirt in the furnace, etc., it is possible in the middle and low load range where the steam temperature does not reach the rated temperature and below the predetermined ratio of the maximum load As long as the main steam temperature is kept as high as possible, efficiency is maintained. In addition, the steam flow rate control valve is statically kept in a fully closed state in the low load region except when the steam temperature increases rapidly.

(SHスプレ制御システム)
SHスプレ制御システムは、主蒸気温度が急激に上昇して緩熱器によっては熱量の吸収が十分でないときなどに、緊急的に利用されるものである。温度検出器61で検出した主蒸気温度が異常に上昇したときに、温度調節器71によりスプレ調節弁72を開いてスプレ減温器36で蒸気中に水をスプレして温度を急速に低減させて対処する。SHスプレ制御システムは、緩熱器による減温と比較すると応答性が優れている。
(SH spray control system)
The SH spray control system is used urgently when, for example, the main steam temperature rises sharply and the heat sink does not sufficiently absorb heat. When the main steam temperature detected by the temperature detector 61 rises abnormally, the spray regulator valve 72 is opened by the temperature controller 71 and water is sprayed into the steam by the spray cooler 36 to rapidly reduce the temperature. To deal with. The SH spray control system is superior in responsiveness as compared with temperature reduction by a heat sink.

緩熱器を流れる蒸気流量を調節弁で調節することにより蒸気温度を制御する主蒸気温度制御は本来緩慢である一方、再熱蒸気温度制御における再熱ダンパ操作によって変動する再熱ガス流量はそのまま主蒸気温度制御に対する外乱となって現れるので、主蒸気温度は大きな影響を受けることになる。さらに、クラッシュアスターン時には、非再熱モードに切り換えるので、再熱ダンパが全閉して燃焼ガス全量が過熱器パスに流入して急激な主蒸気温度上昇が発生する。このような急激な温度上昇が発生したときに備えて、SHスプレ制御システムが準備されている。   While the main steam temperature control, which controls the steam temperature by adjusting the flow rate of steam flowing through the heat sink, is inherently slow, the reheat gas flow rate that fluctuates due to the reheat damper operation in the reheat steam temperature control remains unchanged. Since it appears as a disturbance to the main steam temperature control, the main steam temperature is greatly affected. Further, during the crash astern, since the mode is switched to the non-reheat mode, the reheat damper is fully closed and the entire amount of the combustion gas flows into the superheater path, causing a sudden rise in the main steam temperature. An SH spray control system is prepared in preparation for such a rapid temperature rise.

図6は、SHスプレ制御システムの詳細を説明するブロック図である。
SHスプレ制御システムは緊急の場合に利用するものであるので、舶用ボイラが2基設けられた場合にも、第1ボイラと第2ボイラそれぞれ独立に設けられる。
SHスプレ制御システムは、常時はスプレ弁を閉止しておくために設定値に与える適度な温度差を生成する関数発生器161、ボイラ出口主蒸気温度設定値と関数発生器161の発生する温度差を入力して加える第1加算器162、第1加算器162から出力される設定値信号が所定の変化率を超えないように調整する変化率制限器163、変化率制限器163の出力を入力して制御器の設定値を生成する設定器164、温度検出器61で測定したボイラ出口主蒸気温度と設定値を入力して両者の偏差を算出する比較器165、偏差について比例積分操作(PI)を施して適当な操作信号を生成するSHスプレコントローラ166、再熱モードから非再熱モードに変換したことを表す信号を入力してSHスプレ調節弁72を駆動する信号を発生する乗算器167、SHスプレコントローラ166の操作信号と乗算器167からの駆動信号を加算する第2加算器168、第2加算器168から出力される操作信号と全閉指令信号のいずれかを出力する入力切換器169、自動手動切換器170、自動手動切換器170の出力により駆動されるSHスプレ調節弁72で構成される。
FIG. 6 is a block diagram illustrating details of the SH spray control system.
Since the SH spray control system is used in an emergency, even when two marine boilers are provided, the first boiler and the second boiler are provided independently.
In the SH spray control system, a function generator 161 that generates an appropriate temperature difference given to a set value to keep the spray valve closed at all times, a boiler outlet main steam temperature set value and a temperature difference generated by the function generator 161 The first adder 162 and the change rate limiter 163 for adjusting the set value signal output from the first adder 162 so as not to exceed a predetermined change rate and the output of the change rate limiter 163 are input. A setting unit 164 for generating a set value for the controller, a comparator 165 for calculating the deviation between the boiler outlet main steam temperature measured by the temperature detector 61 and the set value, and a proportional integral operation (PI) ) To generate an appropriate operation signal, and a signal indicating that the reheat mode is converted to the non-reheat mode is input to generate a signal for driving the SH spray control valve 72. The second adder 168 adds the operation signal of the multiplier 167 and the SH spray controller 166 and the drive signal from the multiplier 167, and outputs either the operation signal output from the second adder 168 or the fully closed command signal. The input switch 169, the automatic manual switch 170, and the SH spray control valve 72 driven by the output of the automatic manual switch 170 are configured.

図7はSHスプレ制御システムにおける設定値と蒸気温度の関係を示す図面である。
SHスプレ温度設定値は、主蒸気温度設定値に対してΔt℃高めのオーバーライド設定値とし、比較器165においてわずかなマイナス偏差を発生させることにより、通常時はSHスプレ調節弁72が全閉になるようにしている。
主蒸気温度が蒸気温度設定値を超えているときや急激に上昇してSHスプレ設定温度を超えたときなどには、SHスプレ調節弁72を開いて水を供給することにより、蒸気温度を急冷することができる。
FIG. 7 is a diagram showing the relationship between the set value and the steam temperature in the SH spray control system.
The SH spray temperature set value is set to an override set value that is higher by Δt ° C. than the main steam temperature set value, and a slight negative deviation is generated in the comparator 165, so that the SH spray control valve 72 is fully closed at normal times. It is trying to become.
When the main steam temperature exceeds the steam temperature set value or when it rises rapidly and exceeds the SH spray set temperature, the steam temperature is rapidly cooled by opening the SH spray control valve 72 and supplying water. can do.

アスターン時など、ボイラ負荷が減少して主蒸気温度設定値を降下させたときは、SHスプレ温度設定値も降下する主蒸気温度設定値にスライドしてこれにΔt℃加えた温度にSHスプレ温度設定値を設定する。
蒸気温度が実際に上昇する前に先行的にSHスプレを吹いて過度の温度上昇を防止する。
When the boiler load decreases and the main steam temperature set value drops, such as during an astern, the SH spray temperature set value slides to the main steam temperature set value that also drops, and the temperature of the SH spray temperature is added to this by adding Δt ° C. Set the setting value.
Before the steam temperature actually increases, an excessive temperature increase is prevented by blowing the SH spray in advance.

なお、ボイラ起動時など、主蒸気温度が十分上昇していない場合は、入力切換器169を介しSHスプレ調節弁72を強制閉止として温度上昇の障害にならないようにする。
また、再熱モードから非再熱モードへの緊急切換があると、過熱器パス側の收熱が急激に増加するため、一時的に主蒸気温度が過度に上昇することがある。このような蒸気温度の急上昇に備えて、先行的にSHスプレを吹いて過度の温度上昇を抑制することができる。
When the main steam temperature is not sufficiently increased, such as when the boiler is started, the SH spray control valve 72 is forcibly closed via the input switch 169 so as not to obstruct the temperature increase.
In addition, when there is an emergency switch from the reheat mode to the non-reheat mode, the heat recovery on the superheater path side increases rapidly, and thus the main steam temperature may temporarily rise excessively. In preparation for such a rapid rise in steam temperature, an excessive temperature rise can be suppressed by blowing SH spray in advance.

(モード切替システム)
モード切替システムは、再熱器パス14のダンパ25,26,28と過熱器パス15のダンパ35を所定のシーケンスに従って操作することにより、定格運行など高出力が必要で再熱器パス14を生かして高負荷運転する再熱モードと、港内運行時など中低出力運転すれば足りるときに再熱器パスを閉止して運転する非再熱モードとの間で切り替えるものである。
(Mode switching system)
The mode switching system operates the dampers 25, 26, and 28 of the reheater path 14 and the damper 35 of the superheater path 15 in accordance with a predetermined sequence, so that high output such as rated operation is required and the reheater path 14 is utilized. Switching between a reheat mode that operates at a high load and a non-reheat mode that operates by closing the reheater path when it is sufficient to perform a medium to low power operation such as when operating in a port.

図8は、非再熱モードから再熱モードに切り替える手順を示すフロー図である。
非再熱モードから再熱モードに切り替える指令を受けると、シールエアダンパ28を閉止する指令を発生する(S1)。続いて、RHプロテクションダンパ26を解放する指令を発生して(S2)、再熱器パス14を開通させて、再熱ダンパ25の自動制御(CASモード)を開始する(S3)。
FIG. 8 is a flowchart showing a procedure for switching from the non-reheat mode to the reheat mode.
When a command to switch from the non-reheat mode to the reheat mode is received, a command to close the seal air damper 28 is generated (S1). Subsequently, a command to release the RH protection damper 26 is generated (S2), the reheater path 14 is opened, and automatic control (CAS mode) of the reheat damper 25 is started (S3).

次いで、非再熱モードにおける降温状態設定値から再熱モードにおける通常の再熱蒸気温度設定値に設定値を変更し、かつ昇温条件の設定を行う(S4)。さらに、再熱ダンパ25の初期開度指令を発生する(S5)。その後、再熱蒸気温度が所定の初期温度に達するまで待機する(S6)。   Next, the set value is changed from the temperature drop state set value in the non-reheat mode to the normal reheat steam temperature set value in the reheat mode, and the temperature raising condition is set (S4). Further, an initial opening degree command for the reheat damper 25 is generated (S5). Thereafter, the process waits until the reheat steam temperature reaches a predetermined initial temperature (S6).

再熱蒸気温度が所定の温度に達したら、再熱ダンパ25を使って再熱蒸気温度の自動制御を開始する(S7)。再熱蒸気温度設定値は、主蒸気温度測定値に対して約−20℃低く設定されていて、主蒸気温度が主蒸気温度測定値+αの設定にしたがって昇温するのに伴って昇温するので、待機している(S8)。すると、やがて再熱蒸気設定温度が目標の値に到達し、再熱蒸気温度も目標値に達することになって(S9)、非再熱モードから再熱モードへの切替が完了する。   When the reheat steam temperature reaches a predetermined temperature, automatic control of the reheat steam temperature is started using the reheat damper 25 (S7). The reheat steam temperature set value is set to be approximately −20 ° C. lower than the main steam temperature measurement value, and the temperature rises as the main steam temperature rises according to the setting of the main steam temperature measurement value + α. Therefore, it is waiting (S8). Then, the reheat steam set temperature eventually reaches the target value, the reheat steam temperature also reaches the target value (S9), and the switching from the non-reheat mode to the reheat mode is completed.

図9は、再熱モードから非再熱モードに切り替える手順を示すフロー図である。
再熱モードから非再熱モードへの切替指令を受けると、再熱ダンパ25の制御モードがCASモードでないときは、CASモードに切り替え(S11)、共通回路110で作成されるCAS設定値を通常設定値から降温目標設定値に切り替え、さらに変化率制限器118により降温レートを規定する(S12)。再熱蒸気温度設定値が降下するにつれて再熱ダンパ25は開度を狭めていくので、再熱蒸気温度が十分低下するまで待機する(S13)。
FIG. 9 is a flowchart showing a procedure for switching from the reheat mode to the non-reheat mode.
When a command to switch from the reheat mode to the non-reheat mode is received, when the control mode of the reheat damper 25 is not the CAS mode, the CAS mode is switched to the CAS mode (S11), and the CAS set value created by the common circuit 110 is normally set. The set value is switched to the target temperature decrease value, and the rate of temperature decrease is defined by the change rate limiter 118 (S12). As the reheat steam temperature setting value decreases, the reheat damper 25 narrows the opening degree, and thus waits until the reheat steam temperature sufficiently decreases (S13).

再熱ダンパ25が全閉に近くなったところでシーケンサからの指令により全閉指令をホールドし全閉状態を保持する(S14)。次いで、RHプロテクションダンパ26を全閉する指令を発生して(S15)、さらにシールエアダンパ28を開ける指令を発生する(S16)。
再熱器パス14の煙道がRHプロテクションダンパ26で閉止され、さらに再熱ダンパ25との間がシール空気でシールされると、再熱モードから非再熱モードへの切替が完了する。
なお、上記共通回路、制御回路、シーケンス回路などは、電子計算機により構成されてもよいことはいうまでもない。
When the reheat damper 25 is nearly fully closed, the fully closed command is held by a command from the sequencer to hold the fully closed state (S14). Next, a command for fully closing the RH protection damper 26 is generated (S15), and a command for opening the seal air damper 28 is generated (S16).
When the flue of the reheater path 14 is closed by the RH protection damper 26 and the space between the reheat damper 25 and the reheat damper 25 is sealed with sealing air, the switching from the reheat mode to the non-reheat mode is completed.
Needless to say, the common circuit, the control circuit, the sequence circuit, and the like may be configured by an electronic computer.

本発明の1実施例における舶用ボイラ周辺の蒸気流れ図である。It is a steam flow figure around a marine boiler in one example of the present invention. 本実施例の再熱蒸気温度制御方法のブロック図である。It is a block diagram of the reheat steam temperature control method of a present Example. 本実施例の再熱蒸気温度制御の設定温度を説明する線図である。It is a diagram explaining the preset temperature of the reheat steam temperature control of a present Example. 本実施例の主蒸気温度制御方法のブロック図である。It is a block diagram of the main steam temperature control method of a present Example. 本実施例の加熱蒸気温度制御の設定温度を説明する線図である。It is a diagram explaining the preset temperature of the heating steam temperature control of a present Example. 本実施例における主蒸気のスプレ制御方法のブロック図である。It is a block diagram of the spray control method of the main steam in a present Example. 本実施例のスプレ制御温度制御の設定温度を説明する線図である。It is a diagram explaining the preset temperature of spray control temperature control of a present Example. 本実施例の非再熱モードから再熱モードに切り換える手順を表すフローチャートである。It is a flowchart showing the procedure which switches from the non-reheat mode of a present Example to the reheat mode. 本実施例の再熱モードから非再熱モードに切り換える手順を表すフローチャートである。It is a flowchart showing the procedure switched from the reheat mode of a present Example to the non-reheat mode.

符号の説明Explanation of symbols

1 舶用ボイラ
2 高圧蒸気タービン
3 中低圧蒸気タービン
11 燃焼室
12 バーナ
13 煙道
14 再熱器パス(RHパス)
15 過熱器パス(SHパス)
16 蒸気ドラム
17 水ドラム
18 緩熱器
21 節炭器
22 第1再熱器
23 第2再熱器
24 第3過熱器
25 再熱ダンパ
26 RHプロテクションダンパ
27 空気配管
28 シールエアダンパ
31 節炭器
32 第1過熱器
33 第2過熱器
34 第4過熱器
35 SHダンパ
36 スプレ減温器
37 バイパス流路
51 温度検出器
52 温度調節器
53 再熱ダンパ駆動器
61 温度検出器
62 温度調節器
63 蒸気流量調節弁
64 バイパス流量調節弁
71 温度調節器
72 スプレ調節弁
110 共通回路
111 比較器
112 第1関数発生器
113 第2関数発生器
114 第1加算器
115 第2加算器
116 選択器
117 リミッタ
118 変化率制限器
121 設定器
122 比較器
123 制御器
124 微分回路
125 減算器
126 入力切換器
127 自動手動切換器
130 共通回路
131 比較器
132 第1関数発生器
133 第1加算器
134 第2関数発生器
135 第3関数発生器
136 選択器
137 リミッタ
138 変化率制限器
141 設定器
142 比較器
143 制御器
144 演算装置
145 乗算器
146 微分回路
147 第2加算器
148 第3加算器
149 入力切換器
150 自動手動切換器
151 信号変換器
161 関数発生器
162 第1加算器
163 変化率制限器
164 設定器
165 比較器
166 SHスプレコントローラ
167 乗算器
168 第2加算器
169 入力切換器
170 自動手動切換器
DESCRIPTION OF SYMBOLS 1 Marine boiler 2 High pressure steam turbine 3 Medium and low pressure steam turbine 11 Combustion chamber 12 Burner 13 Flue 14 Reheater path (RH path)
15 Superheater path (SH path)
16 Steam Drum 17 Water Drum 18 Slow Heater 21 Cargo Saver 22 First Reheater 23 Second Reheater 24 Third Superheater 25 Reheat Damper 26 RH Protection Damper 27 Air Pipe 28 Seal Air Damper 31 Cargo Saver 32 1st superheater 33 2nd superheater 34 4th superheater 35 SH damper 36 spray desuperheater 37 bypass flow path 51 temperature detector 52 temperature controller 53 reheat damper driver 61 temperature detector 62 temperature controller 63 Steam flow control valve 64 Bypass flow control valve 71 Temperature controller 72 Spray control valve 110 Common circuit 111 Comparator 112 First function generator 113 Second function generator 114 First adder 115 Second adder 116 Selector 117 Limiter 118 Change Rate Limiter 121 Setter 122 Comparator 123 Controller 124 Differentiation Circuit 125 Subtractor 1 26 Input switch 127 Automatic manual switch 130 Common circuit 131 Comparator 132 First function generator 133 First adder 134 Second function generator 135 Third function generator 136 Selector 137 Limiter 138 Change rate limiter 141 Setting Unit 142 Comparator 143 Controller 144 Arithmetic unit 145 Multiplier 146 Differentiation circuit 147 Second adder 148 Third adder 149 Input switch 150 Automatic manual switch 151 Signal converter 161 Function generator 162 First adder 163 Change Rate limiter 164 Setter 165 Comparator 166 SH spray controller 167 Multiplier 168 Second adder 169 Input switch 170 Automatic manual switch

Claims (7)

煙道が再熱器パスと過熱器パスに分割され、主蒸気は緩熱器に通す蒸気量またはスプレ量あるいはその両方で温度制御して高圧蒸気タービンに供給し、再熱蒸気は再熱器パスの再熱ダンパの開度により温度制御して中・低圧蒸気タービンに供給する舶用ボイラにおける蒸気温度制御方法であって、
ボイラ負荷が主蒸気の定格温度に対応する領域においては定格温度を設定値として主蒸気の温度制御をすると共に、
ボイラ負荷が主蒸気の定格温度未満に対応する領域においては定格温度を上限として所定のバイアスを主蒸気温度の実測値に加えた温度を設定値として主蒸気の温度制御を行い、
主蒸気と再熱蒸気の定格温度の差に基づいて決まるバイアスを主蒸気温度の実測値に加えた温度を設定値として再熱蒸気温度を制御することを特徴とする
舶用ボイラの蒸気温度制御方法。
The flue is divided into a reheater path and a superheater path, and the main steam is supplied to the high-pressure steam turbine with the temperature controlled by the amount of steam and / or spray that passes through the slow heatr, and the reheated steam is reheater A steam temperature control method for a marine boiler that supplies temperature to a medium / low pressure steam turbine by controlling the temperature by the reheat damper opening of the path,
In the region where the boiler load corresponds to the rated temperature of the main steam, the temperature of the main steam is controlled with the rated temperature as the set value,
In the region where the boiler load corresponds to less than the rated temperature of the main steam, the temperature of the main steam is controlled using the temperature obtained by adding a predetermined bias to the measured value of the main steam temperature with the rated temperature as the upper limit,
A steam temperature control method for a marine boiler, characterized in that the reheat steam temperature is controlled by setting a temperature determined by adding a bias determined based on a difference between the rated temperatures of the main steam and the reheat steam to an actual measurement value of the main steam temperature. .
前記再熱器パスに設けた第3過熱器の出口から前記緩熱器を通って前記過熱器パスに設けた第4過熱器の入口に繋がる流路に設置した蒸気流量調節弁と、前記第3過熱器出口と前記第4過熱器入口を直接に繋いで前記緩熱器をバイパスするバイパス流路に設置したバイパス流量調節弁において、前記蒸気流量調節弁と前記バイパス流量調節弁を逆方向に作動させることにより主蒸気温度を制御する
請求項記載の舶用ボイラ蒸気温度制御方法。
A steam flow rate adjusting valve installed in a flow path that leads from the outlet of the third superheater provided in the reheater path to the inlet of the fourth superheater provided in the superheater path through the slow heater; In a bypass flow rate control valve installed in a bypass flow path that directly connects the 3 superheater outlet and the fourth superheater inlet and bypasses the slow heatr, the steam flow rate control valve and the bypass flow rate control valve are reversed. marine boiler steam temperature control method according to claim 1, wherein for controlling the main steam temperature by operating.
舶用ボイラが2基設けられていて、前記再熱蒸気温度の設定値は該2基の舶用ボイラのうち低い方の主蒸気温度を基準として生成され、該2基の舶用ボイラに共通に提供されることを特徴とする
請求項1または2記載の舶用ボイラ蒸気温度制御方法。
Two marine boilers are provided, and the set value of the reheat steam temperature is generated on the basis of the lower main steam temperature of the two marine boilers, and is provided in common to the two marine boilers. The marine boiler steam temperature control method according to claim 1 or 2 .
煙道が再熱器パスと過熱器パスに分割され、主蒸気は緩熱器に通す蒸気量またはスプレ量あるいはその両方で温度制御して高圧蒸気タービンに供給し、再熱蒸気は再熱器パスの再熱ダンパの開度により温度制御して中・低圧蒸気タービンに供給する舶用ボイラを2基備えた船舶に使用する舶用ボイラ蒸気温度制御装置であって
記2基のボイラにおける主蒸気温度の低い方を選択して出力する比較器と主蒸気と再熱蒸気の定格温度の差を設定することができる関数発生器と該比較器の出力と該関数発生器の出力を加算する加算器を備えて、該加算器の出力を温度設定値として前記2基の舶用ボイラの再熱蒸気温度制御器の設定器に提供する第1の共通回路と、
前記2基のボイラにおける主蒸気温度の低い方を選択して出力する第2の比較器と、所定のプラスバイアスを設定することができる第2の関数発生器と、該第2比較器の出力と該第2関数発生器の出力を加算する第2の加算器を備えて、該第2加算器の出力を温度設定値として前記2基の舶用ボイラの主蒸気温度制御器の設定器に提供する第2の共通回路を備えることを特徴とする
舶用ボイラの蒸気温度制御装置。
The flue is divided into a reheater path and a superheater path, and the main steam is supplied to the high-pressure steam turbine with the temperature controlled by the amount of steam and / or spray that passes through the slow heatr, and the reheated steam is reheater A marine boiler steam temperature control device for use in a ship equipped with two marine boilers for controlling the temperature according to the opening of a reheat damper of a path and supplying the medium / low pressure steam turbine ,
Comparator and main steam output and said function generator and said comparator capable of setting the difference between the nominal temperature of the reheated steam for selecting and outputting the lower of the main steam temperature in the boiler before Symbol 2 group A first common circuit comprising an adder for adding the output of the function generator, and providing the output of the adder as a temperature set value to a setter of the reheat steam temperature controller of the two marine boilers ;
A second comparator that selects and outputs the lower main steam temperature in the two boilers, a second function generator that can set a predetermined positive bias, and an output of the second comparator And a second adder for adding the output of the second function generator, and providing the output of the second adder as a temperature set value to the setter of the main steam temperature controller of the two marine boilers A steam temperature control device for a marine boiler, comprising a second common circuit that performs
前記第1共通回路は、さらに
前記加算器から得られる温度設定値に対して上限値を限る上限リミッタと、前回指令した前記温度設定値に対して変化率を制限する変化率制限器とを備えて、
前記算出された設定値に上限値と変化率を限る補正をかけて前記2基の舶用ボイラの再熱蒸気温度制御装置の温度設定値として提供することを特徴とする
請求項記載の舶用ボイラの蒸気温度制御装置。
The first common circuit further includes an upper limiter for limiting an upper limit value for the temperature set value obtained from the adder, and a change rate limiter for limiting the change rate for the previously set temperature set value. And
5. The marine boiler according to claim 4, wherein the calculated set value is provided as a temperature set value of the reheat steam temperature control device for the two marine boilers by correcting the upper limit value and the rate of change. Steam temperature control device.
再熱ダンパの開度測定値を入力して過熱器パス側の燃焼ガス流量配分比率を算定する演算装置と、該演算装置の出力信号と燃焼空気流量測定値の乗算値を算出する乗算器と、微分器と加算器から構成され該乗算器の出力から主蒸気温度の変動を予測する変動推定器を備え、前記主蒸気温度の変動予測値を用いて主蒸気流量調節弁の開度制御信号を調整して、前記微分回路により燃焼空気量の変化から排ガス量の変動を計算し、前記減算器により主蒸気流量調節弁の制御信号を開度調整信号で調整して、主蒸気流量調節弁の開度調整をすることを特徴とする
請求項4または5記載の舶用ボイラの蒸気温度制御装置。
An arithmetic device for calculating the combustion gas flow rate distribution ratio on the superheater path side by inputting an opening measurement value of the reheat damper, a multiplier for calculating a multiplication value of the output signal of the arithmetic device and the combustion air flow rate measurement value, A fluctuation estimator that is configured by a differentiator and an adder and predicts a fluctuation of the main steam temperature from an output of the multiplier, and an opening degree control signal of the main steam flow control valve using the fluctuation prediction value of the main steam temperature The differential circuit calculates the fluctuation of the exhaust gas amount from the change of the combustion air amount, the subtractor adjusts the control signal of the main steam flow rate control valve with the opening adjustment signal, and the main steam flow rate control valve The steam temperature control device for a marine boiler according to claim 4 or 5 , wherein the opening degree is adjusted.
バイアス温度を発生する関数発生器と、主蒸気温度設定値と該バイアス温度を加算する加算器を備え、該主蒸気温度設定値に対して所定温度高めのオーバーライド値をSHスプレ温度設定値としてボイラ出口における主蒸気温度制御器の比較器に入力することを特徴とする
請求項4から6のいずれかに記載の舶用ボイラの蒸気温度制御装置。
A function generator for generating a bias temperature, and an adder for adding the main steam temperature set value and the bias temperature, and using an override value higher than the main steam temperature set value by a predetermined temperature as the SH spray temperature set value The steam temperature control device for a marine boiler according to any one of claims 4 to 6 , wherein the steam temperature control device is input to a comparator of a main steam temperature controller at an outlet.
JP2007273862A 2007-10-22 2007-10-22 Steam temperature control method and control device for marine boiler Expired - Fee Related JP4526558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273862A JP4526558B2 (en) 2007-10-22 2007-10-22 Steam temperature control method and control device for marine boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273862A JP4526558B2 (en) 2007-10-22 2007-10-22 Steam temperature control method and control device for marine boiler

Publications (2)

Publication Number Publication Date
JP2009103344A JP2009103344A (en) 2009-05-14
JP4526558B2 true JP4526558B2 (en) 2010-08-18

Family

ID=40705185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273862A Expired - Fee Related JP4526558B2 (en) 2007-10-22 2007-10-22 Steam temperature control method and control device for marine boiler

Country Status (1)

Country Link
JP (1) JP4526558B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693280B2 (en) * 2011-02-14 2015-04-01 三菱重工業株式会社 Marine propulsion plant
JP6038448B2 (en) * 2011-12-16 2016-12-07 三菱日立パワーシステムズ株式会社 Solar thermal combined power generation system and solar thermal combined power generation method
WO2014185007A1 (en) * 2013-05-17 2014-11-20 パナソニックIpマネジメント株式会社 Combined heat and power system
JP6461525B2 (en) * 2014-09-11 2019-01-30 株式会社東芝 Steam temperature control device, steam temperature control method, and power generation system
CN104848200B (en) * 2015-05-27 2017-03-01 中电投河南电力有限公司技术信息中心 A kind of reheater gas baffle control method and device, Reheated-steam Temperature Control System
CN108224407A (en) * 2018-01-10 2018-06-29 哈尔滨锅炉厂有限责任公司 A kind of device for promoting super critical boiler superheater vapor (steam) temperature
CN108361683B (en) * 2018-05-14 2023-12-22 华能国际电力股份有限公司海门电厂 Full load section reheat temperature intelligent control system
CN114776397B (en) * 2022-02-28 2023-10-20 鞍钢股份有限公司 Automatic control method for main steam pressure of small steam turbine generator unit
CN115095849B (en) * 2022-06-21 2023-02-28 西安交通大学 Method for coordinately controlling temperature of main reheat steam of double reheat unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989001A (en) * 1972-12-21 1974-08-26
JPS58153002A (en) * 1982-03-05 1983-09-10 三菱重工業株式会社 Steam generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989001A (en) * 1972-12-21 1974-08-26
JPS58153002A (en) * 1982-03-05 1983-09-10 三菱重工業株式会社 Steam generator

Also Published As

Publication number Publication date
JP2009103344A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4526558B2 (en) Steam temperature control method and control device for marine boiler
JP5079102B2 (en) Control device for exhaust heat recovery system
KR890001172B1 (en) Hrsg damper control
AU2009315819B2 (en) Method for operating a waste heat steam generator
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
JP6552833B2 (en) Boiler water supply system, boiler equipped with the same, and boiler water supply method
JP2010223579A (en) Single loop temperature regulation control mechanism
KR20130115281A (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
JP4507098B2 (en) Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
JP4670707B2 (en) Control apparatus and control method for steam power plant
US20170284228A1 (en) Steam turbine plant
KR102627373B1 (en) Once-through evaporator systems
KR101982955B1 (en) Boiler, marine steam turbine propulsion system equipped with same, ship equipped with same, and boiler control method
WO2018131654A1 (en) Control system, gas turbine, power generation plant, and method of controlling fuel temperature
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP2007285220A (en) Combined cycle power generation facility
JPH0226122B2 (en)
JP2019105260A (en) Plant control device and power plant
JPH10300212A (en) Combustor for hot water
JPH09195718A (en) Main steam temperature control device
JPS62237012A (en) Heated steam pressure controller of heater for steam turbine
JP2001355806A (en) Controller for waste heat recovery steam generator
JPH11241807A (en) Controller for boiler
JPS6325401A (en) Automatic controller for boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees