JP4507098B2 - Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler - Google Patents

Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler Download PDF

Info

Publication number
JP4507098B2
JP4507098B2 JP2005148447A JP2005148447A JP4507098B2 JP 4507098 B2 JP4507098 B2 JP 4507098B2 JP 2005148447 A JP2005148447 A JP 2005148447A JP 2005148447 A JP2005148447 A JP 2005148447A JP 4507098 B2 JP4507098 B2 JP 4507098B2
Authority
JP
Japan
Prior art keywords
boiler
flow rate
signal
boiler recirculation
recirculation pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005148447A
Other languages
Japanese (ja)
Other versions
JP2006322690A (en
Inventor
郁夫 尾中
義明 河野
忠男 植中
太郎 坂田
恵三郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Tokyo Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP2005148447A priority Critical patent/JP4507098B2/en
Publication of JP2006322690A publication Critical patent/JP2006322690A/en
Application granted granted Critical
Publication of JP4507098B2 publication Critical patent/JP4507098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、火力発電プラントの超臨界圧定圧貫流ボイラに係わり、火炉壁出口から流体の一部をボイラ給水に戻して循環させ火炉壁通過流体流量を確保した上で、運転可能な最低出力を引き下げるのに好適な超臨界圧定圧貫流ボイラの流体循環運転制御回路(設備)とその制御方法に関する。   The present invention relates to a supercritical pressure constant pressure once-through boiler of a thermal power plant, and a part of the fluid is returned to the boiler feed water from the furnace wall outlet and circulated to ensure the flow rate through the furnace wall, and the minimum operable output is achieved. The present invention relates to a fluid circulation operation control circuit (equipment) of a supercritical pressure constant pressure once-through boiler suitable for lowering and a control method thereof.

本発明が対象とする超臨界圧定圧貫流ボイラにおける最低負荷制限はボイラ火炉壁に必要な最低通過流体の流量が制限されることによる場合が殆どである。簡単にいええば、ボイラ火炉壁は非常に多くの伝熱管が流体経路上に並列配置されており、流体流量が少なくなると火炉壁の差圧が少なくなり、伝熱管ごとに生じる流体流量の差が大きくなり、流体が流れ難い状態となる伝熱管はオーバーヒートを起こしてチューブリークが生じることになる。   The minimum load restriction in the supercritical pressure constant pressure once-through boiler to which the present invention is applied is mostly due to the restriction of the flow rate of the minimum passage fluid required for the boiler furnace wall. To put it simply, the boiler furnace wall has a large number of heat transfer tubes arranged in parallel on the fluid path.If the fluid flow rate decreases, the differential pressure on the furnace wall decreases, and the difference in fluid flow rate that occurs between the heat transfer tubes The heat transfer tube, which becomes large and difficult to flow, overheats and causes tube leak.

火炉壁の流体流量制限により生じる最低負荷制限より低い負荷で運転する場合には、火炉壁の流体流量を最低通過流量制限以上に維持したまま蒸発量を低下させるため、火炉壁出口から流体の一部をボイラ入口に戻して火炉壁を循環させる方法が採用され、過去に特許出願がなされている。   When operating at a load lower than the minimum load limit caused by the furnace wall fluid flow restriction, the amount of fluid flowing from the furnace wall outlet is reduced to reduce the evaporation while maintaining the furnace wall fluid flow rate above the minimum passage flow restriction. A method of circulating the furnace wall by returning the part to the boiler inlet has been filed in the past.

特公昭39−18455号公報、特開昭56−16002号公報及び特公昭62−44161号公報には、流体の一部を火炉出口から火炉入口に戻す循環系統が図示されているが、強制循環ポンプを循環系統ではなく、主要な流体流路の系統に設置して流体の一部を火炉出口から火炉入口に循環させる方法である。そのため強制循環ポンプは火炉最低通過流量以上の容量を持たせる必要があり、大きなポンプ容量が要求される。特公昭39−18456号公報では、火炉出口から火炉入口に循環させる系統にエジェクターポンプを設置して循環させる方法が記載されているが、実現可能である説明がされているのみである。   Japanese Patent Publication No. 39-18455, Japanese Patent Publication No. Sho 56-16002, and Japanese Patent Publication No. Sho 62-44161 show a circulation system for returning a part of fluid from the furnace outlet to the furnace inlet. This is a method in which a pump is installed not in a circulation system but in a system of main fluid flow paths so that a part of the fluid is circulated from the furnace outlet to the furnace inlet. For this reason, the forced circulation pump needs to have a capacity that is equal to or greater than the furnace minimum passage flow rate, and a large pump capacity is required. Japanese Examined Patent Publication No. 39-18456 discloses a method of installing and circulating an ejector pump in a system that circulates from the furnace outlet to the furnace inlet, but only describes that it is feasible.

これらの特許出願発明には、いずれにも火炉出口から火炉入口に循環させる流体のの必要量を確保する手段について記載されていない。ボイラに負荷変化などがあると、火炉入口、出口ともに流体エンタルピは動的に変動し、循環運転開始時においても循環水の影響で火炉入口流量、エンタルピ及び火炉収熱量が変化するので火炉出口エンタルピも変化する。   None of these patent application inventions describes means for ensuring the required amount of fluid to be circulated from the furnace outlet to the furnace inlet. When there is a load change in the boiler, the fluid enthalpy fluctuates dynamically at both the furnace inlet and outlet, and the furnace inlet flow rate, enthalpy and furnace heat recovery amount change due to the influence of circulating water even at the start of circulation operation. Also changes.

また、どのような方式のポンプであっても流体温度条件が変わればポンプ特性は変化するので、流体状態量が変動すればその循環流量が変動してしまうが、前記特許出願発明には流体の必要な循環流量を確実に確保する手段について考慮されていない。   In addition, pump characteristics change if the fluid temperature condition changes in any type of pump, so if the fluid state quantity fluctuates, the circulation flow rate will fluctuate. Means for ensuring the necessary circulating flow rate are not considered.

特公平6−50163号公報記載の発明には、変圧貫流ボイラの起動系統として火炉出口流体の全部を汽水分離器に通し、流体から飽和水と飽和蒸気を分離して、飽和水のみをボイラ再循環ポンプによりボイラ給水に戻す構成が記載されている。また飽和水がボイラ循環ポンプにおいてキャビテーションを起こさないように、高圧給水加熱器手前の温度の低い水をボイラ再循環ポンプ入口の流体中に一定量入れてボイラ再循環ポンプ入口水をサブクール状態にしている。   In the invention described in Japanese Patent Publication No. 6-50163, as the starting system of the transformer once-through boiler, all of the furnace outlet fluid is passed through the brackish water separator, and the saturated water and the saturated steam are separated from the fluid. The structure which returns to boiler feed water with a circulation pump is described. In order to prevent saturated water from causing cavitation in the boiler circulation pump, a certain amount of low-temperature water in front of the high-pressure feed water heater is placed in the fluid at the boiler recirculation pump inlet to bring the boiler recirculation pump inlet water into a subcooled state. Yes.

この特許出願発明の技術は、変圧貫流ボイラの亜臨界状態で使用され、ボイラ再循環ポンプは汽水分離器のレベルにおいて流量制御され、定圧貫流ボイラとはシステムが全く異なるが、飽和水に対して一定量の冷水を加えておけば確実にサブクール状態になり、またボイラ再循環ポンプ入口流体も常に飽和温度より少し低い温度で余り変動しない。即ち、変圧貫流ボイラにおいてはボイラ再循環ポンプ入口の流体比容積が動的に変動することは考慮する必要がなく、また考慮されていない。
特公昭39−18455号公報 特開昭56−16002号公報 特公昭62−44161号公報 特公昭39−18456号公報 特公平6−50163号公報
The technology of this patent application invention is used in the subcritical state of the transformer once-through boiler, the boiler recirculation pump is flow controlled at the level of the brackish water separator, and the system is completely different from the constant pressure once-through boiler, but for saturated water If a certain amount of cold water is added, it will surely be in a subcooled state, and the boiler recirculation pump inlet fluid will not always fluctuate much at a temperature slightly lower than the saturation temperature. That is, in the variable once-through boiler, it is not necessary or considered that the fluid specific volume at the inlet of the boiler recirculation pump dynamically varies.
Japanese Examined Patent Publication No. 39-18455 Japanese Patent Laid-Open No. 56-16002 Japanese Examined Patent Publication No. 62-44161 Japanese Examined Patent Publication No. 39-18456 Japanese Examined Patent Publication No. 6-50163

前記従来技術に共通しているのは、負荷変化や循環運転開始時などボイラ状態量が動的に変動したときに生じるポンプ特性の変化が考慮されていないことである。そのため前記従来技術を本発明の対象である定圧貫流ボイラに適用した場合には、流体の循環流量が変動する欠点があった。   What is common to the prior art is that changes in pump characteristics that occur when the boiler state quantity fluctuates dynamically, such as when a load changes or when a circulation operation starts, are not taken into account. Therefore, when the prior art is applied to the constant pressure once-through boiler that is the subject of the present invention, there is a drawback that the circulating flow rate of the fluid fluctuates.

定圧貫流ボイラにおいては、汽水分離はせずにエンタルピが高く、しかもボイラ状態量の変動を伴なった流体が火炉入口又はボイラ入口に循環流入するので、ボイラ再循環ポンプに流入する流体のエンタルピも高く、比容積が変化する領域で使用する場合もある。流体の比容積が大きくなる領域に入るとボイラ再循環ポンプの吐出圧力及び流量特性が低下し、十分な裕度がないボイラ再循環ポンプでは場合により吐出しなくなることがある。その場合にはボイラへの最低給水流量が確保できないため、ボイラを緊急停止させることになる。   In a constant-pressure once-through boiler, the enthalpy of the fluid flowing into the boiler recirculation pump is also high because the enthalpy is high without steam separation and the fluid with fluctuations in the boiler state is circulated into the furnace inlet or boiler inlet. It may be used in an area where the specific volume is high and changes. When entering the region where the specific volume of the fluid is increased, the discharge pressure and flow rate characteristics of the boiler recirculation pump are lowered, and in some cases, the boiler recirculation pump without sufficient tolerance may not discharge. In that case, since the minimum feed water flow rate to the boiler cannot be secured, the boiler is urgently stopped.

本発明の課題は、ボイラ再循環ポンプに流入する流体条件を制御し、火炉に必要な最低給水流量を確実に確保する超臨界圧定圧貫流ボイラの流体循環運転設備とその運転方法を提供することである。   An object of the present invention is to provide a fluid circulation operation facility and a method for operating a supercritical pressure constant pressure once-through boiler that controls the fluid conditions flowing into the boiler recirculation pump and ensures the minimum feed water flow rate required for the furnace. It is.

前記課題を解決するため、本発明では次の解決手段を用いる。
請求項1記載の発明は、火炉内に配置された節炭器、火炉壁及び火炉内に配置される蒸発器と過熱器を含めた複数の伝熱管と、前記節炭器、火炉壁、蒸発器及び過熱器を含めた該伝熱管に順次蒸気生成用の水を供給するボイラ給水管(2)と、超臨界圧状態の火炉壁出口またはその下流位置の伝熱管からのボイラ再循環水をボイラ給水管(2)に再循環させるためのボイラ再循環ポンプ(21)とを備えた超臨界圧状態の定圧蒸気を得るための臨界圧定圧貫流ボイラの流体循環運転設備において、ボイラ再循環ポンプ(21)を用いて火炉壁出口の伝熱管から超臨界圧状態で汽水分離できない流体の一部であるボイラ再循環水を抜き出してボイラ給水管(2)へ戻すために、火炉壁出口またはその下流位置の伝熱管からボイラ再循環ポンプ(21)の入口に接続するボイラ再循環抜き出し管(30,31)と、ボイラ再循環ポンプ(21)の出口とボイラ給水管(2)を接続するボイラ再循環ポンプ出口管(22,23)と、ボイラ給水管(20)から分岐させた給水の一部であるクーリング水を抜き出してボイラ再循環抜き出し管(30,31)の途中又はボイラ再循環ポンプ(21)の入口に接続するボイラ再循環水クーリング管(10,11)と、前記三つの配管(30,31;22,23;10,11)のうち、少なくとも二つの配管に設けた流量検出手段(14,26,34)と、該二つの配管に設けた流体流量調節手段(12,24)とを備えた超臨界圧定圧貫流ボイラの流体循環運転設備である。
In order to solve the above problems, the present invention uses the following solution means.
The invention according to claim 1 includes a plurality of heat transfer tubes including a economizer disposed in a furnace, a furnace wall and an evaporator and a superheater disposed in the furnace, the economizer, the furnace wall, and the evaporation A boiler feed pipe (2) for sequentially supplying water for steam generation to the heat transfer pipe including the heater and superheater, and boiler recirculation water from the furnace wall outlet in the supercritical pressure state or the heat transfer pipe at the downstream position. In a fluid circulation operation facility of a critical pressure constant pressure once-through boiler for obtaining constant pressure steam in a supercritical pressure state having a boiler recirculation pump (21) for recirculation to a boiler feed pipe (2), the boiler recirculation pump In order to extract the boiler recirculation water, which is a part of the fluid that cannot be separated by brackish water in a supercritical pressure state, from the heat transfer pipe at the furnace wall outlet using (21) and return it to the boiler feed pipe (2), Boiler recirculation pump (from downstream heat transfer tube) A boiler recirculation extraction pipe (30, 31) connected to the inlet of 1), a boiler recirculation pump outlet pipe (22, 23) connecting the outlet of the boiler recirculation pump (21) and the boiler feed pipe (2); Boiler recirculation which extracts cooling water which is a part of the feed water branched from the boiler water supply pipe (20) and connects to the middle of the boiler recirculation discharge pipe (30, 31) or the inlet of the boiler recirculation pump (21) A water cooling pipe (10, 11), flow rate detection means (14, 26, 34) provided in at least two of the three pipes (30, 31; 22, 23; 10, 11), This is a fluid circulation operation facility of a supercritical pressure constant pressure once-through boiler provided with fluid flow rate adjusting means (12, 24) provided in two pipes.

上記請求項1記載の発明において、流体の流量計測については、三つの配管(30,31;22,23;10,11)の流量は
クーリング水流量(102)+ボイラ再循環水流量(103)
=ボイラ再循環ポンプ吐出流量(104)
の関係にあるので、どの二箇所の配管を測っても残り一箇所の配管の流量は分かるので、本発明では少なくとも2箇所の配管で流量計測をしている。実際には流量制御したい配管に流量計を取り付ける。図12ではボイラ再循環流量調節弁24は配管22,23に付けてボイラ再循環ポンプ吐出水(W4)の流量を調整しているが、制御はボイラ再循環水(W3)の流量を目標値になるよう制御しているので流量計(33)はボイラ再循環抜き出し管(30,31)に付ける。
In the first aspect of the invention, the flow rate of the three pipes (30, 31; 22, 23; 10, 11) is measured for the flow rate of the fluid.
Cooling water flow rate (102) + boiler recirculation water flow rate (103)
= Boiler recirculation pump discharge flow rate (104)
Therefore, since the flow rate of the remaining one pipe can be understood no matter which two pipes are measured, in the present invention, the flow rate is measured with at least two pipes. In practice, a flow meter is attached to the pipe whose flow rate is to be controlled. In FIG. 12, the boiler recirculation flow rate control valve 24 is attached to the pipes 22 and 23 to adjust the flow rate of the boiler recirculation pump discharge water (W4). Therefore, the flow meter (33) is attached to the boiler recirculation extraction pipe (30, 31).

一方、流量調節弁は、流量計と同様に三つの配管(30,31、22,23、10,11)のうちの少なくとも二つの配管に設けることで前記三つの配管の流量が調節できる。まずボイラ再循環ポンプ(21)の出口側に取り付けるボイラ再循環ポンプ流量調節弁(24)は必須である。なぜなら例えばクーリング水流量調節弁(12)とボイラ再循環抜き出し管(30)に取り付けた流量調節弁の2箇所で流量調節した場合には、これら2つの流量調節弁で絞ってボイラ再循環ポンプ(21)の入口圧力を下げることでボイラ再循環ポンプ吐出水(W4)を調節することになるが、実際にそのようなことをすればポンプ(21)の入口の圧力低下でキャビテーションが発生し、ポンプ(21)にダメージが生じる。ここでは高いエンタルピで使用するため特に注意が必要である。   On the other hand, the flow rate adjusting valve is provided on at least two of the three pipes (30, 31, 22, 23, 10, 11) in the same manner as the flow meter, so that the flow rate of the three pipes can be adjusted. First, the boiler recirculation pump flow rate control valve (24) attached to the outlet side of the boiler recirculation pump (21) is essential. This is because, for example, when the flow rate is adjusted at two locations of the cooling water flow rate control valve (12) and the flow rate control valve attached to the boiler recirculation extraction pipe (30), the boiler recirculation pump ( 21) The boiler recirculation pump discharge water (W4) is adjusted by lowering the inlet pressure of 21), but if this is actually done, cavitation occurs due to the pressure drop at the inlet of the pump (21), Damage to the pump (21) occurs. Special care is required here because of its high enthalpy.

従って(a):ポンプ再循環流量調節弁(24)とクーリング水流量調節弁(12)の組み合わせ、または(b):ポンプ再循環流量調節弁(24)とボイラ再循環抜き出し管(30,31)に設置した弁のいずれかになる。しかし(b)は実現できない。なぜならボイラ給水管(2)はボイラ入口であり、ボイラ再循環抜き出し管(31)を取り出す火炉出口より圧力が高いからである。圧力の高い方のボイラ再循環水クーリング管(10,11)に流量調節弁(12)を入れて絞ってこそ、クーリング水(W2)とボイラ再循環水(W3)の混合比率を調節できる。クーリング水流量調節弁(12)を無くして圧力の低い方のボイラ再循環抜き出し管(30,31)に弁を入れると、クーリング水(W2)ばかり流れてボイラ再循環水(W3)は流れず再循環させることはできない。   Accordingly, (a): a combination of a pump recirculation flow rate control valve (24) and a cooling water flow rate control valve (12), or (b): a pump recirculation flow rate control valve (24) and a boiler recirculation extraction pipe (30, 31). ) Will be one of the valves installed. However, (b) cannot be realized. This is because the boiler feed pipe (2) is the boiler inlet and has a higher pressure than the furnace outlet from which the boiler recirculation extraction pipe (31) is taken out. The mixing ratio of the cooling water (W2) and the boiler recirculation water (W3) can be adjusted only by inserting the flow rate adjusting valve (12) into the boiler recirculation water cooling pipe (10, 11) having a higher pressure and throttling. If the cooling water flow control valve (12) is removed and the valve is inserted into the lower pressure boiler recirculation extraction pipe (30, 31), only the cooling water (W2) flows and the boiler recirculation water (W3) does not flow. It cannot be recycled.

請求項2記載の発明は、火炉内に配置された節炭器、火炉壁及び火炉内に配置される蒸発器と過熱器を含めた複数の伝熱管と、前記節炭器、火炉壁、蒸発器及び過熱器を含めた該伝熱管に順次蒸気生成用の水を供給するボイラ給水管(2)と、超臨界圧状態の火炉壁出口またはその下流位置の伝熱管からのボイラ再循環水をボイラ給水管(2)に再循環させるためのボイラ再循環ポンプ(21)とを備えた超臨界圧状態の定圧蒸気を得るための臨界圧定圧貫流ボイラの流体循環運転設備において、前記ボイラ再循環ポンプ(21)は流体流量調節機能があるポンプであり、該ボイラ再循環ポンプ(21)を用いて火炉壁出口の伝熱管から超臨界圧状態で汽水分離できない流体の一部であるボイラ再循環水を抜き出してボイラ給水管(2)へ戻すために、火炉壁出口またはその下流位置の伝熱管からボイラ再循環ポンプ(21)の入口に接続するボイラ再循環抜き出し管(30,31)と、ボイラ再循環ポンプ(21)の出口とボイラ給水管(2)を接続するボイラ再循環ポンプ出口管(22,23)と、ボイラ給水管(2)から分岐させた給水の一部であるクーリング水を抜き出してボイラ再循環抜き出し管(30,31)の途中又はボイラ再循環ポンプ(21)の入口に接続するボイラ再循環水クーリング管(10,11)と、前記ボイラ再循環抜き出し管(30,31)又はボイラ再循環水クーリング管(10,11)のうちの少なくともいずれかの配管に設けた流体流量調節手段(12)とを備えた超臨界圧定圧貫流ボイラの流体循環運転設備である。   The invention described in claim 2 includes a economizer disposed in the furnace, a furnace wall, a plurality of heat transfer tubes including an evaporator and a superheater disposed in the furnace, the economizer, the furnace wall, the evaporation A boiler feed pipe (2) for sequentially supplying water for steam generation to the heat transfer pipe including the heater and superheater, and boiler recirculation water from the furnace wall outlet in the supercritical pressure state or the heat transfer pipe at the downstream position. In the fluid circulation operation facility of a critical pressure constant pressure once-through boiler for obtaining constant pressure steam in a supercritical pressure state equipped with a boiler recirculation pump (21) for recirculation to a boiler feed pipe (2), the boiler recirculation The pump (21) is a pump having a fluid flow rate adjusting function, and the boiler recirculation that is a part of the fluid that cannot be subjected to brackish water separation in a supercritical pressure state from the heat transfer pipe at the furnace wall outlet using the boiler recirculation pump (21). Remove water and return to boiler feed pipe (2) Therefore, a boiler recirculation extraction pipe (30, 31) connected to the inlet of the boiler recirculation pump (21) from the furnace wall outlet or the heat transfer pipe at a downstream position thereof, the outlet of the boiler recirculation pump (21), and the boiler feed water A boiler recirculation pump outlet pipe (22, 23) connected to the pipe (2) and a cooling water which is a part of the feed water branched from the boiler feed water pipe (2) to extract the boiler recirculation discharge pipe (30, 31) ) Or the boiler recirculation water cooling pipe (10, 11) connected to the inlet of the boiler recirculation pump (21) and the boiler recirculation extraction pipe (30, 31) or the boiler recirculation water cooling pipe (10, 11). 11) is a fluid circulation operation facility of a supercritical pressure constant pressure once-through boiler provided with a fluid flow rate adjusting means (12) provided in at least one of the pipes.

請求項3記載の発明は、請求項1又は2記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法であって、火炉壁出口からボイラ給水管(2)にボイラ再循環水を戻す流体循環運転状態で、超臨界圧で汽水分離できない高いエンタルピのままのボイラ再循環水と低温のクーリング水の各流量をボイラ再循環ポンプ(21)及び前記三つの配管(30,31;22,23;10,11)のうちの少なくとも一つの配管に設けられた流体流量調節手段(12、24又は34)を使用して流体の流量調節し、必要なボイラ再循環水流量を確保して、ボイラ再循環ポンプ(21)の入口における流体温度(109)を規定値以下に抑制する機能を有する超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   The invention described in claim 3 is a method for operating the fluid circulation facility of the supercritical pressure constant pressure once-through boiler according to claim 1 or 2, wherein the fluid for returning boiler recirculation water from the furnace wall outlet to the boiler feed pipe (2) In the circulation operation state, the flow rates of the boiler recirculation water with high enthalpy and the low-temperature cooling water that cannot be separated by brackish water with supercritical pressure are changed to the boiler recirculation pump (21) and the three pipes (30, 31; 22, 23). The fluid flow rate adjusting means (12, 24 or 34) provided in at least one of the pipes 10 and 11) to adjust the flow rate of the fluid to ensure the necessary boiler recirculation water flow rate, This is a method for operating a fluid circulation facility of a supercritical pressure constant pressure once-through boiler having a function of suppressing the fluid temperature (109) at the inlet of the recirculation pump (21) to a specified value or less.

請求項4記載の発明は、ボイラ再循環抜き出し管(30,31)とボイラ再循環ポンプ出口管(22,23)とボイラ再循環水クーリング管(10,11)にそれぞれ流れるボイラ再循環水流量(103)、ボイラ再循環ポンプ(21)の吐出流量(104)及びクーリング水流量(102)のうちの少なくとも二つの流量をそれぞれの流量目標値に調節し、かつ各々の流量目標値は循環運転範囲全域で火炉壁に必要な最低給水流量を確保すると共に、ボイラ再循環ポンプ(21)の入口流体温度(109)を380℃以下の温度領域に保つ設定とする請求項3記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   The invention according to claim 4 is the boiler recirculation water flow rate flowing through the boiler recirculation extraction pipe (30, 31), the boiler recirculation pump outlet pipe (22, 23) and the boiler recirculation water cooling pipe (10, 11), respectively. (103), adjusting at least two of the discharge flow rate (104) and the cooling water flow rate (102) of the boiler recirculation pump (21) to the respective flow rate target values, and the respective flow rate target values are circulated. The supercritical pressure according to claim 3, wherein a minimum feed water flow rate required for the furnace wall is secured over the entire range, and the inlet fluid temperature (109) of the boiler recirculation pump (21) is maintained in a temperature range of 380 ° C or lower. This is a method for operating a fluid circulation facility of a constant pressure once-through boiler.

請求項5記載の発明は、ボイラ再循環ポンプ入口流体温度(109:信号29)が設定値より高くなった場合には、(a)ボイラ出力指令(50)に応じて得られる予め決められたクーリング水流量設定値(信号52)と実クーリング水流量(信号16)との偏差(信号55)が零となるようにクーリング水流量調節手段(12)の開度を上げてクーリング水流量(102:信号16)を増加させるる制御を行うか、または
(b)前記(a)の制御によるクーリング水流量(102:信号16)の制御と、ボイラ出力指令(50)に応じて予め決められたボイラ再循環ポンプ入口温度上限設定値(信号67)より実ボイラ再循環ポンプ入口流体温度(109:信号29)が大きい場合に、ボイラ再循環ポンプ入口温度上限設定値(信号67)と実ボイラ再循環ポンプ入口流体温度(109:信号29)との偏差(信号70)に応じたボイラ再循環ポンプ入口流体温度補正値(信号72)に基づいて、ボイラ再循環ポンプ入口流体温度(109:信号29)がボイラ再循環ポンプ入口温度上限設定値(信号67)に低下するまでクーリング水流量(102:信号16)を増す方向に補正する制御との併用により、クーリング水流量(102:信号16)を増加させる機能を持たせた請求項4に記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。
According to the fifth aspect of the present invention, when the boiler recirculation pump inlet fluid temperature (109: signal 29) becomes higher than the set value, (a) a predetermined value obtained in accordance with the boiler output command (50) is determined. The opening of the cooling water flow rate adjusting means (12) is increased so that the deviation (signal 55) between the cooling water flow rate setting value (signal 52) and the actual cooling water flow rate (signal 16) becomes zero, and the cooling water flow rate (102 : Control to increase signal 16), or (b) Control of cooling water flow rate (102: signal 16) by the control of (a) and predetermined according to boiler output command (50) When the actual boiler recirculation pump inlet fluid temperature (109: signal 29) is larger than the boiler recirculation pump inlet temperature upper limit setting value (signal 67), the boiler recirculation pump inlet temperature upper limit setting value (signal 67) And the boiler recirculation pump inlet fluid temperature (signal 72) according to the deviation (signal 70) between the actual boiler recirculation pump inlet fluid temperature (109: signal 29) (signal 70). 109: Signal 29) is used in combination with control for increasing the cooling water flow rate (102: signal 16) until the boiler recirculation pump inlet temperature upper limit set value (signal 67) is lowered. The operation method of the fluid circulation facility of the supercritical pressure constant pressure once-through boiler according to claim 4, which has a function of increasing the signal 16).

請求項6記載の発明は、ボイラ再循環ポンプ入口流体温度(109:信号29)が高くなり、クーリング水流量(102:信号16)を増加させた場合には、(a)実ボイラ再循環ポンプ入口流体温度(109:信号29)がボイラ再循環ポンプ入口温度上限設定値(信号67)より大きい値である場合には、前記両方の温度偏差(信号70)に基づき予め決められたボイラ再循環ポンプ入口流体温度補正値(信号72)を出力指令(50)に応じて予め決められたボイラ再循環ポンプ吐出流量設定値(信号81)と実ボイラ再循環ポンプ吐出流量(信号28)との偏差(信号84)に加えること、または、(b)前記ボイラ再循環ポンプ入口流体温度補正値(信号72)に予め設定さられている0〜1の値からなるボイラ再循環ポンプ入口温度補正制御ゲイン(信号94)を乗じて得られる補正値(信号96)を前記ボイラ再循環ポンプ吐出流量(104:信号28)の前記偏差値(信号84)に加えることによりボイラ再循環ポンプ吐出水吐出流量(104:信号29)を増方向に補正することでクーリング水流量増加分と同量又は同量以下の量でボイラ再循環ポンプ吐出流量(104:信号28)を増加させる請求項5記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   According to the sixth aspect of the present invention, when the boiler recirculation pump inlet fluid temperature (109: signal 29) is increased and the cooling water flow rate (102: signal 16) is increased, (a) the actual boiler recirculation pump When the inlet fluid temperature (109: signal 29) is larger than the boiler recirculation pump inlet temperature upper limit setting value (signal 67), boiler recirculation determined in advance based on both the temperature deviations (signal 70). Deviation between a pump inlet fluid temperature correction value (signal 72) between a boiler recirculation pump discharge flow rate setting value (signal 81) and an actual boiler recirculation pump discharge flow rate (signal 28) determined in advance according to the output command (50). (B) added to (signal 84), or (b) boiler recirculation pump inlet having a value of 0 to 1 preset in the boiler recirculation pump inlet fluid temperature correction value (signal 72) The correction value (signal 96) obtained by multiplying the degree correction control gain (signal 94) is added to the deviation value (signal 84) of the boiler recirculation pump discharge flow rate (104: signal 28), thereby discharging the boiler recirculation pump. 6. The boiler recirculation pump discharge flow rate (104: signal 28) is increased by an amount equal to or less than the amount of increase in the cooling water flow rate by correcting the water discharge flow rate (104: signal 29) in the increasing direction. It is an operation method of the fluid circulation facility of the described supercritical pressure constant pressure once-through boiler.

請求項7記載の発明は、クーリング水流量調節手段(12)により、出力指令(50)に応じて予め決められたクーリング水流量下限値(信号74)を下限値としてクーリング水流量(102:信号16)を制御する請求項4ないし6のいずれかに記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   According to the seventh aspect of the present invention, the cooling water flow rate adjusting means (12) sets the cooling water flow rate lower limit value (signal 74) predetermined in accordance with the output command (50) as the lower limit value (102: signal The operation method of the fluid circulation facility of the supercritical pressure constant-pressure once-through boiler according to any one of claims 4 to 6, wherein 16) is controlled.

請求項8記載の発明は、ボイラ出力指令(50)に応じたボイラ再循環ポンプ(21)の予め決められた入口温度設定値(信号76)と実ボイラ再循環ポンプ21の入口流体温度(109:信号29)との偏差(信号77)が零となるようにし、かつ予め決められたクーリング水流量(102:信号16)の上限設定値(信号79)に基づいて、クーリング水流量調節手段(12)によりクーリング水流量(102:信号16)を調節することでボイラ再循環ポンプ入口流体温度(109:信号29)を制御する請求項3記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   According to the eighth aspect of the present invention, a predetermined inlet temperature setting value (signal 76) of the boiler recirculation pump (21) corresponding to the boiler output command (50) and the inlet fluid temperature (109 of the actual boiler recirculation pump 21). : The deviation (signal 77) from the signal 29) becomes zero, and the cooling water flow rate adjusting means (signal 79) is set based on the predetermined upper limit setting value (signal 79) of the cooling water flow rate (102: signal 16). The operation of the fluid circulation facility of the supercritical pressure constant pressure once-through boiler according to claim 3, wherein the boiler recirculation pump inlet fluid temperature (109: signal 29) is controlled by adjusting the cooling water flow rate (102: signal 16) according to 12). Is the method.

請求項9記載の発明は、(a)ボイラ再循環抜き出し管(30)に設けられたボイラ再循環水流量検出手段(34)により直接ボイラ再循環抜き出し水流量(信号35)を検出するか、または、(b)ボイラ再循環ポンプ出口管(22,23)に設けられたボイラ再循環ポンプ吐出流量検出手段(26)により検出されたボイラ再循環ポンプ吐出水流量(104:信号28)からボイラ再循環水クーリング管(10,11)に設けられたクーリング水流量検出手段(14)に検出されるクーリング水流量(102:信号16)を引いてボイラ再循環水流量(103:信号35)とし、得られたボイラ再循環水流量(103:信号35)が、ボイラ出力指令(50)に応じて予め決められたボイラ再循環流量設定値(信号98)と一致するようにボイラ再循環流量調節手段(24)によるボイラ再循環ポンプ吐出水流量(104:信号92)を調節する請求項3記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   The invention according to claim 9 is: (a) the boiler recirculation water flow detection means (34) provided in the boiler recirculation discharge pipe (30) directly detects the boiler recirculation water flow (signal 35); Or (b) the boiler recirculation pump discharge water flow rate (104: signal 28) detected by the boiler recirculation pump discharge flow rate detection means (26) provided in the boiler recirculation pump outlet pipe (22, 23). The cooling water flow rate (102: signal 16) detected by the cooling water flow rate detection means (14) provided in the recirculation water cooling pipe (10, 11) is subtracted to obtain the boiler recirculation water flow rate (103: signal 35). Thus, the obtained boiler recirculation water flow rate (103: signal 35) matches the boiler recirculation flow rate setting value (signal 98) determined in advance according to the boiler output command (50). Boiler recirculation flow rate control means (24) according to boiler recirculation pump discharge water flow rate (104: the signal 92) is a third aspect supercritical pressure once-through boiler operation method of fluid circulation equipment according to regulate.

請求項10記載の発明は、請求項1又は2記載の超臨界圧定圧貫流ボイラの流体循環運転設備の運転方法であって、ボイラ再循環水クーリング管(10,11)に一定流量のクーリング水(W2)を流すために用いる設定値の異なる予め決められた固定開度設定値(信号59,60,61)を二つ以上クーリング水流量調節手段(12)に設ける超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   A tenth aspect of the present invention is an operation method of a fluid circulation operation facility for a supercritical pressure constant pressure once-through boiler according to the first or second aspect, wherein a constant flow of cooling water is supplied to a boiler recirculation water cooling pipe (10, 11). A supercritical pressure constant pressure once-through boiler in which two or more predetermined fixed opening setting values (signals 59, 60, 61) used for flowing (W2) are provided in the cooling water flow rate adjusting means (12). This is an operation method of the fluid circulation facility.

請求項11記載の発明は、ボイラ再循環水の循環運転の開始時には、クーリング水流量調節手段(12)で行う流量調節を予め決められた初期設定値(信号59)とし、ボイラ再循環ポンプ(21)を起動させた後にクーリング水(W2)をボイラ再循環水(W3)に混合させたボイラ再循環水温度(108)が上昇傾向となるタイミングで前記クーリング水流量調節手段(12)の初期設定値(信号59)から該初期設定値(信号59)より比較的流量を多くする整定設定値(信号60)に切り替え、また、ボイラ再循環水(W3)の循環運転を停止し、貫流運転に切り替える時には、クーリング水流量調節手段(12)で行う流量調節を整定設定値(信号60)のままとし、その後、ボイラ再循環ポンプ流量調節手段(24)で行う流量調節を予め決められた初期設定値(信号88)で最低流量の運転を行い、状態安定後にボイラ再循環ポンプ流量調節手段(24)で行う流量調節を停止する設定(信号87)とし、次いでボイラ再循環ポンプ(21)を停止させ、その操作途中において、ボイラ再循環ポンプ流量調節手段(24)の前記初期設定値(信号88)が選択された後、クーリング水流量調節手段(12)の前記整定設定値(信号60)から予め決められた終了開度設定値(信号61)に切り替える求項10記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法である。   According to the eleventh aspect of the present invention, at the start of the boiler recirculation water circulation operation, the flow rate adjustment performed by the cooling water flow rate adjusting means (12) is set to a predetermined initial set value (signal 59), and the boiler recirculation pump ( 21) After starting the cooling water flow rate adjusting means (12) at the timing when the boiler recirculation water temperature (108) obtained by mixing the cooling water (W2) with the boiler recirculation water (W3) tends to increase. The set value (signal 59) is switched to a set value (signal 60) that has a relatively higher flow rate than the initial set value (signal 59), and the circulation operation of the boiler recirculation water (W3) is stopped to perform a once-through operation. When switching to, the flow rate adjustment performed by the cooling water flow rate adjustment means (12) remains at the set value (signal 60), and then the flow rate performed by the boiler recirculation pump flow rate adjustment means (24). The operation is performed at the lowest flow rate at a predetermined initial setting value (signal 88), the flow rate adjustment performed by the boiler recirculation pump flow rate adjusting means (24) is stopped (signal 87) after the state is stabilized, and then the boiler After the recirculation pump (21) is stopped and the initial set value (signal 88) of the boiler recirculation pump flow rate adjusting means (24) is selected in the middle of its operation, the cooling water flow rate adjusting means (12) The operation method of the fluid circulation equipment of the supercritical pressure constant pressure once-through boiler according to claim 10, wherein the set value (signal 60) is switched to a predetermined opening degree setting value (signal 61).

請求項1記載の発明によれば、安定で且つ外乱に強い循環運転が可能となり貫流状態に比べて広い出力運転範囲を獲得できる超臨界圧定圧貫流ボイラの流体循環運転を行える。   According to the first aspect of the present invention, it is possible to perform a fluid circulation operation of a supercritical pressure constant pressure once-through boiler that can perform a circulation operation that is stable and resistant to disturbance, and can obtain a wide output operation range as compared with a once-through state.

また、請求項1記載の発明によれば、流体流量調節機能があるボイラ再循環ポンプ(21)を用いることで、流体流量調節機能(ボイラ再循環抜き出し管(30,31)又はボイラ再循環水クーリング管(10,11))のうちの少なくともいずれかの配管に設けた流体流量調節手段(12又は24)を制御することで、ボイラの流体循環運転制御ができる。   According to the invention described in claim 1, by using the boiler recirculation pump (21) having a fluid flow rate adjustment function, the fluid flow rate adjustment function (boiler recirculation extraction pipe (30, 31) or boiler recirculation water) By controlling the fluid flow rate adjusting means (12 or 24) provided in at least one of the cooling pipes (10, 11)), the fluid circulation operation of the boiler can be controlled.

請求項2記載の発明によれば、ボイラ再循環ポンプ(21)それ自体が流体流量調節機能を有するポンプであると、ボイラ再循環ポンプ(21)の回転数制御により再循環ポンプ吐出流量(104)が調節できるので、ボイラ再循環ポンプ流量調節弁(24)が省略できる。その場合には請求項1記載の発明のボイラ再循環ポンプ流量調節弁(24)の開度制御用の制御回路を、そのまま再循環ポンプ(21)の回転数を制御する制御回路として使用できる。   According to the second aspect of the present invention, when the boiler recirculation pump (21) itself is a pump having a fluid flow rate adjusting function, the recirculation pump discharge flow rate (104) is controlled by controlling the rotational speed of the boiler recirculation pump (21). ) Can be adjusted, the boiler recirculation pump flow control valve (24) can be omitted. In that case, the control circuit for controlling the opening degree of the boiler recirculation pump flow rate control valve (24) according to the first aspect of the present invention can be used as it is as a control circuit for controlling the rotational speed of the recirculation pump (21).

請求項3記載の発明によれば、火炉壁出口からボイラ給水管(2)にボイラ再循環水を戻す流体循環運転状態で、ボイラ運転出力を下げても火炉壁を通過する流体流量を最低流量制限以上に確実に維持することができる。   According to the invention described in claim 3, in the fluid circulation operation state in which the boiler recirculation water is returned from the furnace wall outlet to the boiler feed pipe (2), the flow rate of the fluid passing through the furnace wall is the lowest flow rate even if the boiler operation output is lowered. It can be reliably maintained above the limit.

請求項4記載の発明によれば、請求項3記載の発明の効果に加えて、ボイラ再循環ポンプ(21)の入口流体温度が比容積変化の比較的少なくすることができる。   According to the invention described in claim 4, in addition to the effect of the invention described in claim 3, the inlet fluid temperature of the boiler recirculation pump (21) can be made relatively small in change in specific volume.

請求項5記載の発明によれば、請求項4記載の発明の効果に加えて、ボイラ再循環ポンプ入口流体温度(109)が設定値より高くなった場合に、効果的に温度を下げることができる。   According to the fifth aspect of the invention, in addition to the effect of the fourth aspect of the invention, when the boiler recirculation pump inlet fluid temperature (109) becomes higher than the set value, the temperature can be effectively lowered. it can.

請求項6記載の発明によれば、請求項5記載の発明の効果に加えて、ボイラ再循環ポンプ入口流体温度(109)が高くなりクーリング水流量を増加させた場合には、火炉壁流体流量の低下を抑制することができる。    According to the sixth aspect of the invention, in addition to the effect of the fifth aspect of the invention, when the boiler recirculation pump inlet fluid temperature (109) is increased and the cooling water flow rate is increased, the furnace wall fluid flow rate is increased. Can be suppressed.

請求項7記載の発明によれば、請求項4ないし6のいずれかに記載の発明の効果に加えて、クーリング水流量が必要以上に低下してボイラ循環ポンプ入口流体温度が高くなるのを防止することができる。   According to the invention of claim 7, in addition to the effect of the invention of any of claims 4 to 6, it is prevented that the cooling water flow rate is unnecessarily lowered and the boiler circulation pump inlet fluid temperature is raised. can do.

請求項8記載の発明によれば、クーリング水流量調節手段(12)によりボイラ再循環ポンプ入口流体温度(109)を規定値(比容積の変化が少ない温度設定)に保つことができる。   According to the eighth aspect of the present invention, the boiler recirculation pump inlet fluid temperature (109) can be maintained at the specified value (temperature setting with a small change in specific volume) by the cooling water flow rate adjusting means (12).

請求項9の発明によれば、ボイラ再循環水流量(103)を確保することができる。
請求項10記載の発明によれば、クーリング水流量調節手段(12)に二つ以上設けた設定値の異なる二つ以上設けた予め決められた固定開度設定値(信号59,60,61)を循環運転開始/終了時に運転条件や状態量により切り替えて使用し、ボイラ再循環ポンプ入口流体の温度変化を少なくすることができる。
According to invention of Claim 9, a boiler recirculation water flow rate (103) is securable.
According to the invention of claim 10, two or more predetermined fixed opening set values (signals 59, 60, 61) provided with two or more different set values provided in the cooling water flow rate adjusting means (12). Can be switched according to operating conditions and state quantities at the start / end of the circulation operation, and the temperature change of the boiler recirculation pump inlet fluid can be reduced.

請求項11記載の発明によれば、ボイラ再循環水の循環運転の開始時には、クーリング水をボイラ再循環水に混合させたボイラ再循環水温度(108)が上昇傾向となるタイミングでクーリング水流量を初期設定値(信号59)から整定設定値(信号60)に増加させると、図6に示す通りボイラ再循環ポンプ入口流体温度109は余り変動させずにクーリング水をボイラ再循環水の混合が初期混合状態から安定した循環後のバランス状態に移行することができ、また、ボイラ再循環水の循環運転を停止し、貫流運転に切り替える時には、クーリング水流量調節手段(12)で行う流量調節を整定設定値(信号60)のままとし、その後、ボイラ再循環ポンプ流量調節手段(24)で行う流量調節を初期設定値(信号88)で最低流量の運転を行い、状態安定後にボイラ再循環ポンプ流量調節手段(24)で行う流量調節を停止し、次いでボイラ再循環ポンプ(21)を停止させ、その操作途中において、ボイラ再循環ポンプ流量調節手段(24)の前記初期設定値(信号88)が選択された後でクーリング水流量調節手段(12)の前記整定設定値(信号60)から予め決められた終了開度設定値(信号61)に切り替えることで、ボイラ再循環ポンプ入口流体温度109を図9に示す通り余り変動せず、徐々にウォーミング水温度に安定させることができる。    According to the eleventh aspect of the present invention, at the start of the circulating operation of the boiler recirculation water, the cooling water flow rate is the timing at which the boiler recirculation water temperature (108) obtained by mixing the cooling water with the boiler recirculation water tends to increase. Is increased from the initial setting value (signal 59) to the settling setting value (signal 60), as shown in FIG. 6, the boiler recirculation water mixing is performed without changing the boiler recirculation pump inlet fluid temperature 109. It is possible to shift from the initial mixed state to a balanced state after circulation, and when the circulation operation of the boiler recirculation water is stopped and switched to the once-through operation, the flow rate adjustment performed by the cooling water flow rate adjustment means (12) is performed. The settling value (signal 60) remains unchanged, and then the flow rate adjustment performed by the boiler recirculation pump flow rate adjusting means (24) is performed at the minimum flow rate with the initial setting value (signal 88). After the state is stabilized, the flow rate adjustment performed by the boiler recirculation pump flow rate adjusting means (24) is stopped, and then the boiler recirculation pump (21) is stopped. During the operation, the boiler recirculation pump flow rate adjustment means (24) After the initial set value (signal 88) is selected, the setting value (signal 60) of the cooling water flow rate adjusting means (12) is switched to the predetermined end opening set value (signal 61). The boiler recirculation pump inlet fluid temperature 109 does not change much as shown in FIG. 9 and can be gradually stabilized at the warming water temperature.

以下、本発明の実施例である超臨界圧定圧貫流ボイラの流体循環運転設備とその制御について説明する。
図1に本実施例のボイラの流体循環運転設備の要部概略図を示し、図2には本実施例に関わる流体の循環運転時の流量バランスを示す。
Hereinafter, a fluid circulation operation facility and its control of a supercritical pressure constant pressure once-through boiler according to an embodiment of the present invention will be described.
FIG. 1 shows a schematic diagram of a main part of a fluid circulation operation facility for a boiler according to this embodiment, and FIG. 2 shows a flow rate balance during the fluid circulation operation according to this embodiment.

図1に示すボイラの流体循環運転設備は、ボイラへの給水は節炭器入口管寄せ6から節炭器(図示せず)に入り、節炭器で加熱された後、節炭器出口管寄せ7から水壁降下管5と火炉壁入口管寄せ114を順次経由して火炉壁1(複数の伝熱管と伝熱管同士を接続する板材からなる火炉水壁で形成されている)に入り、該火炉壁1で加熱された後、火炉壁出口管寄せ8(図1に示す火炉壁出口8は一次過熱器入口管寄せ9の位置に当たるが、火炉壁出口管寄せ8と同じ流体条件である)から一次過熱器入口管寄せ9に供給され、該一次過熱器で過熱されて、更に図示しない二次過熱器で過熱され、蒸気タービンに供給され、発電に利用される。   In the boiler fluid circulation operation facility shown in FIG. 1, water supplied to the boiler enters the economizer (not shown) from the economizer inlet header 6 and is heated by the economizer, and then the economizer outlet pipe. Entering the furnace wall 1 (formed by the furnace water wall made of a plate material connecting the plurality of heat transfer tubes and the heat transfer tubes) from the header 7 sequentially through the water wall downcomer 5 and the furnace wall inlet tube header 114, After being heated by the furnace wall 1, the furnace wall outlet header 8 (the furnace wall outlet 8 shown in FIG. 1 hits the position of the primary superheater inlet header 9, but has the same fluid conditions as the furnace wall outlet header 8. ) To the primary superheater inlet header 9, heated by the primary superheater, further heated by the secondary superheater (not shown), supplied to the steam turbine, and used for power generation.

図1に示す実施例の流体循環運転設備は、火炉壁出口管寄せ8から出た高温のボイラ再循環水W3を分岐させて混合器20に送るボイラ再循環抜き出し管30、31と、逆流防止のために配管30、31の間に設けたボイラ再循環逆止弁32と、ボイラ給水管2から分岐させて混合器20にクーリング水W2を送るボイラ再循環水クーリング管10、11と、該配管10、11に設けたクーリング水W2の流量調節を行うクーリング水流量調節弁12と流量計測を行うクーリング水流量計13と、混合器20において混合された流体(ボイラ再循環ポンプ入口水47)を導入して昇圧させるボイラ再循環ポンプ(BRP)21と、ポンプ21で昇圧したボイラ再循環ポンプ吐出水W4をボイラ給水管2に送るボイラ再循環ポンプ出口管22、23と、該配管22、23に設けられたボイラ再循環ポンプ吐出水W4の流量調節を行うボイラ再循環ポンプ流量調節弁24とボイラ再循環ポンプ吐出流量計25と、前記クーリング水流量調節弁12の制御回路S2と、ボイラ再循環ポンプ流量調節弁24の制御回路S2とを備えた構成である。
なお、BRP循環弁など機器単体に付属する要素や弁駆動機構、止め弁などは図示及び操作の説明を省略する。
The fluid circulation operation facility of the embodiment shown in FIG. 1 includes boiler recirculation extraction pipes 30 and 31 that branch the high-temperature boiler recirculation water W3 from the furnace wall outlet header 8 and send it to the mixer 20; A boiler recirculation check valve 32 provided between the pipes 30 and 31, a boiler recirculation water cooling pipe 10 and 11 that branches from the boiler feed water pipe 2 and sends the cooling water W2 to the mixer 20, Cooling water flow rate control valve 12 for adjusting the flow rate of cooling water W2 provided in pipes 10 and 11, cooling water flow meter 13 for measuring flow rate, and fluid mixed in mixer 20 (boiler recirculation pump inlet water 47) A boiler recirculation pump (BRP) 21 that introduces and boosts the pressure, and a boiler recirculation pump outlet pipe 22 that feeds the boiler recirculation pump discharge water W4 boosted by the pump 21 to the boiler feed water pipe 2, 3, a boiler recirculation pump flow rate adjustment valve 24 for adjusting the flow rate of boiler recirculation pump discharge water W4 provided in the pipes 22 and 23, a boiler recirculation pump discharge flow meter 25, and the cooling water flow rate adjustment valve 12 The control circuit S2 and the control circuit S2 of the boiler recirculation pump flow rate adjustment valve 24 are provided.
It should be noted that elements, valve drive mechanisms, stop valves, and the like attached to the device alone, such as a BRP circulation valve, are not shown and explanation of the operation is omitted.

上記構成においてボイラの流体を循環運転する時には、ボイラ再循環ポンプ21の吐出圧によりボイラ再循環水W3を火炉壁出口管寄せ8からボイラ給水管2に戻す。但し、ボイラ再循環水W3は高温で比容積が大きいため、そのままの状態でボイラ再循環ポンプ21に戻すと、ボイラ再循環ポンプ21を大型にする必要がある。そのためボイラ再循環ポンプ21の入口側に混合器20を設けて高温のボイラ再循環水W3と低温ボイラ給水W1を混合させてボイラ再循環水W3の温度を下げた後、ボイラ再循環ポンプ21に入れる。   When circulating the fluid of the boiler in the above configuration, the boiler recirculation water W3 is returned from the furnace wall outlet header 8 to the boiler feed water pipe 2 by the discharge pressure of the boiler recirculation pump 21. However, since the boiler recirculation water W3 is high temperature and has a large specific volume, if it is returned to the boiler recirculation pump 21 as it is, the boiler recirculation pump 21 needs to be enlarged. Therefore, the mixer 20 is provided on the inlet side of the boiler recirculation pump 21 to mix the hot boiler recirculation water W3 and the low temperature boiler feed water W1 to lower the temperature of the boiler recirculation water W3. Put in.

なお、ボイラ再循環ポンプ21は、それ自体に流体流量調節機能を有する回転数制御式のポンプを用いることもでき、その場合にはボイラ再循環ポンプ21の回転数制御により再循環ポンプ吐出流量104が調節できるので、ボイラ再循環ポンプ流量調節弁24が省略できる。その場合にはボイラ再循環ポンプ流量調節弁24の開度を制御する制御回路がそのまま再循環ポンプ21の回転数を制御する制御回路となる。   The boiler recirculation pump 21 may be a rotational speed control type pump having a fluid flow rate adjusting function. In this case, the recirculation pump discharge flow rate 104 is controlled by the rotational speed control of the boiler recirculation pump 21. Therefore, the boiler recirculation pump flow rate adjustment valve 24 can be omitted. In that case, the control circuit for controlling the opening degree of the boiler recirculation pump flow rate control valve 24 becomes the control circuit for controlling the rotational speed of the recirculation pump 21 as it is.

図2に示すクーリング水流量102、ボイラ再循環水流量103及びボイラ再循環ポンプ吐出流量104の各循環流量の調節は大略、次のように行う。
すなわち、ボイラ再循環ポンプ吐出流量104はボイラ再循環ポンプ流量調節弁24で制御され、またクーリング水流量102はクーリング水流量調節弁12により制御され、ボイラ再循環水流量103はボイラ再循環ポンプ吐出流量104とクーリング水流量102の流量差として決まる。
Adjustment of each circulation flow rate of the cooling water flow rate 102, the boiler recirculation water flow rate 103, and the boiler recirculation pump discharge flow rate 104 shown in FIG. 2 is performed as follows.
That is, the boiler recirculation pump discharge flow rate 104 is controlled by the boiler recirculation pump flow rate adjustment valve 24, the cooling water flow rate 102 is controlled by the cooling water flow rate adjustment valve 12, and the boiler recirculation water flow rate 103 is discharged from the boiler recirculation pump flow rate. It is determined as a flow rate difference between the flow rate 104 and the cooling water flow rate 102.

ここで図2を用いて流体の循環運転時の流量バランスを説明する。なお、図2のグラフの横軸はボイラ出力指令であるが、例えば火力発電プラントの場合は発電機出力の目標値ないし指令値(実際には発電所が出力指令を受けた信号が発電機出力制御に用いられる出力目標信号に至るまでには各種の信号が存在するが電力系統の周波数や潮流による補正信号が加わる前の出力指令を用いるのが良い)を基準にする。   Here, the flow rate balance during the fluid circulation operation will be described with reference to FIG. The horizontal axis of the graph of FIG. 2 is a boiler output command. For example, in the case of a thermal power plant, a target value or a command value of a generator output (actually, a signal when the power plant receives the output command is a generator output command). There are various types of signals up to the output target signal used for control, but it is preferable to use an output command before the correction signal due to the frequency or power flow of the power system is applied.

図2にはボイラ出力指令25%が循環運転と貫流運転の切り替え出力となる例を示し、25%のボイラ出力で貫流/循環切り替え操作を行い、25%出力以下では循環運転を実施する。   FIG. 2 shows an example in which the boiler output command 25% is a switching output between the circulation operation and the once-through operation, and the once-through / circulation switching operation is performed at the boiler output of 25%, and the circulation operation is performed when the output is 25% or less.

ボイラ再循環水W3が火炉壁出口管寄せ8からボイラ給水管2に戻るため、火炉壁1を通過するボイラ入口給水流量101は給水ポンプ給水流量111とボイラ再循環水流量103の合計流量となる。また、ボイラ再循環ポンプ吐出流量104はボイラ再循環水流量103とクーリング水流量102の合計であり、クーリング水流量102はボイラ給水管2から分岐したボイラ再循環水クーリング管11から混合器20とボイラ再循環ポンプ21を経由してボイラ給水管2に戻るため、ボイラ本体の給水バランスには影響しない。   Since the boiler recirculation water W3 returns from the furnace wall outlet header 8 to the boiler feed pipe 2, the boiler inlet feed water flow rate 101 passing through the furnace wall 1 is the total flow rate of the feed water pump feed water flow rate 111 and the boiler recirculation water flow rate 103. . The boiler recirculation pump discharge flow rate 104 is the sum of the boiler recirculation water flow rate 103 and the cooling water flow rate 102, and the cooling water flow rate 102 is supplied from the boiler recirculation water cooling pipe 11 branched from the boiler feed pipe 2 to the mixer 20. Since it returns to the boiler feed pipe 2 via the boiler recirculation pump 21, it does not affect the water supply balance of the boiler body.

すなわち、この超臨界圧定圧ボイラでは低負荷運転時でも火炉壁1には最低給水量の水が流れるように給水量を確保する必要があるので、前記25%出力が最低給水量である場合に、さらにボイラ出力を15%に負荷を落とそうとすると、給水量W1とボイラ火炉燃料の供給量もボイラ出力25%から15%に対応した量に下げるが、最低給水量を確保する必要があるので、ボイラ再循環ポンプ21により火炉壁出口管寄せ8から分岐したボイラ再循環水抜き出し管30,31に出力10(=25−15)%分を抜き出して循環運転を実施する。このときボイラ再循環水抜き出し管30,31から抜き出したボイラ再循環水は給水管2に戻るので、火炉壁1を流れる流量を25%に保ったまま、ボイラから出される上記量、ボイラ出力は15%となる。   That is, in this supercritical pressure constant pressure boiler, it is necessary to ensure the amount of water supply so that the minimum amount of water flows through the furnace wall 1 even during low load operation, so when the 25% output is the minimum amount of water supply. If the load is further reduced to 15%, the water supply amount W1 and the boiler furnace fuel supply amount are also reduced from 25% to an amount corresponding to 15%, but it is necessary to secure the minimum water supply amount. Therefore, the boiler recirculation pump 21 extracts 10% (= 25-15)% of the output from the boiler recirculation water extraction pipes 30 and 31 branched from the furnace wall outlet header 8, and the circulation operation is performed. At this time, since the boiler recirculation water extracted from the boiler recirculation water extraction pipes 30 and 31 returns to the feed water pipe 2, the above-mentioned amount discharged from the boiler while maintaining the flow rate flowing through the furnace wall 1 at 25%, the boiler output is 15%.

図2に示す各出力状態での給水流量特性では、ボイラ入口給水流量101でボイラ本体への給水の最低給水流量が確保でき、且つボイラ再循環ポンプ21の入口流体温度109で比容積の変化が少ない温度領域に保たれるようにバランスとなるように計画されている。   In the feed water flow characteristics in each output state shown in FIG. 2, the boiler feed water flow rate 101 can secure the minimum feed water flow rate to the boiler body, and the specific volume changes at the inlet fluid temperature 109 of the boiler recirculation pump 21. It is planned to be balanced so that it is kept in a low temperature range.

本実施例の超臨界圧定圧貫流ボイラの流体循環運転設備及び制御回路、信号の挙動を以下に説明する。
まず、流体循環運転中の基本的な制御方法を図1、図3及び図4により説明する。 ボイラ再循環ポンプ流量調節弁24の制御については、図2の示したようなボイラ再循環ポンプ吐出流量104の計画流量を目標値として計画通りの流体流量が得られるようにボイラ再循環ポンプ流量調節弁24の開度を自動制御する。具体的には、ボイラ再循環ポンプ吐出流量設定関数80においてボイラ出力指令50に応じたボイラ再循環ポンプ吐出流量設定信号81を生成し、加減算器83を用いてボイラ再循環ポンプ吐出流量計測器26において得られたボイラ再循環ポンプ吐出流量信号28との差を取ってボイラ再循環ポンプ吐出流量偏差信号84を生成し、ボイラ再循環ポンプ吐出流量偏差信号84が零となるように制御器85によりフィードバック制御され、ボイラ再循環ポンプ流量調節弁24によりボイラ再循環ポンプ吐出流量104が制御される。
The fluid circulation operation equipment, control circuit, and signal behavior of the supercritical constant pressure once-through boiler of this embodiment will be described below.
First, a basic control method during fluid circulation operation will be described with reference to FIGS. Regarding the control of the boiler recirculation pump flow rate adjustment valve 24, the boiler recirculation pump flow rate adjustment is performed so that the planned fluid flow rate can be obtained with the planned flow rate of the boiler recirculation pump discharge flow rate 104 as shown in FIG. The opening degree of the valve 24 is automatically controlled. Specifically, a boiler recirculation pump discharge flow rate setting signal 81 corresponding to the boiler output command 50 is generated in the boiler recirculation pump discharge flow rate setting function 80, and the boiler recirculation pump discharge flow rate measuring device 26 using the adder / subtractor 83. The controller 85 generates a boiler recirculation pump discharge flow rate deviation signal 84 by taking the difference from the boiler recirculation pump discharge flow rate signal 28 obtained in step S3 so that the boiler recirculation pump discharge flow rate deviation signal 84 becomes zero. Feedback control is performed, and the boiler recirculation pump discharge flow rate 104 is controlled by the boiler recirculation pump flow rate adjustment valve 24.

クーリング水流量制御についても同様に、図2に示したようなクーリング水量102の計画流量を目標値として計画通りの流量が得られるようにクーリング水流量調節弁12の開度を自動制御する。具体的には、クーリング水流量設定関数51においてボイラ出力指令50に応じたクーリング水流量設定信号52を生成し、加減算器54を用いてクーリング水流量計測器14により得られたクーリング水流量信号16との差を取ってクーリング水流量偏差信号55を生成し、クーリング水流量偏差信号55が零となるように制御器56によりフィードバック制御され、クーリング水流量調節弁12によりクーリング水流量102が制御される。   Similarly, for the cooling water flow rate control, the opening degree of the cooling water flow rate control valve 12 is automatically controlled so that the planned flow rate as shown in FIG. Specifically, a cooling water flow rate setting signal 52 corresponding to the boiler output command 50 is generated in the cooling water flow rate setting function 51, and the cooling water flow rate signal 16 obtained by the cooling water flow rate measuring instrument 14 using the adder / subtractor 54. The cooling water flow deviation signal 55 is generated by taking the difference between the above and the feedback control by the controller 56 so that the cooling water flow deviation signal 55 becomes zero, and the cooling water flow control valve 12 controls the cooling water flow 102. The

上記した計画流量を制御目標とする制御方法を用いる場合において、図3に流体の循環運転中に負荷上昇を行ったときの出力指令100に対する各流量(ボイラ入口給水流量101、クーリング水流量102、ボイラ再循環水流量103、ボイラ再循環ポンプ吐出流量104、給水ポンプ給水流量111)の挙動解析を示し、図4に流体の循環運転中に負荷降下を行った場合の出力指令100に対する前記各流量の挙動解析を示す。   In the case of using the above-described control method with the planned flow rate as a control target, each flow rate (boiler inlet water supply flow rate 101, cooling water flow rate 102, The behavioral analysis of the boiler recirculation water flow rate 103, the boiler recirculation pump discharge flow rate 104, and the feed water feed water flow rate 111) is shown, and FIG. 4 shows the flow rates corresponding to the output command 100 when a load drop is performed during fluid circulation operation. The behavioral analysis of is shown.

図3、図4に示した各流量はいずれも滑らかに遷移し、ボイラ再循環ポンプ入口流体の温度109、ボイラ再循環ポンプ入口流体の比容積110ともオーバーシュート又はアンダーシュートは少なく、循環運転方法として妥当な制御方法といえる。   Each of the flow rates shown in FIGS. 3 and 4 smoothly transitions, and there is little overshoot or undershoot in both the temperature 109 of the boiler recirculation pump inlet fluid and the specific volume 110 of the boiler recirculation pump inlet fluid. This is an appropriate control method.

しかし、実際にプラント運用をする場合には外乱や変動が生じた場合の対処を考慮する必要がある。上記制御方法は流体の流量のみを制御しているが、ボイラ再循環ポンプ入口流体温度109が一時的に上昇した場合のことを考慮し、制御に組み込む必要がある。   However, when actually operating the plant, it is necessary to consider how to deal with disturbances and fluctuations. Although the above control method controls only the flow rate of the fluid, it needs to be incorporated into the control in consideration of the case where the boiler recirculation pump inlet fluid temperature 109 temporarily rises.

図1に示す実施例ではボイラ再循環ポンプ入口温度上限関数66によりボイラ出力指令50に応じてボイラ再循環ポンプ入口温度上限設定信号67を生成し、該再循環ポンプ入口温度上限設定信号67と加減算器69を用いてボイラ再循環ポンプ入口温度計測器27で得られたボイラ再循環ポンプ入口流体温度信号29との差を取ってボイラ再循環ポンプ入口温度上限偏差70とし、ボイラ再循環ポンプ入口流体温度信号29の値がボイラ再循環ポンプ入口温度上限設定信号67の値より大きい場合には、制御器71によるフィードバック制御により、ボイラ再循環ポンプ入口流体温度補正信号72(+信号)を加減算器54に加え、ボイラ再循環ポンプ入口流体温度信号29がボイラ再循環ポンプ入口温度上限設定信号67に低下するまでクーリング水流量調節弁開度指令65を増方向に補正してクーリング水流量102を増加させる。   In the embodiment shown in FIG. 1, a boiler recirculation pump inlet temperature upper limit setting signal 67 is generated according to the boiler output command 50 by a boiler recirculation pump inlet temperature upper limit function 66, and the recirculation pump inlet temperature upper limit setting signal 67 is added or subtracted. The difference between the boiler recirculation pump inlet fluid temperature signal 29 obtained by the boiler recirculation pump inlet temperature measuring device 27 using the condenser 69 is taken as a boiler recirculation pump inlet temperature upper limit deviation 70, and the boiler recirculation pump inlet fluid is obtained. When the value of the temperature signal 29 is larger than the value of the boiler recirculation pump inlet temperature upper limit setting signal 67, the boiler recirculation pump inlet fluid temperature correction signal 72 (+ signal) is added / subtracted by the feedback control by the controller 71. In addition, until the boiler recirculation pump inlet fluid temperature signal 29 decreases to the boiler recirculation pump inlet temperature upper limit setting signal 67 Corrected-ring water flow rate control valve position command 65 in the increasing direction to increase the cooling water flow rate 102.

ボイラ再循環ポンプ入口温度上限設定信号67は、380℃以下の設定とし、制御上の変動や比容積の増加傾向から360℃以下(例えば350℃)に設定するのが好ましい。   The boiler recirculation pump inlet temperature upper limit setting signal 67 is preferably set to 380 ° C. or lower, and is preferably set to 360 ° C. or lower (eg, 350 ° C.) due to fluctuations in control and an increasing tendency of the specific volume.

ここで、ボイラ再循環水流量103は前記した通り、ボイラ再循環ポンプ吐出流量104とクーリング水流量102の差となるため、ボイラ再循環ポンプ吐出流量104が一定のままでクーリング水流量102が増加するとボイラ再循環水流量103が減少する結果になる。そこでボイラ再循環ポンプ吐出流量104も同時に増加させるため、ボイラ再循環ポンプ入口流体温度補正信号72を加減算器83にも加えて、ボイラ再循環ポンプ流量調節弁開度指令92を増方向に補正することで、ボイラ再循環水流量103の減少を防止することができる。   Here, since the boiler recirculation water flow rate 103 is the difference between the boiler recirculation pump discharge flow rate 104 and the cooling water flow rate 102 as described above, the cooling water flow rate 102 increases while the boiler recirculation pump discharge flow rate 104 remains constant. As a result, the boiler recirculation water flow rate 103 decreases. Therefore, in order to simultaneously increase the boiler recirculation pump discharge flow rate 104, the boiler recirculation pump inlet fluid temperature correction signal 72 is also added to the adder / subtractor 83 to correct the boiler recirculation pump flow rate control valve opening command 92 in the increasing direction. Thus, a decrease in the boiler recirculation water flow rate 103 can be prevented.

但し、ボイラ再循環ポンプ入口流体温度109を抑制する場合に、高温のボイラ再循環水流量103を一定に保つより許容範囲内で減少させたほうが、ボイラ再循環ポンプ入口流体温度109を抑制するために必要なボイラ再循環ポンプ吐出流量104の増加が少なくて済む。従って、ボイラ再循環ポンプ入口流体温度補正信号72を加減算器83に加える前に、乗算器95を用いてボイラ再循環ポンプ入口温度補正制御ゲイン設定93で生成した0〜1の値からなるボイラ再循環ポンプ入口温度補正制御ゲイン94を乗じて、少な目の補正を加減算器83に加える。   However, when the boiler recirculation pump inlet fluid temperature 109 is suppressed, the boiler recirculation pump inlet fluid temperature 109 is suppressed by reducing the high-temperature boiler recirculation water flow rate 103 within an allowable range rather than keeping it constant. The increase in the boiler recirculation pump discharge flow rate 104 required for the operation is small. Therefore, before adding the boiler recirculation pump inlet fluid temperature correction signal 72 to the adder / subtractor 83, the boiler recirculation consisting of a value of 0 to 1 generated by the boiler recirculation pump inlet temperature correction control gain setting 93 using the multiplier 95. A small correction is added to the adder / subtractor 83 by multiplying the circulation pump inlet temperature correction control gain 94.

また、ボイラ再循環ポンプ吐出流量104が一定であってもクーリング水流量102が減少すると、ボイラ再循環水流量103が増加してボイラ再循環ポンプ入口流体温度109が上昇し、ボイラ再循環ポンプ入口流体比容積110が増加するのでボイラ再循環ポンプ21の吐出圧と吐出量特性が低下する。   Further, even if the boiler recirculation pump discharge flow rate 104 is constant, if the cooling water flow rate 102 decreases, the boiler recirculation water flow rate 103 increases, the boiler recirculation pump inlet fluid temperature 109 rises, and the boiler recirculation pump inlet flow increases. Since the fluid specific volume 110 increases, the discharge pressure and discharge amount characteristics of the boiler recirculation pump 21 deteriorate.

図5はボイラ再循環ポンプ吐出流量104を一定にしてクーリング水流量102を漸次減少させた時の挙動解析である。クーリング水流量102が減少するとボイラ再循環ポンプ入口流体比容積110が増加するのでボイラ再循環ポンプ21の吐出能力の低下を補うためボイラ再循環ポンプ流量調節弁開度の指令92は増加させるが、図中(A)の時点でボイラ再循環ポンプ流量調節弁開度指令92が100%の全開指令値となるので、それ以降はボイラ再循環ポンプ21の吐出能力不足となり、ボイラ再循環ポンプ吐出流量104が維持できない。そこで図中(A)の時点におけるクーリング水流量調節弁開度指令65(図5では38%相当)を、その出力状態におけるクーリング水流量調節弁開度指令65の下限値とし、それ以下に絞らないようにクーリング水流量調節弁12の開度を制限することで、ボイラ状態や制御上の動的な変動に対してもボイラ再循環ポンプ吐出能力を逸脱して運転することを防止する一手段となる。 このための回路としては、図1のクーリング水流量調節弁開度下限設定73により出力指令50に応じてクーリング水流量調節弁開度下限信号74を生成し、制御器56に下限値として与えることで、クーリング水流量調節弁自動開度指令57をクーリング水流量調節弁開度下限信号74以上に保つことができる。   FIG. 5 is a behavioral analysis when the cooling water flow rate 102 is gradually decreased with the boiler recirculation pump discharge flow rate 104 kept constant. When the cooling water flow rate 102 decreases, the boiler recirculation pump inlet fluid specific volume 110 increases, so that the boiler recirculation pump flow rate control valve opening command 92 is increased to compensate for the decrease in discharge capacity of the boiler recirculation pump 21. Since the boiler recirculation pump flow rate control valve opening command 92 becomes a fully open command value at the time of (A) in the figure, the discharge capacity of the boiler recirculation pump 21 becomes insufficient thereafter, and the boiler recirculation pump discharge flow rate. 104 cannot be maintained. Therefore, the cooling water flow rate control valve opening command 65 (equivalent to 38% in FIG. 5) at the time of (A) in the figure is set as the lower limit value of the cooling water flow rate control valve opening command 65 in the output state, and is reduced to a lower value. By restricting the opening degree of the cooling water flow rate control valve 12 so as to prevent the operation, the boiler recirculation pump discharge capability can be prevented from operating even with respect to the boiler state and dynamic fluctuations in control. It becomes. As a circuit for this purpose, a cooling water flow rate control valve opening lower limit signal 74 is generated according to the output command 50 by the cooling water flow rate control valve opening lower limit setting 73 of FIG. 1 and is given to the controller 56 as a lower limit value. Thus, the cooling water flow rate control valve automatic opening command 57 can be maintained at the cooling water flow rate control valve opening lower limit signal 74 or higher.

次に、プラント運転中に還流/循環運転の切り替えを行う場合について、以下に説明する。
貫流運転から循環運転に切り替える場合は、切り替えを行うボイラ出力(図2の例では25%ボイラ出力)で一定出力運転中に循環開始操作を行う。循環開始操作と切り替え時の挙動を図1及び図6にて説明する。
Next, the case of switching between reflux / circulation operation during plant operation will be described below.
When switching from the once-through operation to the circulation operation, the circulation start operation is performed during the constant output operation with the boiler output to be switched (25% boiler output in the example of FIG. 2). The circulation start operation and the behavior at the time of switching will be described with reference to FIGS.

まず、水壁降下管5から分岐してボイラ再循環水ポンプ21に接続するボイラ再循環水ポンプウォーミング管42に設けられたウォーミング水調節弁40とボイラ再循環抜き出し管30から分岐したウォーミング水逃し管45に設けられたウォーミング水逃し弁43を閉止し、ウォーミングを終了する。この段階でボイラ再循環ポンプ21及びボイラ再循環水クーリング管10、ボイラ再循環抜き出し管30、31は節炭器出口流体においてウォーミングされているが、ボイラ再循環水クーリング管11とボイラ再循環抜き出し管31はウォーミングされていない状態である。    First, a warming water control valve 40 provided in a boiler recirculation water pump warming pipe 42 branched from the water wall downcomer 5 and connected to the boiler recirculation water pump 21 and a water branched from the boiler recirculation extraction pipe 30 are connected. The warming water relief valve 43 provided in the ming water relief pipe 45 is closed, and the warming is finished. At this stage, the boiler recirculation pump 21, the boiler recirculation water cooling pipe 10, and the boiler recirculation extraction pipes 30 and 31 are warmed in the economizer outlet fluid, but the boiler recirculation water cooling pipe 11 and the boiler recirculation The extraction tube 31 is not warmed.

それまでクーリング水流量調節弁開度指令65はクーリング水流量調節弁閉止設定58(零指令)が切替器62、64により選択され、全閉状態であったが、循環運転開始に当たり、クーリング水流量調節弁初期開度設定59が切替器62、64により選択され、クーリング水流量調節弁12、24の開度は初期開度に設定される。その後、ボイラ再循環ポンプ21を起動してボイラ再循環ポンプ流量調節弁24により規定のボイラ再循環ポンプ吐出流量104を流し始める。    Until then, the cooling water flow rate control valve opening command 65 was set to the cooling water flow rate control valve closing setting 58 (zero command) by the switches 62 and 64 and was fully closed. The control valve initial opening setting 59 is selected by the switches 62 and 64, and the opening of the cooling water flow rate control valves 12 and 24 is set to the initial opening. Thereafter, the boiler recirculation pump 21 is activated and the boiler recirculation pump flow rate adjustment valve 24 starts to flow the prescribed boiler recirculation pump discharge flow rate 104.

ところでボイラ再循環抜き出し配管30、31内には初め火炉壁出口管寄せ8の流体に比べて温度の低い水が入っており配管自身の温度も低いので、混合部20に入るボイラ再循環水温度108は暫くの間、上昇しない。混合部20に入るクーリング水温度107については、最初ウォーミングされたボイラ再循環水クーリング管10内の水が流入するが、すぐにウォーミングされていないボイラ再循環水クーリング管11内の水が入り、次に温度の低いボイラ給水W1が入ってくる。    By the way, the boiler recirculation extraction pipes 30 and 31 initially contain water having a lower temperature than the fluid of the furnace wall outlet header 8 and the temperature of the pipe itself is also low. 108 does not rise for a while. As for the cooling water temperature 107 entering the mixing unit 20, the water in the boiler recirculation water cooling pipe 10 warmed first flows in, but the water in the boiler recirculation water cooling pipe 11 that has not been warmed immediately Then, boiler feed water W1 having a lower temperature enters.

当然、混合器20に入る各々の流体温度の変化は各々に流れる流体流量により決まり、例えば流量が多いと早く変化し始める。そこでクーリング水流量調節弁初期開度設定59は、混合部入口ボイラ再循環水温度108の温度上昇時期と混合部入口クーリング水温度107の温度降下時期がほぼ重なるクーリング水流量102となる設定とすればよく、切り替え後のバランス流量に対応するクーリング水流量調節弁整定開度設定60とは別設定とする必要がある。図6に示す例ではクーリング水流量調節弁初期開度設定59が5%開度に当たり、クーリング水流量調節弁整定開度設定60は9%に当たる。    Naturally, the change in the temperature of each fluid entering the mixer 20 is determined by the flow rate of the fluid flowing through each, and for example, the change starts quickly when the flow rate is high. Therefore, the cooling water flow rate control valve initial opening setting 59 is set to a cooling water flow rate 102 in which the temperature rise timing of the mixing section inlet boiler recirculation water temperature 108 and the temperature drop timing of the mixing section inlet cooling water temperature 107 substantially overlap. What is necessary is just to set it as the setting different from the cooling water flow control valve set opening setting 60 corresponding to the balance flow after switching. In the example shown in FIG. 6, the cooling water flow control valve initial opening setting 59 corresponds to 5% opening, and the cooling water flow control valve set opening setting 60 corresponds to 9%.

そして混合部入口ボイラ再循環水温度108が上昇傾向となるタイミングでクーリング水流量調節弁初期開度設定59から開度がより大きなクーリング水流量調節弁整定開度設定60に切り替えを行うと、図6に示す通りボイラ再循環ポンプ入口流体温度109は余り変動せずに初期状態から循環後のバランス状態に移行することができる。    When the mixing part inlet boiler recirculation water temperature 108 tends to rise, switching from the cooling water flow control valve initial opening setting 59 to the larger cooling water flow control valve set opening setting 60 is performed as shown in FIG. As shown in FIG. 6, the boiler recirculation pump inlet fluid temperature 109 can shift from the initial state to the balanced state after circulation without much fluctuation.

仮にクーリング水流量調節弁開度設定が前記整定開度設定60(開度9%)しかない場合の循環運転開始時の特性を図7に示す。クーリング水流量調節弁24の開度指令を最初から9%に設定すると、ボイラ再循環ポンプ入口流体温度109は一旦大きく低下して昇温する結果になり、温度変動幅が大きくボイラ再循環ポンプ21へ与える熱応力上のストレスが大きい。    FIG. 7 shows the characteristics at the start of the circulation operation when the cooling water flow rate control valve opening setting is only the set opening setting 60 (opening 9%). If the opening degree command of the cooling water flow rate control valve 24 is set to 9% from the beginning, the boiler recirculation pump inlet fluid temperature 109 is once greatly reduced and the temperature is increased, and the temperature fluctuation range is large and the boiler recirculation pump 21 is increased. The stress on the thermal stress applied to

またクーリング水流量調節弁開度設定が初期開度設定59しかない場合の循環運転開始時の特性を図8に示す。クーリング水流量調節弁24の開度指令を自動制御が開始されるまで5%開度のままにしておくと、クーリング水が少な目のバランスになるため、自動制御に入る前の段階でボイラ再循環ポンプ入口流体温度109がバランス温度以上に上昇してしまう結果になる。以上の結果よりクーリング水流量調節弁12が自動制御に切り替わる前の開度設定は2段階とするのがよい。    FIG. 8 shows the characteristics at the start of the circulation operation when the cooling water flow rate control valve opening setting is only the initial opening setting 59. If the opening command of the cooling water flow rate control valve 24 is kept at 5% until automatic control is started, the cooling water becomes a little balance, so the boiler is recirculated before entering the automatic control. As a result, the pump inlet fluid temperature 109 rises above the balance temperature. From the above results, the opening setting before the cooling water flow rate control valve 12 is switched to the automatic control is preferably two steps.

次に循環運転を停止し、貫流運転に切り替える運転について、図1及び図9を用いて説明する。
循環/貫流切り替え出力(図2では25%出力状態)にて出力一定運状態としておき、クーリング水流量調節弁12の自動制御を解除し、クーリング弁開度指令65はクーリング水流量調節弁整定開度設定60(図9では9%開度)が選択されるが整定バランスが保たれる開度設定のため、状態量は殆ど変動しない。その後、ボイラ再循環ポンプ流量調節弁24の自動制御を解除し、ボイラ再循環ポンプ流量調節弁開度指令92はボイラ再循環ポンプ流量調節弁初期開度設定88が選択され最低流量の運転となり、状態安定後にボイラ再循環ポンプ流量調節弁閉止設定87(零開度)が選択され、ボイラ再循環ポンプ流量調節弁24が全閉となり、ボイラ再循環ポンプ21を停止する。その操作途中において、ボイラ再循環ポンプ流量調節弁開度指令92にボイラ再循環ポンプ流量調節弁初期開度設定88が選択された後、クーリング水流量調節弁開度指令65をクーリング水流量調節弁整定開度設定60(図9では9%開度)からクーリング水流量弁終了開度設定61(図9では6%開度)に切り替えることで、ボイラ再循環ポンプ入口流体温度109は図9に示す通り余り変動せず、徐々にウォーミング水温度に安定する特性を示す。
Next, the operation of stopping the circulation operation and switching to the once-through operation will be described with reference to FIGS. 1 and 9.
With the circulation / through-flow switching output (25% output state in FIG. 2), the output is kept constant, the automatic control of the cooling water flow control valve 12 is canceled, and the cooling valve opening command 65 is set to open the cooling water flow control valve. The degree setting 60 (9% opening in FIG. 9) is selected, but the state quantity hardly fluctuates because of the opening setting that maintains the settling balance. Thereafter, the automatic control of the boiler recirculation pump flow rate adjustment valve 24 is canceled, and the boiler recirculation pump flow rate adjustment valve opening command 92 is selected as the boiler recirculation pump flow rate adjustment valve initial opening setting 88, and the operation becomes the minimum flow rate. After the state is stabilized, the boiler recirculation pump flow control valve closing setting 87 (zero opening) is selected, the boiler recirculation pump flow control valve 24 is fully closed, and the boiler recirculation pump 21 is stopped. During the operation, after the boiler recirculation pump flow rate control valve initial opening setting 88 is selected as the boiler recirculation pump flow rate control valve opening command 92, the cooling water flow rate control valve opening command 65 is changed to the cooling water flow rate control valve. By switching from the set opening setting 60 (9% opening in FIG. 9) to the cooling water flow valve end opening setting 61 (6% opening in FIG. 9), the boiler recirculation pump inlet fluid temperature 109 is changed to FIG. As shown, it does not fluctuate so much and shows the characteristic of gradually stabilizing to the warming water temperature.

仮にクーリング水流量調節弁開度設定がクーリング水流量調節弁整定開度設定60しかない場合の循環運転終了時の特性を図10に示す。クーリング水流量調節弁24の開度指令は9%一定となるので、ボイラ再循環ポンプ21の停止過程でボイラ再循環ポンプ流量調節弁初期開度設定88が選択されると、ボイラ再循環水流量103とクーリング水流量102のバランスが崩れてボイラ再循環ポンプ入口流体温度109は一旦大きく低下して停止することになり、ボイラ再循環ポンプ21に温度変化によるストレスを与えることになる。以上の結果よりクーリング水流量調節弁の自動制御が解除された後の開度設定は2段階とするのがよい。ただし通常はクーリング水流量調節弁初期開度設定59とクーリング水流量弁終了開度設定61を個別に設けるほどの厳しい運用となることは稀であり、兼用することが現実的である。    FIG. 10 shows the characteristics at the end of the circulation operation if the cooling water flow rate control valve opening setting is only the cooling water flow rate control valve setting opening setting 60. Since the opening degree command of the cooling water flow rate adjustment valve 24 is 9% constant, when the boiler recirculation pump flow rate adjustment valve initial opening degree setting 88 is selected in the process of stopping the boiler recirculation pump 21, the boiler recirculation water flow rate is selected. The balance between the flow rate 103 and the cooling water flow rate 102 is lost, and the boiler recirculation pump inlet fluid temperature 109 is once greatly lowered and stopped, and the boiler recirculation pump 21 is subjected to stress due to temperature change. From the above results, it is preferable that the opening setting after the automatic control of the cooling water flow rate control valve is canceled is set in two stages. However, it is rare that the cooling water flow rate control valve initial opening setting 59 and the cooling water flow valve end opening setting 61 are individually set so that the operation is so severe that it is practical to use both.

本発明の他の実施例として、以下にクーリング水流量調節弁12によりボイラ再循環ポンプ入口流体温度109を規定値(比容積の変化が少ない温度設定)に保つ制御をする方法を図11を使って説明する。    As another embodiment of the present invention, a method of controlling the boiler recirculation pump inlet fluid temperature 109 at a specified value (temperature setting with a small change in specific volume) by the cooling water flow rate control valve 12 will be described below with reference to FIG. I will explain.

図11に示すボイラ再循環ポンプ入口温度設定関数75においてボイラ出力指令50に応じたボイラ再循環ポンプ入口温度設定信号76を生成し、該温度設定信号76と加減算器69を用いてボイラ再循環ポンプ入口温度計測器27で得たボイラ再循環ポンプ入口流体温度信号29との差をとり、ボイラ再循環ポンプ入口温度偏差77として、ボイラ再循環ポンプ入口温度偏差77が零となるよう制御器56によりフィードバック制御され、クーリング流量調節弁12によりボイラ再循環ポンプ入口流体温度109を自動制御する。   In the boiler recirculation pump inlet temperature setting function 75 shown in FIG. 11, a boiler recirculation pump inlet temperature setting signal 76 corresponding to the boiler output command 50 is generated, and the boiler recirculation pump is used by using the temperature setting signal 76 and the adder / subtractor 69. The controller 56 takes the difference from the boiler recirculation pump inlet fluid temperature signal 29 obtained by the inlet temperature measuring instrument 27 and sets the boiler recirculation pump inlet temperature deviation 77 as zero as the boiler recirculation pump inlet temperature deviation 77. Feedback control is performed, and the boiler recirculation pump inlet fluid temperature 109 is automatically controlled by the cooling flow rate control valve 12.

このとき温度が変化するには時間を要するため、制御器56にクーリング流量調節弁先行信号設定関数78にて生成した先行信号を加えて制御性の改善を図る。
またクーリング水流量102が増加するとボイラ再循環水流量103を維持するためボイラ循環ポンプ吐出流量104を増加させることになるが、ボイラ循環ポンプ21の吐出能力を超えないように、クーリング水流量調節弁開度上限設定79を設けて制御器56に上限制限として与える。
At this time, since it takes time for the temperature to change, the preceding signal generated by the cooling flow rate control valve preceding signal setting function 78 is added to the controller 56 to improve controllability.
Further, when the cooling water flow rate 102 is increased, the boiler circulation pump discharge flow rate 104 is increased in order to maintain the boiler recirculation water flow rate 103. However, the cooling water flow rate control valve is set so as not to exceed the discharge capacity of the boiler circulation pump 21. An opening degree upper limit setting 79 is provided and given to the controller 56 as an upper limit.

ボイラ循環ポンプ流量調節弁24は、ボイラ循環ポンプ吐出流量信号28とクーリング水流量信号16の差であるボイラ再循環水流量信号35と、ボイラ再循環流量設定関数97で生成されたボイラ再循環流量設定信号98との差であるボイラ再循環流量偏差99が零になるように制御器85においてフィードバック制御されることで、必要なボイラ再循環水流量103を確保する。    The boiler circulation pump flow rate control valve 24 includes a boiler recirculation water flow signal 35 which is a difference between the boiler circulation pump discharge flow rate signal 28 and the cooling water flow rate signal 16 and a boiler recirculation flow rate generated by the boiler recirculation flow rate setting function 97. Feedback control is performed by the controller 85 so that the boiler recirculation flow rate deviation 99, which is the difference from the setting signal 98, becomes zero, thereby ensuring the necessary boiler recirculation water flow rate 103.

本発明の他の実施例として、ボイラ再循環ポンプ流量調節弁24によりボイラ再循環水流量103を目標流量に制御する方法を図12を使って説明する。
ボイラ再循環抜き出し管30にボイラ再循環水流量計33を設置し、ボイラ再循環水流量検出器34において得られたボイラ再循環水流量信号35が、ボイラ再循環流量設定関数97によりボイラ出力指令50に応じて生成されたボイラ再循環流量設定信号98と一致するように制御器85にてフィードバック制御され、ボイラ再循環流量調節弁24にてボイラ再循環ポンプ吐出流量104を調節することでボイラ再循環水流量103を目標流量に制御する。
As another embodiment of the present invention, a method of controlling the boiler recirculation water flow rate 103 to the target flow rate by the boiler recirculation pump flow rate control valve 24 will be described with reference to FIG.
A boiler recirculation water flow meter 33 is installed in the boiler recirculation extraction pipe 30, and the boiler recirculation water flow signal 35 obtained by the boiler recirculation water flow detector 34 is output from the boiler recirculation flow setting function 97 as a boiler output command. 50, feedback control is performed by the controller 85 so as to coincide with the boiler recirculation flow rate setting signal 98 generated in accordance with 50, and the boiler recirculation pump discharge flow rate 104 is adjusted by the boiler recirculation flow rate adjustment valve 24, thereby the boiler. The recirculated water flow rate 103 is controlled to the target flow rate.

なお、ボイラ再循環水流量信号35は、図11に示したように、ボイラ再循環ポンプ吐出流量信号28からクーリング水流量信号16を引いて求める方法もある。   The boiler recirculation water flow signal 35 may be obtained by subtracting the cooling water flow signal 16 from the boiler recirculation pump discharge flow signal 28 as shown in FIG.

本発明によれば、安定で且つ外乱に強い循環運転が可能となり貫流状態に比べて広い出力運転範囲を獲得できる超臨界圧定圧貫流ボイラの流体循環運転を行える。   According to the present invention, a fluid circulation operation of a supercritical pressure constant pressure once-through boiler capable of obtaining a stable and strong disturbance operation and obtaining a wider output operation range than a once-through state can be performed.

本発明の実施形態に関わる設備及び制御回路を示す図である。It is a figure which shows the installation and control circuit which concern on embodiment of this invention. 本発明に関わる基本運用を示す図である。It is a figure which shows the basic operation in connection with this invention. 本発明にて負荷上昇した場合の挙動を示す図である。It is a figure which shows the behavior at the time of load increase in this invention. 本発明にて負荷降下した場合の挙動を示す図である。It is a figure which shows the behavior at the time of load drop in this invention. 本発明にてクーリング水を漸次減少させた時の挙動を示す図である。It is a figure which shows a behavior when cooling water is decreased gradually in this invention. 本発明にて循環運転を開始した時の挙動を示す図である。It is a figure which shows the behavior when the circulation driving | operation is started in this invention. 本発明に拠らない回路で循環運転を開始した時の挙動を示す図である。It is a figure which shows a behavior when the circulation driving | operation is started with the circuit which does not depend on this invention. 本発明に拠らない回路で循環運転を開始した時の挙動を示す図である。It is a figure which shows a behavior when the circulation driving | operation is started with the circuit which does not depend on this invention. 本発明にて循環運転を終了した時の挙動を示す図である。It is a figure which shows the behavior when a circulation driving | operation is complete | finished in this invention. 本発明に拠らない回路で循環運転を終了した時の挙動を示す図である。It is a figure which shows a behavior when a circulation driving | operation is complete | finished with the circuit which does not depend on this invention. 本発明による他の実施例による制御回路を示す図である。It is a figure which shows the control circuit by the other Example by this invention. 本発明による他の実施例による制御回路を示す図である。It is a figure which shows the control circuit by the other Example by this invention.

符号の説明Explanation of symbols

W1 : ボイラ給水 W2 : クーリング水
W3 : ボイラ再循環水 W4 : ボイラ再循環ポンプ吐出水
1 火炉壁 2 ボイラ給水管
5 水壁降水管 6 節炭器入口管寄せ
7 節炭器出口管寄せ 8 火炉壁出口管寄せ
9 一次過熱器入口管寄せ 10 ボイラ再循環水クーリング管
11 ボイラ再循環水クーリング管
12 クーリング水流量調節弁 13 クーリング水流量計
14 クーリング水流量計測器 16 クーリング水流量信号
20 混合器 21 ボイラ再循環ポンプ
22 ボイラ再循環ポンプ出口管 23 ボイラ再循環ポンプ出口管
24 ボイラ再循環ポンプ流量調節弁
25 ボイラ再循環ポンプ吐出流量計
26 ボイラ再循環ポンプ吐出流量計測器
27 ボイラ再循環ポンプ入口温度計測器
28 ボイラ再循環ポンプ吐出流量信号
29 ボイラ再循環ポンプ入口温度信号
30 ボイラ再循環抜き出し管 31 ボイラ再循環抜き出し管
32 ボイラ再循環逆止弁 33 ボイラ再循環水流量計
34 ボイラ再循環水流量検出器 35 ボイラ再循環水流量信号
40 ウォーミング水調整弁
41 ボイラ再循環水クーリング管ウォーミング管
42 ボイラ再循環ポンプウォーミング管
43 ボイラ再循環ポンプウォーミング水逃し弁
45 ボイラ再循環ポンプウォーミング水逃し管
47 ボイラ再循環ポンプ入口水
50 ボイラ出力指令 51 クーリング水流量設定関数
52 クーリング水流量設定信号 54 加減算器
55 クーリング水流量偏差信号 56 制御器(PID制御)
57 クーリング水流量調節弁自動開度指令
58 クーリング水流量調節弁閉止設定
59 クーリング水流量調節弁初期開度設定
60 クーリング水流量調節弁整定開度設定
61 クーリング水流量調節弁終了開度設定
62 切替器 63 クーリング水流量調節弁規定開度指令
64 切替器 65 クーリング水流量調節弁開度指令
66 ボイラ再循環ポンプ入口温度上限関数
67 ボイラ再循環ポンプ入口温度上限設定信号
69 加減算器 70 ボイラ再循環ポンプ入口温度上限偏差
71 制御器(PID制御)
72 ボイラ再循環ポンプ入口流体温度補正信号
73 クーリング水流量調節弁開度下限設定
74 クーリング水流量調節弁開度下限信号
75 ボイラ再循環ポンプ入口温度設定関数
76 ボイラ再循環ポンプ入口温度設定信号
77 ボイラ再循環ポンプ入口温度偏差
78 クーリング流量調節弁先行信号設定関数
79 クーリング水流量調節弁開度上限設定
80 ボイラ再循環ポンプ吐出流量設定関数
81 ボイラ再循環ポンプ吐出流量設定信号
83 加減算器 84 ボイラ再循環ポンプ吐出流量偏差信号
85 制御器(PID制御)
86 ボイラ再循環ポンプ流量調節弁自動開度指令
87 ボイラ再循環ポンプ流量調節弁閉止設定
88 ボイラ再循環ポンプ流量調節弁初期開度設定
89 切替器
90 ボイラ再循環ポンプ流量調節弁規定開度指令
91 切替器
92 ボイラ再循環ポンプ流量調節弁開度指令
93 ボイラ再循環ポンプ入口温度補正制御ゲイン設定
94 ボイラ再循環ポンプ入口温度補正制御ゲイン
95 乗算器
96 ボイラ再循環ポンプ入口流体温度設定補正信号
97 ボイラ再循環流量設定関数 98 ボイラ再循環流量設定信号
99 ボイラ再循環流量偏差 100 出力指令
101 ボイラ入口給水流量 102 クーリング水流量
103 ボイラ再循環水流量 104 ボイラ再循環ポンプ吐出流量
107 混合部入口クーリング水温度
108 混合部入口ボイラ再循環水温度
109 ボイラ再循環ポンプ入口流体温度
110 ボイラ再循環ポンプ入口流体比容積
111 給水ポンプ給水流量 114 火炉壁入口管寄せ
W1: Boiler feed water W2: Cooling water W3: Boiler recirculation water W4: Boiler recirculation pump discharge water 1 Furnace wall 2 Boiler feed pipe 5 Water wall precipitating pipe 6 Charcoal inlet inlet header 7 Fuel saving outlet outlet header 8 Furnace Wall outlet header 9 Primary superheater inlet header 10 Boiler recirculation water cooling pipe 11 Boiler recirculation water cooling pipe 12 Cooling water flow rate control valve 13 Cooling water flow meter 14 Cooling water flow meter 16 Cooling water flow signal 20 Mixer 21 Boiler Recirculation Pump 22 Boiler Recirculation Pump Outlet Pipe 23 Boiler Recirculation Pump Outlet Pipe 24 Boiler Recirculation Pump Flow Control Valve 25 Boiler Recirculation Pump Discharge Flowmeter 26 Boiler Recirculation Pump Discharge Flowmeter 27 Boiler Recirculation Pump Inlet Temperature measuring instrument 28 Boiler recirculation pump discharge flow signal 29 Boiler recirculation pump input Port temperature signal 30 Boiler recirculation extraction pipe 31 Boiler recirculation extraction pipe 32 Boiler recirculation check valve 33 Boiler recirculation water flow meter 34 Boiler recirculation water flow detector 35 Boiler recirculation water flow signal 40 Warming water adjustment valve 41 Boiler recirculation water cooling pipe warming pipe 42 Boiler recirculation pump warming pipe 43 Boiler recirculation pump warming water relief valve 45 Boiler recirculation pump warming water relief pipe 47 Boiler recirculation pump inlet water 50 Boiler output command 51 Cooling water flow rate setting function 52 Cooling water flow rate setting signal 54 Adder / subtractor 55 Cooling water flow rate deviation signal 56 Controller (PID control)
57 Cooling water flow control valve automatic opening command 58 Cooling water flow control valve closing setting 59 Cooling water flow control valve initial opening setting 60 Cooling water flow control valve set opening setting 61 Cooling water flow control valve end opening setting 62 Switching 63 Cooling water flow control valve specified opening command 64 Switch 65 Cooling water flow control valve opening command 66 Boiler recirculation pump inlet temperature upper limit function 67 Boiler recirculation pump inlet temperature upper limit setting signal 69 Adder / subtractor 70 Boiler recirculation pump Inlet temperature upper limit deviation 71 Controller (PID control)
72 Boiler recirculation pump inlet fluid temperature correction signal 73 Cooling water flow rate control valve opening lower limit setting 74 Cooling water flow rate control valve opening lower limit signal 75 Boiler recirculation pump inlet temperature setting function 76 Boiler recirculation pump inlet temperature setting signal 77 Boiler Recirculation pump inlet temperature deviation 78 Cooling flow rate control valve leading signal setting function 79 Cooling water flow rate control valve opening upper limit setting 80 Boiler recirculation pump discharge flow rate setting function 81 Boiler recirculation pump discharge flow rate setting signal 83 Adder / subtractor 84 Boiler recirculation Pump discharge flow rate deviation signal 85 Controller (PID control)
86 Boiler recirculation pump flow rate control valve automatic opening command 87 Boiler recirculation pump flow rate control valve closing setting 88 Boiler recirculation pump flow rate control valve initial opening setting 89 Switch
90 Boiler recirculation pump flow rate control valve specified opening command 91 Switch 92 Boiler recirculation pump flow rate control valve opening command 93 Boiler recirculation pump inlet temperature correction control gain setting 94 Boiler recirculation pump inlet temperature correction control gain 95 Multiplier 96 Boiler recirculation pump inlet fluid temperature setting correction signal 97 Boiler recirculation flow rate setting function 98 Boiler recirculation flow rate setting signal 99 Boiler recirculation flow rate deviation 100 Output command 101 Boiler inlet water supply flow rate 102 Cooling water flow rate 103 Boiler recirculation water flow rate 104 Boiler recirculation pump discharge flow rate 107 Mixer inlet cooling water temperature 108 Mixer inlet boiler recirculation water temperature 109 Boiler recirculation pump inlet fluid temperature 110 Boiler recirculation pump inlet fluid specific volume 111 Feed water pump feed flow rate 114 Furnace wall inlet header

Claims (11)

火炉内に配置された節炭器、火炉壁及び火炉内に配置される蒸発器と過熱器を含めた複数の伝熱管と、前記節炭器、火炉壁、蒸発器及び過熱器を含めた該伝熱管に順次蒸気生成用の水を供給するボイラ給水管(2)と、超臨界圧状態の火炉壁出口またはその下流位置の伝熱管からのボイラ再循環水をボイラ給水管(2)に再循環させるためのボイラ再循環ポンプ(21)とを備えた超臨界圧状態の定圧蒸気を得るための臨界圧定圧貫流ボイラの流体循環運転設備において、
ボイラ再循環ポンプ(21)を用いて火炉壁出口の伝熱管から超臨界圧状態で汽水分離できない流体の一部であるボイラ再循環水を抜き出してボイラ給水管(2)へ戻すために、火炉壁出口またはその下流位置の伝熱管からボイラ再循環ポンプ(21)の入口に接続するボイラ再循環抜き出し管(30,31)と、
ボイラ再循環ポンプ(21)の出口とボイラ給水管(2)を接続するボイラ再循環ポンプ出口管(22,23)と、
ボイラ給水管(2)から分岐させた給水の一部であるクーリング水を抜き出してボイラ再循環抜き出し管(30,31)の途中又はボイラ再循環ポンプ(21)の入口に接続するボイラ再循環水クーリング管(10,11)と、
前記三つの配管(30,31;22,23;10,11)のうち、少なくとも二つの配管に設けた流量検出手段(14,26,34)と、
前記少なくとも二つの配管に設けた流体流量調節手段(12,24)と
を備えたことを特徴とする超臨界圧定圧貫流ボイラの流体循環運転設備。
A plurality of heat transfer tubes including a economizer disposed in the furnace, a furnace wall and an evaporator and a superheater disposed in the furnace, and the economizer including the economizer, the furnace wall, the evaporator and the superheater. Boiler feed pipe (2) that supplies steam generation water to the heat transfer pipe in sequence, and boiler recirculation water from the furnace wall outlet in the supercritical pressure state or the heat transfer pipe at the downstream position are recirculated to the boiler feed pipe (2). In a fluid circulation operation facility of a critical pressure constant pressure once-through boiler for obtaining a constant pressure steam in a supercritical pressure state equipped with a boiler recirculation pump (21) for circulation,
In order to extract boiler recirculation water, which is part of the fluid that cannot be separated by brackish water under supercritical pressure, from the heat transfer pipe at the furnace wall outlet using the boiler recirculation pump (21) and return it to the boiler feed pipe (2) A boiler recirculation extraction pipe (30, 31) connected to the inlet of the boiler recirculation pump (21) from the wall outlet or a heat transfer pipe located downstream thereof;
A boiler recirculation pump outlet pipe (22, 23) connecting the outlet of the boiler recirculation pump (21) and the boiler feed pipe (2);
Cooling water, which is a part of feed water branched from the boiler feed pipe (2), is extracted and connected to the boiler recirculation draw pipe (30, 31) or the inlet of the boiler recirculation pump (21). Cooling pipes (10, 11);
Of the three pipes (30, 31; 22, 23; 10, 11), flow rate detection means (14, 26, 34) provided in at least two pipes;
A fluid circulation operation facility for a supercritical pressure constant pressure once-through boiler, comprising fluid flow rate adjusting means (12, 24) provided in the at least two pipes.
火炉内に配置された節炭器、火炉壁及び火炉内に配置される蒸発器と過熱器を含めた複数の伝熱管と、前記節炭器、火炉壁、蒸発器及び過熱器を含めた該伝熱管に順次蒸気生成用の水を供給するボイラ給水管(2)と、超臨界圧状態の火炉壁出口またはその下流位置の伝熱管からのボイラ再循環水をボイラ給水管(2)に再循環させるためのボイラ再循環ポンプ(21)とを備えた超臨界圧状態の定圧蒸気を得るための臨界圧定圧貫流ボイラの流体循環運転設備において、
前記ボイラ再循環ポンプ(21)は流体流量調節機能があるポンプであり、
該ボイラ再循環ポンプ(21)を用いて火炉壁出口の伝熱管から超臨界圧状態で汽水分離できない流体の一部であるボイラ再循環水を抜き出してボイラ給水管(2)へ戻すために、火炉壁出口またはその下流位置の伝熱管からボイラ再循環ポンプ(21)の入口に接続するボイラ再循環抜き出し管(30,31)と、
ボイラ再循環ポンプ(21)の出口とボイラ給水管(2)を接続するボイラ再循環ポンプ出口管(22,23)と、
ボイラ給水管(2)から分岐させた給水の一部であるクーリング水を抜き出してボイラ再循環抜き出し管(30,31)の途中又はボイラ再循環ポンプ(21)の入口に接続するボイラ再循環水クーリング管(10,11)と、
前記ボイラ再循環抜き出し管(30,31)又はボイラ再循環水クーリング管(10,11)のうちの少なくともいずれかの配管に設けた流体流量調節手段(12)と
を備えたことを特徴とする超臨界圧定圧貫流ボイラの流体循環運転設備。
A plurality of heat transfer tubes including a economizer disposed in the furnace, a furnace wall and an evaporator and a superheater disposed in the furnace, and the economizer including the economizer, the furnace wall, the evaporator and the superheater. Boiler feed pipe (2) that supplies steam generation water to the heat transfer pipe in sequence, and boiler recirculation water from the furnace wall outlet in the supercritical pressure state or the heat transfer pipe at the downstream position are recirculated to the boiler feed pipe (2). In a fluid circulation operation facility of a critical pressure constant pressure once-through boiler for obtaining a constant pressure steam in a supercritical pressure state equipped with a boiler recirculation pump (21) for circulation,
The boiler recirculation pump (21) is a pump having a fluid flow rate adjusting function,
In order to extract the boiler recirculation water, which is part of the fluid that cannot be subjected to brackish water separation in a supercritical pressure state, from the heat transfer pipe at the furnace wall outlet using the boiler recirculation pump (21) and return it to the boiler feed pipe (2), A boiler recirculation extraction pipe (30, 31) connected to the inlet of the boiler recirculation pump (21) from the furnace wall outlet or a heat transfer pipe located downstream thereof;
A boiler recirculation pump outlet pipe (22, 23) connecting the outlet of the boiler recirculation pump (21) and the boiler feed pipe (2);
Cooling water, which is a part of feed water branched from the boiler feed pipe (2), is extracted and connected to the boiler recirculation draw pipe (30, 31) or the inlet of the boiler recirculation pump (21). Cooling pipes (10, 11);
Fluid flow rate adjusting means (12) provided in at least one of the boiler recirculation extraction pipe (30, 31) or the boiler recirculation water cooling pipe (10, 11). Fluid circulation operation facility for supercritical and constant pressure once-through boilers.
請求項1又は2記載の超臨界圧定圧貫流ボイラの流体循環運転設備の運転方法であって、
火炉壁出口からボイラ給水管(2)にボイラ再循環水を戻す流体循環運転状態で、超臨界圧で汽水分離できない高いエンタルピのままのボイラ再循環水と低温のクーリング水の各流量をボイラ再循環ポンプ(21)及び前記三つの配管(30,31;22,23;10,11)のうちの少なくとも一つの配管に設けられた流体流量調節手段(12、24又は34)を使用して流体の流量調節し、必要なボイラ再循環水流量を確保して、ボイラ再循環ポンプ(21)の入口における流体温度(109)を規定値以下に抑制する機能を有することを特徴とする超臨界圧定圧貫流ボイラの流体循環設備の運転方法。
An operation method of the fluid circulation operation facility of the supercritical pressure constant pressure once-through boiler according to claim 1 or 2,
In the fluid circulation operation state in which the boiler recirculation water is returned from the furnace wall outlet to the boiler feed pipe (2), each flow rate of the boiler recirculation water with high enthalpy and low temperature cooling water that cannot be separated by brackish water at supercritical pressure is Fluid using the circulation pump (21) and the fluid flow rate adjusting means (12, 24 or 34) provided in at least one of the three pipes (30, 31; 22, 23; 10, 11) The supercritical pressure is characterized in that it has a function of controlling the fluid temperature (109) at the inlet of the boiler recirculation pump (21) to a specified value or less by adjusting the flow rate of the boiler and ensuring the necessary boiler recirculation water flow rate. Operation method of fluid circulation equipment of constant pressure once-through boiler.
ボイラ再循環抜き出し管(30,31)とボイラ再循環ポンプ出口管(22,23)とボイラ再循環水クーリング管(10,11)にそれぞれ流れるボイラ再循環水流量(103)、ボイラ再循環ポンプ(21)の吐出流量(104)及びクーリング水流量(102)のうちの少なくとも二つの流量をそれぞれの流量目標値に調節し、かつ各々の流量目標値は循環運転範囲全域で火炉壁に必要な最低給水流量を確保すると共に、ボイラ再循環ポンプ(21)の入口流体温度(109)を380℃以下の温度領域に保つ設定とすることを特徴とする請求項3記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法。    Boiler recirculation extraction pipes (30, 31), boiler recirculation pump outlet pipes (22, 23), boiler recirculation water cooling pipes (10, 11), boiler recirculation water flow rate (103), boiler recirculation pump, respectively At least two of the discharge flow rate (104) and the cooling water flow rate (102) of (21) are adjusted to the respective flow rate target values, and each flow rate target value is necessary for the furnace wall throughout the circulation operation range. The supercritical pressure constant pressure once-through boiler according to claim 3, wherein the minimum feed water flow rate is secured and the inlet fluid temperature (109) of the boiler recirculation pump (21) is maintained in a temperature range of 380 ° C or lower. Of operating the fluid circulation facility. ボイラ再循環ポンプ入口流体温度(109:信号29)が設定値より高くなった場合には、
(a)ボイラ出力指令(50)に応じて得られる予め決められたクーリング水流量設定値(信号52)と実クーリング水流量(信号16)との偏差(信号55)が零となるようにクーリング水流量調節手段(12)の開度を上げてクーリング水流量(102:信号16)を増加させる制御を行うか、または
(b)前記(a)の制御によるクーリング水流量(102:信号16)の制御と、ボイラ出力指令(50)に応じて予め決められたボイラ再循環ポンプ入口温度上限設定値(信号67)より実ボイラ再循環ポンプ入口流体温度(109:信号29)が大きい場合に、ボイラ再循環ポンプ入口温度上限設定値(信号67)と実ボイラ再循環ポンプ入口流体温度(109:信号29)との偏差(信号70)に応じたボイラ再循環ポンプ入口流体温度補正値(信号72)に基づき、ボイラ再循環ポンプ入口流体温度(109:信号29)がボイラ再循環ポンプ入口温度上限設定値(信号67)に低下するまでクーリング水流量(102:信号16)を増す方向に補正する制御との併用により、
クーリング水流量(102:信号16)を増加させる機能を持たせたことを特徴とする請求項4に記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法。
When the boiler recirculation pump inlet fluid temperature (109: signal 29) becomes higher than the set value,
(A) Cooling so that a deviation (signal 55) between a predetermined cooling water flow rate setting value (signal 52) obtained in response to the boiler output command (50) and the actual cooling water flow rate (signal 16) becomes zero. The control is performed to increase the opening of the water flow rate adjusting means (12) to increase the cooling water flow rate (102: signal 16), or (b) the cooling water flow rate (102: signal 16) by the control of (a) above. And the actual boiler recirculation pump inlet fluid temperature (109: signal 29) is larger than the boiler recirculation pump inlet temperature upper limit setting value (signal 67) determined in advance according to the boiler output command (50), Boiler recirculation pump inlet flow according to the deviation (signal 70) between the boiler recirculation pump inlet temperature upper limit setting value (signal 67) and the actual boiler recirculation pump inlet fluid temperature (109: signal 29) Based on the body temperature correction value (signal 72), the cooling water flow rate (102: signal 16) until the boiler recirculation pump inlet fluid temperature (109: signal 29) decreases to the boiler recirculation pump inlet temperature upper limit set value (signal 67). ) In combination with the control to correct in the increasing direction,
The operation method of the fluid circulation facility of the supercritical pressure constant pressure once-through boiler according to claim 4, which has a function of increasing a cooling water flow rate (102: signal 16).
ボイラ再循環ポンプ入口流体温度(109:信号29)が高くなり、クーリング水流量(102:信号16)を増加させた場合には、
(a)実ボイラ再循環ポンプ入口流体温度(109:信号29)がボイラ再循環ポンプ入口温度上限設定値(信号67)より大きい値である場合には、前記両方の温度偏差(信号70)に基づき予め決められたボイラ再循環ポンプ入口流体温度補正値(信号72)を出力指令(50)に応じて予め決められたボイラ再循環ポンプ吐出流量設定値(信号81)と実ボイラ再循環ポンプ吐出流量(信号28)との偏差(信号84)に加えること、または
(b)前記ボイラ再循環ポンプ入口流体温度補正値(信号72)に予め設定されている0〜1の値からなるボイラ再循環ポンプ入口温度補正制御ゲイン(信号94)を乗じて得られる補正値(信号96)を前記ボイラ再循環ポンプ吐出流量(104:信号28)の前記偏差値(信号84)に加えること、
によりボイラ再循環ポンプ吐出水吐出流量(104:信号28)を増方向に補正することでクーリング水流量増加分と同量又は同量以下の量でボイラ再循環ポンプ吐出流量(104:信号28)を増加させることを特徴とする請求項5記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法。
When the boiler recirculation pump inlet fluid temperature (109: signal 29) is increased and the cooling water flow rate (102: signal 16) is increased,
(A) When the actual boiler recirculation pump inlet fluid temperature (109: signal 29) is larger than the boiler recirculation pump inlet temperature upper limit setting value (signal 67), both the temperature deviations (signal 70) are Based on the boiler recirculation pump inlet fluid temperature correction value (signal 72) determined in advance based on the output command (50), the boiler recirculation pump discharge flow rate setting value (signal 81) and the actual boiler recirculation pump discharge Adding to the deviation (signal 84) from the flow rate (signal 28), or (b) boiler recirculation consisting of a value of 0 to 1 preset in the boiler recirculation pump inlet fluid temperature correction value (signal 72) A correction value (signal 96) obtained by multiplying the pump inlet temperature correction control gain (signal 94) is added to the deviation value (signal 84) of the boiler recirculation pump discharge flow rate (104: signal 28). That
By correcting the boiler recirculation pump discharge water discharge flow rate (104: signal 28) in the increasing direction, the boiler recirculation pump discharge flow rate (104: signal 28) is equal to or less than the increase in the cooling water flow rate. The method of operating a fluid circulation facility for a supercritical pressure constant pressure once-through boiler according to claim 5, wherein:
クーリング水流量調節手段(12)により、出力指令(50)に応じて予め決められたクーリング水流量下限値(信号74)を下限値としてクーリング水流量(102:信号16)を制御することを特徴とする請求項4ないし6のいずれかに記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法。    The cooling water flow rate adjusting means (12) controls the cooling water flow rate (102: signal 16) with the cooling water flow rate lower limit value (signal 74) predetermined according to the output command (50) as the lower limit value. A method for operating a fluid circulation facility of a supercritical pressure constant pressure once-through boiler according to any one of claims 4 to 6. ボイラ出力指令(50)に応じたボイラ再循環ポンプ(21)の予め決められた入口温度設定値(信号76)と実ボイラ再循環ポンプ21の入口流体温度(109:信号29)との偏差(信号77)が零となるようにし、かつ
予め決められたクーリング水流量(102:信号16)の上限設定値(信号79)に基づいて、クーリング流量調節手段(12)によりクーリング水流量(102:信号16)を調節することでボイラ再循環ポンプ入口流体温度(109:信号29)を制御することを特徴とする請求項3記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法。
Deviation between a predetermined inlet temperature setting value (signal 76) of the boiler recirculation pump (21) corresponding to the boiler output command (50) and an inlet fluid temperature (109: signal 29) of the actual boiler recirculation pump 21 ( The cooling water flow rate (102: signal 77) is set by the cooling flow rate adjusting means (12) based on a predetermined upper limit set value (signal 79) of the cooling water flow rate (102: signal 16). 4. The method of operating a fluid circulation facility of a supercritical constant pressure once-through boiler according to claim 3, wherein the boiler recirculation pump inlet fluid temperature (109: signal 29) is controlled by adjusting the signal 16).
(a)ボイラ再循環抜き出し管(30)に設けられたボイラ再循環水流量検出手段(34)により直接ボイラ再循環抜き出し水流量(信号35)を検出するか、または、
(b)ボイラ再循環ポンプ出口管(22,23)に設けられたボイラ再循環ポンプ吐出流量検出手段(26)により検出されたボイラ再循環ポンプ吐出水流量(104:信号28)からボイラ再循環水クーリング管(10,11)に設けられたクーリング水流量検出手段(14)に検出されるクーリング水流量(102:信号16)を引いてボイラ再循環水流量(103:信号35)とし、
得られたボイラ再循環水流量(103:信号35)が、ボイラ出力指令(50)に応じて予め決められたボイラ再循環流量設定値(信号98)と一致するようにボイラ再循環流量調節手段(24)によるボイラ再循環ポンプ吐出水流量(104:信号92)を調節することを特徴とする請求項3記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法。
(A) the boiler recirculation water flow rate detection means (34) provided in the boiler recirculation water extraction pipe (30) directly detects the boiler recirculation water flow rate (signal 35), or
(B) Boiler recirculation from the boiler recirculation pump discharge water flow rate (104: signal 28) detected by the boiler recirculation pump discharge flow rate detection means (26) provided in the boiler recirculation pump outlet pipe (22, 23). The cooling water flow rate (102: signal 16) detected by the cooling water flow rate detection means (14) provided in the water cooling pipe (10, 11) is subtracted to obtain the boiler recirculation water flow rate (103: signal 35).
Boiler recirculation flow rate adjusting means so that the obtained boiler recirculation water flow rate (103: signal 35) matches the boiler recirculation flow rate setting value (signal 98) determined in advance in accordance with the boiler output command (50). The operation method of the fluid circulation facility of the supercritical pressure constant pressure once-through boiler according to claim 3, wherein the flow rate (104: signal 92) of the boiler recirculation pump discharged from (24) is adjusted.
請求項1又は2記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法であって、
ボイラ再循環水クーリング管(10,11)に一定流量のクーリング水(W2)を流すために用いる設定値の異なる予め決められた固定開度設定値(信号59,60,61)を二つ以上クーリング水流量調節手段(12)に設けることを特徴とする超臨界圧定圧貫流ボイラの流体循環設備の運転方法。
A method for operating a fluid circulation facility of a supercritical constant pressure once-through boiler according to claim 1 or 2,
Two or more predetermined fixed opening setting values (signals 59, 60, 61) having different setting values used for flowing a constant flow of cooling water (W2) through the boiler recirculation water cooling pipes (10, 11). A method for operating a fluid circulation facility for a supercritical pressure constant pressure once-through boiler, which is provided in a cooling water flow rate adjusting means (12).
ボイラ再循環水の循環運転の開始時には、クーリング水流量調節手段(12)で行う流量調節を予め決められた初期設定値(信号59)とし、ボイラ再循環ポンプ(21)を起動させた後にクーリング水(W2)をボイラ再循環水(W3)に混合させたボイラ再循環水温度(108)が上昇傾向となるタイミングで前記クーリング水流量調節手段(12)の初期設定値(信号59)から該初期設定値(信号59)より比較的流量を多くする整定設定値(信号60)に切り替え、
また、ボイラ再循環水(W3)の循環運転を停止し、貫流運転に切り替える時には、クーリング水流量調節手段(12)で行う流量調節を整定設定値(信号60)のままとし、その後、ボイラ再循環ポンプ流量調節手段(24)で行う流量調節を予め決められた初期設定値(信号88)で最低流量の運転を行い、状態安定後にボイラ再循環ポンプ流量調節手段(24)で行う流量調節を停止する設定(信号87)とし、次いでボイラ再循環ポンプ(21)を停止させ、その操作途中において、ボイラ再循環ポンプ流量調節手段(24)の前記初期設定値(信号88)が選択された後、クーリング水流量調節手段(12)の前記整定設定値(信号60)から予め決められた終了開度設定値(信号61)に切り替える
ことを特徴とする請求項10記載の超臨界圧定圧貫流ボイラの流体循環設備の運転方法。
At the start of the boiler recirculation water circulation operation, the flow rate adjustment performed by the cooling water flow rate adjustment means (12) is set to a predetermined initial set value (signal 59), and the boiler recirculation pump (21) is started and then cooled. From the initial set value (signal 59) of the cooling water flow rate adjusting means (12) at the timing when the boiler recirculation water temperature (108) in which water (W2) is mixed with the boiler recirculation water (W3) tends to increase. Switching to a settling setpoint (signal 60) that relatively increases the flow rate from the initial setpoint (signal 59),
Further, when the circulation operation of the boiler recirculation water (W3) is stopped and switched to the once-through operation, the flow rate adjustment performed by the cooling water flow rate adjustment means (12) remains at the set value (signal 60), and then the boiler recirculation is performed. The flow rate adjustment performed by the circulation pump flow rate adjustment means (24) is performed at the minimum flow rate with a predetermined initial setting value (signal 88), and the flow rate adjustment performed by the boiler recirculation pump flow rate adjustment means (24) after the state is stabilized. After the boiler recirculation pump (21) is stopped and the initial set value (signal 88) of the boiler recirculation pump flow rate adjusting means (24) is selected during the operation. The switching setting value (signal 60) of the cooling water flow rate adjusting means (12) is switched to a predetermined opening degree setting value (signal 61). The operation method of the fluid circulation facility of the described supercritical pressure constant pressure once-through boiler.
JP2005148447A 2005-05-20 2005-05-20 Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler Expired - Fee Related JP4507098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148447A JP4507098B2 (en) 2005-05-20 2005-05-20 Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148447A JP4507098B2 (en) 2005-05-20 2005-05-20 Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler

Publications (2)

Publication Number Publication Date
JP2006322690A JP2006322690A (en) 2006-11-30
JP4507098B2 true JP4507098B2 (en) 2010-07-21

Family

ID=37542504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148447A Expired - Fee Related JP4507098B2 (en) 2005-05-20 2005-05-20 Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler

Country Status (1)

Country Link
JP (1) JP4507098B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006390A1 (en) * 2011-03-30 2012-10-04 Siemens Aktiengesellschaft Method for operating a continuous steam generator and for carrying out the method designed steam generator
CN104595884A (en) * 2015-01-29 2015-05-06 上海上电电力工程有限公司 Flue gas temperature rise system for forced circulation of drum boiler to maintain normal operation of SCR (Selective Catalytic Reduction)
CN108844058A (en) * 2018-08-16 2018-11-20 杭州华电能源工程有限公司 A kind of economizer heat water recirculation system and its working method suitable for subcritical drum boiler generating set
KR102156724B1 (en) * 2019-05-13 2020-09-17 한국에너지기술연구원 Water circulation system of supercritical pressuer water tube boiler
CN110227345B (en) * 2019-06-27 2023-12-29 国网吉林省电力有限公司电力科学研究院 Wide-load denitration system suitable for subcritical thermal power generating unit and control method
JP2021037434A (en) * 2019-08-30 2021-03-11 株式会社東芝 Steam supply device, steam supply method and test device using steam
CN114020050A (en) * 2021-09-23 2022-02-08 华能国际电力股份有限公司大连电厂 Thermal power generation flow control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4124881Y1 (en) * 1964-04-27 1966-12-20
JPS5616002A (en) * 1979-07-16 1981-02-16 Mitsubishi Heavy Ind Ltd Pressure varying operation system for supercritical pressure boiler
JPS5843308A (en) * 1981-09-07 1983-03-14 三菱重工業株式会社 Boiler
JPH0650163B2 (en) * 1985-12-09 1994-06-29 バブコツク日立株式会社 Operating method of once-through boiler

Also Published As

Publication number Publication date
JP2006322690A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4507098B2 (en) Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
US9593844B2 (en) Method for operating a waste heat steam generator
RU2538994C2 (en) Method of once-through steam generator operation at steam temperature over 650-c, and once-through steam generator
JP2010223579A (en) Single loop temperature regulation control mechanism
JP4526558B2 (en) Steam temperature control method and control device for marine boiler
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
US5048466A (en) Supercritical pressure boiler with separator and recirculating pump for cycling service
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
US7827793B2 (en) Power generation system
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JPH0933005A (en) Water feeding device for waste heat recovery boiler
JP5320013B2 (en) Boiler unit and power generation system
US11092331B2 (en) Once-through evaporator systems
JPH0942606A (en) Once-through boiler steam temperature control device
JPH10292902A (en) Main steam temperature controller
JP2686259B2 (en) Operating method of once-through boiler
US20190178487A1 (en) Once-through evaporator systems
JP2000337603A (en) Water supply rate control apparatus for heat exchanger
JP2686260B2 (en) Operating method of once-through boiler
JP2006071166A (en) Steam temperature control device for once-through boiler
JPH0428902A (en) Method and device for controlling once-trough boiler
JP2625422B2 (en) Boiler control device
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPH01212802A (en) Steam temperature control device for boiler
JP2001355806A (en) Controller for waste heat recovery steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees