JPH01212802A - Steam temperature control device for boiler - Google Patents

Steam temperature control device for boiler

Info

Publication number
JPH01212802A
JPH01212802A JP3739888A JP3739888A JPH01212802A JP H01212802 A JPH01212802 A JP H01212802A JP 3739888 A JP3739888 A JP 3739888A JP 3739888 A JP3739888 A JP 3739888A JP H01212802 A JPH01212802 A JP H01212802A
Authority
JP
Japan
Prior art keywords
flow rate
boiler
feed water
steam
once
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3739888A
Other languages
Japanese (ja)
Inventor
Mitsuo Tanaka
田中 三雄
Toshie Monoe
物江 利江
Sachio Yamanobe
山野辺 さちを
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP3739888A priority Critical patent/JPH01212802A/en
Publication of JPH01212802A publication Critical patent/JPH01212802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To stabilize the main steam temperature-rise control upon starting a boiler, by a method wherein the lowest feed water flow rate of the boiler is set at a feed water flow rate, necessary for the protection of a fire furnace, in the once-through operation, while the same flow rate is set at a value higher than the value, necessary for the protection of the fire furnace, upon starting bypass operation. CONSTITUTION:The time constant Tp of steam temperature responsive characteristic with respect to the change of the flow rate of fuel of an once-through boiler becomes larger when the quantity Q of steam is smaller. The boiler is operated upon starting the boiler with the lowest feed water flow rate, conventionally determined from the protection of a fire furnace upon starting, alphaT/H whereby the response property of steam temperature is improved. An 1SH bypass flow rate B and a 2SH bypass flow rate are reduced in the sequence of the supply of steam to a turbine, parallel running and ramping and the flow rate D of steam in the turbine is increased while the starting bypass operation of the boiler is switched to the once-through operation of the same upon the load of 40%. At this switching point, the setting of the lowest feed water flow rate of the boiler may be switched to the flow rate of feed water, which is necessary for the protection of the fire furnace.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力9!電所のボイラ自動制御装置に係り、
特にプラント起動時の主蒸気温度昇温制御に好適なボイ
ラの蒸気温度制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a thermal power of 9! Regarding boiler automatic control equipment at electric power stations,
In particular, the present invention relates to a boiler steam temperature control device suitable for controlling main steam temperature increase during plant startup.

〔従来の技術〕[Conventional technology]

従来の装置は、火力原子力発電VOL、29゜NO,1
2の[亜臨界圧貫流ボイラの制御性の改善」のP83 
(2)起動制御方式の改善にて記載されている、起動バ
イパス系統から貫流系統に切替わる時期の主蒸気温度が
下がる現象などに対し、P86〜87の3、起動制御方
式の改善の具体策で示しであるように、従来のボイラ運
転実績などから、S11減圧弁開操作をランピング開始
の1時間前に実施する方法などが採られている。
Conventional equipment is thermal and nuclear power generation VOL, 29°NO, 1
P83 of 2 [Improvement of controllability of subcritical pressure once-through boiler]
(2) Specific measures to improve the startup control method in 3 of pages 86-87 to address the phenomenon of the main steam temperature dropping when switching from the startup bypass system to the once-through system, as described in Improvement of the startup control method. As shown in , based on conventional boiler operation results, a method has been adopted in which the S11 pressure reducing valve is opened one hour before the start of ramping.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、起動バイパス運転中にボイラ最低給水
流量の最適値について配慮されておらず、主蒸気温度昇
温制御過程における温度変動が大きく、運転員による手
動介入(燃料量微調整地)が発生するという問題があっ
た。
The above conventional technology does not consider the optimum value of the boiler minimum feed water flow rate during start-up bypass operation, has large temperature fluctuations in the main steam temperature increase control process, and requires manual intervention by the operator (fine adjustment of fuel amount). There was a problem that occurred.

本発明の目的は、起動時の主蒸気温度昇温制御を安定さ
せることにある。
An object of the present invention is to stabilize main steam temperature increase control during startup.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ボイラ最低給水流量の設定を貫流運転中に
は、火炉保護上必要な給水流量設定とし、起動バイパス
運転中には、上記給水流量+αT/H(ボイラ最大給水
流量の10%)の設定とすることにより、達成される。
The purpose of the above is to set the boiler minimum feed water flow rate to a value necessary for furnace protection during once-through operation, and to set the above feed water flow rate + αT/H (10% of the boiler maximum feed water flow rate) during start-up bypass operation. This is achieved by setting.

〔作用〕[Effect]

起動バイパス運転中に、ボイラ最低給水流量を火炉保護
上必要な値よりαT/H多く流すこととする。それによ
って、ボイラの保有熱量が増加するので、主蒸気温度昇
温制御が安定して行なえる。
During start-up bypass operation, the minimum boiler water supply flow rate is set to be αT/H more than the value required for furnace protection. As a result, the amount of heat retained in the boiler increases, so that main steam temperature increase control can be performed stably.

〔実施例〕〔Example〕

以下、本発明の1実施例を図面を参照して詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第2図において、貫流ボイラの発電プラントの概要を説
明する。発電プラントは、ボイラ本体3、高圧タービン
2、中圧タービン32、発電機33により構成され、ボ
イラ自動制御装置202は、負荷(タービン・発電機)
からの要求、つまり。
In FIG. 2, an overview of a once-through boiler power generation plant will be explained. The power generation plant is composed of a boiler main body 3, a high pressure turbine 2, an intermediate pressure turbine 32, and a generator 33, and the boiler automatic control device 202 controls the load (turbine/generator).
A request from, that is.

タービン制御装置203が、タービン加減弁41の開度
調整を行ない、タービン入口蒸気を定格の蒸気圧力、温
度に保つべく、燃料流調弁16により燃料量17を、ボ
イラ給水ポンプ(以下BFPと略す)6により給水量を
、また押込通風機(以下FDPと略す)36により空気
量をそれぞれ制御する。
The turbine control device 203 adjusts the opening degree of the turbine control valve 41 and controls the fuel amount 17 using the fuel flow control valve 16 to maintain the turbine inlet steam at the rated steam pressure and temperature. ) 6 controls the amount of water supplied, and a forced draft fan (hereinafter abbreviated as FDP) 36 controls the amount of air.

次に、燃焼ガスの流れについて説明すると、火炉(ボイ
ラ本体)3にて燃焼したガスは、まず火炉壁水管(以下
WWと略す)15.3次過熱器(以下3SHと略す)2
7.2次過熱器(以下2SHと略す)25、再熱器(以
下RHと略す)42.1次過熱器(以下ISHと略す)
22、節炭器(以下ECOと略す)14を通り、1部は
再循環゛ガスとしてガス再循環ファン(以下GRFと略
す)35とガス再循環ファン人口ダンパ(以下GRF入
ロプロダンパす)35により、ガス再循環量を調整して
火炉内へ注入させることにより、WW15,3SH27
,2SH25,RH42゜l5H22,EC014での
伝熱量調整に使用し、残りの燃料ガスは煙突より大気へ
排出させる。
Next, to explain the flow of combustion gas, the gas combusted in the furnace (boiler main body) 3 first passes through the furnace wall water pipe (hereinafter abbreviated as WW) 15, the tertiary superheater (hereinafter abbreviated as 3SH) 2
7. Secondary superheater (hereinafter abbreviated as 2SH) 25, Reheater (hereinafter abbreviated as RH) 42. Primary superheater (hereinafter abbreviated as ISH)
22, a part passes through an economizer (hereinafter abbreviated as ECO) 14, and a part of it is recycled as gas by a gas recirculation fan (hereinafter abbreviated as GRF) 35 and a gas recirculation fan artificial damper (hereinafter abbreviated as GRF input rotor damper) 35. , by adjusting the amount of gas recirculation and injecting it into the furnace, WW15, 3SH27
, 2SH25, RH42°l5H22, and EC014, and the remaining fuel gas is discharged to the atmosphere from the chimney.

また、水蒸気系について説明すると、中圧タービン32
からの排気を復水器4により冷却して復水とし、この水
をBFP6により加圧し、給水流調弁9にて給水量を調
整した後、高圧給水加熱器7を通りEC014にて加熱
し、WW15にて過熱されて飽和蒸気となる。この蒸気
をl5H22゜2SH25,3SH27と過熱させると
同時に、給水の1部を1段過熱器スプレ弁(以下ISH
スプレ弁と略す)19.2段過熱器スプレ弁(以下2S
Hスプレ弁と略す)21を介して、それぞれ1次過熱器
減温器(以下ISH減温器と略す)23と2次過熱器減
温器(以下ZSH減温器と略す)26に注入することに
より、蒸気温度の調整を行なう。この38H27を通過
するまでに、定格の蒸気温度まで過熱された蒸気は、タ
ービン加減弁41を経て、高圧タービン2へ送られる。
Also, to explain the steam system, the intermediate pressure turbine 32
The exhaust gas is cooled by the condenser 4 to become condensed water, this water is pressurized by the BFP 6, the water supply amount is adjusted by the feed water flow control valve 9, and then passed through the high pressure feed water heater 7 and heated by the EC014. , WW15, it is superheated and becomes saturated steam. This steam is superheated to 15H22゜2SH25, 3SH27, and at the same time, a part of the feed water is pumped through the first stage superheater spray valve (hereinafter ISH).
19. Two-stage superheater spray valve (hereinafter referred to as 2S)
The water is injected into the primary superheater attemperator (hereinafter referred to as ISH attemperator) 23 and the secondary superheater attemperator (hereinafter referred to as ZSH attemperator) 26 through the H spray valve (abbreviated as H spray valve) 21, respectively. By doing so, the steam temperature is adjusted. Steam that has been superheated to the rated steam temperature by the time it passes through 38H27 is sent to the high-pressure turbine 2 via the turbine control valve 41.

高圧タービン2で仕事を終えた蒸気は、RH42にてG
RF入ロプロダンパ34り調整されたガス再循環量に見
合ったガス対流熱を吸収し、定格温度まで蒸気を再燃さ
せ中圧タービン32へ送られる。
The steam that has finished its work in high pressure turbine 2 is transferred to RH42
The RF input rotary damper 34 absorbs gas convection heat commensurate with the adjusted gas recirculation amount, reburns the steam to the rated temperature, and sends it to the intermediate pressure turbine 32.

中圧タービン32で仕事を終えた蒸気は、復水器4へ送
られ、復水されてさらに脱気器5を通すボイラ給水用と
して使用される。
The steam that has completed its work in the intermediate pressure turbine 32 is sent to the condenser 4, where it is condensed and further passed through the deaerator 5 to be used as boiler feed water.

次に、貫流ボイラ特有の起動バイパス系について説明す
ると、貫流ボイラは、燃焼した高温ガスに対する火炉壁
水管(WW)15の焼損防止は、WW15の内部流体の
冷却効果のみに依頼しているため、起動時から最大出力
までのいかなる状態でも、内部流体量を規定値以上(通
常最大出力時の給水流量の30%)流す必要がある。そ
こで、タービンへ流れる蒸気量がこの規定値以下の場合
は、給水量とタービンへの蒸気量の差を起動バイパス系
へ流している。つまり、l5H22の口よりISOバイ
パス弁を通してフラッシュタンク8へ送り、フラッシュ
タンクにて減圧させた後、その蒸気を加熱器低圧止弁2
0を通して2 S H25。
Next, to explain the startup bypass system unique to once-through boilers, once-through boilers rely only on the cooling effect of the internal fluid of WW 15 to prevent burnout of the furnace wall water tube (WW) 15 against the burned high-temperature gas. In any state from startup to maximum output, the amount of internal fluid needs to flow above a specified value (normally 30% of the water supply flow rate at maximum output). Therefore, when the amount of steam flowing to the turbine is less than this specified value, the difference between the amount of water supplied and the amount of steam flowing to the turbine is flowed to the startup bypass system. In other words, the steam is sent from the port of 15H22 to the flash tank 8 through the ISO bypass valve, and after being depressurized in the flash tank, the steam is sent to the heater low pressure stop valve 2.
2 S H25 through 0.

3 S H27及び主蒸気配管のウオーミングに使用し
たり、高圧給水加熱器蒸気圧力調整弁13を通して高圧
給水加熱器7へ送ったり脱気器蒸気圧力調整弁12を通
して脱気器へ送ったりすることで熱回収を図っている。
3 S H27 and main steam piping warming, or sent to the high pressure feed water heater 7 through the high pressure feed water heater steam pressure adjustment valve 13, or sent to the deaerator through the deaerator steam pressure adjustment valve 12. Efforts are being made to recover heat.

それでも残った蒸気は、フラッシュタンク水位調整弁1
1を通して復水器4へ送っている。上述したように、起
動バイパス系へ蒸気が流れている状態を起動バイパス運
転中と呼び、そうでない状態を貫流運転中と呼んでいる
The steam that still remains will be removed from the flash tank water level adjustment valve 1.
1 to the condenser 4. As mentioned above, a state in which steam is flowing to the startup bypass system is called "startup bypass operation", and a state in which this is not the case is called "throughflow operation".

第4図に、従来のプラント起動のうち、併入から主蒸気
温度昇温(以下ランピングと言う)の間の、主なプロセ
スの挙動を示す。
FIG. 4 shows the behavior of the main processes during conventional plant start-up, from annexation to main steam temperature rise (hereinafter referred to as ramping).

本図より明らかなように、ランピング時の主蒸気温度制
御性が悪く、この温度変動を燃料制御だけに頼るには限
界があることが判かる。
As is clear from this figure, the main steam temperature controllability during ramping is poor, and it can be seen that there is a limit to relying solely on fuel control for temperature fluctuations.

ここで、貫流ボイラの温度特性を説明し、本発明との相
関々係を述べる。
Here, the temperature characteristics of the once-through boiler will be explained, and the correlation with the present invention will be described.

貫流ボイラの単純モデルを図6に示す。これら変数の関
係式は、 t ここに、Cw;管壁の比熱   Kcal/’CH;管
壁から管内流体への熱伝達率 Kcal/℃H V;管内流体比容積rn’ / kg (1)〜(3)を整理すると となる。(Cは定数) (4)式をラプラス変換すると となる。
A simple model of a once-through boiler is shown in Figure 6. The relational expression between these variables is: t Here, Cw: specific heat of the tube wall Kcal/'CH; heat transfer coefficient from the tube wall to the fluid in the tube Kcal/℃HV; specific volume of the fluid in the tube rn'/kg (1) ~ (3) can be summarized as follows. (C is a constant) Equation (4) is transformed into Laplace transform.

(5)式は、−次遅れ要素のラプラス変換表示であり、
第7図のブロック図に示したようなブロック図となる。
Equation (5) is the Laplace transform representation of the −th lag element,
The block diagram is as shown in the block diagram of FIG.

式(5)〜(7)より貫流ボイラの燃料量変化に対する
蒸気温度応答特性の時定数Tpは。
From equations (5) to (7), the time constant Tp of the steam temperature response characteristic to a change in fuel amount in the once-through boiler is:

(i)蒸気量Qが小さい程、大きくなる。(i) The smaller the steam amount Q is, the larger it becomes.

(it)管内容積Vが大きい程、大きくなる。(it) The larger the intratubular volume V, the larger it becomes.

(iii)管熱容量Cwが大きい程、大きくなる。(iii) The larger the tube heat capacity Cw, the larger it becomes.

ということが判かる。It turns out that.

すなわち、本発明では、上述(i)項に示した特性を活
用し、起動時におけるボイラ最低給水流量を従来の火炉
保護から決められていた最低給水流量+αT/Hとして
運転することにより、蒸気温度の応答性を改善(TPを
小さく出来る)するものである。
That is, in the present invention, by utilizing the characteristic shown in the above-mentioned item (i) and operating the boiler with the minimum feed water flow rate at startup set to the minimum feed water flow rate determined from conventional furnace protection + αT/H, the steam temperature can be adjusted. This improves the responsiveness (TP can be reduced).

第5図に1本発明を適用した場合の給水流量、バイパス
流量の挙動を示しており以下説明する。
FIG. 5 shows the behavior of the water supply flow rate and bypass flow rate when the present invention is applied, and will be described below.

まず、第5図中、A・・・給水流量、B・・・I S 
Hバイパス流量、C・・・2SHバイパス流量、D・・
・タービン通気流量を示す。すなわち、起動バイパス運
転中には、起動時給水流量の設定として火炉保護給水流
量+αT/Hにて運転する。そして、タービン通気、併
入、ランピングの順にて、1.3Hバイパス流量B、2
SHバイパス流量を減少させ、タービン通気流量りを増
加して行き、負荷40%にて、起動バイパス運転から貫
流運転へ切替わる。
First, in Figure 5, A...water supply flow rate, B...IS
H bypass flow rate, C...2SH bypass flow rate, D...
・Indicates turbine ventilation flow rate. That is, during startup bypass operation, the furnace protection water supply flow rate +αT/H is operated as the startup water supply flow rate setting. Then, in the order of turbine ventilation, merging, and ramping, 1.3H bypass flow rate B, 2
The SH bypass flow rate is decreased and the turbine ventilation flow rate is increased, and at a load of 40%, the startup bypass operation is switched to the once-through operation.

この切替えポイントで、ボイラ最低給水流量設定を火炉
保護給水流量へ給替える。これは、ボイラの負荷調整範
囲を広くするために必要となるからである。なお、−担
貫流運転となれば、ボイラ状態は起動時に比較し安定化
するため、ボイラ最低給水流量を下げても問題ない。
At this switching point, the boiler minimum feed water flow rate setting is switched to the furnace protection feed water flow rate. This is because it is necessary to widen the boiler load adjustment range. In addition, in the -carrying once-through operation, the boiler condition is stabilized compared to the time of startup, so there is no problem even if the boiler minimum water supply flow rate is lowered.

第1図に、本発明を適用した制御回路を示す。FIG. 1 shows a control circuit to which the present invention is applied.

1は制御装置の範囲を示す。1 indicates the range of the control device.

まず、主蒸気温度28の信号と、発電機出力信号29を
ベースとして関数発生器101により設定されたボイラ
特性(起動待昇温特性)より決まる主蒸気温度設定値信
号を、比較演算器102にて演算し、この偏差信号を比
例積分器103にて演算して水燃比補正信号を作成する
。次に、発電機出力信号29をベースとしたボイラ出力
指令(給水流量ベース)信号を関数発生器104にて作
成し、この信号と水燃比補正信号とを加算器105にて
演算し、燃料量指令信号とし、実燃料量信号17とを比
較演算器106にて演算し、この偏差信号を比例積分器
107にて演算して燃料流調弁16の操作信号を作成す
る。
First, a main steam temperature set value signal determined from the main steam temperature 28 signal and the boiler characteristics (startup temperature rise characteristics) set by the function generator 101 based on the generator output signal 29 is sent to the comparison calculator 102. This deviation signal is calculated by a proportional integrator 103 to create a water-fuel ratio correction signal. Next, the function generator 104 creates a boiler output command (based on the water supply flow rate) signal based on the generator output signal 29, and the adder 105 calculates this signal and the water-fuel ratio correction signal to determine the amount of fuel. A comparison calculator 106 calculates the actual fuel amount signal 17 as a command signal, and a proportional integrator 107 calculates this deviation signal to create an operation signal for the fuel flow control valve 16.

次に、主蒸気圧力信号38と発電機出力信号29をベー
スとして関数発生器114により設定されたボイラ特性
(起動待昇圧特性)より決まる主蒸気圧力設定値信号を
、比較演算器115にて演算し、この偏差信号を比例積
分器116にて演算して、SH減圧弁24の操作信号を
作成する。なお。
Next, a comparison calculator 115 calculates a main steam pressure set value signal determined by the boiler characteristics (startup pressure boost characteristics) set by the function generator 114 based on the main steam pressure signal 38 and the generator output signal 29. Then, this deviation signal is calculated by a proportional integrator 116 to create an operation signal for the SH pressure reducing valve 24. In addition.

SH減圧弁24は、起動バイパス運転から貫流運転へ切
替わると全開となる。
The SH pressure reducing valve 24 becomes fully open when switching from startup bypass operation to once-through operation.

さらに、給水流量制御回路について説明する。Furthermore, the water supply flow rate control circuit will be explained.

まず、給水流量要求値(設定値)は、発電機出力信号2
9をベースとして関数発生器104にてボイラ出力指令
(給水流量ベース)信号を作成し、この信号と起動バイ
パス運転中では信号発生器108にて設定された信号と
を、高値選択器111にて演算し高い信号を給水流量要
求値とする。同様にして、貫流運転中には信号発生器1
09にて設定された信号と、関数発生器104のボイラ
出力指令信号とを、高値選択器111にて演算し高い信
号を給水流量要求値とする。ここで、信号切替器110
は、起動バイパス運転中はA側を、貫流運転中はB側を
選択する。次に、高値選択器111にて選択された給水
流量要求値と、給水流量信号10とを比較演算器112
で演算し、この偏差信号を比例積分器113にて演算し
て、給水流量調整弁9の操作信号を作成する。
First, the water supply flow rate request value (set value) is determined by the generator output signal 2
9 as a base, a boiler output command (feed water flow rate base) signal is created by the function generator 104, and this signal and the signal set by the signal generator 108 during startup bypass operation are combined by the high value selector 111. Calculate and take the higher signal as the water supply flow rate request value. Similarly, during once-through operation, signal generator 1
The signal set in step 09 and the boiler output command signal of the function generator 104 are calculated by the high value selector 111, and the high signal is set as the water supply flow rate request value. Here, the signal switch 110
selects the A side during start-up bypass operation and selects the B side during once-through operation. Next, the water supply flow rate request value selected by the high value selector 111 and the water supply flow rate signal 10 are compared with the calculation unit 112.
This deviation signal is calculated by the proportional integrator 113 to create an operation signal for the water supply flow rate regulating valve 9.

第8図に、本発明を適用した場合の併入から、ランピン
グ、負荷上昇時の主なプロセスの特性を示す。
FIG. 8 shows characteristics of main processes during ramping and load increase when the present invention is applied.

本図より明らかなように、起動バイパス運転中のランピ
ングにおいて、安定した蒸気温度制御が可能となってい
る。
As is clear from this figure, stable steam temperature control is possible during ramping during start-up bypass operation.

第3図に、本発明の機能説明フローを示す。FIG. 3 shows a functional explanation flow of the present invention.

まず、演算ブロック301で、プラントが貫流運転中か
どうかを判定する。もし、貫流運転中であれば、演算ブ
ロック302へ進む。
First, calculation block 301 determines whether the plant is in once-through operation. If once-through operation is in progress, the process advances to calculation block 302.

演算ブロック302では、ボイラの最低給水流量の設定
を、火炉保護上に必要な最低限な値とし、負荷調整範囲
を広く出来るようにする。
In calculation block 302, the minimum water supply flow rate of the boiler is set to the minimum value necessary for protecting the furnace, so that the load adjustment range can be widened.

一方、起動バイパス運転中では、演算ブロック303へ
進み、ボイラの最低給水流量設定を、火炉保護上に必要
な値+αT/Hとし、ランピング時の主蒸気温度制御性
の改善を図るという本発明の機能説明フローを示してい
る。
On the other hand, during start-up bypass operation, the process proceeds to calculation block 303, and the minimum feed water flow rate setting for the boiler is set to a value necessary for furnace protection + αT/H, thereby improving main steam temperature controllability during ramping. It shows the function explanation flow.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、火力発電所のボイラにおいて、起動時
の蒸気温度制御性が改善出来、タービンメタル熱応力及
びボイラ熱応力が軽減されるので、既設のベースロード
用プラントの中間負荷運用への転換及び新設プラントの
起動特性改善の効果がある。
According to the present invention, in a boiler of a thermal power plant, steam temperature controllability at startup can be improved, and turbine metal thermal stress and boiler thermal stress can be reduced, so that it is possible to improve intermediate load operation of existing base load plants. It has the effect of improving the start-up characteristics of conversion and new plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の制御回路図、第2図は代表
的な貫流ボイラの本体系統図、第3図は本発明の機能説
明フロー図、第4図は従来制御方式による主なプロセス
の挙動を示す図、第5図は本発明を適用した場合の給水
流量の挙動を示す図。 第6図は貫流ボイラの単純モデルを示す図、第7図は貫
流ボイラのブロック図、第8図は本発明を適用した場合
の主なプロセスの挙動を示す図である。 9・・・給水流調弁、10・・・給水流量、16・・・
燃料流調弁、28・・・主蒸気温度、202・・・ボイ
ラ自動制御装置。 代理人 弁理士 小川筋力(クー) \−・ 、゛ 茶 1 図 YZ 図 第3 の 第 乙 圀 ト2 第7 図 −一メ礪更  −勧条べ− 一竹t←   −頓岬 一振峯(−−心ζ
Fig. 1 is a control circuit diagram of one embodiment of the present invention, Fig. 2 is a main body system diagram of a typical once-through boiler, Fig. 3 is a flowchart explaining the functions of the present invention, and Fig. 4 is a control circuit diagram of a typical once-through boiler. FIG. 5 is a diagram showing the behavior of the water supply flow rate when the present invention is applied. FIG. 6 is a diagram showing a simple model of a once-through boiler, FIG. 7 is a block diagram of the once-through boiler, and FIG. 8 is a diagram showing the behavior of main processes when the present invention is applied. 9...Water supply flow control valve, 10...Water supply flow rate, 16...
Fuel flow control valve, 28...Main steam temperature, 202...Boiler automatic control device. Agent Patent Attorney Muscle Ogawa (Ku) (--heartζ

Claims (1)

【特許請求の範囲】[Claims] 1、火力発電所のボイラで、プラント起動時の主蒸気温
度昇温制御を行なうため、燃料量検出器、主蒸気温度検
出器、給水流量検出器、燃料量調節弁、給水流量調節弁
より成るボイラにおいて、起動バイパス運転中と貫流運
転中におけるボイラ最低給水流量の設定を切替える制御
回路を設けたことを特徴とするボイラの蒸気温度制御装
置。
1. In the boiler of a thermal power plant, in order to control the temperature rise of the main steam at the time of plant startup, it consists of a fuel amount detector, a main steam temperature detector, a feed water flow rate detector, a fuel amount control valve, and a feed water flow rate control valve. 1. A steam temperature control device for a boiler, characterized in that the boiler is provided with a control circuit that switches the setting of a boiler minimum feed water flow rate during start-up bypass operation and once-through operation.
JP3739888A 1988-02-22 1988-02-22 Steam temperature control device for boiler Pending JPH01212802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3739888A JPH01212802A (en) 1988-02-22 1988-02-22 Steam temperature control device for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3739888A JPH01212802A (en) 1988-02-22 1988-02-22 Steam temperature control device for boiler

Publications (1)

Publication Number Publication Date
JPH01212802A true JPH01212802A (en) 1989-08-25

Family

ID=12496423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3739888A Pending JPH01212802A (en) 1988-02-22 1988-02-22 Steam temperature control device for boiler

Country Status (1)

Country Link
JP (1) JPH01212802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869620B1 (en) * 2001-06-18 2008-11-21 가부시키가이샤 히타치세이사쿠쇼 A semiconductor integrated circuit device and a method of manufacturing the same
JP2009293871A (en) * 2008-06-06 2009-12-17 Chugoku Electric Power Co Inc:The Start bypass system in steam power generation facility and its operating method
JP2011157905A (en) * 2010-02-02 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for boiler in power generation facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869620B1 (en) * 2001-06-18 2008-11-21 가부시키가이샤 히타치세이사쿠쇼 A semiconductor integrated circuit device and a method of manufacturing the same
JP2009293871A (en) * 2008-06-06 2009-12-17 Chugoku Electric Power Co Inc:The Start bypass system in steam power generation facility and its operating method
JP2011157905A (en) * 2010-02-02 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for boiler in power generation facility

Similar Documents

Publication Publication Date Title
US4425762A (en) Method and system for controlling boiler superheated steam temperature
EP0093118A4 (en) Hrsg damper control.
JPS6033971B2 (en) Control device for power generation equipment
JPS6224608B2 (en)
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JPH0160721B2 (en)
JPH01212802A (en) Steam temperature control device for boiler
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2686259B2 (en) Operating method of once-through boiler
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPH07109905A (en) Method and apparatus for controlling steam temperature in composite power generation plant
JP2645707B2 (en) Boiler automatic controller
JP2708406B2 (en) Startup control method for thermal power plant
JP2686260B2 (en) Operating method of once-through boiler
JPH02130202A (en) Combined plant
JPH01127806A (en) Boiler steam temperature controller
JPS6235561B2 (en)
JPS63687B2 (en)
JPS6242123B2 (en)
JPH02154902A (en) Steam temperature control system at time of starting plant
JPS6239658B2 (en)
JPS6246103A (en) Boiler automatic controller
JPS63194110A (en) Once-through boiler
JP2708592B2 (en) Boiler startup temperature rise control device