JPS63194110A - Once-through boiler - Google Patents

Once-through boiler

Info

Publication number
JPS63194110A
JPS63194110A JP2470887A JP2470887A JPS63194110A JP S63194110 A JPS63194110 A JP S63194110A JP 2470887 A JP2470887 A JP 2470887A JP 2470887 A JP2470887 A JP 2470887A JP S63194110 A JPS63194110 A JP S63194110A
Authority
JP
Japan
Prior art keywords
steam
water
boiler
superheater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2470887A
Other languages
Japanese (ja)
Inventor
光 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2470887A priority Critical patent/JPS63194110A/en
Publication of JPS63194110A publication Critical patent/JPS63194110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンバインドサーキュレーション形超臨界圧
定王貫流ボイラに係り、その起動系統の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a combined circulation type supercritical pressure constant king once-through boiler, and to an improvement in its starting system.

従来の技術 第3図は、従来のコンバインドサーキュレーション形貞
流ボイラの系は図を示したものである。
BACKGROUND OF THE INVENTION FIG. 3 shows a diagram of a conventional combined circulation type free flow boiler system.

先ず、従来の貫流ボイラの定常運転状態を説明する。First, the steady operating state of a conventional once-through boiler will be explained.

ボイラ給水は、脱気器1から給水ポンプ2により高圧給
水ヒーター3を通9節炭器4へ供給される。節炭器4の
出口給水は、低負荷に於いては、火炉水冷壁6の再循環
水と混合され、缶水循環ポンプ5を経て火炉水冷壁6に
至る。定常運転時には、火炉水冷壁6の出口流体は、並
列接続されているボイラ、佼り′4f7およびボイラ叔
すバイパス弁8が全開状態となっているので、ここを通
り低温過熱器9へ供給されて過熱蒸気となる。低温過熱
器9を出逢蒸気は、減温器10へ供給され、ここで、給
水ポンプ3を出て節炭器4の入口側より分岐した注水管
30を通して供給される給水と混合されて蒸気温度を所
望の温度に制御し、更に高温過熱器11で定格温度とな
る。高温過熱器11を出た蒸気は塞止弁12を通りター
ビン13へ供給され、ここで仕事をすることによって諷
王、減温され定蒸気は復水器14で水となり再度脱気器
1を経てボイラに給水される。
Boiler feed water is supplied from the deaerator 1 to the energy saver 4 through the high-pressure feed water heater 3 by the feed water pump 2. At low loads, the outlet feed water of the economizer 4 is mixed with the recirculated water of the furnace water-cooled wall 6 and reaches the furnace water-cooled wall 6 via the can water circulation pump 5 . During steady operation, the outlet fluid of the furnace water-cooled wall 6 is supplied to the low-temperature superheater 9 through the boiler, the casing '4f7, and the bypass valve 8 that connects the boiler, which are connected in parallel, and are fully open. It becomes superheated steam. The steam that encounters the low-temperature superheater 9 is supplied to the desuperheater 10, where it is mixed with the feed water that exits the feed water pump 3 and is supplied through the water injection pipe 30 branched from the inlet side of the energy saver 4 to form steam. The temperature is controlled to a desired temperature, and then the high temperature superheater 11 reaches the rated temperature. The steam leaving the high-temperature superheater 11 passes through the blocking valve 12 and is supplied to the turbine 13, where the steam is reduced in temperature by doing work, and the constant steam becomes water in the condenser 14 and then passes through the deaerator 1 again. The water is then supplied to the boiler.

なお、上述の定常運転状態にあっては、従述する起動用
抽気弁15、ドレン弁17、起#l王力制@l]ff1
8、起動用送気W−19、タービンバイパス−W−20
等は閉成されている。
In addition, in the above-mentioned steady operation state, the starting bleed valve 15, the drain valve 17, and the starting pressure system @ff1 described below are
8. Starting air supply W-19, turbine bypass W-20
etc. are closed.

′rKに、従来の貫流ボイラの起動運転について説明す
る。
`rK, the startup operation of a conventional once-through boiler will be explained.

コンバインドサーキュレーション形貫流ボイラでは、起
動に際し、ボイラ絞ジ升7およびバイパス升8を全閉と
し、5〜10%負荷相当の給水を火炉水冷壁6へ一定量
供給し、起動用抽気弁15を制御することにより、火炉
水冷*6の圧力は超臨界圧一定圧力(2460F/cm
2y程度)に保持される。起動用抽気弁15を出た給水
は、気水分離器16からドレン弁17を経て復水器14
へ流出する。
In a combined circulation type once-through boiler, at startup, the boiler throttle box 7 and bypass box 8 are fully closed, a fixed amount of feed water equivalent to 5 to 10% load is supplied to the furnace water-cooled wall 6, and the startup bleed valve 15 is closed. By controlling the pressure of the water-cooled furnace *6, the pressure is maintained at a constant supercritical pressure (2460
2y). The feed water that has exited the startup bleed valve 15 is transferred from the steam/water separator 16 to the condenser 14 via the drain valve 17.
leaks to.

点火時点に於いて、気水分離器16および過熱器9、】
】の系統は大気圧であるが、点火後、火炉水冷(6の出
口流体温度の上昇とともに、気水分離器16内では蒸気
が発生し昇圧が開始される。
At the point of ignition, the steam separator 16 and the superheater 9,]
] system is at atmospheric pressure, but after ignition, as the temperature of the outlet fluid of the furnace water cooling (6) rises, steam is generated in the steam/water separator 16 and pressure rise begins.

気水分離器16で発生した蒸気は、起@モ力制御升]8
により低圧一定圧力(約7いり/crn2 、程度〕に
制御されつつ起動用送気弁19を通り過熱器9.11、
減温器10とこれらを連結する主蒸気管を加熱する。主
蒸気管等を加熱することにより冷却された蒸気は、発生
したドレンとともにタービンバイパス升20を通ジ榎水
器14へ放出される。
The steam generated in the steam/water separator 16 is
The superheater 9.11 passes through the starting air supply valve 19 while being controlled to a low constant pressure (approximately 7 ir/crn2) by
The attemperator 10 and the main steam pipe connecting these are heated. The steam cooled by heating the main steam pipe and the like is discharged to the water pump 14 through the turbine bypass tank 20 together with the generated drain.

主蒸気管の加熱が終われば、タービンノくイノくス升2
0を閉じ、堪止升12を開けて、タービン13に通気す
る。通気後ボイラで発生する蒸気が規定量に達すれば、
タービン13は元冠を開始する。
When the heating of the main steam pipe is finished, the turbine
0 is closed, the stop box 12 is opened, and the turbine 13 is ventilated. If the steam generated in the boiler after ventilation reaches the specified amount,
Turbine 13 begins to rotate.

第2図は水・蒸気状態図であり、超臨界圧(246にり
/cm2t 程度)に維持されている火炉水冷壁6の出
口流体温度が、低圧(70K!/(7)21程度)で運
転されている過熱器9の入口において乾き蒸気となる温
度(約415°C程度)まで上昇すれば、気水分離器1
6ではドレンの発生がなくなることを示している。
Figure 2 is a water/steam phase diagram, showing that the outlet fluid temperature of the water-cooled wall 6 of the furnace, which is maintained at supercritical pressure (about 246 N/cm2t), is at low pressure (about 70K!/(7)21). If the temperature rises to dry steam (approximately 415°C) at the inlet of the operating superheater 9, the steam separator 1
6 indicates that no condensate is generated.

ドレンの発生がなくなれば起動用抽気弁15を閉じ、ボ
イラ絞ジバイパス弁8を開き、矢にボイラ絞V升7を開
いて、火炉水冷ki6の圧力を一定圧力に維持しつつ、
約30%負荷において過熱器圧力を火炉圧力と同一の定
格圧力(246Ky/cm2y程度)にすべく昇圧のた
め負荷上昇を開始する。
When no condensate is generated, close the startup bleed valve 15, open the boiler throttle bypass valve 8, and open the boiler throttle V-sho 7 to maintain the pressure of the furnace water cooling ki6 at a constant pressure.
At approximately 30% load, the load begins to increase in order to increase the superheater pressure to the same rated pressure (approximately 246 Ky/cm2y) as the furnace pressure.

昇圧に際し、過熱器圧力が亜臨界圧力以下の状態におい
ては、常に過熱器人口蒸気を乾き蒸気とすべく火炉水冷
壁出口流体温度を保持しなければならない。ボイラ収り
バイパス升8が全開となり、矢に収り升7が全開となっ
て、過熱器圧力が定格に達すれば、蒸気温度制御卸5P
21を使用して注水管30からの給水を減温器10へ供
給し、蒸気温度を制御しつつ定圧貫流運転に移る。
During pressurization, when the superheater pressure is below the subcritical pressure, the temperature of the fluid at the outlet of the furnace water-cooled wall must be maintained so that the superheater artificial steam becomes dry steam. When the boiler bypass square 8 is fully open, the boiler bypass square 7 is fully open, and the superheater pressure reaches the rated value, the steam temperature control wholesaler 5P
21 is used to supply water from the water injection pipe 30 to the desuperheater 10, and a constant pressure once-through operation is started while controlling the steam temperature.

なお、停止時は起動時の逆操作となるが考え万は基本的
に同一である。
Note that when stopping, the operation is the reverse of starting, but the idea is basically the same.

発明が解決しようとする問題点 上記のような従来の貫流ボイラ′Lは、次のよう4I′
1“6″・         を(11起動時において
、火炉水冷壁の圧力制御卸Z、ボイラ起動用抽気弁から
ボイラ絞ジバイパス升へ切換える際には、多数の組で構
成された低温過熱器伝熱面出口の温度不均衡を避けるた
め、過熱器人口蒸気が乾き状態となるまで火炉水冷壁出
口流体温度を昇温することが必要であるが、王蒸気温度
の過上昇防止の観点から燃料投入量が制約されるため、
急速起動が困難であった。
Problems to be Solved by the Invention The conventional once-through boiler 'L as described above has the following 4I'
1 "6". In order to avoid temperature imbalance at the outlet, it is necessary to raise the temperature of the furnace water-cooled wall outlet fluid until the superheater artificial steam becomes dry, but the amount of fuel input is Because it is restricted,
Rapid startup was difficult.

(2)  同様に、王蒸気温度の過上昇防止から設計燃
料(例えば直油ンと異なる火炉内熱吸収の悪い燃料(例
えば天然ガス)を用いる場合には、火炉水冷壁出口流体
温度が昇温不足となり、ボイラ起動用抽気弁からボイラ
絞りバイパス升へ切換えて運転することができず、起動
不可能な場合があった。    ゛ (3)  ボイラ絞りバイパス升への切換後の過熱器昇
圧および負荷上昇過程においても、亜臨界圧状態におい
ては過熱器入口蒸気を乾きに保つべく火炉水冷壁出口流
体温度を制御せねばならぬ之め負荷上昇速度および燃料
の違いによっては過熱器出口蒸気温度は規定値を越える
場合があった。
(2) Similarly, when using a design fuel (for example, a fuel with poor heat absorption in the furnace (such as natural gas) that is different from a direct oil tank) to prevent excessive rise in the temperature of the main steam, the temperature of the fluid at the outlet of the furnace water-cooled wall increases. In some cases, the boiler could not be started due to insufficient steam, and the boiler could not be started by switching from the boiler startup bleed valve to the boiler throttle bypass valve.゛(3) Superheater pressure increase and load after switching to the boiler throttle bypass valve Even during the rising process, the fluid temperature at the outlet of the water wall of the furnace must be controlled in order to keep the superheater inlet steam dry under subcritical pressure conditions. Therefore, depending on the load rise rate and the difference in fuel, the superheater outlet steam temperature may be regulated. There were cases where the value was exceeded.

問題点を解決するための手段 上記のような問題点を解決するために本発明では、給水
ポンプの下流側の給水管から注水管を分岐するとともに
、この注水管を蒸気管の途中に設けられた減温器に連結
した貫流ボイラにおいて、火炉水冷壁の出口からの加熱
流体が供給される気水分離器に連結されたドレン管の途
中から第2の注水管を分岐するとともに、この第2の注
水管を前記減温器に連結して成る貫流ボイラを提供する
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, a water injection pipe is branched from the water supply pipe on the downstream side of the water supply pump, and this water injection pipe is provided in the middle of the steam pipe. In a once-through boiler connected to a desuperheater, a second water injection pipe is branched from the middle of a drain pipe connected to a steam-water separator to which heating fluid from the outlet of the furnace water-cooled wall is supplied. A once-through boiler is provided in which a water injection pipe is connected to the attemperator.

作用 上記の手段によれば、タービンへの通気および発電開始
以降の過熱器系統の昇圧・負荷上昇過程においても、起
動系統を使用でき、気水分離器で分離したドレンを、低
温過熱器を出た過熱蒸気と混合することにより、節炭器
人口給水流量にほぼ等しい主蒸気流量を得ることが可能
となるため、主蒸気流量および過熱器出口の蒸気温度に
見合った燃料を投入することによって、急速起動が可能
となる。
Effect: According to the above means, the startup system can be used even during the pressure increase and load increase process of the superheater system after ventilation to the turbine and the start of power generation, and the drain separated by the steam separator can be used to exit the low-temperature superheater. By mixing the superheated steam with the superheated steam, it is possible to obtain a main steam flow rate that is almost equal to the artificial water supply flow rate of the energy saver. Rapid startup is possible.

実症例 以下本発明の一実施例について詳細に説明する。Actual case An embodiment of the present invention will be described in detail below.

第1図は本発明に係る貫流ボイラの一実施例の系統図で
あり、第3図に示した従来のコンバインドサーキュレー
ション形貫流ボイラと同一部分には同一符号を附しであ
るので、その部分の説明は省略し、第3図と異なる本発
明の特徴的な部分について説明する。
FIG. 1 is a system diagram of an embodiment of a once-through boiler according to the present invention, and the same parts as those of the conventional combined circulation type once-through boiler shown in FIG. 3 are given the same reference numerals. The description of this will be omitted, and the characteristic parts of the present invention that are different from those in FIG. 3 will be described.

先ず、本実施例では、従来、ボイラ絞!ll弁7に並列
に接続されていたボイラ絞クバイパス升8を、ボイラ起
動用抽気弁15と並列接続するように変更しである。そ
して、気水分離器16のドレン管31から注水管32を
分岐させ、その先端を過熱器注水弁22を介して減温器
10に接続しである。
First, in this example, conventional boiler throttling! The boiler throttle bypass box 8, which was connected in parallel to the 11 valve 7, was changed to be connected in parallel to the boiler startup bleed valve 15. A water injection pipe 32 is branched from the drain pipe 31 of the steam separator 16, and its tip is connected to the desuperheater 10 via the superheater water injection valve 22.

1f!:、、ドレン管31はドレン弁17の上流側にお
いて、脱気器入口ドレン弁23を介して脱気器1に連続
しである。
1f! The drain pipe 31 is connected to the deaerator 1 via the deaerator inlet drain valve 23 on the upstream side of the drain valve 17.

このように・溝底した本発明の貫流ボイラにおいて、タ
ービンへの通気および発電開始までの操作ハ、従来のコ
ンバインドサーキュレーション形質流ボイラと同一であ
るため、それ以後の操作について説明する。
In the once-through boiler of the present invention having such a groove bottom, the operations from ventilating the turbine to starting power generation are the same as those of the conventional combined circulation plasma flow boiler, so the subsequent operations will be explained.

タービン13での発電開始以降、火炉水冷壁6の出口流
体温度の上昇に合わせて、気水分離器16からのドレン
の流出光を、復水器14から過熱器11側へ移行させる
ために、ドレン9P17を絞り、過熱器注水弁22を開
くようにする。火炉水冷壁6の出口流体温度が390〜
400°C程度となれば、気水分離器16からのドレン
tは気水分離器入口蒸気量の7〜15%程度にまで減少
するため、はぼ全量を過熱器11側へ注水する。ドレン
弁17が閉じれば、起動圧力制御弁18も閉じて、過熱
器の昇圧および負荷上昇を開始するが、過渡的に発生す
る過剰なドレンは、脱気器入口ドレン弁23より脱気器
1へ流し熱回収を図る。
After the start of power generation in the turbine 13, in accordance with the rise in the outlet fluid temperature of the furnace water-cooled wall 6, in order to shift the drain light from the steam-water separator 16 from the condenser 14 to the superheater 11 side, Squeeze the drain 9P17 and open the superheater water injection valve 22. The outlet fluid temperature of the furnace water-cooled wall 6 is 390~
When the temperature reaches about 400°C, the drain t from the steam separator 16 decreases to about 7 to 15% of the steam amount at the steam separator inlet, so almost the entire amount is injected into the superheater 11 side. When the drain valve 17 closes, the starting pressure control valve 18 also closes to start increasing the pressure and load of the superheater. To recover heat.

ボイラ起動用抽気弁15が全開となれば、ボイラ絞クバ
イパス升8を使用し、火炉水冷壁圧力を制御する。すな
わち、過熱器圧力が150〜200Ky/cm2i 程
度となれば、気水分離器16の入口蒸気が乾き蒸気とな
るため、ボイラ絞りバイパス升8が全開となった時点で
ボイラ絞り升7へ火炉水冷壁6の圧力制御を移行させ、
ボイラ絞ジ升7の出口蒸気を直接過熱器9へ流すように
ボイラ絞ジff7を制御する。以後、従来のコンバイン
ドサーキュレーション形貫流ボイラと同一の運転となる
When the boiler startup bleed valve 15 is fully opened, the boiler throttle bypass box 8 is used to control the furnace water wall pressure. That is, when the superheater pressure is about 150 to 200 Ky/cm2i, the inlet steam of the steam-water separator 16 becomes dry steam, so when the boiler throttle bypass square 8 is fully opened, the furnace water cooling is transferred to the boiler throttle square 7. Shifting the pressure control of the wall 6,
The boiler throttle ff7 is controlled so that the steam at the outlet of the boiler throttle box 7 flows directly to the superheater 9. After that, the operation will be the same as that of a conventional combined circulation type once-through boiler.

発明の効果 以上詳述したように、本発明によれば、タービンでの発
電開始以降の過熱器系統の昇圧過程においても、起動系
統を利用して、気水分離器で分離したドレンを、低温過
熱器を出た過熱蒸気に混合するようにすれば、節炭器入
口給水流量にほぼ等しい主蒸気流量を得ることが可能と
なるため、主蒸気流量および過熱器出口蒸気温度に見会
った燃料の投入により急速起動が可能となジ、起動時間
が短縮される。
Effects of the Invention As detailed above, according to the present invention, even in the step of boosting the pressure of the superheater system after the start of power generation with the turbine, the startup system is used to convert the condensate separated by the steam water separator into a low-temperature state. By mixing the superheated steam that exits the superheater, it is possible to obtain a main steam flow rate that is approximately equal to the water supply flow rate at the inlet of the economizer. With the introduction of , rapid startup is possible and the startup time is shortened.

また従来、火炉熱吸収が悪く主蒸気温度の過上昇防止か
ら、火炉水冷壁出口流体温度が昇温不足とな9起動不可
能なことが起るために使用できなかった燃料を使用して
も、気水分離器で分離したドレンを低温過熱器出口へ導
くことにより、主蒸気流量および過熱器出口蒸気温度に
見合った燃料を投入して、起動や停止を可能とすること
ができる。     ・ 更に、通常気水分離可能な蒸気圧力は約200陛/cr
n’f 程度以下であること、又火炉水冷壁出口流体温
度が390°C程度あれば気水分離器人口蒸気は乾き蒸
気となることから、過熱器王刀が200にり/crn2
y 程度となれはボイラ絞!l1升出口蒸気を直接過熱
器人口へ導くことにより、従来とまったく同様の運転が
可能であり、従来に比較し定常運転時の圧力損失も増加
しない。なお、火炉水冷壁出口流体温度が高ければ、よ
り低い圧力において気水分離器人口蒸気は乾き蒸気とな
るため、200KP/cm 2i  以下の圧力におい
てボイラ級ジ升出ロ蒸気を直接過熱器人口へ導くことも
可能である。
In addition, in the past, the use of fuel that could not be used due to poor heat absorption in the furnace and preventing the main steam temperature from rising excessively caused the fluid temperature at the outlet of the water-cooled wall of the furnace to rise insufficiently, resulting in failure to start. By guiding the drain separated by the steam-water separator to the outlet of the low-temperature superheater, it is possible to input fuel commensurate with the main steam flow rate and the superheater outlet steam temperature to enable startup and shutdown.・ Furthermore, the steam pressure that can normally separate steam and water is approximately 200 K/cr.
n'f or less, and if the fluid temperature at the outlet of the water-cooled wall of the furnace is about 390°C, the artificial steam in the steam-water separator will become dry steam, so the superheater will be 200/crn2.
If it's about y, the boiler should be throttled! By directing the steam at the 11-liter outlet directly to the superheater, it is possible to operate in exactly the same way as in the past, and the pressure loss during steady operation does not increase compared to the past. Furthermore, if the temperature of the fluid at the outlet of the water-cooled wall of the furnace is high, the steam from the steam separator becomes dry steam at a lower pressure. It is also possible to guide

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る貫流ボイラの一実抱例を示す系統
図、第2図は水・蒸気状、西回、第3図は従来のコンバ
インドサーキュレーション形貫流ボイラの系統図である
。 】・・脱気器、4・・節炭器、6・・火炉水冷壁、7・
・ボイラ絞V升、8・・ボイラ絞りバイパス升、9・・
低温過熱器、10・・減温器、11・・高温過熱器、1
3・・タービン、14Φ・復水器、15・・起動用抽気
弁、16・・気水分離器、21・・蒸気温度制御弁、2
2・・過熱器注水弁、30・・注水管、31・・ドレン
管、32・・注水管。 (ほか1名)
FIG. 1 is a system diagram showing an actual example of a once-through boiler according to the present invention, FIG. 2 is a system diagram of a water/steam type once-through boiler, and FIG. 3 is a system diagram of a conventional combined circulation type once-through boiler. ]... Deaerator, 4... Energy saver, 6... Furnace water cooling wall, 7...
・Boiler throttle V square, 8... Boiler throttle bypass square, 9...
Low temperature superheater, 10... Desuperheater, 11... High temperature superheater, 1
3...Turbine, 14Φ・Condenser, 15...Start-up bleed valve, 16...Steam water separator, 21...Steam temperature control valve, 2
2. Superheater water injection valve, 30. Water injection pipe, 31. Drain pipe, 32. Water injection pipe. (1 other person)

Claims (1)

【特許請求の範囲】[Claims]  給水ポンプの下流側の給水管から注水管を分岐すると
ともに、この注水管を蒸気管の途中に設けられた減温器
に連結した貫流ボイラにおいて、火炉水冷壁の出口から
の加熱流体が供給される気水分離器に連結されたドレン
管の途中から第2の注水管を分岐するとともに、この第
2の注水管を前記減温器に連結して成る貫流ボイラ。
In a once-through boiler, a water injection pipe is branched from the water supply pipe on the downstream side of the feed water pump, and this water injection pipe is connected to a desuperheater installed in the middle of the steam pipe.Heating fluid from the outlet of the furnace water wall is supplied to the once-through boiler. A once-through boiler in which a second water injection pipe is branched from the middle of a drain pipe connected to a steam/water separator, and the second water injection pipe is connected to the attemperator.
JP2470887A 1987-02-06 1987-02-06 Once-through boiler Pending JPS63194110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2470887A JPS63194110A (en) 1987-02-06 1987-02-06 Once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2470887A JPS63194110A (en) 1987-02-06 1987-02-06 Once-through boiler

Publications (1)

Publication Number Publication Date
JPS63194110A true JPS63194110A (en) 1988-08-11

Family

ID=12145674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2470887A Pending JPS63194110A (en) 1987-02-06 1987-02-06 Once-through boiler

Country Status (1)

Country Link
JP (1) JPS63194110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156552A (en) * 2007-12-27 2009-07-16 Chugoku Electric Power Co Inc:The Leakage inspection method for high pressure feed water heater
WO2015146403A1 (en) * 2014-03-28 2015-10-01 株式会社神戸製鋼所 Generator device
JP2016506489A (en) * 2012-12-12 2016-03-03 エヌエーエム エナジー ベー.フェー.Nem Energy B.V. Heat exchange system and method for starting the heat exchange system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156552A (en) * 2007-12-27 2009-07-16 Chugoku Electric Power Co Inc:The Leakage inspection method for high pressure feed water heater
JP2016506489A (en) * 2012-12-12 2016-03-03 エヌエーエム エナジー ベー.フェー.Nem Energy B.V. Heat exchange system and method for starting the heat exchange system
US9765651B2 (en) 2012-12-12 2017-09-19 Nem Energy B.V. Heat exchange system and method for starting-up such a heat exchange system
WO2015146403A1 (en) * 2014-03-28 2015-10-01 株式会社神戸製鋼所 Generator device
JP2015190364A (en) * 2014-03-28 2015-11-02 株式会社神戸製鋼所 Power generation system
CN106460546A (en) * 2014-03-28 2017-02-22 株式会社神户制钢所 Generator device

Similar Documents

Publication Publication Date Title
US4693086A (en) Steam turbine plant having a turbine bypass system
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
US3277651A (en) Steam power plant including a forced flow steam generator and a reheater
US3286466A (en) Once-through vapor generator variable pressure start-up system
GB1073581A (en) Improvements in and relating to start-up or low load operation of forced-flow once-through steam generating units
US3019774A (en) Once-through vapor generator
US3374621A (en) Gas turbine auxiliary for steam power plants
CA2055323C (en) Supercritical pressure boiler with separator and recirculating pump for cycling service
US3055181A (en) Method of operating a power plant system
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JPS63194110A (en) Once-through boiler
US3313111A (en) Startup system for a once through steam generator including a startup balancing heatexchanger
US3255735A (en) Once-through, forced-flow boilers
JPH10292902A (en) Main steam temperature controller
US3366093A (en) Start-up system for once-through vapor generators
JP2001508164A (en) Operation method of forced circulation boiler and boiler to which the method is applied
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JPS63169401A (en) Method of operating combined plant
JPS6149486B2 (en)
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
US3472207A (en) Start-up system for once through boilers
JP2708406B2 (en) Startup control method for thermal power plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
US3242678A (en) Apparatus and method for obtaining high temperature low pressure vapor from a high temperature high pressure vapor source