JPS63687B2 - - Google Patents

Info

Publication number
JPS63687B2
JPS63687B2 JP3160380A JP3160380A JPS63687B2 JP S63687 B2 JPS63687 B2 JP S63687B2 JP 3160380 A JP3160380 A JP 3160380A JP 3160380 A JP3160380 A JP 3160380A JP S63687 B2 JPS63687 B2 JP S63687B2
Authority
JP
Japan
Prior art keywords
amount
furnace
air
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3160380A
Other languages
Japanese (ja)
Other versions
JPS56130506A (en
Inventor
Akira Sugano
Sachio Yamanobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP3160380A priority Critical patent/JPS56130506A/en
Publication of JPS56130506A publication Critical patent/JPS56130506A/en
Publication of JPS63687B2 publication Critical patent/JPS63687B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 近年、火力プラントにおいては中間負荷的運用
がなされ、それに伴ない、主機への影響が少なく
起動・停止の容易な制御方式が要求されている。
それに応えるべくこれまで運転モードをパラメー
タに、負荷要求信号により燃料量をプログラム制
御する方式であつた主蒸気温度は、マイクロコン
ピユータの導入により、最適制御が可能となつ
た。しかし再熱蒸気温度制御方式については積極
的な改善策がなく、主蒸気温度の最適制御のしわ
よせ的に、ある意味で無制御状態となり、起動時
の再熱蒸気温度の上昇となつているのが現状であ
る。本発明では、主蒸気温度には影響を与えず
に、つまり火炉の燃焼パターンを変える事なく、
起動時の再熱蒸気温度の上昇を抑制する制御方式
を提供する。
DETAILED DESCRIPTION OF THE INVENTION In recent years, thermal power plants have been operated under intermediate loads, and as a result, there has been a demand for a control system that has less influence on the main engine and is easy to start and stop.
In response to this, the introduction of a microcomputer has made it possible to optimally control the main steam temperature, which until now had been a method of programmatically controlling the fuel amount using the load request signal using the operating mode as a parameter. However, there are no proactive measures to improve the reheat steam temperature control system, and as a result of the lack of optimal control of the main steam temperature, the system is in a sense uncontrolled, resulting in an increase in the reheat steam temperature at startup. is the current situation. In the present invention, without affecting the main steam temperature, that is, without changing the combustion pattern of the furnace,
Provides a control method that suppresses the rise in reheat steam temperature at startup.

第1図に本発明により制御されるプラントの構
成の概略の一例を示す。図において、1は火炉、
2はバーナ、3は風箱、4は風箱風量制御ダン
パ、5は押込通風フアン、6はFDF入口ベーン、
7は調節弁、8は調節弁、9は二次過熱器、10
は二次再熱器、11は一次再熱器、12は一次過
熱器、13は節炭器、14は蒸発管、15は高圧
タービン加減弁、16は高圧タービン、17は中
圧タービン加減弁、18は中圧タービン、19は
ガス再循環フアン出口ダンパ、20はガス再循環
フアンである。
FIG. 1 shows an example of a schematic configuration of a plant controlled by the present invention. In the figure, 1 is a furnace;
2 is a burner, 3 is a wind box, 4 is a wind box air volume control damper, 5 is a forced ventilation fan, 6 is an FDF inlet vane,
7 is a control valve, 8 is a control valve, 9 is a secondary superheater, 10
1 is a secondary reheater, 11 is a primary reheater, 12 is a primary superheater, 13 is an economizer, 14 is an evaporator pipe, 15 is a high pressure turbine control valve, 16 is a high pressure turbine, 17 is an intermediate pressure turbine control valve , 18 is an intermediate pressure turbine, 19 is a gas recirculation fan outlet damper, and 20 is a gas recirculation fan.

プラント起動時においては、再熱器10,11
を通る主蒸気流量が少ないために、再熱蒸気温度
はガス流体と管内流体の熱交換によるものよりも
主としてガス温度に支配され、温度上昇が急とな
る傾向が見られる。ランピング開始後状態が安定
すると主蒸気温度と再熱蒸気温度の差はほぼ一定
のまま温度上昇が行なわれるが、主蒸気温度高防
止対策のための主蒸気温度保持帯で、再熱蒸気温
度だけが上昇し、主蒸気温度との差が縮まる。再
熱蒸気温度がピークとなるのは負荷が20%前後の
時でありプラントによる差異はさほど見られな
い。このように負荷20%付近における再熱蒸気温
度の上昇を抑制する為には、火炉内ガス温度を低
下させる以外に方法はない。火炉内ガス温度を低
下させる方法として、併入前の再循環ガス量を多
くする事が効果的である。従来の再循環ガス量制
御は、ランピング時の再熱蒸気温度上昇を防止す
るために、開度プログラムを負荷10%付近までは
再循環ガス量を低減させる様設定している。しか
し前述のように負荷20%付近以下での熱交換パタ
ーンは再熱蒸気温度に関してはガス温度に起因す
る為、現状のGRF開度プログラムでは、起動時
の再熱蒸気温度上昇を抑制する事は困難である。
負荷20%付近以下の領域でガス温度を低減させ、
なおかつ負荷20%以上でのランピング時の再熱蒸
気温度の上昇を防止する為には、GRFガス量の
負荷運用パターンを主機特性に適応した方式に変
えることが必要と考えられる。
At the time of plant startup, the reheaters 10, 11
Because the main steam flow rate through the tube is small, the reheat steam temperature is dominated by the gas temperature rather than by heat exchange between the gas fluid and the pipe fluid, and the temperature tends to rise rapidly. When the condition stabilizes after the start of ramping, the temperature rises while the difference between the main steam temperature and the reheat steam temperature remains almost constant. increases, and the difference between the main steam temperature and the main steam temperature decreases. The reheat steam temperature peaks when the load is around 20%, and there is not much difference between plants. In this way, the only way to suppress the rise in reheat steam temperature near 20% load is to lower the gas temperature in the furnace. An effective way to lower the gas temperature in the furnace is to increase the amount of recirculated gas before it is added. In conventional recirculation gas amount control, the opening program is set to reduce the recirculation gas amount up to around 10% load in order to prevent a rise in reheated steam temperature during ramping. However, as mentioned above, the heat exchange pattern when the load is around 20% or less is due to the gas temperature regarding the reheat steam temperature, so with the current GRF opening program, it is not possible to suppress the reheat steam temperature rise at startup. Have difficulty.
Reduces gas temperature in the area below around 20% load,
Furthermore, in order to prevent the temperature of reheated steam from increasing during ramping at a load of 20% or more, it is considered necessary to change the load operation pattern of the GRF gas amount to a method that is compatible with the characteristics of the main engine.

即ち、従来の制御方式は主蒸気流量をパラメー
タに再熱蒸気温度を制御するのであるが、本発明
では負荷要求信号をパラメータにGRF開度プロ
グラムを関数発生器により作成し、この出力信号
を利用して起動時のGRFダンパ開度指令信号と
してガス量を増加させ、ガス温度の低減効果を得
るものである。もつとも、この様に併入前に再循
環ガス量を多く投入する事は火炉ガス温度の低減
に効果的であるが、一方火炉の熱吸収量を低減さ
せ、第1図12に示す一次過熱器入口流体温度制
御との兼合いより燃料量がやや増大し、火炉ガス
温度を上昇させるという相反する二面性をもつ。
したがつてこの二面性から適切な再循環ガス量を
決定する必要がある。したがつて現状の制御方式
において、主蒸気温度の上昇を抑えて、つまり現
用の火炉熱吸収量を変えずに、再熱蒸気温度の上
昇のみをGRFダンパによる再循環ガス量の制御
で抑制する事には限界があると考えられる。
That is, in the conventional control method, the reheat steam temperature is controlled using the main steam flow rate as a parameter, but in the present invention, a GRF opening program is created using a load request signal as a parameter using a function generator, and this output signal is used. This increases the amount of gas as a GRF damper opening command signal at startup, thereby achieving the effect of reducing gas temperature. Although it is effective to reduce the furnace gas temperature by injecting a large amount of recirculated gas before charging, it also reduces the amount of heat absorbed by the furnace, and the primary superheater shown in Fig. 12 This has two contradictory properties: the amount of fuel increases slightly due to inlet fluid temperature control, and the furnace gas temperature increases.
Therefore, it is necessary to determine an appropriate amount of recirculation gas from this duality. Therefore, in the current control method, the increase in main steam temperature is suppressed, that is, without changing the heat absorption amount of the existing furnace, only the increase in reheat steam temperature is suppressed by controlling the amount of recirculated gas using the GRF damper. It is thought that there are limits to things.

本発明は上記の欠点をなくし、火炉内熱吸収量
を変える事なく、つまり現用の火炉内燃焼パター
ンを変える事なく、起動時のガス温度を低減さ
せ、再熱蒸気温度の上昇を抑制するところにあ
る。
The present invention eliminates the above drawbacks, reduces the gas temperature at startup, and suppresses the rise in reheated steam temperature without changing the amount of heat absorption in the furnace, that is, without changing the combustion pattern in the existing furnace. It is in.

以下、本発明を具体的に説明する。 The present invention will be specifically explained below.

第2図は本発明を実施するための空気流量プロ
グラム風箱風量制御ダンパー開度のプログラムお
よび従来の空気量プログラムの例を夫々21,2
2および23で示す。第3図は本発明を実施する
ためのGRFダンパー開度のプログラムおよび従
来のGRFダンパー開度のプログラムの例を夫々
24,25で示す。第4図に従来の空気量制御
(FDF入口ベーン開度制御)のブロツク図を示
し、第5図に、第4図をベースとし、これを一部
修正した形の本発明の実施例にかかる空気量制御
のブロツク図を示す。第6図に従来のGRFダン
パー制御のブロツク図を示し、第7図に本発明の
実施例にかかるGRFダンパー制御のブロツク図
を示す。
FIG. 2 shows examples of an air flow rate program for carrying out the present invention, a wind box air volume control damper opening degree program, and a conventional air flow program, respectively.
2 and 23. FIG. 3 shows an example of a GRF damper opening degree program for carrying out the present invention and a conventional GRF damper opening degree program at 24 and 25, respectively. Fig. 4 shows a block diagram of conventional air amount control (FDF inlet vane opening control), and Fig. 5 shows an embodiment of the present invention based on Fig. 4 with some modifications. A block diagram of air volume control is shown. FIG. 6 shows a block diagram of conventional GRF damper control, and FIG. 7 shows a block diagram of GRF damper control according to an embodiment of the present invention.

夫々の図における符号は次の通りである。 The symbols in each figure are as follows.

26は関数発生器、27は乗算器、28はアナ
ログメモリー、29は比例積分器、30はミニマ
ム開度設定回路、31は高値選択器、32は信号
発生器、33はアナログメモリー、34は切替
器、35は電圧/電流変換器、36は電空変換
器、37はFDF入口ベーンコントロールドライ
ブ、38は加算+バイアス器、39は高値選択
器、40は空気流量発信器、41はボイラマスタ
ー信号、42は再熱蒸気温度発信器、43は関数
発生器、44は関数発生器、45は関数発生器、
46は関数発生器、47は比例積分器、48は低
値選択器、49は高値選択器、50はアナログメ
モリ、51は切替器、52は主蒸気流量検出開発
信器、53は全空気量検出開発信器、54は関数
発生器、55は乗算器、56はアナログメモリ
ー、57は比例積分器、58は高値選択器、59
は信号発生器、60はアナログメモリー、61は
関数発生器、62は高値選択器、63は加算器、
64は関数発生器、65は関数発生器、66は風
箱空気量検出用発信器、67は高値選択器、68
は信号発生器、69は切替器、70は燃料制御回
路、71は負荷要求信号、72はボイラマスター
信号、73は主蒸気流量検出用発信器、74は再
熱蒸気温度検出用発信器、75は関数発生器、7
6は関数発生器、77は関数発生器、78は関数
発生器、79は比例積分器、80は低値選択器、
81は高値選択器、82は関数発生器、83はア
ナログメモリー、84は切替器、85は負荷要求
信号である。
26 is a function generator, 27 is a multiplier, 28 is an analog memory, 29 is a proportional integrator, 30 is a minimum opening setting circuit, 31 is a high value selector, 32 is a signal generator, 33 is an analog memory, 34 is a switch 35 is a voltage/current converter, 36 is an electro-pneumatic converter, 37 is an FDF inlet vane control drive, 38 is an addition + bias device, 39 is a high value selector, 40 is an air flow transmitter, 41 is a boiler master signal , 42 is a reheat steam temperature transmitter, 43 is a function generator, 44 is a function generator, 45 is a function generator,
46 is a function generator, 47 is a proportional integrator, 48 is a low value selector, 49 is a high value selector, 50 is an analog memory, 51 is a switch, 52 is a main steam flow rate detection development signal, 53 is a total air amount Detection and development signal, 54 is a function generator, 55 is a multiplier, 56 is an analog memory, 57 is a proportional integrator, 58 is a high value selector, 59
is a signal generator, 60 is an analog memory, 61 is a function generator, 62 is a high value selector, 63 is an adder,
64 is a function generator, 65 is a function generator, 66 is a wind box air amount detection transmitter, 67 is a high value selector, 68
is a signal generator, 69 is a switch, 70 is a fuel control circuit, 71 is a load request signal, 72 is a boiler master signal, 73 is a main steam flow rate detection transmitter, 74 is a reheat steam temperature detection transmitter, 75 is a function generator, 7
6 is a function generator, 77 is a function generator, 78 is a function generator, 79 is a proportional integrator, 80 is a low value selector,
81 is a high value selector, 82 is a function generator, 83 is an analog memory, 84 is a switch, and 85 is a load request signal.

FDF入口ベーンの開度制御について説明する
と、従来空気量を第2図のカーブ23に示したよ
うに負荷の上昇に伴ないそれに比例して空気量を
増加させたのに対し、本発明では第2図のカーブ
21に示すように起動時一時的に空気量を増加さ
せる。ここでカーブ23に示す従来の空気量に対
しての増加分空気量は第1図に示す風箱3より炉
内に注入させる。ここで風箱3を現用通り最低開
度に保持させた状態で空気量を増大させた場合、
空気量の増加分はすべて点火していないバーナの
エアレジスタより火炉内に注入される事になり、
火炉での熱吸収量が低減し、一次過熱器12の入
口流体温度の兼合いにより、燃料量がやや増大す
る傾向となる為、火炉ガス温度の低減効果は減少
すると考えられる。したがつて風箱風量制御ダン
パ開度の設定は第2図のカーブ22に示すよう
に、行ない、オープンエアレジスタ制御が正常に
作動できる範囲に限定し、現運用と同じ状態とな
るよう調整する。
To explain the opening degree control of the FDF inlet vane, whereas in the past the air amount was increased in proportion to the increase in load as shown by curve 23 in Figure 2, in the present invention As shown by curve 21 in Figure 2, the amount of air is temporarily increased at startup. Here, the increased amount of air relative to the conventional air amount shown by curve 23 is injected into the furnace from the wind box 3 shown in FIG. Here, if the air volume is increased while the wind box 3 is held at the minimum opening as currently used,
All the increased amount of air will be injected into the furnace from the air register of the unlit burner.
Since the amount of heat absorbed by the furnace is reduced and the inlet fluid temperature of the primary superheater 12 is balanced, the amount of fuel tends to increase slightly, so it is thought that the effect of reducing the furnace gas temperature will decrease. Therefore, set the wind box air volume control damper opening degree as shown in curve 22 in Figure 2, limit it to the range where open air register control can operate normally, and adjust it so that it is the same as the current operation. .

次に空気量制御を説明する。従来の空気量制御
は、ボイラマスター信号72により空気量設定値
を作成し、フイードバツク値である空気量との偏
差を例積分器57を通してFDF入口ベーン6の
開度指令信号としていた。本発明では、負荷要求
信号71をパラメータにして、関数発生器61に
よりプログラムを作成し、起動時増加分の空気量
を設定する。ここで関数発生器61によるプログ
ラムは前述のように第2図のカーブ21に示す如
くする。関数発生器61により出力された信号
は、従来のボイラーマスター信号より作成された
空気量設定信号と高値選択器62により比較され
る形となる。起動時空気量は一時的に従来量より
も多く投入する為、関数発生器61の出力信号
は、高値選択器67の出力信号よりも大きい。し
たがつて起動時の空気量増加分の信号は加算器6
3によつて検出する事が可能である。増加分の空
気量を風箱3から火炉内に注入する為には、加算
器63により検出した信号、すなわち増加分空気
量に見合つた風箱風量制御ダンパ4の開度を設定
すれば良い。これを関数発生器64により行な
う。この風箱風量制御ダンパ4の開度プログラム
は第2図に示すカーブ22の様に設定する。64
の出力信号を風箱風量制御ダンパ開度目標設定信
号とし、風箱空気量検出器66により検出された
信号を関数発生器65により風箱風量制御ダンパ
開度に変換して、フイードバツク信号とした信号
との偏差をとり、この信号を風箱風量制御ダンパ
開度指令信号とする。これにより、起動時一時的
に増加した空気量は風箱から火炉内に注入され、
火炉内の熱吸収量を変える事なく、ガス温度の低
減効果を得る事ができる様になる。したがつて負
荷20%付近における再熱蒸気温度の上昇を防止す
る事が可能となる。
Next, air amount control will be explained. In conventional air amount control, an air amount set value is created using a boiler master signal 72, and the deviation from the air amount, which is a feedback value, is passed through an integrator 57 and used as an opening degree command signal for the FDF inlet vane 6. In the present invention, a program is created by the function generator 61 using the load request signal 71 as a parameter, and the increased amount of air at startup is set. Here, the program by the function generator 61 is as shown by the curve 21 in FIG. 2, as described above. The signal output by the function generator 61 is in a form that is compared by the high value selector 62 with an air amount setting signal created from a conventional boiler master signal. Since the amount of air at startup is temporarily larger than the conventional amount, the output signal of the function generator 61 is larger than the output signal of the high value selector 67. Therefore, the signal for the increase in air amount at startup is sent to adder 6.
It is possible to detect it by 3. In order to inject the increased amount of air into the furnace from the wind box 3, it is sufficient to set the opening degree of the wind box air volume control damper 4 commensurate with the signal detected by the adder 63, that is, the increased amount of air. This is done by a function generator 64. The opening degree program of the wind box air volume control damper 4 is set as shown in the curve 22 shown in FIG. 64
The output signal is used as a wind box air volume control damper opening target setting signal, and the signal detected by the wind box air amount detector 66 is converted into a wind box air volume control damper opening degree by a function generator 65, and is used as a feedback signal. The deviation from the signal is taken and this signal is used as the wind box air volume control damper opening command signal. As a result, the amount of air that temporarily increased during startup is injected into the furnace from the wind box,
It becomes possible to obtain the effect of reducing the gas temperature without changing the amount of heat absorption in the furnace. Therefore, it is possible to prevent the temperature of reheated steam from increasing at around 20% load.

第6図,第7図に示すGRFダンパ開度の制御
の考え方は、先にも述べたように従来の制御方式
は主蒸気流量をパラメータに再熱蒸気温度を制御
するのであるが、本発明では負荷要求信号をパラ
メータにGRF開度プログラムを関数発生器によ
り作成し、この出力信号を利用して起動時の
GRFダンパ開度指令信号としてガス量を増加さ
せるものとされている。
The concept of controlling the GRF damper opening shown in FIGS. 6 and 7 is that, as mentioned earlier, the conventional control method controls the reheat steam temperature using the main steam flow rate as a parameter, but the present invention Now, create a GRF opening program using a function generator using the load request signal as a parameter, and use this output signal to control the opening at startup.
The GRF damper opening command signal is used to increase the gas amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用される火力プラントの例
を示す構成図、第2図,第3図は関数発生器のプ
ログラム信号の例、第4図,第5図は空気量制御
の従来例、本発明の実施例を示すブロツク図、第
6図,第7図はGRFダンパー開制御の従来例、
本発明の実施例を示すブロツク図である。 1…火炉、2…バーナ、3…風箱、4…風箱風
量制御ダンパ、5…押込通風フアン、6…FDF
入口ベーン、7…調節弁、8…調節弁、9…二次
過熱器、10…二次再熱器、11…一次再熱器、
12…一次過熱器、13…節炭器、14…蒸発
器、15…高圧タービン加減弁、16…高圧ター
ビン、17…中圧タービン加減弁、18…中圧タ
ービン、19…ガス再循環フアン出口ダンパ、2
0…ガス再循環フアン。
Figure 1 is a configuration diagram showing an example of a thermal power plant to which the present invention is applied, Figures 2 and 3 are examples of program signals for a function generator, and Figures 4 and 5 are conventional examples of air volume control. , a block diagram showing an embodiment of the present invention, FIGS. 6 and 7 are conventional examples of GRF damper opening control,
1 is a block diagram showing an embodiment of the present invention. FIG. 1... Furnace, 2... Burner, 3... Wind box, 4... Wind box air volume control damper, 5... Push-in ventilation fan, 6... FDF
Inlet vane, 7... Control valve, 8... Control valve, 9... Secondary superheater, 10... Secondary reheater, 11... Primary reheater,
12... Primary superheater, 13... Economizer, 14... Evaporator, 15... High pressure turbine control valve, 16... High pressure turbine, 17... Intermediate pressure turbine control valve, 18... Intermediate pressure turbine, 19... Gas recirculation fan outlet Damper, 2
0...Gas recirculation fan.

Claims (1)

【特許請求の範囲】[Claims] 1 ボイラプラントの起動時、負荷要求信号によ
り、一時的に空気量を増加させ、増加分の空気量
を風箱から外炉へ注入することにより火炉内熱吸
収量を変えずにガス温度の低減をはかり、再熱蒸
気温度の上昇を防止する手段と、負荷要求信号の
プログラムにより再循環ガス量を増加させ火炉ガ
ス温度の低減により再熱蒸気温度の上昇を防止す
る手段を備えたことを特徴とする起動時の再熱蒸
気温度制御装置。
1 When starting up the boiler plant, the amount of air is temporarily increased in response to a load request signal, and the increased amount of air is injected from the wind box into the outer furnace, thereby reducing the gas temperature without changing the amount of heat absorption in the furnace. and a means for preventing a rise in reheat steam temperature by increasing the amount of recirculated gas and reducing the furnace gas temperature by programming a load request signal. Reheat steam temperature control device at startup.
JP3160380A 1980-03-14 1980-03-14 Reheated steam temperature controller at start-up Granted JPS56130506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3160380A JPS56130506A (en) 1980-03-14 1980-03-14 Reheated steam temperature controller at start-up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3160380A JPS56130506A (en) 1980-03-14 1980-03-14 Reheated steam temperature controller at start-up

Publications (2)

Publication Number Publication Date
JPS56130506A JPS56130506A (en) 1981-10-13
JPS63687B2 true JPS63687B2 (en) 1988-01-08

Family

ID=12335769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3160380A Granted JPS56130506A (en) 1980-03-14 1980-03-14 Reheated steam temperature controller at start-up

Country Status (1)

Country Link
JP (1) JPS56130506A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993104A (en) * 1982-11-18 1984-05-29 三菱重工業株式会社 Method of controlling gas recirculation ventilator
JPH0711300Y2 (en) * 1984-02-06 1995-03-15 バブコツク日立株式会社 Reheat steam temperature controller for starting boiler equipment
JP4859512B2 (en) * 2006-04-14 2012-01-25 中国電力株式会社 Combustion boiler control method

Also Published As

Publication number Publication date
JPS56130506A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
JPS6033971B2 (en) Control device for power generation equipment
JPS63687B2 (en)
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPS5933804B2 (en) Reheat steam temperature control device
JPH01212802A (en) Steam temperature control device for boiler
JP2764813B2 (en) Boiler start control device
JPS62245009A (en) Automatic controller for boiler
JPH0722563Y2 (en) Boiler equipment
JP2708592B2 (en) Boiler startup temperature rise control device
JPH02154902A (en) Steam temperature control system at time of starting plant
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JPS6235561B2 (en)
JPS588906A (en) Controller for temperature of steam reheated of boiler
JPH0563683B2 (en)
JPS6239657B2 (en)
JPH02130202A (en) Combined plant
JPS62206305A (en) Starting control system of thermal power plant
JP2645129B2 (en) Condensate recirculation flow control device
JPH01127806A (en) Boiler steam temperature controller
JPH0263121B2 (en)
JPH10311504A (en) Control device of once-trough boiler using enthalpy
JPS6235002B2 (en)
JPS6246103A (en) Boiler automatic controller
JPS60202A (en) Method of controlling temperature of reheated steam of boiler
JPH0238846B2 (en)