JP2511400B2 - Steam temperature control method for once-through boiler - Google Patents

Steam temperature control method for once-through boiler

Info

Publication number
JP2511400B2
JP2511400B2 JP18515485A JP18515485A JP2511400B2 JP 2511400 B2 JP2511400 B2 JP 2511400B2 JP 18515485 A JP18515485 A JP 18515485A JP 18515485 A JP18515485 A JP 18515485A JP 2511400 B2 JP2511400 B2 JP 2511400B2
Authority
JP
Japan
Prior art keywords
flow rate
boiler
bypass valve
steam temperature
basic fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18515485A
Other languages
Japanese (ja)
Other versions
JPS6246104A (en
Inventor
正 駒田
彰 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18515485A priority Critical patent/JP2511400B2/en
Publication of JPS6246104A publication Critical patent/JPS6246104A/en
Application granted granted Critical
Publication of JP2511400B2 publication Critical patent/JP2511400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は貫流ボイラの蒸気温度制御方式に係り、特に
プラント起動時の主蒸気温度の制御性を向上させた貫流
ボイラの蒸気温度制御方式に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam temperature control system for a once-through boiler, and more particularly to a steam temperature control system for a once-through boiler with improved controllability of the main steam temperature at plant startup.

〔発明の背景〕[Background of the Invention]

従来のこの種のボイラの蒸気温度制御方式は、例えば
“「計装」、1983年・増刊号、第113頁〜第115頁、「カ
ルマンフイルタを用いたボイラの蒸気温度予測制御」”
に記載されているように、貫流ボイラの蒸気温度制御に
つき、燃料プログラム値に対してn分後の蒸気温度目標
値と、n分後の蒸気温度予測値との偏差に比例積分の修
正量を加え、このようにして求めた値を基に燃料を制御
することにより、その蒸気温度を制御する方式である。
かかる方式によれば、運転パターンや燃料性状によるボ
イラの熱吸収量変化を先行的にとらえ、これを基に燃料
制御に補正を加えるものではなかつたため、蒸気温度制
御が充分でなかつた。
A conventional steam temperature control method for this type of boiler is, for example, “Instrumentation”, 1983, special issue, pages 113 to 115, “Boiler steam temperature predictive control using Kalman filter”.
As described in, in the steam temperature control of the once-through boiler, the correction amount of the proportional integral is added to the deviation between the steam temperature target value after n minutes and the steam temperature predicted value after n minutes with respect to the fuel program value. In addition, the vapor temperature is controlled by controlling the fuel based on the value thus obtained.
According to this method, the change in the heat absorption amount of the boiler due to the operation pattern and the fuel property is detected in advance, and no correction is made to the fuel control based on this, so that the steam temperature control is not sufficient.

〔発明の目的〕[Object of the Invention]

本発明は上述した点に鑑みてなされたものであり、そ
の目的は熱吸収量の変化による蒸気温度の変動を抑制し
てなる貫流ボイラの蒸気温度制御方式を提供することに
ある。
The present invention has been made in view of the above points, and an object thereof is to provide a steam temperature control method for a once-through boiler that suppresses fluctuations in steam temperature due to changes in heat absorption.

〔発明の概要〕[Outline of Invention]

上記目的を達成するため、本発明は、起動バイパス運
転中はボイラ供給給水流量を一定に制御し、該給水流量
とタービンへの送出蒸気流量との差分を起動バイパス弁
を開いてフラッシュタンクへ放出し、通常運転時は前記
起動バイパス弁を閉じる起動バイパスシステムを有し、
ボイラの基本燃料流量を前記タービンの負荷要求値に見
合って設定し主蒸気温度と該設定値の偏差により前記基
本燃料流量を修正する貫流ボイラの蒸気温度制御方式に
おいて、前記起動バイパス弁の開度を1次過熱器入口流
体の圧力を規定値に制御し、前記起動バイパス弁の実開
度と前記負荷要求値に対応させて予め設定した前記起動
バイパス弁の設定値との偏差を求め、該偏差に応じて前
記基本燃料流量を修正することを特徴とする。
In order to achieve the above object, the present invention controls the boiler supply feed water flow rate during start-up bypass operation to be constant, and releases the difference between the feed water flow rate and the flow rate of steam delivered to the turbine to the flash tank by opening the start-up bypass valve. However, it has a startup bypass system that closes the startup bypass valve during normal operation,
In the steam temperature control method of the once-through boiler, in which the basic fuel flow rate of the boiler is set in accordance with the required load value of the turbine and the basic fuel flow rate is corrected by the deviation between the main steam temperature and the set value, the opening degree of the starting bypass valve By controlling the pressure of the primary superheater inlet fluid to a specified value, and obtaining the deviation between the actual opening degree of the startup bypass valve and the preset value of the startup bypass valve that is preset corresponding to the load demand value, The basic fuel flow rate is modified according to the deviation.

すなわち、ボイラの熱吸収量の変化があると、その変
化はいち早く1次過熱器入口流体の圧力に現われ、さら
にその圧力を規定値に制御する起動バイパス弁の開度変
化となって現われる。したがって、起動バイパス弁の開
度の変動に応じて基本燃料流量を修正することにより、
ボイラの熱吸収量の変化に応じて燃料流量を修正するこ
とができ、これにより主蒸気温度の変動を抑制すること
ができる。
That is, when there is a change in the amount of heat absorbed by the boiler, the change immediately appears in the pressure of the inlet fluid of the primary superheater, and further appears as a change in the opening degree of the startup bypass valve that controls the pressure to a specified value. Therefore, by correcting the basic fuel flow rate according to the fluctuation of the opening degree of the startup bypass valve,
The fuel flow rate can be corrected according to the change of the heat absorption amount of the boiler, and thus the fluctuation of the main steam temperature can be suppressed.

また、上記の基本燃料流量の修正に加えて、タービン
の抽気流量の増加に応じて基本燃料流量を修正すること
が好ましい。
Further, in addition to the correction of the basic fuel flow rate described above, it is preferable to correct the basic fuel flow rate according to an increase in the extraction flow rate of the turbine.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を図面に基づいて説明する。第
4図は本発明の実施例が適用されるプラントを示す系統
図である。1はボイラ、2は火路、3は押込通風機、4
は押込通風機入口ベーン、5は燃料タンク、6は重油ポ
ンプ、7は燃料ヒータ、8は燃料流量制御弁、9はバー
ナ、10は1次過熱器、11は再熱器、12は2次過熱器、13
は節炭器、14は過熱器止弁、15は過熱器減圧弁、16は減
温器、17は2次過熱器バイパス弁、18は1次過熱器バイ
パス弁、19は過熱器スプレー弁、20はフラツシユタン
ク、21はフラツシユタンク蒸気弁、22はタービンガバ
ナ、23は高圧タービン、24は低圧タービン、25は復水
器、26はフラツシユタンクドレン弁、27は脱気器蒸気
弁、28は高圧ヒータ蒸気弁、29は抽気過止弁、30は脱気
器、31は給水ポンプ、32は給水ヒータ、50は主蒸気温度
検出器、51は主蒸気圧力検出器、52は燃料流量検出器、
53は空気流量検出器、54は減温器出口蒸気温度検出器、
90は負荷測定値、100は制御装置、106は負荷要求値であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a system diagram showing a plant to which the embodiment of the present invention is applied. 1 is a boiler, 2 is a fire path, 3 is a forced draft fan, 4
Is a forced draft fan inlet vane, 5 is a fuel tank, 6 is a heavy oil pump, 7 is a fuel heater, 8 is a fuel flow control valve, 9 is a burner, 10 is a primary superheater, 11 is a reheater, and 12 is a secondary. Superheater, 13
Is a economizer, 14 is a superheater stop valve, 15 is a superheater pressure reducing valve, 16 is a desuperheater, 17 is a secondary superheater bypass valve, 18 is a primary superheater bypass valve, 19 is a superheater spray valve, 20 is a flush tank, 21 is a flush tank steam valve, 22 is a turbine governor, 23 is a high pressure turbine, 24 is a low pressure turbine, 25 is a condenser, 26 is a flush tank drain valve, and 27 is a deaerator steam valve. , 28 is a high pressure heater steam valve, 29 is a bleed stop valve, 30 is a deaerator, 31 is a water supply pump, 32 is a water heater, 50 is a main steam temperature detector, 51 is a main steam pressure detector, 52 is a fuel Flow rate detector,
53 is an air flow rate detector, 54 is a steam reducer outlet steam temperature detector,
90 is a load measurement value, 100 is a control device, and 106 is a load request value.

このようなプラントの作用を以下に述べる。 The operation of such a plant will be described below.

給水ポンプ31によりボイラに供給された水は、煙道に
おける燃焼ガスを利用した節炭器13で予熱され火炉2に
入る。火炉2を通過した流体は1次過熱器10及び2次過
熱器12において過熱蒸気とされ、タービンガバナ22をと
おり高圧タービン23に供給される。
The water supplied to the boiler by the water supply pump 31 is preheated by the economizer 13 using the combustion gas in the flue and enters the furnace 2. The fluid that has passed through the furnace 2 is turned into superheated steam in the primary superheater 10 and the secondary superheater 12, and is supplied to the high-pressure turbine 23 through the turbine governor 22.

火炉2を流れる給水は、水壁保護のため一定量(ボイ
ラの型式により異なるがボイラ定格の25%程度)以上の
給水を貫流させる必要がある。タービンを通過する蒸気
流量がこの一定量になる負荷まで、1次過熱器バイパス
弁18、2次過熱器バイパス弁17の、ラインを通し、一定
量の流量からタービン供給流量の差分をフラツシユタン
ク20に逃す運用が必要で、この状態を起動バイパス運転
と称している。フラツシユタンク20に流入した流体は、
フラツシユタンク蒸気弁21、フラツシユタンクドレン弁
26を通り復水器25に回収されたり、脱気器蒸気弁27を通
り脱気器30に回収される。発電機負荷が少く、抽気蒸気
圧力が低い場合においては、フラツシユタンク蒸気の一
部は高圧ヒータ蒸気弁28を通り給水ヒータ32に回収され
る。
In order to protect the water wall, the feed water flowing through the furnace 2 needs to flow through a certain amount or more (about 25% of the boiler rating, which depends on the boiler model). Through the line of the primary superheater bypass valve 18 and the secondary superheater bypass valve 17, the difference between the constant flow rate and the turbine supply flow rate is calculated by the flash tank until the steam flow rate passing through the turbine reaches this constant amount. Operation required to be missed at 20 is required, and this state is called startup bypass operation. The fluid flowing into the flush tank 20 is
Flash tank steam valve 21, flash tank drain valve
It is recovered by the condenser 25 through 26 or by the deaerator 30 through the deaerator steam valve 27. When the generator load is small and the extraction steam pressure is low, a part of the flash tank steam is recovered by the feed water heater 32 through the high pressure heater steam valve 28.

燃料系の一例として重油の場合を示すが、重油ポンプ
6で昇圧された重油は燃料ヒータ7で過熱され制御装置
100からの指令に基づき燃料流量制御弁8により流量制
御が行なわれバーナ9より火炉に噴霧燃焼される。
A case of heavy oil is shown as an example of the fuel system, but the heavy oil pressurized by the heavy oil pump 6 is overheated by the fuel heater 7 and the control device
Based on a command from 100, the fuel flow rate control valve 8 controls the flow rate, and the burner 9 causes spray combustion in the furnace.

一方、燃焼用空気は押込通風機3により炉内に投入さ
れる。この風量調整は制御装置100から指令に基づいて
押込通風機入口ベーン4でおこなわれる。
On the other hand, the combustion air is introduced into the furnace by the forced draft fan 3. This air volume adjustment is performed in the forced draft fan inlet vane 4 based on a command from the control device 100.

ところで、起動時の特性は第5図に示すとおりであ
り、燃料は負荷要求値106に見合つた量が投入され、タ
ービン入口の主蒸気圧力は過熱器減圧弁15で制御され昇
圧される。発電機負荷90は負荷要求値106と実負荷の偏
差により制御されるが、主蒸気圧力にほぼ比例して負荷
は上昇する。発電機負荷90に比例して1次,2次過熱器1
0,12を通過する蒸気量が増加する。第5図のAの領域が
起動バイパス領域で、ボイラ供給給水流量を一定にして
いるので、起動バイパス弁を通る流量はボイラ供給給水
流量から1次,2次過熱器を通過する蒸気量を差し引いた
ものになる。一次過熱器バイパス弁18は1次過熱器入口
圧力を規定値に制御する機能をもたせており徐々に閉す
る。過熱器減圧弁15の開度が90%に達すると過熱器止弁
14を全開させ、過熱減圧弁の役目が終る。この領域の蒸
気温度は燃料量変化に対して、無駄時間、遅れ時定数が
大で、(無駄時間5〜8分、遅れ時定数12分〜14分)フ
イードバツク制御が困難とされていた。
By the way, the characteristics at the time of start-up are as shown in FIG. 5, the fuel is supplied in an amount commensurate with the load demand value 106, and the main steam pressure at the turbine inlet is controlled by the superheater pressure reducing valve 15 to be boosted. The generator load 90 is controlled by the deviation between the load demand value 106 and the actual load, but the load rises almost in proportion to the main steam pressure. Primary and secondary superheaters 1 in proportion to generator load 90
The amount of steam passing through 0 and 12 increases. The area A in Fig. 5 is the start-up bypass area, and the boiler supply water flow rate is constant. Therefore, the flow rate through the start-up bypass valve is the boiler supply water flow rate minus the amount of steam passing through the primary and secondary superheaters. It will be a good thing. The primary superheater bypass valve 18 has a function of controlling the inlet pressure of the primary superheater to a specified value and is gradually closed. When the opening of the superheater pressure reducing valve 15 reaches 90%, the superheater stop valve
14 is fully opened, and the role of the overheating pressure reducing valve ends. The steam temperature in this region has large dead time and delay time constant with respect to changes in the fuel amount (dead time 5 to 8 minutes, delay time constant 12 to 14 minutes), and feedback control has been difficult.

本発明のなされる以前では、第5図に示す如く、主蒸
気温度予測モデルにて計算された主蒸気温度の予測値で
制御する方式が提案され、これによりフイードバツク制
御が可能となり適用されてきた。この方式に用いられた
制御装置100は次のようなものから構成されている。101
は主蒸気温度検出器、102は主蒸気温度予測モデル、10
4,110は減算器、105,111は比例積分演算器、107は関数
発生器、108は加算器、である。主蒸気温度予測モデル1
02に入力される信号は、主蒸気圧力値、空気流量、減温
器出口温度、燃料流量、負荷である。このような制御装
置による作用は次のとおりである。
Before the present invention was made, as shown in FIG. 5, a method of controlling by the predicted value of the main steam temperature calculated by the main steam temperature prediction model was proposed, and by this, feed back control became possible and applied. . The control device 100 used in this method is configured as follows. 101
Is a main steam temperature detector, 102 is a main steam temperature prediction model, 10
4, 110 is a subtractor, 105, 111 are proportional-plus-integral calculators, 107 is a function generator, and 108 is an adder. Main steam temperature prediction model 1
The signals input to 02 are main steam pressure value, air flow rate, desuperheater outlet temperature, fuel flow rate, and load. The operation of such a control device is as follows.

この制御方式は、負荷要求信号106からその負荷に見
合つた燃料を関数発生器107により基本燃料量を決定
し、この値にn分先主蒸気温度と、n分先設定値の偏差
により基本燃料量を修正する方式としている。
In this control method, the function generator 107 determines the basic fuel amount of the fuel commensurate with the load from the load request signal 106, and the basic fuel amount is determined by the difference between the main steam temperature n minutes ahead and the set value n minutes ahead. The amount is modified.

この方式ではボイラでの熱吸収量が変化したり、運転
パターンの変化によりボイラ入口給水エンタルピーが変
化した場合、主蒸気温度は、20〜30分後に表われるた
め、主蒸気温度の予測値による制御を実行しても充分な
制御結果が得られない現象が起る。また負荷上昇と共に
タービンの抽気圧力が上昇し、給水ヒータ32への供給蒸
気は、フラツシユタンク蒸気弁28からの蒸気ラインか
ら、抽気ラインに高速に切換る。この場合、負荷が上昇
せずともタービンへ流入する蒸気流量は増加し、1次,2
次過熱器10,12を通過する蒸気流量が増加する。この場
合の燃料量は、1次,第2次過熱器を通過する蒸気量に
見合つた燃料量とならないため熱バランスがくずれ、主
蒸気温度が変化する。
With this method, if the heat absorption amount in the boiler changes or the boiler inlet feedwater enthalpy changes due to changes in the operation pattern, the main steam temperature appears after 20 to 30 minutes, so control using the predicted value of the main steam temperature Even if is executed, a phenomenon occurs in which a sufficient control result cannot be obtained. Further, as the load increases, the extraction pressure of the turbine increases, and the supply steam to the feed water heater 32 is switched from the steam line from the flash tank steam valve 28 to the extraction line at high speed. In this case, even if the load does not increase, the steam flow into the turbine increases and the
The flow rate of steam passing through the next superheaters 10 and 12 increases. In this case, the fuel amount does not correspond to the amount of steam passing through the primary and secondary superheaters, so the heat balance is lost and the main steam temperature changes.

そこで、本発明では、次の如く構成したものである。 Therefore, the present invention is configured as follows.

第1図は本発明の実施例を示すブロツク図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.

第1図において第5図と同一部材には同一の符号を付
して説明する。第1図のものが第5図と異なるところ
は、一次過熱器バイパス弁開度発信器201からの開度信
号と、抽気流量発信器206からの流量信号とを新たに取
り込み、かつ関数発生器202,204,207と、加算器205,208
と、減算器203とを設けた点にある。それでは、蒸気制
御装置100の作用を説明するが、その前にこの方式の採
用する原理を説明する。
In FIG. 1, the same members as those in FIG. 5 are designated by the same reference numerals for description. The difference between FIG. 1 and FIG. 5 is that the opening signal from the primary superheater bypass valve opening transmitter 201 and the flow signal from the extraction flow transmitter 206 are newly taken in, and the function generator is also included. 202,204,207 and adder 205,208
And a subtractor 203 is provided. Now, the operation of the steam control device 100 will be described, but before that, the principle adopted by this system will be described.

まず、主蒸気温度は、1次,2次過熱器10,12を通過す
る蒸気流量に反比例し、燃料流量に比例するという関係
がある。また運転パターンの変化や、燃料性状変化によ
るボイラ熱吸収が変化した場合、ボイラの熱吸収量に変
化が生じるが、これらは燃料量に関係することになる。
この変化は、いち早く1次過熱器入口圧力に現われ、1
次過熱器入口を規定値に制御する1次過熱器バイパス弁
8の開度変化となつてあらわれる。適切な熱吸収量を評
価するには、この1次過熱器バイパス弁開度が適切であ
り、この開度は負荷により一定の関数となる。また蒸気
流量は負荷の関数で算出しているが、タービン抽気がと
られるこの関係が成立しなくなり、1次,2次過熱器通過
量ベースとする燃料量とする必要があり、負荷の関数で
算出した基本燃料量に抽気流量に比例した燃料量を加算
し、燃料バランスを取り主蒸気温度の変動を抑制する方
式とした。
First, the main steam temperature is inversely proportional to the flow rate of steam passing through the primary and secondary superheaters 10 and 12, and is proportional to the fuel flow rate. Further, when the boiler heat absorption changes due to the change of the operation pattern or the fuel property change, the heat absorption amount of the boiler also changes, but these are related to the fuel amount.
This change appears first in the inlet pressure of the primary superheater, and
This appears as a change in the opening of the primary superheater bypass valve 8 that controls the inlet of the secondary superheater to a specified value. This primary superheater bypass valve opening is appropriate for evaluating an appropriate heat absorption amount, and this opening becomes a constant function depending on the load. Also, the steam flow rate is calculated as a function of the load, but this relationship that turbine bleed is taken is not established and it is necessary to use the fuel amount as the primary and secondary superheater passing amount base. A fuel amount proportional to the extraction flow rate was added to the calculated basic fuel amount to balance the fuel and suppress the fluctuation of the main steam temperature.

それでは、この方式の作用を以下に述べる。 Then, the operation of this method will be described below.

まず、負荷要求値106により、1次過熱器バイパス弁
開度を第2図に示すような関数を有する関数発生器202
で定め、一次過熱器バイパス弁開度発信器201からの実
開度との偏差を減算器203で演算し、その演算結果を不
感帯の有る関数発生器204に入力する。不感帯以上に1
次過熱器バイパス弁が変化した場合、関数発生器204の
出力を加算器205に入力する。また、抽気流量発信器206
で抽気流量を計測し、この流量値に対し関数発生器207
で負荷ベースの信号とし、負荷要求値に加算器208で加
算する。加算器208の出力は抽気流量を補正した負荷要
求ベースの信号となる。
First, the function generator 202 having a function as shown in FIG.
The difference from the actual opening from the primary superheater bypass valve opening transmitter 201 is calculated by the subtractor 203, and the calculation result is input to the function generator 204 having a dead zone. 1 above the dead zone
When the next superheater bypass valve changes, the output of the function generator 204 is input to the adder 205. In addition, the extraction flow transmitter 206
The bleed air flow rate is measured with the function generator 207 for this flow rate value.
The load-based signal is added by the adder 208 to the load request value. The output of the adder 208 is a load request base signal in which the extraction flow rate is corrected.

該加算器208からの信号を関数発生器107に与え、該関
数発生器107により基本燃料量とし、これを前記加算器2
05に加える。該加算器205の出力を加算器108で比例積分
演算器105からの出力に加算し、燃料流量をフイードバ
ツクにした燃料流量を制御する。
The signal from the adder 208 is given to the function generator 107, and the function generator 107 is used as the basic fuel amount.
Add to 05. The output of the adder 205 is added to the output of the proportional-plus-integral calculator 105 by the adder 108 to control the fuel flow rate with the fuel flow rate being feed back.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、貫流ボイラの運
転パターンの変化や、燃料性状変化による熱吸収量の変
化によつて主蒸気温度への外乱が抑制され、主蒸気温度
の制御性が向上するという効果がある。
As described above, according to the present invention, the change in the operation pattern of the once-through boiler, and the disturbance to the main steam temperature due to the change in the heat absorption amount due to the change in the fuel property are suppressed, and the controllability of the main steam temperature is improved. It has the effect of improving.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る貫流ボイラの蒸気温度制御方式を
示す系統図、第2図は本発明の実施例に用いられ、負荷
指令値に対する1次過熱器バイパス弁開度の最適プログ
ラム値と、開度変化による燃料補正を示した波形図、第
3図は起動バイパス系を有する貫流ボイラプラントを示
す系統図、第4図は起動バイパス系を有する貫流ボイラ
プラントの起動特性を示す線図、第5図は本発明の基礎
となつた主蒸気温度制御方式を示すブロツク図である。 1……ボイラ、2……火炉、3……押込通風機、4……
押込通風機入口ベーン、5……燃料タンク、6……重油
ポンプ、7……燃料ヒータ、8……燃料流量制御弁、9
……バーナ、10……1次過熱器、11……再熱器、12……
2次過熱器、13……節炭器、14……過熱器止弁、15……
過熱器減圧弁、16……減温器、17……2次過熱器バイパ
ス弁、18……1次過熱器バイパス弁、19……加熱器スプ
レ弁、20……フラツシユタンク、25……復水器、27……
脱気器蒸気弁、28……高圧ヒータ蒸気弁、29……抽気過
止弁、100……制御装置、101……主蒸気温度検出器、10
2……主蒸気温度予測モデル、104,110,203……減算器、
105,111……比例積分演算器、107,202,204,207,211……
関数発生器、108,205,208……加算器、201……1次過熱
器バイパス弁開度発信器、206……抽気流量発信器。
FIG. 1 is a system diagram showing a steam temperature control system for a once-through boiler according to the present invention, and FIG. 2 is used in an embodiment of the present invention, and shows an optimum program value of a primary superheater bypass valve opening with respect to a load command value. FIG. 3 is a waveform diagram showing fuel correction by a change in opening, FIG. 3 is a system diagram showing a once-through boiler plant having a startup bypass system, and FIG. 4 is a diagram showing startup characteristics of a once-through boiler plant having a startup bypass system. FIG. 5 is a block diagram showing a main steam temperature control system which is the basis of the present invention. 1 ... Boiler, 2 ... Furnace, 3 ... Push blower, 4 ...
Push fan fan, 5 ... Fuel tank, 6 ... Heavy oil pump, 7 ... Fuel heater, 8 ... Fuel flow control valve, 9
…… Burner, 10 …… Primary superheater, 11 …… Reheater, 12 ……
Secondary superheater, 13 ... coal saver, 14 ... superheater stop valve, 15 ...
Superheater pressure reducing valve, 16 …… desuperheater, 17 …… secondary superheater bypass valve, 18 …… primary superheater bypass valve, 19 …… heater spray valve, 20 …… flush tank, 25 …… Condenser, 27 ……
Deaerator steam valve, 28 ... High-pressure heater steam valve, 29 ... Bleak stop valve, 100 ... Control device, 101 ... Main steam temperature detector, 10
2 …… Main steam temperature prediction model, 104,110,203 …… Subtractor,
105,111 …… Proportional-integral calculator, 107,202,204,207,211 ……
Function generator, 108, 205, 208 ... Adder, 201 ... Primary superheater bypass valve opening transmitter, 206 ... Extraction air flow transmitter.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】起動バイパス運転中はボイラ供給給水流量
を一定に制御し、該給水流量とタービンへの送出蒸気流
量との差分を起動バイパス弁を開いてフラッシュタンク
へ放出し、通常運転時は前記起動バイパス弁を閉じる起
動バイパスシステムを有し、ボイラの基本燃料流量を前
記タービンの負荷要求値に見合って設定し主蒸気温度と
該設定値の偏差により前記基本燃料流量を修正する貫流
ボイラの蒸気温度制御方式において、前記起動バイパス
弁の開度を1次過熱器入口流体の圧力を規定値に制御
し、前記起動バイパス弁の実開度と前記負荷要求値に対
応させて予め設定した前記起動バイパス弁の設定値との
偏差を求め、該偏差に応じて前記基本燃料流量を修正す
ることを特徴とする貫流ボイラの蒸気温度制御方式。
1. A boiler feed water supply flow rate is controlled to be constant during start-up bypass operation, and a difference between the feed water flow rate and the steam supply flow rate to the turbine is released to a flash tank by opening a start-up bypass valve, and during normal operation. A once-through boiler that has a startup bypass system for closing the startup bypass valve, sets the basic fuel flow rate of the boiler in proportion to the load demand value of the turbine, and corrects the basic fuel flow rate by the deviation between the main steam temperature and the set value. In the steam temperature control method, the opening degree of the starting bypass valve is controlled so that the pressure of the primary superheater inlet fluid is a specified value, and the opening degree of the starting bypass valve and the load demand value are set in advance and set in advance. A steam temperature control method for a once-through boiler, wherein a deviation from a set value of a startup bypass valve is obtained, and the basic fuel flow rate is corrected according to the deviation.
【請求項2】起動バイパス運転中はボイラ供給給水流量
を一定に制御し、該給水流量とタービンへの送出蒸気流
量との差分を起動バイパス弁を開いてフラッシュタンク
へ放出し、通常運転時は前記起動バイパス弁を閉じる起
動バイパスシステムを有し、ボイラの基本燃料流量を前
記タービンの負荷要求値に見合って設定し主蒸気温度と
該設定値の偏差により前記基本燃料流量を修正する貫流
ボイラの蒸気温度制御方式において、前記起動バイパス
弁の開度を1次過熱器入口流体の圧力を規定値に制御
し、前記起動バイパス弁の実開度と前記負荷要求値に対
応させて予め設定した前記起動バイパス弁の設定値との
偏差を求め、該偏差に応じて前記基本燃料流量を修正
し、かつ前記タービンの抽気流量の増減に応じて基本燃
料流量を修正することを特徴とする貫流ボイラの蒸気温
度制御方式。
2. The boiler supply feed water flow rate is controlled to be constant during the start-up bypass operation, and the difference between the feed water flow rate and the steam output flow rate to the turbine is released to the flash tank by opening the start-up bypass valve. A once-through boiler that has a startup bypass system for closing the startup bypass valve, sets the basic fuel flow rate of the boiler in proportion to the load demand value of the turbine, and corrects the basic fuel flow rate by the deviation between the main steam temperature and the set value. In the steam temperature control method, the opening degree of the starting bypass valve is controlled so that the pressure of the primary superheater inlet fluid is a specified value, and the opening degree of the starting bypass valve and the load demand value are set in advance and set in advance. Obtaining a deviation from the set value of the startup bypass valve, correcting the basic fuel flow rate according to the deviation, and correcting the basic fuel flow rate according to an increase or decrease in the extraction flow rate of the turbine. Steam temperature control system for once-through boiler, characterized.
JP18515485A 1985-08-23 1985-08-23 Steam temperature control method for once-through boiler Expired - Lifetime JP2511400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18515485A JP2511400B2 (en) 1985-08-23 1985-08-23 Steam temperature control method for once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18515485A JP2511400B2 (en) 1985-08-23 1985-08-23 Steam temperature control method for once-through boiler

Publications (2)

Publication Number Publication Date
JPS6246104A JPS6246104A (en) 1987-02-28
JP2511400B2 true JP2511400B2 (en) 1996-06-26

Family

ID=16165791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18515485A Expired - Lifetime JP2511400B2 (en) 1985-08-23 1985-08-23 Steam temperature control method for once-through boiler

Country Status (1)

Country Link
JP (1) JP2511400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230496B2 (en) * 2009-03-17 2013-07-10 中国電力株式会社 Power generation unit
JP5334885B2 (en) * 2010-02-02 2013-11-06 中国電力株式会社 Boiler heat recovery apparatus and heat recovery method in power generation facilities

Also Published As

Publication number Publication date
JPS6246104A (en) 1987-02-28

Similar Documents

Publication Publication Date Title
US9593844B2 (en) Method for operating a waste heat steam generator
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
US3894396A (en) Control system for a power producing unit
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
JP5840032B2 (en) Power generation system and steam temperature control method thereof
JPS6224608B2 (en)
JP2511400B2 (en) Steam temperature control method for once-through boiler
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
JPH02154902A (en) Steam temperature control system at time of starting plant
EP0065408B1 (en) Control systems for boilers
JPH01212802A (en) Steam temperature control device for boiler
JP2692978B2 (en) Start-up operation method of combined cycle plant
JPH01127806A (en) Boiler steam temperature controller
JPS5933804B2 (en) Reheat steam temperature control device
JPS6064101A (en) Controller for once-through boiler
JP2894118B2 (en) Boiler steam temperature control method
JPS63687B2 (en)
JPH0722563Y2 (en) Boiler equipment
JPS62245009A (en) Automatic controller for boiler
JPS588906A (en) Controller for temperature of steam reheated of boiler
JPH09195718A (en) Main steam temperature control device
JPS63220005A (en) Steam-temperature control method of thermal plant
JPS6334402A (en) Method of starting thermal power plant