JPH09195718A - Main steam temperature control device - Google Patents

Main steam temperature control device

Info

Publication number
JPH09195718A
JPH09195718A JP6383896A JP6383896A JPH09195718A JP H09195718 A JPH09195718 A JP H09195718A JP 6383896 A JP6383896 A JP 6383896A JP 6383896 A JP6383896 A JP 6383896A JP H09195718 A JPH09195718 A JP H09195718A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
steam
main steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6383896A
Other languages
Japanese (ja)
Inventor
Yukihiro Mizoguchi
幸宏 溝口
Toshihiro Yamada
利広 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6383896A priority Critical patent/JPH09195718A/en
Publication of JPH09195718A publication Critical patent/JPH09195718A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To restrain the rising rate of main steam temperature in an allowable range so as to restrain consumption of life of a steam turbine at minimum by adjusting the main steam temperature based on exhaust gas temperature of a gas turbine at starting process of the gas turbine so that the main steam temperature does not rise at over a specified allowable temperature changing rate. SOLUTION: Low pressure steam and high pressure steam are generated by exhaust gas of a gas turbine and superheated by superheaters 16, 18, 19. Main steam temperature obtained by superheating high pressure steam of an exhaust heat recovery boiler 48 supplying the steam to a steam turbine is controlled by supplying spray water to a high pressure main steam temperature reducer 23. At starting process of the gas turbine in particular, the main steam temperature is adjusted based on the exhaust gas temperature of the gas turbine, so that the main steam temperature does not rise exceeding a specified allowable temperature changing rate. Consequently, the temperature rising rate of main steam temperature generated from the exhaust heat recovery boiler 48 is restrained in an allowable range, thermal stress is not applied to the steam turbine, and hence consumption of the life of the steam turbine can be restrained at minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンと蒸
気タービンとからなる複合火力発電所における排熱回収
ボイラで発生した主蒸気温度を制御する主蒸気温度制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a main steam temperature control device for controlling a main steam temperature generated in an exhaust heat recovery boiler in a combined thermal power plant including a gas turbine and a steam turbine.

【0002】[0002]

【従来の技術】一般に、ガスタービンと蒸気タービンと
からなる複合火力発電所はコンバインドサイクル発電プ
ラントと呼ばれる。最近のコンバインドサイクル発電プ
ラントは、高効率化および大容量化等への対応から、ガ
スタービンの入口ガス温度が高温化され、これによって
ガスタービンの排ガス温度も高温化してきている。ガス
タービン排ガスの高温化により、排熱回収ボイラの出口
蒸気温度(高圧主蒸気温度)も高くなる傾向にある。従
って、蒸気タービンに供給される主蒸気温度も高くなる
傾向にある。
2. Description of the Related Art Generally, a combined cycle power plant including a gas turbine and a steam turbine is called a combined cycle power plant. In recent combined cycle power plants, the inlet gas temperature of the gas turbine has been raised to cope with higher efficiency, larger capacity, etc., and thereby the exhaust gas temperature of the gas turbine has also been raised. As the temperature of the gas turbine exhaust gas rises, the outlet steam temperature (high-pressure main steam temperature) of the exhaust heat recovery boiler also tends to rise. Therefore, the temperature of the main steam supplied to the steam turbine tends to increase.

【0003】蒸気タービンは、高圧蒸気を使用するため
ケーシングが厚肉であること、ロータも高温蒸気に曝さ
れることなどの条件から出力に応じて最適な蒸気条件が
存在する。現状での蒸気タービン入口の主蒸気温度の最
高値は、538℃〜566℃程度である。従って、主蒸
気温度がこの値を超える様な運転状態が発生する場合に
は、負荷に関係なく排熱回収ボイラの発生する主蒸気温
度の上限値を設定して、これに主蒸気温度を制御してい
る。
Since a steam turbine uses high-pressure steam, the casing has a thick wall and the rotor is exposed to high-temperature steam. Therefore, optimum steam conditions exist depending on the output. The current maximum value of the main steam temperature at the steam turbine inlet is about 538 ° C to 566 ° C. Therefore, if an operating condition occurs in which the main steam temperature exceeds this value, the upper limit value of the main steam temperature generated by the exhaust heat recovery boiler is set regardless of the load, and the main steam temperature is controlled to this value. doing.

【0004】図9は、排熱回収ボイラ48の構成図であ
る。図示は省略するが、蒸気タービンで仕事をした蒸気
は復水器で冷却され復水となり、復水器ホットウエルに
貯められる。そして、ホットウエルに貯まった復水は、
復水ポンプで抽出され低圧給水管1を介して、廃熱回収
ボイラ48の低圧節炭器2に供給される。
FIG. 9 is a block diagram of the exhaust heat recovery boiler 48. Although illustration is omitted, the steam that has worked in the steam turbine is cooled in the condenser and becomes condensed water, which is stored in the condenser hot well. And the condensate stored in the hot well is
It is extracted by the condensate pump and is supplied to the low pressure economizer 2 of the waste heat recovery boiler 48 via the low pressure water supply pipe 1.

【0005】低圧節炭器2では、低温になったガスター
ビン排気ガスとの熱交換で全給水を加熱する。すなわ
ち、低圧節炭器2部分でのガスタービン排気ガスは、既
に他の熱交換器部分での熱交換を行った後のガスタービ
ン排気ガスであるので、低温になっている。この低圧節
炭器2で加熱された給水は、低圧連絡管4及び低圧給水
調節弁5を介し、高圧給水ポンプ6へ供給される。低圧
給水調節弁5は、高圧給水ポンプ6の水位を一定に保つ
ように低圧給水量を調節するものである。
In the low-pressure coal economizer 2, all feed water is heated by heat exchange with the gas turbine exhaust gas that has become low in temperature. That is, the gas turbine exhaust gas in the low-pressure economizer 2 part is the gas turbine exhaust gas after heat exchange has already been performed in the other heat exchanger parts, and therefore has a low temperature. The water supply heated by the low-pressure coal economizer 2 is supplied to the high-pressure water supply pump 6 via the low-pressure communication pipe 4 and the low-pressure water supply control valve 5. The low pressure water supply control valve 5 adjusts the low pressure water supply amount so that the water level of the high pressure water supply pump 6 is kept constant.

【0006】一方、低圧節炭器2で加熱された給水は、
低圧連結管4から分岐した高圧給水ポンプ吸込管3を介
して、低圧蒸気ドラム8に供給され低圧蒸気ドラム8で
昇圧される。昇圧された給水は、高圧給水管7を介し
て、高圧節炭器12へ高圧給水として供給される。ま
た、低圧蒸気ドラム8の吐出側の高圧給水管7から分岐
して低圧節炭器2の入口に循環する低圧節炭器入口給水
温度調節管28及び低圧給水温度調節弁29を介して低
圧給水管1に供給され、低圧節炭器2の入口温度を一定
に調節する。
On the other hand, the feed water heated by the low pressure economizer 2 is
It is supplied to the low-pressure steam drum 8 via the high-pressure feed water pump suction pipe 3 branched from the low-pressure connecting pipe 4, and the pressure is increased in the low-pressure steam drum 8. The pressurized water supply is supplied as high pressure water supply to the high pressure economizer 12 via the high pressure water supply pipe 7. Further, the low-pressure feed water is supplied via a low-pressure economizer inlet feed water temperature control pipe 28 and a low-pressure feed water temperature control valve 29 which branch from the high-pressure water feed pipe 7 on the discharge side of the low-pressure steam drum 8 and circulate to the inlet of the low-pressure economizer 2. It is supplied to the pipe 1 and the inlet temperature of the low pressure economizer 2 is adjusted to be constant.

【0007】高圧節炭器12へ供給された低圧蒸気ドラ
ム8からの昇圧給水は、高圧節炭器12で、排気ガスと
熱交換し昇温した高圧給水は、高圧連絡管13及び高圧
給水調節弁14を介し高圧蒸気ドラム15に供給され
る。つまり、高圧給水調節弁14では、高圧蒸気ドラム
15の水位を一定に保つように高圧給水量を調節して、
高圧蒸気ドラム15に供給することになる。
The high-pressure feedwater supplied from the low-pressure steam drum 8 to the high-pressure economizer 12 is heated in the high-pressure economizer 12 by exchanging heat with the exhaust gas. It is supplied to the high-pressure steam drum 15 via the valve 14. That is, in the high pressure water supply control valve 14, the high pressure water supply amount is adjusted so as to keep the water level of the high pressure steam drum 15 constant,
It will be supplied to the high-pressure steam drum 15.

【0008】次に、低圧蒸気ドラム8に供給された給水
は、低圧蒸発器9で、排気ガスとの熱交換を行い、低圧
蒸気を発生させながら低圧蒸気ドラム8に戻る。つま
り、高圧給水ポンプ6と低圧蒸発器9との間を熱交換を
しながら循環し低圧蒸気を発生させる。高圧給水ポンプ
6で分離された低圧蒸気は、低圧蒸気連絡管10を介し
て低圧過熱器11に供給され、排気ガスと熱交換して過
熱蒸気として、蒸気タービンの低圧段落へ供給される。
Next, the feed water supplied to the low pressure steam drum 8 exchanges heat with the exhaust gas in the low pressure evaporator 9 and returns to the low pressure steam drum 8 while generating low pressure steam. That is, the high-pressure water supply pump 6 and the low-pressure evaporator 9 are circulated while exchanging heat to generate low-pressure steam. The low-pressure steam separated by the high-pressure water supply pump 6 is supplied to the low-pressure superheater 11 via the low-pressure steam communication pipe 10 and exchanges heat with the exhaust gas to be supplied as superheated steam to the low-pressure stage of the steam turbine.

【0009】一方、高圧節炭器12で加熱され高圧蒸気
ドラム15に供給された給水は、高圧蒸発器16で排ガ
スとの熱交換を行い、高圧蒸気を発生させながら高圧蒸
気ドラム15に戻る。つまり、高圧蒸気ドラム15と高
圧蒸発器16との間を熱交換をしながら循環し、高圧蒸
気を発生させる。高圧蒸気ドラム15で分離された蒸気
は、高圧蒸気連絡管17を介して高圧第1段過熱器18
に供給され、排ガスと熱交換されて過熱蒸気となる。そ
して、主蒸気温度を所定の温度にするために高圧主蒸気
減温器23に供給され、この高圧主蒸気減温器23でス
プレー水を供給され、さらに高圧第2段過熱器19及び
高圧主蒸気管20を介して蒸気タービンの高圧段落へ供
給される。
On the other hand, the feed water heated in the high-pressure coal economizer 12 and supplied to the high-pressure steam drum 15 exchanges heat with the exhaust gas in the high-pressure evaporator 16 and returns to the high-pressure steam drum 15 while generating high-pressure steam. That is, the high-pressure steam drum 15 and the high-pressure evaporator 16 are circulated while exchanging heat to generate high-pressure steam. The steam separated by the high-pressure steam drum 15 is passed through a high-pressure steam connecting pipe 17 to a high-pressure first stage superheater 18
And is heat-exchanged with the exhaust gas to become superheated steam. Then, it is supplied to the high-pressure main steam desuperheater 23 to bring the main steam temperature to a predetermined temperature, spray water is supplied by the high-pressure main steam desuperheater 23, and the high-pressure second-stage superheater 19 and the high-pressure main steam It is supplied to the high-pressure stage of the steam turbine via the steam pipe 20.

【0010】一方、蒸気タービンの高圧段落で仕事を終
えた蒸気は、第1の再熱器21で再熱され再熱蒸気減温
器26で温度調節されて、第2の再熱器22で加熱され
再び高温蒸気とした後に、蒸気タービンの中圧段落に供
給される。この再熱蒸気についても、蒸気タービンの材
料等により定まる最高許容温度が設定され、運転状態の
変化にかかわらず再熱蒸気温度を許容温度以下に制御す
る。
On the other hand, the steam that has finished its work in the high pressure stage of the steam turbine is reheated in the first reheater 21, the temperature is adjusted in the reheat steam desuperheater 26, and in the second reheater 22. After being heated again to hot steam, it is fed to the medium pressure stage of the steam turbine. Also for this reheat steam, the maximum allowable temperature determined by the material of the steam turbine and the like is set, and the temperature of the reheat steam is controlled to be equal to or lower than the allowable temperature regardless of a change in the operation state.

【0011】この温度制御方法は、再熱器の伝熱面を分
割して第1の再熱器21及び第2の再熱器22とし、分
割された伝熱面の連絡管に再熱蒸気減温器26を設け、
再熱蒸気の温度に応じて再熱蒸気減温器26へのスプレ
ー水量を再熱蒸気温度調節弁27で調節して供給する。
ただし、この再熱器21、22は、プラントの規模等に
よって設置されない場合もある。
In this temperature control method, the heat transfer surface of the reheater is divided into a first reheater 21 and a second reheater 22, and the reheated steam is connected to the connecting pipes of the divided heat transfer surfaces. A desuperheater 26 is provided,
The amount of spray water to the reheated steam desuperheater 26 is adjusted by the reheated steam temperature control valve 27 according to the temperature of the reheated steam and supplied.
However, the reheaters 21 and 22 may not be installed depending on the scale of the plant.

【0012】一般に、排熱回収ボイラ48の主蒸気温度
は、排気ガス入口温度、排気ガス量、蒸気量、伝熱面積
等の特性決定要素に支配されて定まる。また、蒸気ター
ビンの主蒸気温度には上限値があり、この上限値を超え
ないように主蒸気温度を調節している。すなわち、過熱
器を分割し、分割された過熱器18、19の伝熱面を接
続する連絡管の途中に高圧主蒸気減温器23を設け、高
圧主蒸気管20の主蒸気温度に応じて高圧主蒸気減温器
23に供給するスプレー水量を高圧主蒸気温度調節スプ
レー弁25で調節して主蒸気温度を制御する方式が一般
的に採用されている。スプレー水の水源は、蒸気圧力よ
り高い圧力を有し、水量の変化に十分に対応できなけれ
ばならない。図9の例では高圧給水管7から分岐した減
温水供給管24からスプレー水を供給するものを示して
いる。
Generally, the main steam temperature of the exhaust heat recovery boiler 48 is determined by the characteristic determining factors such as the exhaust gas inlet temperature, the exhaust gas amount, the steam amount and the heat transfer area. Further, the main steam temperature of the steam turbine has an upper limit value, and the main steam temperature is adjusted so as not to exceed this upper limit value. That is, the superheater is divided, and the high-pressure main steam desuperheater 23 is provided in the middle of the connecting pipe connecting the heat transfer surfaces of the divided superheaters 18 and 19, and the main steam temperature of the high-pressure main steam pipe 20 is changed. A system in which the amount of spray water supplied to the high-pressure main steam desuperheater 23 is adjusted by the high-pressure main steam temperature adjusting spray valve 25 to control the main steam temperature is generally adopted. The source of the spray water must have a pressure higher than the steam pressure and be able to adequately cope with changes in water volume. In the example of FIG. 9, the spray water is supplied from the reduced-temperature water supply pipe 24 branched from the high-pressure water supply pipe 7.

【0013】図10は、従来の主蒸気温度調整の制御ブ
ロック図である。すなわち、高圧主蒸気温度がその設定
値になるように、高圧主蒸気温度とその設定値との偏差
に基づいて、主蒸気温度制御器37は高圧主蒸気温度調
節スプレー弁25の開度指令信号を演算する。一方、高
圧主蒸気温度調節スプレー弁開度演算器36は、高圧蒸
気ドラム圧力を関数発生器35を介して得られた高圧第
2過熱器入口蒸気温度下限値と、スプレー水温度と、蒸
気流量とに基づいて、スプレー水が水滴の状態で高温第
2段過熱器19内に流入しないような高圧主蒸気温度調
節スプレー弁25の開度を演算する。そして、低値優先
回路38にて主蒸気温度制御器37及び高圧主蒸気温度
調節スプレー弁開度演算器36の出力信号のうち小さい
方を選択して高圧主蒸気温度調節スプレー弁25の開度
を調整することになる。このように、従来技術による主
蒸気温度制御は、負荷に関係なく設定温度を一定にして
おく一定値制御を採用しており、その一定値制御を行っ
た場合に、高温第2過熱器19内で水分が過飽和状態に
なるようなときは、スプレー水の注入量を制限するよう
にしている。
FIG. 10 is a control block diagram of the conventional main steam temperature adjustment. That is, based on the deviation between the high pressure main steam temperature and the set value, the main steam temperature controller 37 causes the high pressure main steam temperature control spray valve 25 to open based on the deviation between the high pressure main steam temperature and the set value. Is calculated. On the other hand, the high-pressure main steam temperature adjusting spray valve opening calculator 36 determines the high-pressure second steam superheater inlet steam temperature lower limit value obtained from the high-pressure steam drum pressure via the function generator 35, the spray water temperature, and the steam flow rate. Based on the above, the opening degree of the high pressure main steam temperature adjusting spray valve 25 is calculated so that the spray water does not flow into the high temperature second stage superheater 19 in the state of water droplets. Then, in the low value priority circuit 38, the smaller one of the output signals of the main steam temperature controller 37 and the high pressure main steam temperature adjusting spray valve opening calculator 36 is selected to open the high pressure main steam temperature adjusting spray valve 25. Will be adjusted. As described above, the main steam temperature control according to the conventional technique adopts the constant value control for keeping the set temperature constant regardless of the load, and when the constant value control is performed, the inside of the high temperature second superheater 19 is When the water content becomes supersaturated, the injection amount of spray water is limited.

【0014】[0014]

【発明が解決しようとする課題】しかし、ガスタービン
の大容量化及び環境対策を考慮した運転方法の採用によ
り、ガスタービンの排気ガス温度が高くなると共にその
温度上昇率も高くなる傾向にある。特に、助燃装置を設
置していない排熱回収ボイラにあっては、排気ガス入口
温度、排気ガス量、蒸気量、伝熱面積等の特性決定要素
に支配されて高圧第2過熱器19の出口蒸気温度が定ま
るので、蒸気発生量の少ない運転状態(ガスタービンの
出力が低い運転状態)、すなわちガスタービンの起動段
階での運転状態においては、主蒸気温度の上昇率は排気
ガスの温度上昇率と同等の温度変化となる。
However, by adopting an operating method in consideration of an increase in capacity of the gas turbine and environmental measures, the exhaust gas temperature of the gas turbine tends to increase and the rate of temperature rise tends to increase. In particular, in an exhaust heat recovery boiler not equipped with an auxiliary combustion device, the outlet of the high-pressure second superheater 19 is governed by the characteristic determining factors such as exhaust gas inlet temperature, exhaust gas amount, steam amount, heat transfer area and the like. Since the steam temperature is determined, in the operating state in which the amount of steam generated is small (operating state in which the output of the gas turbine is low), that is, in the operating state at the startup stage of the gas turbine, the rate of rise of the main steam temperature is The temperature change is equivalent to.

【0015】排気ガスの温度上昇率と同等の上昇率で蒸
気温度が上昇すると、蒸気タービンの許容温度上昇率を
上回ることがあり、蒸気タービンの熱応力が異常に大き
くなり寿命消費が大きくなるような不都合が生じる。
If the steam temperature rises at the same rate as the temperature rise rate of the exhaust gas, it may exceed the allowable temperature rise rate of the steam turbine, so that the thermal stress of the steam turbine becomes abnormally large and the life consumption becomes large. Inconvenience occurs.

【0016】一方、このような不都合を解消するには、
ある定められた温度上昇率で設定温度を変化させ、蒸気
温度を制御する必要が生じる。この温度制御をスプレー
水量調節のみで実施する場合、スプレー水が水滴の状態
で過熱器内に流入しないように、水分が過飽和状態にな
らないようにスプレー水の注入量を制限しているので、
スプレー水量調節のみで主蒸気温度上昇率の制御を行う
ことは困難である。
On the other hand, in order to solve such inconvenience,
It is necessary to control the steam temperature by changing the set temperature at a certain temperature rise rate. When performing this temperature control only by adjusting the amount of spray water, the injection amount of spray water is restricted so that water does not become supersaturated so that the spray water does not flow into the superheater in the state of water droplets.
It is difficult to control the main steam temperature rise rate only by adjusting the spray water amount.

【0017】すなわち、このスプレー水量の制限値は、
一般にスプレー注入部分の蒸気圧力に対する飽和温度に
30〜50℃の余裕を加えた温度以下に減温しないよう
な水量とする必要があり、また、スプレー水での主蒸気
温度の制御には、大きな遅れが生じる。このため、主蒸
気温度が設定値に制御できない状態が発生し、結果とし
て温度上昇率も初期の目標より高くなってしまうことに
なる。
That is, the limit value of this spray water amount is
Generally, it is necessary to set the amount of water such that the temperature does not drop below the temperature obtained by adding a margin of 30 to 50 ° C. to the saturation temperature with respect to the steam pressure of the spray injection portion. There will be a delay. For this reason, a state occurs in which the main steam temperature cannot be controlled to the set value, and as a result, the temperature rise rate also becomes higher than the initial target.

【0018】以上説明したとおり、蒸気発生量の少ない
ガスタービンの出力が低い運転状態においては、主蒸気
温度の上昇率は排気ガスの温度上昇率と同等の温度変化
となる。蒸気温度一定値制御の場合は、従来技術でも蒸
気温度制御は可能であるが、排気ガスの温度上昇率と同
等の率で蒸気温度が上昇するような場合には、従来の蒸
気温度制御では、蒸気温度の上昇率が蒸気タービンの許
容温度上昇率を上回ることがあり、そうなると蒸気ター
ビンの熱応力が異常に大きくなり寿命消費が大きくなる
ような不都合が生じる。
As described above, in the operating state in which the output of the gas turbine with a small amount of steam generation is low, the rate of increase of the main steam temperature is the same as that of the exhaust gas. In the case of constant steam temperature value control, steam temperature control is possible even with conventional technology, but in the case where the steam temperature rises at a rate equivalent to the temperature rise rate of exhaust gas, conventional steam temperature control The rate of increase in steam temperature may exceed the allowable rate of temperature increase in the steam turbine, which causes an inconvenience that the thermal stress of the steam turbine becomes abnormally large and the life consumption increases.

【0019】本発明の目的は、ガスタービンの負荷上昇
率(燃料投入量)を変更しないで主蒸気温度の上昇率を
蒸気タービンの許容範囲内に収め、プラントの起動時間
を長くすることなく蒸気タービンの寿命消費を最小限に
抑える主蒸気温度制御装置を提供することである。
An object of the present invention is to keep the main steam temperature increase rate within the allowable range of the steam turbine without changing the load increase rate (fuel input amount) of the gas turbine, and to increase the steam without increasing the plant start-up time. It is an object of the present invention to provide a main steam temperature control device that minimizes the lifetime consumption of the turbine.

【0020】[0020]

【課題を解決するための手段】請求項1の発明は、ガス
タービンの起動過程時に、主蒸気温度が所定の許容温度
変化率を超えて上昇しないように、ガスタービンの排ガ
ス温度に基づいて主蒸気温度を調節する主蒸気温度調節
装置を備えたものである。これにより、主蒸気温度の急
激な変化を防止し、蒸気タービンの熱応力許容範囲内に
収める。
The invention according to claim 1 is based on the exhaust gas temperature of the gas turbine so that the main steam temperature does not rise above a predetermined allowable temperature change rate during the starting process of the gas turbine. It is equipped with a main steam temperature adjusting device for adjusting the steam temperature. This prevents a rapid change in the main steam temperature and keeps it within the allowable thermal stress range of the steam turbine.

【0021】請求項2の発明は、請求項1の発明におい
て、高圧蒸気温度調節装置は、ガスタービンの排ガスを
バイパスさせる排ガスバイパス流路と、排ガスバイパス
流路に設けられた排ガス流量調節用ダンパ開閉器と、高
圧蒸気を過熱する最終段の過熱器の排ガス入口側におけ
る排ガス温度を検出する排ガス温度検出器と、排ガス温
度検出器で検出された排ガス温度がその設定値になるよ
うに排ガス流量調節用ダンパ開閉器のダンパ開度を調節
する排ガス流量調節器とを備えたものである。
According to a second aspect of the present invention, in the first aspect of the present invention, the high-pressure steam temperature control device comprises an exhaust gas bypass passage for bypassing the exhaust gas of the gas turbine, and an exhaust gas flow rate adjustment damper provided in the exhaust gas bypass passage. The switch, the exhaust gas temperature detector that detects the exhaust gas temperature at the exhaust gas inlet side of the final stage superheater that superheats high-pressure steam, and the exhaust gas flow rate so that the exhaust gas temperature detected by the exhaust gas temperature detector reaches its set value. The exhaust gas flow rate controller for adjusting the damper opening degree of the adjustment damper switch.

【0022】これにより、排ガス温度に応じて排ガス流
量調節用ダンパ開閉器を開閉し、過熱器を通過する排ガ
スの量を調節することによって主蒸気温度の急激な変化
を防止する。
Thus, the damper switch for adjusting the exhaust gas flow rate is opened / closed in accordance with the exhaust gas temperature, and the amount of the exhaust gas passing through the superheater is adjusted to prevent a rapid change in the main steam temperature.

【0023】請求項3の発明は、請求項1の発明におい
て、高圧蒸気温度調節装置は、ガスタービンに圧縮空気
を供給するコンプレッサ中段からガスタービンの排ガス
中に圧縮空気を注入するための圧縮空気連絡管と、圧縮
空気連絡管に設けられた圧縮空気量調節用ダンパ開閉器
と、高圧蒸気を過熱する最終段の過熱器の排ガス入口側
における排ガス温度を検出する排ガス温度検出器と、排
ガス温度検出器で検出された排ガス温度がその設定値に
なるように圧縮空気量調節用ダンパ開閉器のダンパ開度
を調節する圧縮空気量調節器とを備えたものである。
According to a third aspect of the present invention, in the first aspect of the present invention, the high-pressure steam temperature control device is configured to inject compressed air into the exhaust gas of the gas turbine from the middle stage of the compressor that supplies the compressed air to the gas turbine. A connecting pipe, a damper switch for adjusting the compressed air amount provided in the compressed air connecting pipe, an exhaust gas temperature detector that detects the exhaust gas temperature at the exhaust gas inlet side of the final stage superheater that superheats high-pressure steam, and the exhaust gas temperature A compressed air amount controller for adjusting the damper opening of the compressed air amount adjusting damper switch so that the exhaust gas temperature detected by the detector becomes the set value.

【0024】これにより、排ガス温度に応じて排ガスに
注入する圧縮空気を調節し、過熱器を通過する排ガス温
度を調節することによって、主蒸気温度の急激な変化を
防止する。
Thus, the compressed air to be injected into the exhaust gas is adjusted according to the exhaust gas temperature, and the exhaust gas temperature passing through the superheater is adjusted, thereby preventing a rapid change in the main steam temperature.

【0025】請求項4の発明は、請求項1の発明におい
て、高圧蒸気温度調節装置は、高圧蒸気を過熱する最終
段の過熱器の排ガス入口側における排ガス温度を検出す
る排ガス温度検出器と、排ガス温度がその設定値になる
ように高圧主蒸気減温器に供給するスプレー水の流量を
調節するスプレー水流量調節器とを備えたものである。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the high-pressure steam temperature control device comprises an exhaust gas temperature detector for detecting the exhaust gas temperature at the exhaust gas inlet side of the final stage superheater that superheats the high-pressure steam, A spray water flow controller for adjusting the flow rate of the spray water supplied to the high-pressure main steam desuperheater so that the exhaust gas temperature becomes the set value.

【0026】これにより、排ガス温度に応じてスプレー
水流量を補正することによって主蒸気温度の急激な変化
を防止する。
Thus, the flow rate of spray water is corrected according to the exhaust gas temperature to prevent a rapid change in the main steam temperature.

【0027】請求項5の発明は、請求項4の発明におい
て、高圧蒸気温度調節装置は、最終段過熱器の蒸気出口
側に設けられた主蒸気減温器と、高圧蒸気を過熱する最
終段の過熱器の蒸気出口側の主蒸気温度がその設定値に
なるように主蒸気減温器に供給する最終段過熱器入口か
らのスプレー蒸気流量を調節する主蒸気温度調節器とを
備えたものである。
According to a fifth aspect of the invention, in the invention of the fourth aspect, the high-pressure steam temperature control device comprises a main steam desuperheater provided on the steam outlet side of the final stage superheater and a final stage for superheating the high pressure steam. Equipped with a main steam temperature controller for adjusting the flow rate of the spray steam from the inlet of the final stage superheater, which is supplied to the main steam desuperheater so that the main steam temperature on the steam outlet side of the superheater of Is.

【0028】これにより、主蒸気温度に応じてスプレー
蒸気流量を調整し、最終過熱器蒸気出口主蒸気温度を制
御することによって主蒸気温度の急激な変化を防止す
る。
Thus, the spray steam flow rate is adjusted according to the main steam temperature and the final superheater steam outlet main steam temperature is controlled to prevent a rapid change in the main steam temperature.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の第1の実施の形態を示すブロック
構成図である。この第1の実施の形態は、ガスタービン
の起動過程時に、主蒸気温度が所定の許容温度変化率を
超えて上昇しないように、ガスタービンの排ガス温度に
基づいて主蒸気温度を調節する主蒸気温度調節装置50
を備えたものである。そして、この高圧蒸気温度調節装
置50は、ガスタービンの排ガスをバイパスさせる排ガ
スバイパス流路41と、この排ガスバイパス流路41に
設けられた排ガス流量調節用ダンパ開閉器42と、高圧
蒸気を過熱する最終段の過熱器19の排ガス入口側にお
ける排ガス温度を検出する排ガス温度検出器33と、こ
の排ガス温度検出器33で検出された排ガス温度がその
設定値になるように排ガス流量調節用ダンパ開閉器42
のダンパ開度を調節する排ガス流量調節器34とから構
成されている。その他の構成は図9に示した従来例と同
一であるので、同一要素には同一符号を付しその説明を
省略する。
Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing a first embodiment of the present invention. The first embodiment is a main steam that adjusts the main steam temperature based on the exhaust gas temperature of the gas turbine so that the main steam temperature does not rise above a predetermined allowable temperature change rate during the starting process of the gas turbine. Temperature control device 50
It is provided with. The high-pressure steam temperature control device 50 superheats high-pressure steam, and an exhaust gas bypass flow passage 41 that bypasses the exhaust gas of the gas turbine, an exhaust gas flow rate adjusting damper switch 42 provided in the exhaust gas bypass flow passage 41. Exhaust gas temperature detector 33 that detects the exhaust gas temperature at the exhaust gas inlet side of the final stage superheater 19, and a damper switch for adjusting the exhaust gas flow rate so that the exhaust gas temperature detected by this exhaust gas temperature detector 33 reaches its set value. 42
And an exhaust gas flow rate controller 34 that adjusts the damper opening degree. Since other configurations are the same as those of the conventional example shown in FIG. 9, the same elements are designated by the same reference numerals and the description thereof is omitted.

【0030】図1において、排熱回収ボイラ48の最終
段の過熱器である高圧第2段過熱器19の近傍に排ガス
温度検出器33を設け、また、ガスタービンからの排ガ
スが高圧第2段過熱器19をバイパスするように排ガス
バイパス流路41が設けられている。排ガスバイパス流
路41は高圧第2段過熱器19をバイパスして排熱回収
ボイラ48の高圧節炭器12や低圧節炭器2にガスター
ビンからの排ガスを導くと共に、直接煙突に導くことが
できるようになっている。
In FIG. 1, an exhaust gas temperature detector 33 is provided near the high pressure second stage superheater 19 which is the final stage superheater of the exhaust heat recovery boiler 48, and the exhaust gas from the gas turbine is high pressure second stage. An exhaust gas bypass passage 41 is provided so as to bypass the superheater 19. The exhaust gas bypass flow passage 41 bypasses the high pressure second stage superheater 19 and guides the exhaust gas from the gas turbine to the high pressure economizer 12 and the low pressure economizer 2 of the exhaust heat recovery boiler 48 and directly to the chimney. You can do it.

【0031】この排ガスバイパス流路41を流れる排ガ
ス流量は、排ガス流量調節用ダンパ開閉器42のダンパ
開度によって調整され、そのダンパ開度は排ガス流量調
節器34で調整される。図2に、この第1の実施の形態
における主蒸気温度調整の制御ブロック図を示す。図1
0に示した従来例に対し、排ガス温度と排ガス温度設定
値との偏差を排ガス流量調節器34に入力し、排ガス流
量調節器34にて排ガス流量調節用ダンパ開閉器42の
ダンパ開閉度指令値を算出し、排ガス流量調節用ダンパ
開閉器42のダンパ開度を制御する制御要素が追加され
ている。
The flow rate of the exhaust gas flowing through the exhaust gas bypass passage 41 is adjusted by the damper opening degree of the damper switch 42 for adjusting the exhaust gas flow rate, and the damper opening degree is adjusted by the exhaust gas flow rate controller 34. FIG. 2 shows a control block diagram of the main steam temperature adjustment in the first embodiment. FIG.
In contrast to the conventional example shown in FIG. 0, the deviation between the exhaust gas temperature and the exhaust gas temperature set value is input to the exhaust gas flow rate controller 34, and the exhaust gas flow rate controller 34 uses the damper switch degree command value of the damper switch 42 for controlling the exhaust gas flow rate. Is added to control the damper opening of the exhaust gas flow rate adjusting damper switch 42.

【0032】これにより、排ガス温度が急激に上昇した
場合は、排ガス流量調節器34により排ガス流量調節用
ダンパ開閉器42のダンパ開度が開閉される。高圧主蒸
気温度調節スプレー弁25でのスプレー水注入による高
圧蒸気温度上昇の抑制の効果は、かなりの遅れを生じる
が、排ガス流量調節用ダンパ開閉器42のダンパ開度の
開閉による過熱蒸気への交換熱量減少の効果は徐々に現
れ、高圧主蒸気温度を蒸気温度設定値になるように作用
する。従って、主蒸気温度の急激な変化を防止すること
が可能となる。
As a result, when the exhaust gas temperature rapidly rises, the exhaust gas flow rate controller 34 opens and closes the damper opening degree of the exhaust gas flow rate adjusting damper switch 42. Although the effect of suppressing the high-pressure steam temperature rise by injecting the spray water with the high-pressure main steam temperature control spray valve 25 causes a considerable delay, it does not affect the superheated steam by opening / closing the damper opening of the exhaust gas flow rate control damper switch 42. The effect of reducing the amount of heat exchanged gradually appears and acts so that the high-pressure main steam temperature becomes the steam temperature set value. Therefore, it becomes possible to prevent a rapid change in the main steam temperature.

【0033】以上のように、この第1の実施の形態で
は、最終段の過熱器である高圧第2段過熱器19をバイ
パスする排ガスバイパス流路41を設け、高圧第2段過
熱器19を通過する排ガス流量を調節するので、主蒸気
温度の急激な変化を防止することができる。
As described above, in the first embodiment, the exhaust gas bypass passage 41 that bypasses the high pressure second stage superheater 19 which is the final stage superheater is provided, and the high pressure second stage superheater 19 is provided. Since the flow rate of the exhaust gas passing therethrough is adjusted, it is possible to prevent a rapid change in the main steam temperature.

【0034】次に、本発明の第2の実施の形態を説明す
る。図3は本発明の第2の実施の形態を示すブロック構
成図である。この第2の実施の形態は、ガスタービンか
らの排ガスに圧縮空気を注入して高圧第2段過熱器19
を通過する排ガス温度を調節することによって、主蒸気
温度の急激な変化を防止するようにしたものである。
Next, a second embodiment of the present invention will be described. FIG. 3 is a block diagram showing a second embodiment of the present invention. In the second embodiment, the compressed air is injected into the exhaust gas from the gas turbine so that the high pressure second stage superheater 19
By adjusting the temperature of the exhaust gas passing through, the rapid change of the main steam temperature is prevented.

【0035】すなわち、排熱回収ボイラ入口に圧縮空気
を注入する圧縮空気連絡管44を設け、この圧縮空気連
絡管44に設けられた圧縮空気量調節用ダンパ開閉器4
5のダンパ開度にて、高圧蒸気を過熱する最終段の過熱
器である第2段過熱器19に流入するガス温度を調節す
る。
That is, a compressed air communication pipe 44 for injecting compressed air is provided at the inlet of the exhaust heat recovery boiler, and a compressed air amount adjusting damper switch 4 provided in the compressed air communication pipe 44.
With the damper opening of 5, the temperature of the gas flowing into the second stage superheater 19, which is the final stage superheater that superheats the high-pressure steam, is adjusted.

【0036】図3において、ガスタービンに圧縮空気を
供給するコンプレッサ中段から、圧縮空気連絡管44を
介して圧縮空気が高圧蒸気温度調節装置50の圧縮空気
量調節用ダンパ開閉器45に供給される。圧縮空気量調
節用ダンパ開閉器45のダンパ開度は圧縮空気量調節器
43で調整される。すなわち、排ガス温度検出器33で
検出した高圧第2段過熱器19の排ガス入口側における
排ガス温度が、その設定値になるように、圧縮空気量調
節器43は圧縮空気量調節用ダンパ開閉器45のダンパ
開度を調節する。
In FIG. 3, the compressed air is supplied from the middle stage of the compressor for supplying the compressed air to the gas turbine to the compressed air amount adjusting damper switch 45 of the high pressure steam temperature adjusting device 50 through the compressed air connecting pipe 44. . The damper opening of the compressed air amount adjusting damper switch 45 is adjusted by the compressed air amount adjusting device 43. That is, the compressed air amount adjuster 43 uses the compressed air amount adjusting damper switch 45 so that the exhaust gas temperature at the exhaust gas inlet side of the high-pressure second-stage superheater 19 detected by the exhaust gas temperature detector 33 becomes the set value. Adjust the damper opening of.

【0037】図4に、第2の実施の形態による主蒸気温
度調整の制御ブロック図を示す。図10に示した従来例
に対し、排ガス温度と排ガス温度設定値との偏差を圧縮
空気量調節器43に入力し、圧縮空気量調節器43にて
圧縮空気量調節用ダンパ開閉器45のダンパ開閉度指令
値を算出し、圧縮空気量調節用ダンパ開閉器45のダン
パ開度を制御する制御要素が追加されている。
FIG. 4 shows a control block diagram for main steam temperature adjustment according to the second embodiment. In contrast to the conventional example shown in FIG. 10, the deviation between the exhaust gas temperature and the exhaust gas temperature set value is input to the compressed air amount adjuster 43, and the compressed air amount adjuster 43 uses the damper switch 45 for adjusting the compressed air amount. A control element for calculating the opening / closing degree command value and controlling the damper opening degree of the compressed air amount adjusting damper switch 45 is added.

【0038】ガスタービンの排ガス温度が急激に上昇し
た場合は、スプレー水注入による高圧蒸気温度上昇の抑
制の効果はかなりの遅れを生じるが、排ガスへの圧縮空
気注入による過熱蒸気への交換熱減少の効果は徐々に現
れ、高圧主蒸気温度を蒸気温度設定値にするように作用
する。
When the exhaust gas temperature of the gas turbine rises abruptly, the effect of suppressing the high-pressure steam temperature rise by the injection of spray water is delayed considerably, but the exchange heat of superheated steam is reduced by the injection of compressed air into the exhaust gas. The effect of appears gradually and acts to bring the high-pressure main steam temperature to the steam temperature set value.

【0039】このように、第2の実施の形態では、排ガ
スに圧縮空気を注入することによって、過熱器を通過す
る排ガス温度制御を行うので、排ガスから主蒸気への熱
交換量をも制御することになり、主蒸気温度の急激な変
化を抑制することができる。これにより、蒸気温度の上
昇を抑制することができ、変化率制限を必要とする場合
でもその温度制御が可能である。
As described above, in the second embodiment, the temperature of the exhaust gas passing through the superheater is controlled by injecting the compressed air into the exhaust gas, so that the amount of heat exchange from the exhaust gas to the main steam is also controlled. Therefore, it is possible to suppress a rapid change in the main steam temperature. As a result, an increase in the steam temperature can be suppressed, and the temperature can be controlled even when the rate of change restriction is required.

【0040】図5は、本発明の第3の実施の形態を示す
ブロック構成図である。この第3の実施の形態は、排ガ
ス温度に応じて、高圧主蒸気温度調節スプレー弁25の
開度を調節し、高圧主蒸気減温器23でのスプレー水流
量を補正するようにしたものである。
FIG. 5 is a block diagram showing the third embodiment of the present invention. In the third embodiment, the opening of the high-pressure main steam temperature adjusting spray valve 25 is adjusted according to the exhaust gas temperature, and the spray water flow rate in the high-pressure main steam desuperheater 23 is corrected. is there.

【0041】高圧蒸気温度調節装置50は、高圧蒸気を
過熱する最終段の過熱器である第2段過熱器19の排ガ
ス入口側における排ガス温度を検出する排ガス温度検出
器33と、排ガス温度がその設定値になるように高圧主
蒸気減温器23に供給するスプレー水の流量を調節する
スプレー水流量調節器46とを備えている。
The high-pressure steam temperature control device 50 includes an exhaust gas temperature detector 33 for detecting the exhaust gas temperature at the exhaust gas inlet side of the second stage superheater 19 which is the final stage superheater for superheating high pressure steam, and the exhaust gas temperature It is provided with a spray water flow rate controller 46 that adjusts the flow rate of the spray water supplied to the high-pressure main steam desuperheater 23 so that it becomes a set value.

【0042】すなわち、排ガス温度に応じて、スプレー
水流量調節器46にて高圧主蒸気温度調節スプレー弁2
5を調節し、高圧主蒸気減温器23のスプレー水量を補
正し、主蒸気温度の急激な変化を防止する。このよう
に、スプレー水流量調節器46にて高圧第1段過熱器1
8と高圧第2段過熱器19との間の高圧主蒸気減温器2
3へのスプレー水量制御を行えば、主蒸気温度に基づい
て高圧主蒸気減温器23のスプレー水量を調節する場合
に比べ、高圧第2段過熱器19の熱容量による遅れが回
避できるので、制御応答を早くすることができる。
That is, the high pressure main steam temperature adjusting spray valve 2 is controlled by the spray water flow controller 46 in accordance with the exhaust gas temperature.
5 is adjusted to correct the spray water amount of the high-pressure main steam desuperheater 23 to prevent a rapid change in the main steam temperature. In this way, the high pressure first stage superheater 1 is controlled by the spray water flow controller 46.
8 and the high pressure second stage superheater 19 between the high pressure main steam desuperheater 2
When the spray water amount control to 3 is performed, the delay due to the heat capacity of the high pressure second stage superheater 19 can be avoided as compared with the case where the spray water amount of the high pressure main steam desuperheater 23 is adjusted based on the main steam temperature. The response can be quick.

【0043】図6に、第3の実施の形態による主蒸気温
度調整の制御ブロック図を示す。図10に示した従来例
に対し、高圧主蒸気温度調節スプレー弁25の制御に、
主蒸気温度及びその設定値に代えて、排ガス温度及びそ
の設定値を用いている。排ガス温度とその設定値との偏
差は、排ガス温度制御器40に入力され、その偏差に基
づいて高圧主蒸気温度調節スプレー弁25の弁開度指令
が演算される。そして、高圧主蒸気温度調節スプレー弁
演算器36からの出力信号とのうち小さい方が低値優先
回路38で選択されて高圧主蒸気温度調節スプレー弁2
5の弁開度指令となる。
FIG. 6 shows a control block diagram for main steam temperature adjustment according to the third embodiment. In comparison with the conventional example shown in FIG. 10, in controlling the high pressure main steam temperature adjusting spray valve 25,
The exhaust gas temperature and its set value are used instead of the main steam temperature and its set value. The deviation between the exhaust gas temperature and its set value is input to the exhaust gas temperature controller 40, and the valve opening command of the high pressure main steam temperature adjusting spray valve 25 is calculated based on the deviation. Then, the smaller one of the output signals from the high pressure main steam temperature adjusting spray valve calculator 36 is selected by the low value priority circuit 38 and the high pressure main steam temperature adjusting spray valve 2 is selected.
5 valve opening command.

【0044】排ガス温度が急激に上昇した場合は、排ガ
ス温度制御器40によりスプレー流量が調節される。ス
プレー水注入による高圧蒸気温度上昇の抑制の効果は、
かなりの遅れを生じるが、スプレー水注入による過熱蒸
気への交換熱減少の効果は徐々に現れ、高圧主蒸気温度
を蒸気温度設定値にするように作用する。
When the exhaust gas temperature rapidly rises, the exhaust gas temperature controller 40 adjusts the spray flow rate. The effect of suppressing the rise in high-pressure steam temperature by spray water injection is
Although there is a considerable delay, the effect of reducing the heat of exchange with superheated steam by injection of spray water gradually appears and acts to bring the high-pressure main steam temperature to the steam temperature set value.

【0045】このように、第3の実施の形態では、排ガ
ス温度により高圧主蒸気減温器23へのスプレー流量を
調節して先行的に熱交換量を減少させるので、蒸気温度
の上昇を抑制することができ、変化率制限を必要とする
場合でも、目的の温度制御が可能である。
As described above, in the third embodiment, the amount of heat exchange is reduced in advance by adjusting the spray flow rate to the high-pressure main steam desuperheater 23 according to the exhaust gas temperature, so that the rise in steam temperature is suppressed. The target temperature control is possible even when the rate of change limitation is required.

【0046】次に、本発明の第4の実施の形態を説明す
る。図7は本発明の第4の実施の形態を示すブロック構
成図である。この第4の実施の形態は、図5に示した第
3の実施の形態に対し、主蒸気温度調節器32と主蒸気
減温器47を新たに設け、主蒸気減温器47へのスプレ
ー蒸気は、過熱器バイパス蒸気管30からの蒸気を用い
るようにしたものである。そして、主蒸気温度調節器3
2は高圧主蒸気管20の主蒸気温度に応じてスプレー蒸
気流量を調整し、最終段の過熱器である高圧第2段過熱
器19の蒸気出口主蒸気温度を制御することによって主
蒸気温度の急激な変化を防止する。
Next, a fourth embodiment of the present invention will be described. FIG. 7 is a block diagram showing a fourth embodiment of the present invention. The fourth embodiment is different from the third embodiment shown in FIG. 5 in that a main steam temperature controller 32 and a main steam desuperheater 47 are newly provided, and the main steam desuperheater 47 is sprayed. As the steam, the steam from the superheater bypass steam pipe 30 is used. And the main steam temperature controller 3
Reference numeral 2 adjusts the spray steam flow rate according to the main steam temperature of the high-pressure main steam pipe 20, and controls the steam outlet main steam temperature of the high-pressure second-stage superheater 19, which is the final superheater, to control the main steam temperature. Prevent sudden changes.

【0047】図7において、高圧蒸気温度調節装置50
は、高圧蒸気を過熱する最終段の過熱器である第2段過
熱器19の排ガス入口側における排ガス温度を検出する
排ガス温度検出器33と、排ガス温度がその設定値にな
るように高圧主蒸気減温器23に供給するスプレー水の
流量を調節するスプレー水流量調節器46と、さらに、
高圧第2段過熱器19の蒸気出口側に設けられた主蒸気
減温器47と、高圧第2段過熱器19の蒸気出口側の主
蒸気温度がその設定値になるように主蒸気減温器47に
供給する高圧第2段過熱器19の入口からのスプレー蒸
気流量を調節する主蒸気温度調節器32とを備えてい
る。
In FIG. 7, a high pressure steam temperature controller 50
Is an exhaust gas temperature detector 33 that detects the exhaust gas temperature at the exhaust gas inlet side of the second-stage superheater 19 that is the final stage superheater that superheats the high-pressure steam, and high-pressure main steam so that the exhaust gas temperature reaches its set value. A spray water flow controller 46 for adjusting the flow rate of spray water supplied to the desuperheater 23, and
The main steam desuperheater 47 provided on the steam outlet side of the high pressure second stage superheater 19 and the main steam desuperheater so that the main steam temperature on the steam outlet side of the high pressure second stage superheater 19 becomes the set value. And a main steam temperature controller 32 for adjusting the flow rate of the spray steam from the inlet of the high-pressure second-stage superheater 19 supplied to the reactor 47.

【0048】このように、主蒸気温度調節器32によっ
て、高圧第2段過熱器19の出口の主蒸気減温器47へ
のスプレー蒸気量制御を行えば、高圧第1段過熱器18
と高圧第2段過熱器19との間へのスプレー水量制御と
比べ、高圧第2段過熱器19の熱容量及び熱交換による
遅れが回避できるので、制御応答を早くすることができ
る。
In this way, if the main steam temperature controller 32 controls the amount of spray steam to the main steam desuperheater 47 at the outlet of the high pressure second stage superheater 19, the high pressure first stage superheater 18
As compared with the control of the amount of spray water between the high pressure second stage superheater 19 and the high pressure second stage superheater 19, a delay due to the heat capacity and heat exchange of the high pressure second stage superheater 19 can be avoided, so that the control response can be accelerated.

【0049】図8に、第4の実施の形態による主蒸気温
度調整の制御ブロック図を示す。図6に示した第3の実
施の形態に対し、高圧主蒸気管20の高圧主蒸気温度と
その設定値との偏差に基づいて主蒸気温度調節弁31を
調節する主蒸気温度調節器32が追加して設けられてい
る。高圧主蒸気温度とその設定値との偏差は主蒸気温度
調節器32の微分器39に入力され、高圧主蒸気温度の
変化率が演算され、その変化率に基づいて主蒸気温度調
整弁開度演算器49は、主蒸気温度調整弁31の弁開度
を演算する。
FIG. 8 shows a control block diagram for main steam temperature adjustment according to the fourth embodiment. In contrast to the third embodiment shown in FIG. 6, a main steam temperature controller 32 that adjusts the main steam temperature control valve 31 based on the deviation between the high pressure main steam temperature of the high pressure main steam pipe 20 and its set value is provided. It is additionally provided. The deviation between the high-pressure main steam temperature and its set value is input to the differentiator 39 of the main steam temperature controller 32, the change rate of the high-pressure main steam temperature is calculated, and the main steam temperature adjusting valve opening degree is calculated based on the change rate. The calculator 49 calculates the valve opening of the main steam temperature adjusting valve 31.

【0050】排ガス温度が急激に上昇した場合は、排ガ
ス温度制御器40により高圧主蒸気温度調節スプレー弁
25の弁開度指令が演算され、高温第2段減温器23へ
スプレー水が注入される。同時に、微分器39によって
微分された温度偏差も急激に上昇するため、主蒸気温度
調節器32は主蒸気減温器47のスプレー蒸気流量を増
加させる。この時、スプレー水注入による高圧蒸気温度
上昇の抑制の効果は、かなりの遅れを生じるが、主蒸気
減温器47へのスプレー蒸気注入による過熱蒸気への交
換熱量減少の効果は徐々に現れ、高圧主蒸気温度を蒸気
温度設定値にするように作用する。
When the exhaust gas temperature rises sharply, the exhaust gas temperature controller 40 calculates the valve opening command of the high pressure main steam temperature adjusting spray valve 25, and the spray water is injected into the high temperature second stage desuperheater 23. It At the same time, the temperature deviation differentiated by the differentiator 39 also sharply rises, so the main steam temperature controller 32 increases the spray steam flow rate of the main steam reducer 47. At this time, the effect of suppressing the rise in high-pressure steam temperature by injecting spray water causes a considerable delay, but the effect of reducing the amount of heat exchanged into superheated steam by injecting spray steam into the main steam desuperheater 47 gradually appears, It acts to bring the high pressure main steam temperature to the steam temperature set point.

【0051】この第4の実施の形態によれば、高圧主蒸
気(過熱蒸気)の熱交換量を主蒸気温度偏差の微分値に
より求め、主蒸気温度調節器32で高圧第2段過熱器1
9の蒸気出口側の主蒸気減温器47にスプレー蒸気を注
入して熱交換量を減少させるので、蒸気温度の上昇を抑
制することができ、変化率制限を必要とする場合でも主
蒸気温度制御が可能である。
According to the fourth embodiment, the heat exchange amount of the high-pressure main steam (superheated steam) is obtained from the differential value of the main steam temperature deviation, and the main steam temperature controller 32 uses the high pressure second stage superheater 1
Since the amount of heat exchange is reduced by injecting the spray steam into the main steam desuperheater 47 on the steam outlet side of No. 9, the rise in steam temperature can be suppressed, and the main steam temperature can be controlled even when the rate of change restriction is required. It can be controlled.

【0052】[0052]

【発明の効果】以上の説明したように、請求項1の発明
によれば、排熱回収ボイラから発生する主蒸気温度の温
度上昇率を許容範囲内に収め、蒸気タービンに熱応力を
与えることがなくなるので、蒸気タービンの寿命消費を
最小限に抑えることができる。
As described above, according to the first aspect of the present invention, the temperature rise rate of the main steam temperature generated from the exhaust heat recovery boiler is kept within the allowable range and thermal stress is applied to the steam turbine. , The life consumption of the steam turbine can be minimized.

【0053】請求項2の発明によれば、排ガスを分岐し
て給水との熱交換量を減少させるので、適正な排ガス量
で熱交換できる。したがって、蒸気温度の過度の上昇を
抑制することができ、蒸気温度に変化率制限を必要とす
る場合でも適正な温度制御が可能である。
According to the second aspect of the present invention, the exhaust gas is branched to reduce the amount of heat exchange with the feed water, so that heat can be exchanged with an appropriate amount of exhaust gas. Therefore, it is possible to suppress an excessive rise in the steam temperature, and it is possible to perform appropriate temperature control even when the rate of change in steam temperature needs to be limited.

【0054】請求項3の発明によれば、排ガスに圧縮空
気を注入して給水との熱交換量を減少させるので、蒸気
温度の上昇を抑制することができ、蒸気温度に変化率制
限を必要とする場合でも適正な温度制御が可能である。
According to the third aspect of the invention, the compressed air is injected into the exhaust gas to reduce the amount of heat exchange with the feed water, so that the rise in the steam temperature can be suppressed and the rate of change of the steam temperature needs to be limited. Even in such a case, proper temperature control is possible.

【0055】請求項4の発明によれば、排ガス温度調節
装置でスプレー流量を調節して熱交換量を現象させるの
で、先行的に蒸気温度の上昇を抑制することができ、蒸
気温度に変化率制限を必要とする場合でも適正な温度制
御が可能である。
According to the fourth aspect of the invention, since the spray flow rate is adjusted by the exhaust gas temperature control device to cause the heat exchange amount to occur, the rise in the steam temperature can be suppressed in advance, and the rate of change in the steam temperature can be reduced. Appropriate temperature control is possible even when restrictions are required.

【0056】請求項5の発明によれば、高温蒸気の熱交
換量を蒸気温度偏差の微分値により求め、主蒸気温度調
節器で最終段過熱器の蒸気出口側に設けられた主蒸気減
温器にスプレー蒸気を注入して熱交換量を減少させるの
で、蒸気温度の上昇を先行的に抑制することができる。
したがって、蒸気温度に変化率制限を必要とする場合で
も適正な蒸気温度制御が可能である。
According to the fifth aspect of the present invention, the heat exchange amount of the high temperature steam is obtained from the differential value of the steam temperature deviation, and the main steam temperature reducer provided on the steam outlet side of the final stage superheater in the main steam temperature controller. Since the amount of heat exchange is reduced by injecting the spray steam into the vessel, the rise in steam temperature can be suppressed in advance.
Therefore, even when the rate of change of steam temperature needs to be limited, proper steam temperature control is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示すブロック構成
図。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施の形態による主蒸気温度調
整の制御ブロック図。
FIG. 2 is a control block diagram of main steam temperature adjustment according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態を示すブロック構成
図。
FIG. 3 is a block diagram showing a second embodiment of the present invention.

【図4】本発明の第2の実施の形態による主蒸気温度調
整の制御ブロック図。
FIG. 4 is a control block diagram of main steam temperature adjustment according to the second embodiment of the present invention.

【図5】本発明の第3の実施の形態を示すブロック構成
図。
FIG. 5 is a block diagram showing a third embodiment of the present invention.

【図6】本発明の第3の実施の形態による主蒸気温度調
整の制御ブロック図。
FIG. 6 is a control block diagram for main steam temperature adjustment according to a third embodiment of the present invention.

【図7】本発明の第4の実施の形態を示すブロック構成
図。
FIG. 7 is a block diagram showing a fourth embodiment of the present invention.

【図8】本発明の第4の実施の形態による主蒸気温度調
整の制御ブロック図。
FIG. 8 is a control block diagram of main steam temperature adjustment according to a fourth embodiment of the present invention.

【図9】従来例を示すブロック構成図。FIG. 9 is a block diagram showing a conventional example.

【図10】従来例による主蒸気温度調整の制御ブロック
図。
FIG. 10 is a control block diagram for main steam temperature adjustment according to a conventional example.

【符号の説明】[Explanation of symbols]

1 低圧給水管 2 低圧節炭器 3 高圧給水ポンプ吸込管 4 低圧連絡管 5 低圧給水調節弁 6 高圧給水ポンプ 7 高圧給水管 8 低圧蒸気ドラム 9 低圧蒸発器 10 低圧蒸気連絡管 11 低圧過熱器 12 高圧節炭器 13 高圧連絡管 14 高圧給水調節弁 15 高圧蒸気ドラム 16 高圧蒸発器 17 高圧蒸気連絡管 18 高圧第1段過熱器 19 高圧第2段過熱器 20 高圧主蒸気管 21 第1の再熱器 22 第2の再熱器 23 高圧主蒸気減温器 24 減温給水管 25 高圧主蒸気温度調節スプレー弁 26 再熱蒸気減温器 27 再熱蒸気温度調節弁 28 低圧節炭器入口給水温度調節管 29 低圧給水温度調節弁 30 過熱器バイパス蒸気管 31 主蒸気温度調節弁 32 主蒸気温度調節器 33 排ガス温度検出器 34 排ガス流量調節器 35 関数発生器 36 高圧主蒸気温度調節スプレー弁開度演算器 37 主蒸気温度制御器 38 低値優先回路 39 微分器 40 排ガス温度制御器 41 排ガスバイパス流路 42 排ガス流量調節用ダンパ開閉器 43 圧縮空気量調節器 44 圧縮空気連絡管 45 圧縮空気量調節用ダンパ開閉器 46 スプレー水量調節器 47 主蒸気減温器 48 排熱回収ボイラ 49 主蒸気温度調節弁開度演算器 50 主蒸気温度調整装置 1 low-pressure water supply pipe 2 low-pressure coal economizer 3 high-pressure water supply pump suction pipe 4 low-pressure communication pipe 5 low-pressure water supply control valve 6 high-pressure water supply pump 7 high-pressure water supply pipe 8 low-pressure steam drum 9 low-pressure evaporator 10 low-pressure steam communication pipe 11 low-pressure superheater 12 High pressure economizer 13 High pressure connecting pipe 14 High pressure water supply control valve 15 High pressure steam drum 16 High pressure evaporator 17 High pressure steam connecting pipe 18 High pressure first stage superheater 19 High pressure second stage superheater 20 High pressure main steam pipe 21 First re- Heater 22 Second reheater 23 High pressure main steam desuperheater 24 Dehumidifying water supply pipe 25 High pressure main steam temperature control spray valve 26 Reheat steam desuperheater 27 Reheat steam temperature control valve 28 Low pressure economizer inlet water supply Temperature control pipe 29 Low-pressure feed water temperature control valve 30 Superheater bypass steam pipe 31 Main steam temperature control valve 32 Main steam temperature controller 33 Exhaust gas temperature detector 34 Exhaust gas flow controller 35 Function generation 36 High pressure main steam temperature control Spray valve opening calculator 37 Main steam temperature controller 38 Low value priority circuit 39 Differentiator 40 Exhaust gas temperature controller 41 Exhaust gas bypass flow path 42 Exhaust gas flow rate adjustment damper switch 43 Compressed air amount adjustment Device 44 Compressed air connecting pipe 45 Compressor switch for controlling compressed air amount 46 Spray water amount controller 47 Main steam desuperheater 48 Exhaust heat recovery boiler 49 Main steam temperature control valve opening degree calculator 50 Main steam temperature adjusting device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンからの排ガスで高圧蒸気及
び低圧蒸気を発生させ過熱器で過熱して蒸気タービンに
供給する排熱回収ボイラの前記高圧蒸気を過熱して得ら
れる主蒸気温度を高圧主蒸気減温器にスプレー水を供給
して制御する主蒸気温度制御装置において、前記ガスタ
ービンの起動過程時に、前記主蒸気温度が所定の許容温
度変化率を超えて上昇しないように、前記ガスタービン
の排ガス温度に基づいて前記主蒸気温度を調節する主蒸
気温度調節装置を備えたことを特徴とする主蒸気温度制
御装置。
1. A main steam temperature obtained by superheating the high pressure steam of an exhaust heat recovery boiler, which generates high-pressure steam and low-pressure steam from exhaust gas from a gas turbine, superheats them in a superheater and supplies them to a steam turbine. In a main steam temperature control device for supplying spray water to a steam desuperheater to control, the gas turbine is controlled so that the main steam temperature does not rise above a predetermined allowable temperature change rate during a starting process of the gas turbine. A main steam temperature control device comprising a main steam temperature adjusting device for adjusting the main steam temperature based on the exhaust gas temperature of the above.
【請求項2】 前記高圧蒸気温度調節装置は、前記ガス
タービンの排ガスをバイパスさせる排ガスバイパス流路
と、前記排ガスバイパス流路に設けられた排ガス流量調
節用ダンパ開閉器と、前記高圧蒸気を過熱する最終段の
過熱器の排ガス入口側における排ガス温度を検出する排
ガス温度検出器と、前記排ガス温度検出器で検出された
排ガス温度が所定の設定値になるように前記排ガス流量
調節用ダンパ開閉器のダンパ開度を調節する排ガス流量
調節器とを備えたことを特徴とする請求項1に記載の主
蒸気温度制御装置。
2. The high-pressure steam temperature control device comprises an exhaust gas bypass passage for bypassing exhaust gas from the gas turbine, an exhaust gas flow rate adjusting damper switch provided in the exhaust gas bypass passage, and the high-pressure steam being superheated. An exhaust gas temperature detector for detecting the exhaust gas temperature at the exhaust gas inlet side of the final stage superheater, and the exhaust gas flow rate adjusting damper switch so that the exhaust gas temperature detected by the exhaust gas temperature detector becomes a predetermined set value. 2. The main steam temperature control device according to claim 1, further comprising: an exhaust gas flow rate controller that adjusts the damper opening degree.
【請求項3】 前記高圧蒸気温度調節装置は、前記ガス
タービンに圧縮空気を供給するコンプレッサ中段から前
記ガスタービンの排ガス中に圧縮空気を注入するための
圧縮空気連絡管と、前記圧縮空気連絡管に設けられた圧
縮空気量調節用ダンパ開閉器と、前記高圧蒸気を過熱す
る最終段の過熱器の排ガス入口側における排ガス温度を
検出する排ガス温度検出器と、前記排ガス温度検出器で
検出された排ガス温度が所定の設定値になるように前記
圧縮空気量調節用ダンパ開閉器のダンパ開度を調節する
圧縮空気量調節器とを備えたことを特徴とする請求項1
に記載の主蒸気温度制御装置。
3. The high-pressure steam temperature control device, a compressed air connecting pipe for injecting compressed air into the exhaust gas of the gas turbine from a compressor middle stage for supplying compressed air to the gas turbine, and the compressed air connecting pipe. A damper switch for adjusting the compressed air amount provided in the exhaust gas temperature detector, an exhaust gas temperature detector that detects the exhaust gas temperature at the exhaust gas inlet side of the final stage superheater that superheats the high-pressure steam, and the exhaust gas temperature detector. 2. A compressed air amount controller for adjusting the damper opening of the compressed air amount adjusting damper switch so that the exhaust gas temperature becomes a predetermined set value.
Main steam temperature control device described in.
【請求項4】 前記高圧蒸気温度調節装置は、前記高圧
蒸気を過熱する最終段の過熱器の排ガス入口側における
排ガス温度を検出する排ガス温度検出器と、前記排ガス
温度が所定の設定値になるように前記高圧主蒸気減温器
に供給するスプレー水の流量を調節するスプレー水流量
調節器とを備えたことを特徴とする請求項1に記載の主
蒸気温度制御装置。
4. An exhaust gas temperature detector for detecting an exhaust gas temperature at an exhaust gas inlet side of a final stage superheater that superheats the high pressure steam, and the exhaust gas temperature reaches a predetermined set value. The main steam temperature controller according to claim 1, further comprising a spray water flow rate controller that adjusts a flow rate of spray water supplied to the high-pressure main steam desuperheater.
【請求項5】 前記高圧蒸気温度調節装置は、前記最終
段過熱器の蒸気出口側に設けられた主蒸気減温器と、前
記高圧蒸気を過熱する最終段の過熱器の蒸気出口側の主
蒸気温度が所定の設定値になるように前記主蒸気減温器
に供給する前記最終段過熱器入口からのスプレー蒸気流
量を調節する主蒸気温度調節器とを備えたことを特徴と
する請求項4に記載の主蒸気温度制御装置。
5. The high-pressure steam temperature control device comprises a main steam desuperheater provided on a steam outlet side of the final stage superheater and a main steam outlet side of a final stage superheater that superheats the high pressure steam. A main steam temperature controller for adjusting the flow rate of spray steam from the inlet of the final stage superheater which is supplied to the main steam desuperheater so that the steam temperature becomes a predetermined set value. 4. The main steam temperature control device according to 4.
JP6383896A 1996-01-19 1996-01-19 Main steam temperature control device Pending JPH09195718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6383896A JPH09195718A (en) 1996-01-19 1996-01-19 Main steam temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6383896A JPH09195718A (en) 1996-01-19 1996-01-19 Main steam temperature control device

Publications (1)

Publication Number Publication Date
JPH09195718A true JPH09195718A (en) 1997-07-29

Family

ID=13240898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6383896A Pending JPH09195718A (en) 1996-01-19 1996-01-19 Main steam temperature control device

Country Status (1)

Country Link
JP (1) JPH09195718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797921B2 (en) 2004-10-20 2010-09-21 Mitsubishi Heavy Industries, Ltd. Control apparatus of extracted air booster system of integrated gasification combined cycle power plant
CN105804810A (en) * 2016-03-11 2016-07-27 大唐淮南洛河发电厂 Operation control method for thermal power generating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797921B2 (en) 2004-10-20 2010-09-21 Mitsubishi Heavy Industries, Ltd. Control apparatus of extracted air booster system of integrated gasification combined cycle power plant
CN105804810A (en) * 2016-03-11 2016-07-27 大唐淮南洛河发电厂 Operation control method for thermal power generating unit

Similar Documents

Publication Publication Date Title
EP0178617B1 (en) Steam turbine plant having a turbine bypass system
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
US8733104B2 (en) Single loop attemperation control
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
JPS6239648B2 (en)
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JPH10292902A (en) Main steam temperature controller
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JPH09195718A (en) Main steam temperature control device
JP2918743B2 (en) Steam cycle controller
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP3133183B2 (en) Combined cycle power plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
WO2020255719A1 (en) Power plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JP4560481B2 (en) Steam turbine plant
JPH0330687B2 (en)
JP3650277B2 (en) Thermal power plant control device and thermal power plant control method
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JP2908085B2 (en) Waste heat recovery boiler

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050315

A131 Notification of reasons for refusal

Effective date: 20050322

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD04 Notification of resignation of power of attorney

Effective date: 20050323

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Effective date: 20050523

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108