JP3650277B2 - Thermal power plant control device and thermal power plant control method - Google Patents

Thermal power plant control device and thermal power plant control method Download PDF

Info

Publication number
JP3650277B2
JP3650277B2 JP34733798A JP34733798A JP3650277B2 JP 3650277 B2 JP3650277 B2 JP 3650277B2 JP 34733798 A JP34733798 A JP 34733798A JP 34733798 A JP34733798 A JP 34733798A JP 3650277 B2 JP3650277 B2 JP 3650277B2
Authority
JP
Japan
Prior art keywords
main steam
pressure
steam
temperature
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34733798A
Other languages
Japanese (ja)
Other versions
JP2000170503A (en
Inventor
清 戸根川
和 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34733798A priority Critical patent/JP3650277B2/en
Publication of JP2000170503A publication Critical patent/JP2000170503A/en
Application granted granted Critical
Publication of JP3650277B2 publication Critical patent/JP3650277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は火力プラントの制御装置及び火力プラントの制御方法に係わり、特に蒸気供給系の蒸気圧力が低下したとき、主蒸気加減弁を閉操作制御するようにした火力プラントの制御装置および制御方法に関するものである。
【0002】
【従来の技術】
従来一般に採用されているこの種の火力プラントは、主蒸気の供給量を加減する蒸気加減弁を備えた主蒸気供給系と、この主蒸気供給系からの主蒸気により駆動される蒸気タービンとを備え、そして負荷運転中において主蒸気供給系の圧力が所定の値まで低下したときには、前記蒸気加減弁を無負荷相当の弁開度まで閉じるようにしているのが普通である。
【0003】
すなわち、負荷運転中の主蒸気圧力の上昇、降下過程または主蒸気圧力一定保持時において、何らかの原因、例えばボイラ側の燃料の投入量が不足した場合,あるいは圧力制御系に異常が生じた場合等には、前記主蒸気圧力が低下することになるが、この圧力が、或る圧力,例えば定格主蒸気圧力の90%まで低下した場合には、この時点で、主蒸気加減弁の絞り込みが始まり、定格主蒸気圧力の80%まで、すなわち主蒸気圧力の無負荷相当の圧力まで主蒸気加減弁を絞り込むようにしている。
【0004】
図4は、このプラント構成を概略的に示したものであり、13がドラム形ボイラ、6,8,21が蒸気タービン、5が主蒸気加減弁である。主蒸気は、ドラム形ボイラ13を備えた主蒸気供給系より、供給配管4および主蒸気加減弁5を介して蒸気タービンに供給され、タービンは駆動される。
【0005】
この場合、ボイラ13から高圧蒸気タービン6への蒸気供給路となる主蒸気配管4には、温度検出器10、圧力検出器11が設置されており、主蒸気の圧力値は、この圧力検出器11により検出され制御回路(弁制御装置)12に取り込まれる。そして制御回路12にて処理された制御信号により主蒸気加減弁5は制御されるのである。すなわち、主蒸気供給系の圧力が所定の値まで低下したときには、制御装置12により蒸気加減弁は無負荷相当の弁開度まで閉操作の制御が行なわれるのである。
【0006】
図5はこのときの制御装置12の概要ロジックで、関数発生器31にて主蒸気圧力が、主蒸気圧力のA%、例えば90%に低下した場合には、主蒸気圧力のB%、例えば80%、これは無負荷相当の主蒸気加減弁開度を示すが、ここまで主蒸気加減弁を絞る信号を100から0%で出力させている。本出力信号を演算器32を通し、この演算器32では変化率の設定等を行うものであるが、高値選択回路33を経て主蒸気加減弁へ制御信号として送られる。勿論、高値選択回路33には下限値も入力し、下限値以下には絞らないように制限をかけている。
【0007】
この場合、図6にプラント負荷に対応した主蒸気圧力の特性の一例が示されているように、主蒸気の圧力はプラント負荷により変化するので、同負荷に対応した圧力をベースに関数発生器31は組まれている。
【0008】
一方、このドラム形ボイラ13にて発生する主蒸気の温度調節は、ボイラに設けられている減温器16により行なわれている。すなわち、主蒸気の温度が温度検出器10により検出され、この検出値に基づき温度調節弁15が動作し減温器16へのスプレー流量を調節して一定の温度となるように制御している。
【0009】
【発明が解決しようとする課題】
このように構成されている火力プラントで、何らかの要因によりドラム形ボイラの主蒸気圧力が低下した場合、ボイラ側の異常を主蒸気圧力で検出し、主蒸気加減弁を絞り込んでボイラ側の異常状態の回復を図るものであるが、しかしながら、この従来のプラント構成では、ボイラ側としては特に問題になることはないのであるが、タービン側としてはボイラの主蒸気圧力が低下した場合に、主蒸気温度も低下することになり、この温度低下によってタービンを構成している部品メタルの急冷を招く恐れがあり、部品に悪影響を及ぼす恐れがあった。
【0010】
すなわち、ドラム形ボイラの特徴として、前述したように主蒸気圧力の制御は燃料の増減により行われ、主蒸気温度の制御は一次過熱器2の出口に設けられた減温器16へのスプレー流量調整によって行われる。したがって、このドラム形ボイラを採用したプラントにおいて燃料量の減少や燃料バーナ14の失火等により主蒸気圧力が低下場合、ドラム1には熱容量があるため、主蒸気圧力が低下しても温度の低下は時限遅れをもって低下し急激な低下とはならず、蒸気タービンを構成しているメタル部品に熱的な悪影響を及ぼす恐れがある。
【0011】
本発明はこれに鑑みなされたもので、その目的とするところは、プラント運転中に主蒸気供給系の圧力低下が生じても、蒸気タービンを構成しているメタル部品に悪影響を及ぼすことがなく、かつ運転継続の拡大化を図ることが可能な火力プラントの制御装置を提供することにある。
【0012】
【課題を解決するための手段】
すなわち本発明は、ドラム形ボイラを有する主蒸気供給系と、この主蒸気供給系からの主蒸気により駆動される蒸気タービンと、前記蒸気供給系に設けられ主蒸気の供給量を加減する蒸気加減弁と、前記主蒸気供給系の圧力が所定の値まで低下したときに、前記蒸気加減弁を無負荷相当の弁開度まで閉操作の制御をする制御装置とを備えている火力プラントの制御装置において、前記弁制御装置に、前記主蒸気の圧力が前記所定値まで低下したときに前記主蒸気の温度値を取り込み、この温度値が所定値以下のときに、前記主蒸気加減弁の閉操作を開始するようにした手段を設け所期の目的を達成するようにしたものである。
【0013】
また本発明は、ドラム形ボイラを有する主蒸気供給系と、この主蒸気供給系からの主蒸気により駆動される蒸気タービンと、前記蒸気供給系に設けられ主蒸気の供給量を加減する蒸気加減弁と、前記蒸気タービンに供給される主蒸気の圧力が所定の値まで低下したときに、前記蒸気加減弁を無負荷相当の弁開度まで閉操作の制御をする制御装置とを備えている火力プラントの制御装置において、前記弁制御装置に、前記主蒸気の温度値を取り込み、この温度値が所定値以下のときに、前記主蒸気加減弁の閉操作を開始するようにした手段を設けるようにしたものである。
【0014】
また、主蒸気供給系から蒸気タービンに供給される主蒸気の圧力が所定値まで低下したときに、主蒸気供給系の主蒸気加減弁を無負荷相当の弁開度まで閉じるようにした火力プラントの制御方法において、前記プラントの運転時に、前記蒸気タービンに供給される主蒸気の温度値を取り込むようにし、前記主蒸気の圧力が前記所定値まで低下した場合、前記主蒸気の温度値が所定値以下のときに、前記主蒸気加減弁の閉操作を開始するようにしたものである。
【0015】
また、主蒸気供給系から蒸気タービンに供給される主蒸気の圧力が所定値まで低下したときに、主蒸気供給系の主蒸気加減弁を無負荷相当の弁開度まで閉じるようにした火力プラントの制御方法において、前記プラントの運転時に前記主蒸気の圧力が所定値まで低下した時に、前記蒸気タービンに供給される主蒸気の温度を監視し、前記主蒸気温度が所定値以上のときには前記主蒸気加減弁の絞り込み信号をブロックするようにしたものである。
【0016】
また、主蒸気供給系から蒸気タービンに供給される主蒸気の圧力が所定値まで低下したときに、主蒸気供給系の主蒸気加減弁を無負荷相当の弁開度まで閉じるようにした火力プラントの制御方法において、前記プラントの運転時、前記蒸気タービンに供給される主蒸気の温度値を取り込み、この取り込んだ温度値が所定値以下のときに、前記主蒸気加減弁の閉操作を開始するようにしたものである。
【0017】
すなわちこのように形成された火力プラントであると、蒸気加減弁の開閉操作の制御をする弁制御装置に、主蒸気の圧力が前記所定値まで低下したときに前記主蒸気の温度値を取り込み、この温度値が所定値以下のときには、前記主蒸気加減弁の閉操作を開始する手段,すなわち主蒸気温度が所定値以上であれば主蒸気加減弁の絞り込み信号をブロックするように形成されているので、主蒸気温度がある程度低くなってからの主蒸気加減弁の閉操作開始であり、蒸気タービンを構成しているメタル部品に熱的な悪影響を及ぼすことはないのである。また、主蒸気圧力の低下のみで主蒸気加減弁を即絞り開始に入ることを抑制することができ、その間に主蒸気圧力の回復が期待できればプラントの運転継続にも寄与でき、運転継続の拡大化を図ることができるのである。
【0018】
【発明の実施の形態】
以下図示した実施例に基づいて本発明を詳細に説明する。図1にはその火力発電プラントの構成概要が線図で示されている。13がドラム形ボイラであり、6,8,21が蒸気タービン(高圧,中圧,低圧)、5が主蒸気加減弁、22が復水器、25が脱気器、50が発電機である。なお、14はボイラの加熱源としての燃料バーナである。
【0019】
まず、この図に基づきプラントの作動概要を説明すると、主蒸気は、ドラム形ボイラ13、過熱器2,3および主蒸気配管4からなる主蒸気供給系より、主蒸気加減弁5を介して蒸気タービンに供給される。すなわち、ボイラのドラム1で発生した蒸気が、一次過熱器2、二次過熱器3により過熱され、主蒸気配管4および主蒸気加減弁5を通り高圧蒸気タービン6に導かれる。高圧蒸気タービンを経た蒸気は、再熱器7で再過熱され中圧蒸気タービン8に入り、中圧蒸気タービンを経た蒸気は低圧蒸気タービン21に入り復水器22にて凝縮される。
【0020】
復水器22に凝縮された復水は復水ポンプ23により昇圧され、低圧給水加熱器24を通って脱気器25に導かれる。脱気器25にて脱気された復水は給水ポンプ26により昇圧され高圧給水加熱器27にて昇温され給水流量調節弁28を通りボイラ13に戻され、節炭器29を経てドラム1に給水される。
【0021】
ボイラ13にて発生する主蒸気の温度調節は、ボイラに設けられている減温器16により行われる。すなわち、主蒸気の温度が温度検出器10により検出され、この検出値に基づき温度調節弁15が動作し減温器16へのスプレー流量を調節して一定の温度となるように制御される。
【0022】
このように温度制御された主蒸気が高圧蒸気タービン6へ供給されるわけであるが、ボイラ13から高圧蒸気タービン6への蒸気供給路となる主蒸気配管4には、温度検出器10、圧力検出器11が設置されており、主蒸気の圧力値は、この圧力検出器11により検出され制御回路(弁制御装置)12に取り込まれる。そして制御回路12にて処理された制御信号により主蒸気加減弁5は制御される。すなわち、主蒸気供給系の圧力が所定の値まで低下したときには、蒸気加減弁は無負荷相当の弁開度まで閉操作の制御が行われる。
【0023】
この場合、制御回路12には次のような手段が施されている。すなわち、制御回路12に、主蒸気の圧力が所定値まで低下したとき、主蒸気の温度値を取り込み、この温度が所定値以下のときに、前記主蒸気加減弁の閉操作を開始するようにするのである。
【0024】
すなわち、図1(b)にその制御回路が線図で示されているように、主蒸気温度を監視し、主蒸気の圧力が所定値まで低下したとき、主蒸気の温度値を取り込み、この取り込んだ温度値と所定値との比較を減算器36で行い、それをモニタリレー37で判定し、温度値が所定値以下になった場合に切替器34により主蒸気加減弁の閉動作開始信号を送るようにするのである。
【0025】
この場合、基準となる前記所定値の温度は、プラント負荷により変わるものであるが、タービンへの流入蒸気が十分な過熱度を有し、タービンメタルの急冷防止を図った制限値によって設定される。すなわち、図3に一例が示されているように、プラントの負荷により変化するため、これに合った関数発生器35により設定する。なお、切替器34は通常は設定器38により最大値100%を入力しておき図中bからcへ出力し、主蒸気温度が所定値以下になったときaからcへ出力する。
【0026】
本実施例によれば、運転中に主蒸気圧力低下が生じても、主蒸気加減弁が主蒸気温度に無関係に閉動作制御されることはなく、蒸気タービンを構成しているメタル部品に熱的な悪影響を及ぼすことがなく、また主蒸気圧力の低下のみで主蒸気加減弁を即絞り開始に入ることを抑制することができ、その間に主蒸気圧力の回復が期待できればプラントの運転継続にも寄与できる。
【0027】
図2には本発明のもう一つの実施例が示されている。このものは前記実施例にさらに主蒸気温度が所定値以下に低下したとき、主蒸気圧力が所定量低下していない状態でも先行制御により主蒸気加減弁を絞るようにしたものである。
【0028】
すなわち、ドラム形ボイラの場合、主蒸気温度の低下の要因として前記スプレー制御の不調が考えられ、この場合には、主蒸気圧力が低下することなく主蒸気温度が低下することが考えられる。したがってこのような場合の対応として、減算器36の下流に関数発生器41を別に設け、主蒸気温度が所定値よりc℃,例えば10℃以下になった場合、主蒸気加減弁を絞るよう出力信号を出すようにしたものである。すなわち、演算器42を経て低値選択回路43により主蒸気加減弁へ制御信号を出すのである。
【0029】
本実施例であると、前記実施例の効果,すなわち蒸気タービンを構成しているメタル部品に熱的な悪影響を及ぼすことがないことは勿論、さらに主蒸気温度の低下に対し防護されるため安全性の向上を図ることが可能となる。
【0030】
なお、主蒸気温度の低下については、タービン保護として主蒸気温度低にてタービンをトリップさせているプラントもあるが、本発明の実施例では温度による先行制御により主蒸気加減弁を絞りタービンのトリップを回避させている。タービンは一旦トリップさせるとユニットを再起動し定格負荷まで立上げるのに2時間以上は要すが、トリップさせずに無負荷位置から定格負荷まで立上げるには1時間程度で済む。したがって、ユニットを再起動するための起動損失の軽減を図ることもできるのである。
【0031】
【発明の効果】
以上説明してきたように本発明によれば、プラント運転中に主蒸気供給系の圧力低下が生じても、蒸気タービンを構成しているメタル部品に悪影響を及ぼすことがなく、かつ運転継続の拡大化を図ることが可能なこの種の火力プラントの制御装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の火力プラントの制御装置の一実施例を示す線図およびその制御装置を備えた火力プラントの線図である。
【図2】本発明の火力プラントの制御装置の他の実施例を示す線図である。
【図3】プラント負荷対主蒸気温度の所定値特性の一例を示す図である。
【図4】従来の火力発電プラントの構成概要を示す線図である。
【図5】従来の火力発電プラントの制御装置の制御ロジックの概要を示す図である。
【図6】プラント負荷対主蒸気圧力特性の一例を示す図である。
【符号の説明】
1…ボイラのドラム、2,3…過熱器、4…主蒸気配管、5…主蒸気加減弁、6,8,21…が蒸気タービン(高圧,中圧,低圧)、7…再熱器、10…温度検出器、12…制御回路(弁制御装置)、13…ボイラ、15…温度調節弁、16…減温器、22…復水器、23…復水ポンプ、24…低圧給水加熱器、25…脱気器、26…給水ポンプ、27…高圧給水加熱器、28…給水流量調節弁、29…節炭器、34…切替器、35,41…関数発生器、36…減算器、37…モニタリレー、38…設定器、43…低値選択回路、50…発電機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal power plant control device and a thermal power plant control method, and more particularly to a thermal power plant control device and a control method for controlling a main steam control valve to close when a steam pressure in a steam supply system is lowered. Is.
[0002]
[Prior art]
Conventionally, this type of thermal power plant generally includes a main steam supply system having a steam control valve for adjusting the amount of main steam supplied, and a steam turbine driven by the main steam from the main steam supply system. In general, when the pressure of the main steam supply system drops to a predetermined value during the load operation, the steam control valve is normally closed to a valve opening corresponding to no load.
[0003]
In other words, when the main steam pressure rises or falls during load operation, or when the main steam pressure is kept constant, for some reason, such as when the amount of fuel input on the boiler side is insufficient, or when an abnormality occurs in the pressure control system, etc. However, when the main steam pressure decreases to a certain pressure, for example, 90% of the rated main steam pressure, the main steam control valve starts to be narrowed at this point. The main steam control valve is narrowed down to 80% of the rated main steam pressure, that is, to a pressure equivalent to no load of the main steam pressure.
[0004]
FIG. 4 schematically shows the plant configuration, in which 13 is a drum boiler, 6, 8 and 21 are steam turbines, and 5 is a main steam control valve. The main steam is supplied from the main steam supply system provided with the drum boiler 13 to the steam turbine through the supply pipe 4 and the main steam control valve 5, and the turbine is driven.
[0005]
In this case, a temperature detector 10 and a pressure detector 11 are installed in the main steam pipe 4 serving as a steam supply path from the boiler 13 to the high-pressure steam turbine 6, and the pressure value of the main steam is the pressure detector. 11 and detected by the control circuit (valve control device) 12. The main steam control valve 5 is controlled by the control signal processed by the control circuit 12. That is, when the pressure of the main steam supply system decreases to a predetermined value, the control device 12 controls the closing operation of the steam control valve to a valve opening corresponding to no load.
[0006]
FIG. 5 is a schematic logic of the control device 12 at this time. When the main steam pressure is reduced to A% of the main steam pressure, for example, 90% in the function generator 31, B% of the main steam pressure, for example, 80%, which indicates the main steam control valve opening corresponding to no load, but so far, the signal for narrowing the main steam control valve is output from 100 to 0%. This output signal is passed through the calculator 32, and the calculator 32 sets the rate of change, etc., and is sent as a control signal to the main steam control valve via the high value selection circuit 33. Of course, the lower limit value is also input to the high value selection circuit 33, and the upper limit selection circuit 33 is limited so as not to reduce the lower limit value.
[0007]
In this case, as shown in FIG. 6 as an example of the characteristic of the main steam pressure corresponding to the plant load, the main steam pressure varies depending on the plant load. Therefore, the function generator is based on the pressure corresponding to the load. 31 is assembled.
[0008]
On the other hand, the temperature of the main steam generated in the drum boiler 13 is adjusted by a temperature reducer 16 provided in the boiler. That is, the temperature of the main steam is detected by the temperature detector 10, and the temperature control valve 15 is operated based on the detected value to adjust the spray flow rate to the temperature reducer 16 so that the temperature becomes a constant temperature. .
[0009]
[Problems to be solved by the invention]
When the main steam pressure of a drum boiler drops due to some factor in a thermal power plant configured in this way, an abnormality on the boiler side is detected by detecting the abnormality on the boiler side with the main steam pressure and narrowing down the main steam control valve. However, in this conventional plant configuration, there is no particular problem on the boiler side, but on the turbine side, when the main steam pressure of the boiler is reduced, the main steam The temperature also decreases, and this temperature decrease may cause rapid cooling of component metals constituting the turbine, which may adversely affect the components.
[0010]
In other words, as described above, the main feature of the drum boiler is that the main steam pressure is controlled by increasing or decreasing the fuel, and the main steam temperature is controlled by the spray flow rate to the temperature reducer 16 provided at the outlet of the primary superheater 2. Done by adjustment. Accordingly, when the main steam pressure is reduced due to a decrease in the amount of fuel or misfiring of the fuel burner 14 or the like in the plant employing this drum boiler, the drum 1 has a heat capacity. Decreases with a time delay and does not decrease rapidly, and there is a possibility that the metal parts constituting the steam turbine may be adversely affected by heat.
[0011]
The present invention has been made in view of this, and the object thereof is to prevent adverse effects on the metal parts constituting the steam turbine even if the main steam supply system pressure drop occurs during plant operation. And it is providing the control apparatus of the thermal power plant which can aim at the expansion of a continuous operation.
[0012]
[Means for Solving the Problems]
That is, the present invention relates to a main steam supply system having a drum-type boiler, a steam turbine driven by main steam from the main steam supply system, and a steam adjustment mode which is provided in the steam supply system and adjusts the supply amount of main steam. Control of a thermal power plant comprising a valve and a control device that controls the closing operation of the steam control valve to a valve opening corresponding to no load when the pressure of the main steam supply system drops to a predetermined value In the apparatus, when the main steam pressure drops to the predetermined value, the main steam temperature value is taken into the valve control device, and when the temperature value is less than the predetermined value, the main steam control valve is closed. Means for starting the operation is provided to achieve the intended purpose.
[0013]
The present invention also provides a main steam supply system having a drum-type boiler, a steam turbine driven by the main steam from the main steam supply system, and a steam control unit provided in the steam supply system for adjusting the supply amount of the main steam. And a control device that controls the closing operation of the steam control valve to a valve opening corresponding to no load when the pressure of the main steam supplied to the steam turbine is reduced to a predetermined value. In the thermal power plant control device, the valve control device is provided with means for taking in the temperature value of the main steam and starting the closing operation of the main steam control valve when the temperature value is equal to or lower than a predetermined value. It is what I did.
[0014]
In addition, when the main steam pressure supplied from the main steam supply system to the steam turbine drops to a predetermined value, the main steam control valve of the main steam supply system is closed to a valve opening corresponding to no load. In the control method, when the temperature of the main steam supplied to the steam turbine is taken in during operation of the plant, and the pressure of the main steam is reduced to the predetermined value, the temperature value of the main steam is predetermined. When the value is less than or equal to the value, the closing operation of the main steam control valve is started.
[0015]
In addition, when the main steam pressure supplied from the main steam supply system to the steam turbine drops to a predetermined value, the main steam control valve of the main steam supply system is closed to a valve opening corresponding to no load. In this control method, the temperature of the main steam supplied to the steam turbine is monitored when the pressure of the main steam drops to a predetermined value during operation of the plant, and when the main steam temperature is equal to or higher than the predetermined value, the main steam is monitored. The throttle signal of the steam control valve is blocked.
[0016]
In addition, when the main steam pressure supplied from the main steam supply system to the steam turbine drops to a predetermined value, the main steam control valve of the main steam supply system is closed to a valve opening corresponding to no load. In this control method, during operation of the plant, the temperature value of the main steam supplied to the steam turbine is captured, and when the captured temperature value is equal to or less than a predetermined value, the closing operation of the main steam control valve is started. It is what I did.
[0017]
That is, in the case of a thermal power plant formed in this way, the valve controller that controls the opening / closing operation of the steam control valve takes in the temperature value of the main steam when the pressure of the main steam drops to the predetermined value, When this temperature value is less than a predetermined value, the means for starting the closing operation of the main steam control valve, that is, the main steam control valve narrowing signal is blocked if the main steam temperature is a predetermined value or more. Therefore, the main steam control valve starts to be closed after the main steam temperature is lowered to some extent, and there is no thermal adverse effect on the metal parts constituting the steam turbine. In addition, it is possible to prevent the main steam control valve from immediately starting to be throttled only by lowering the main steam pressure, and if recovery of the main steam pressure can be expected during that time, it can also contribute to the continuation of plant operation, and expansion of continuation of operation Can be achieved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments. FIG. 1 is a diagram showing the outline of the configuration of the thermal power plant. 13 is a drum boiler, 6, 8 and 21 are steam turbines (high pressure, medium pressure, low pressure), 5 is a main steam control valve, 22 is a condenser, 25 is a deaerator, and 50 is a generator. . Reference numeral 14 denotes a fuel burner as a boiler heating source.
[0019]
First, an outline of the operation of the plant will be described with reference to this figure. The main steam is supplied from the main steam supply system including the drum boiler 13, the superheaters 2 and 3, and the main steam pipe 4 through the main steam control valve 5. Supplied to the turbine. That is, the steam generated in the drum 1 of the boiler is superheated by the primary superheater 2 and the secondary superheater 3, and is guided to the high-pressure steam turbine 6 through the main steam pipe 4 and the main steam control valve 5. The steam that has passed through the high-pressure steam turbine is reheated by the reheater 7 and enters the intermediate-pressure steam turbine 8, and the steam that has passed through the intermediate-pressure steam turbine enters the low-pressure steam turbine 21 and is condensed in the condenser 22.
[0020]
The condensate condensed in the condenser 22 is increased in pressure by the condensate pump 23 and led to the deaerator 25 through the low-pressure feed water heater 24. The condensate deaerated by the deaerator 25 is pressurized by a feed water pump 26, heated by a high-pressure feed water heater 27, returned to the boiler 13 through a feed water flow rate adjustment valve 28, passed through a economizer 29, and the drum 1. To be supplied with water.
[0021]
The temperature of the main steam generated in the boiler 13 is adjusted by a temperature reducer 16 provided in the boiler. That is, the temperature of the main steam is detected by the temperature detector 10, and based on this detected value, the temperature control valve 15 is operated to control the spray flow rate to the temperature reducer 16 so as to reach a constant temperature.
[0022]
The main steam whose temperature is controlled in this way is supplied to the high pressure steam turbine 6. A detector 11 is installed, and the pressure value of the main steam is detected by the pressure detector 11 and taken into a control circuit (valve control device) 12. The main steam control valve 5 is controlled by the control signal processed by the control circuit 12. That is, when the pressure of the main steam supply system decreases to a predetermined value, the steam control valve is controlled to close to a valve opening corresponding to no load.
[0023]
In this case, the control circuit 12 is provided with the following means. That is, when the main steam pressure drops to a predetermined value, the control circuit 12 takes in the temperature value of the main steam, and starts the closing operation of the main steam control valve when the temperature is lower than the predetermined value. To do.
[0024]
That is, as shown in the diagram of FIG. 1 (b), the main steam temperature is monitored, and when the main steam pressure drops to a predetermined value, the main steam temperature value is taken in. The subtractor 36 compares the fetched temperature value with a predetermined value, and it is determined by the monitor relay 37. When the temperature value falls below the predetermined value, the switch 34 closes the main steam control valve closing operation start signal. Is sent.
[0025]
In this case, the temperature of the predetermined value serving as a reference varies depending on the plant load, but the steam flowing into the turbine has a sufficient degree of superheat, and is set by a limit value for preventing rapid cooling of the turbine metal. . That is, as an example is shown in FIG. 3, since it changes depending on the load of the plant, it is set by the function generator 35 corresponding to this. Note that the switching device 34 normally inputs a maximum value of 100% from the setting device 38 and outputs it from b to c in the figure, and outputs from a to c when the main steam temperature falls below a predetermined value.
[0026]
According to this embodiment, even if the main steam pressure drop occurs during operation, the main steam control valve is not controlled to be closed regardless of the main steam temperature, and the metal parts constituting the steam turbine are heated. If the main steam pressure adjustment valve can be expected to recover during that time, the plant operation can be continued. Can also contribute.
[0027]
FIG. 2 shows another embodiment of the present invention. In this embodiment, when the main steam temperature further falls below a predetermined value, the main steam control valve is throttled by the preceding control even when the main steam pressure is not lowered by a predetermined amount.
[0028]
That is, in the case of a drum-type boiler, the malfunction of the spray control can be considered as a cause of the decrease in the main steam temperature. In this case, the main steam temperature can be decreased without decreasing the main steam pressure. Therefore, as a countermeasure for such a case, a function generator 41 is separately provided downstream of the subtracter 36, and when the main steam temperature becomes c ° C., for example, 10 ° C. or less from a predetermined value, the main steam control valve is output to be throttled. A signal is output. That is, a control signal is output to the main steam control valve by the low value selection circuit 43 via the calculator 42.
[0029]
In this embodiment, the effects of the above embodiment, that is, the metal parts constituting the steam turbine are not adversely affected by heat, and it is further protected against a decrease in the main steam temperature. It is possible to improve the performance.
[0030]
Regarding the decrease in main steam temperature, there are some plants that trip the turbine at a low main steam temperature as a turbine protection. However, in the embodiment of the present invention, the main steam control valve is throttled by prior control based on temperature to trip the turbine. To avoid. Once the turbine is tripped, it takes two hours or more to restart the unit and start up to the rated load, but it takes about one hour to start up from the no-load position to the rated load without tripping. Therefore, it is possible to reduce the start-up loss for restarting the unit.
[0031]
【The invention's effect】
As described above, according to the present invention, even if a pressure drop in the main steam supply system occurs during plant operation, the metal parts constituting the steam turbine are not adversely affected, and operation continuation is expanded. It is possible to obtain a control device for this type of thermal power plant that can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a control device for a thermal power plant according to the present invention and a schematic diagram of a thermal power plant equipped with the control device.
FIG. 2 is a diagram showing another embodiment of the control device for the thermal power plant of the present invention.
FIG. 3 is a diagram illustrating an example of a predetermined value characteristic of plant load versus main steam temperature.
FIG. 4 is a diagram showing a schematic configuration of a conventional thermal power plant.
FIG. 5 is a diagram showing an outline of a control logic of a control device for a conventional thermal power plant.
FIG. 6 is a diagram showing an example of plant load versus main steam pressure characteristics.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Boiler drum, 2, 3 ... Superheater, 4 ... Main steam piping, 5 ... Main steam control valve, 6, 8, 21 ... Steam turbine (high pressure, medium pressure, low pressure), 7 ... Reheater, DESCRIPTION OF SYMBOLS 10 ... Temperature detector, 12 ... Control circuit (valve control apparatus), 13 ... Boiler, 15 ... Temperature control valve, 16 ... Temperature reducer, 22 ... Condenser, 23 ... Condensate pump, 24 ... Low-pressure feed water heater 25 ... deaerator, 26 ... feed pump, 27 ... high-pressure feed water heater, 28 ... feed water flow control valve, 29 ... economizer, 34 ... switch, 35, 41 ... function generator, 36 ... subtractor, 37 ... monitor relay, 38 ... setting device, 43 ... low value selection circuit, 50 ... generator.

Claims (3)

ドラム形ボイラを有する主蒸気供給系と、該主蒸気供給系からの主蒸気により駆動される蒸気タービンと、前記蒸気供給系に設けられ主蒸気の供給量を加減する主蒸気加減弁と、前記主蒸気供給系の圧力が所定の値まで低下したときに、前記蒸気加減弁を無負荷相当の弁開度まで閉操作の制御をする弁制御装置とを備えている火力プラントの制御装置において、前記弁制御装置に、前記主蒸気の圧力が前記所定値まで低下したときに前記主蒸気の温度値を取り込み、該温度値が所定値以下のときに、前記主蒸気加減弁の閉操作を開始するようにした手段を設けたことを特徴とする火力プラントの制御装置。A main steam supply system having a drum-type boiler, a steam turbine driven by main steam from the main steam supply system, a main steam control valve provided in the main steam supply system for adjusting the supply amount of the main steam; A control device for a thermal power plant, comprising: a valve control device for controlling the closing operation of the main steam control valve to a valve opening corresponding to no load when the pressure of the main steam supply system drops to a predetermined value. The main steam temperature is taken into the valve control device when the main steam pressure drops to the predetermined value, and when the temperature value is equal to or lower than the predetermined value, the main steam control valve is closed. A control device for a thermal power plant, characterized in that means for starting the operation is provided. 蒸気供給系から蒸気タービンに供給される主蒸気の圧力が所定値まで低下したときに、主蒸気供給系の主蒸気加減弁を無負荷相当の弁開度まで閉じるようにした火力プラントの制御方法において、前記プラントの運転時に、前記蒸気タービンに供給される主蒸気の温度値を取り込むようにし、前記主蒸気の圧力が所定値まで低下した場合、前記主蒸気の温度が所定値以下のときに、前記主蒸気加減弁の閉操作を開始するようにしたことを特徴とする火力プラントの制御方法。  Control method for a thermal power plant that closes the main steam control valve of the main steam supply system to a valve opening corresponding to no load when the pressure of the main steam supplied from the steam supply system to the steam turbine drops to a predetermined value In the operation of the plant, when the temperature of the main steam supplied to the steam turbine is taken in during operation of the plant and the pressure of the main steam decreases to a predetermined value, the temperature of the main steam is equal to or lower than the predetermined value. A control method for a thermal power plant, wherein the closing operation of the main steam control valve is started. 蒸気供給系から蒸気タービンに供給される主蒸気の圧力が所定値まで低下したときに、主蒸気供給系の主蒸気加減弁を無負荷相当の弁開度まで閉じるようにした火力プラントの制御方法において、前記プラントの運転時に前記主蒸気の圧力が所定値まで低下した時に、前記蒸気タービンに供給される主蒸気の温度値を監視し、前記主蒸気の温度が所定値以上のときには前記主蒸気加減弁の絞込み信号をブロックするようにしたことを特徴とする火力プラントの制御方法。  Control method for a thermal power plant that closes the main steam control valve of the main steam supply system to a valve opening corresponding to no load when the pressure of the main steam supplied from the steam supply system to the steam turbine drops to a predetermined value The main steam supplied to the steam turbine is monitored when the pressure of the main steam drops to a predetermined value during operation of the plant, and the main steam is monitored when the temperature of the main steam exceeds a predetermined value. A control method for a thermal power plant characterized by blocking a throttle signal of an adjusting valve.
JP34733798A 1998-12-07 1998-12-07 Thermal power plant control device and thermal power plant control method Expired - Lifetime JP3650277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34733798A JP3650277B2 (en) 1998-12-07 1998-12-07 Thermal power plant control device and thermal power plant control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34733798A JP3650277B2 (en) 1998-12-07 1998-12-07 Thermal power plant control device and thermal power plant control method

Publications (2)

Publication Number Publication Date
JP2000170503A JP2000170503A (en) 2000-06-20
JP3650277B2 true JP3650277B2 (en) 2005-05-18

Family

ID=18389551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34733798A Expired - Lifetime JP3650277B2 (en) 1998-12-07 1998-12-07 Thermal power plant control device and thermal power plant control method

Country Status (1)

Country Link
JP (1) JP3650277B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107060902A (en) * 2016-12-09 2017-08-18 华电电力科学研究院 Novel steam is depressured temperature reducing system

Also Published As

Publication number Publication date
JP2000170503A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
US6647727B2 (en) Method for controlling a low-pressure bypass system
JP5183305B2 (en) Startup bypass system in steam power plant
US5435138A (en) Reduction in turbine/boiler thermal stress during bypass operation
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
US20130167504A1 (en) Method for regulating a short-term power increase of a steam turbine
JP3650277B2 (en) Thermal power plant control device and thermal power plant control method
JPH10292902A (en) Main steam temperature controller
JP7291010B2 (en) power plant
JP3435450B2 (en) Turbine bypass valve control device
JP4560481B2 (en) Steam turbine plant
JP4162371B2 (en) Start-up control method for single-shaft combined power plant
JP5409882B2 (en) Operation method of start-up bypass system in steam power plant
JP2686259B2 (en) Operating method of once-through boiler
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2004060496A (en) Steam turbine control device
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPS6149487B2 (en)
Byeon et al. Designing a standard thermal power plant for daily startup/shutdown: the HP Bypass control and safety function
JPH09195718A (en) Main steam temperature control device
JP3745419B2 (en) Waste heat recovery boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH0330687B2 (en)
JPH07293809A (en) Method and device for controlling injection of water to desuperheater
JPH0759883B2 (en) Low pressure turbine bypass valve controller
JP2523493B2 (en) Turbin bypass system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term