JP7111525B2 - Once-through heat recovery boiler and control system for once-through heat recovery boiler - Google Patents

Once-through heat recovery boiler and control system for once-through heat recovery boiler Download PDF

Info

Publication number
JP7111525B2
JP7111525B2 JP2018120055A JP2018120055A JP7111525B2 JP 7111525 B2 JP7111525 B2 JP 7111525B2 JP 2018120055 A JP2018120055 A JP 2018120055A JP 2018120055 A JP2018120055 A JP 2018120055A JP 7111525 B2 JP7111525 B2 JP 7111525B2
Authority
JP
Japan
Prior art keywords
pressure
low
evaporator
pressure system
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018120055A
Other languages
Japanese (ja)
Other versions
JP2020003090A (en
Inventor
和弘 武永
康裕 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018120055A priority Critical patent/JP7111525B2/en
Publication of JP2020003090A publication Critical patent/JP2020003090A/en
Application granted granted Critical
Publication of JP7111525B2 publication Critical patent/JP7111525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

本発明は、ガスタービンと排熱回収ボイラと蒸気タービンとを備えるコンバインドサイクル発電設備の排熱回収ボイラに関し、特に、貫流式排熱回収ボイラに関する。 TECHNICAL FIELD The present invention relates to a heat recovery boiler for a combined cycle power generation facility including a gas turbine, a heat recovery boiler and a steam turbine, and more particularly to a once-through heat recovery boiler.

ガスタービンの排ガスから熱交換によって蒸気を発生させ、その蒸気を用いて蒸気タービンを駆動して発電する、いわゆるコンバインドサイクル発電設備がある。図7(a)は、一般的なコンバインドサイクル発電設備100のプラント構成を示すブロック図である。 BACKGROUND ART There is a so-called combined cycle power generation facility in which steam is generated by heat exchange from exhaust gas of a gas turbine, and the steam is used to drive a steam turbine to generate power. FIG. 7(a) is a block diagram showing a plant configuration of a general combined cycle power generation facility 100. FIG.

図7(a)に示すように、コンバインドサイクル発電設備100では、発電機4と、蒸気タービン3と、ガスタービン1とが連続して設けられ、ガスタービン1で天然ガス等を燃焼させて発電機4にて発電を行う。 As shown in FIG. 7A, in the combined cycle power generation facility 100, a generator 4, a steam turbine 3, and a gas turbine 1 are provided in series, and the gas turbine 1 burns natural gas or the like to generate power. The generator 4 generates electricity.

ガスタービン1から排出される高温の排ガスは、排熱回収ボイラ2に送られる。排熱回収ボイラ2では、排ガスからの熱回収により、給水を蒸気に変換する。変換された蒸気は、蒸気タービン3に送られて発電機4において発電に用いられる。蒸気タービン3にて仕事をした蒸気は、復水器5にて復水され、復水された水は再び排熱回収ボイラ2へと送られる。 High-temperature exhaust gas discharged from the gas turbine 1 is sent to the heat recovery steam generator 2 . The exhaust heat recovery boiler 2 converts the feed water into steam by recovering heat from the exhaust gas. The converted steam is sent to the steam turbine 3 and used in the power generator 4 for power generation. The steam that has worked in the steam turbine 3 is condensed in the condenser 5 and the condensed water is sent to the heat recovery boiler 2 again.

大型のコンバインドサイクル発電設備100では、例えば、特許文献1に開示されているように、この排熱回収ボイラ2の蒸気系統を高圧系、中圧系および低圧系の三重圧方式で構成して排熱回収の効率を向上させている。このような排熱回収ボイラ2は、高圧系には、汽水分離器を用いる貫流システムを採用し、中、低圧系にはドラムを用いる自然循環システムを採用し、貫流式排熱回収ボイラ2と呼ばれる。 In the large-sized combined cycle power generation facility 100, for example, as disclosed in Patent Document 1, the steam system of the heat recovery boiler 2 is configured in a triple pressure system of a high-pressure system, an intermediate-pressure system and a low-pressure system to exhaust the exhaust gas. It improves the efficiency of heat recovery. Such a waste heat recovery boiler 2 adopts a once-through system using a steam separator for the high pressure system, and a natural circulation system using a drum for the middle and low pressure systems. be called.

従来の貫流式排熱回収ボイラ2は、図7(b)に示すように、高圧系蒸気系統である高圧系41と、中圧系蒸気系統である中圧系42と、低圧系蒸気系統である低圧系43と、を備える。 As shown in FIG. 7B, the conventional once-through heat recovery boiler 2 includes a high pressure system 41 that is a high pressure steam system, an intermediate pressure system 42 that is an intermediate pressure steam system, and a low pressure steam system. a low pressure system 43;

各蒸気系統は、それぞれ、ガスタービン1からの排ガスが流通する排ガス流路の上流側から下流側に順に、過熱器と蒸発器と節炭器と、を備える。具体的には、低圧系43は、低圧過熱器12と、低圧蒸発器11と、低圧ドラム10と、低圧節炭器9と、を備える。また、中圧系42は、中圧過熱器18と、中圧蒸発器17と、中圧ドラム16と、中圧節炭器15と、を備える。高圧系41は、高圧過熱器23と、高圧蒸発器21と、高圧汽水分離器22と、高圧節炭器19と、を備える。 Each steam system includes a superheater, an evaporator, and an economizer in order from the upstream side to the downstream side of an exhaust gas passage through which exhaust gas from the gas turbine 1 flows. Specifically, the low pressure system 43 includes a low pressure superheater 12 , a low pressure evaporator 11 , a low pressure drum 10 and a low pressure economizer 9 . The intermediate pressure system 42 also includes an intermediate pressure superheater 18 , an intermediate pressure evaporator 17 , an intermediate pressure drum 16 , and an intermediate pressure economizer 15 . The high pressure system 41 includes a high pressure superheater 23 , a high pressure evaporator 21 , a high pressure steam separator 22 and a high pressure economizer 19 .

高圧汽水分離器22の飽和水排出口には、復水器5へとつながる起動ブローライン26が設置される。起動ブローライン26には、起動ブロー弁27が設けられる。また、高圧汽水分離器22の飽和水排出口には、ブロータンク28へつながるブローライン38も設置される。さらに、高圧汽水分離器22の飽和水排出口には、高圧汽水分離器22にて分離された飽和水を高圧蒸発器21に戻す蒸発器循環ライン24が設けられる。 A start blow line 26 leading to the condenser 5 is installed at the saturated water outlet of the high-pressure steam separator 22 . An activation blow valve 27 is provided in the activation blow line 26 . A blow line 38 leading to a blow tank 28 is also installed at the saturated water outlet of the high-pressure steam separator 22 . Furthermore, the saturated water outlet of the high pressure steam separator 22 is provided with an evaporator circulation line 24 for returning the saturated water separated by the high pressure steam separator 22 to the high pressure evaporator 21 .

ガスタービン1からの排ガスは、最初の蒸気系統である高圧系41の高圧過熱器23から、最後流部に設置された低圧系43の低圧節炭器9まで送られ、その間、各蒸気系統で排ガスの保有熱の熱回収が行われる。 Exhaust gas from the gas turbine 1 is sent from the high-pressure superheater 23 of the high-pressure system 41, which is the first steam system, to the low-pressure economizer 9 of the low-pressure system 43 installed at the rearmost stream. Heat recovery of the residual heat of the exhaust gas is performed.

復水器5にて復水された水は、復水ポンプ6、復水脱塩装置7、低圧給水ポンプ8を経て貫流式排熱回収ボイラ2の給水入口へと送られる。貫流式排熱回収ボイラ2に供給された給水は、低圧系43、中圧系42、高圧系41の順に流れる間に排ガスとの熱交換により蒸気となる。 The water condensed in the condenser 5 is sent to the feed water inlet of the once-through heat recovery steam generator 2 via the condensate pump 6 , the condensate demineralizer 7 , and the low-pressure feed water pump 8 . The feed water supplied to the once-through heat recovery boiler 2 becomes steam through heat exchange with the exhaust gas while flowing through the low pressure system 43, the intermediate pressure system 42, and the high pressure system 41 in this order.

特表2017-534828号公報Japanese Patent Publication No. 2017-534828

上述の貫流式排熱回収ボイラ2では、通常運転時は、高圧節炭器19でさらに加熱された高圧給水は、全て高圧蒸発器21で蒸気へと変換され、高圧汽水分離器22を経て高圧過熱器23へ供給される。このような運転を、貫流運転と呼ぶ。 In the above-described once-through heat recovery boiler 2, during normal operation, all of the high-pressure feed water further heated by the high-pressure economizer 19 is converted into steam by the high-pressure evaporator 21, and passed through the high-pressure steam separator 22 to produce high-pressure steam. It is supplied to the superheater 23 . Such operation is called once-through operation.

一方、ガスタービン1からの入熱量が少なく変動も大きい起動時等は、高圧蒸発器21の出口の流体は飽和二相流となる。このような状態では、貫流式排熱回収ボイラ2では、高圧汽水分離器22で汽水分離した飽和蒸気のみ高圧過熱器23へと送り、飽和水は、高圧汽水分離器22の下部より高圧蒸発器21の入口へと戻す蒸発器循環運転が行われる。 On the other hand, the fluid at the outlet of the high-pressure evaporator 21 becomes a saturated two-phase flow when the amount of heat input from the gas turbine 1 is small and fluctuates greatly. In such a state, in the once-through heat recovery boiler 2, only the saturated steam separated from steam by the high-pressure steam separator 22 is sent to the high-pressure superheater 23, and the saturated water is sent from the lower part of the high-pressure steam separator 22 to the high-pressure evaporator. An evaporator circulation operation is performed to return to the inlet of 21 .

この蒸発器循環運転中、高圧蒸発器21を含む蒸発器循環系統内の比容積差により十分な循環力が得られ、豊富な蒸発器管内流量が確保できる場合は、高圧汽水分離器22で汽水分離された飽和水は、圧力バランスのみで、高圧蒸発器21の入口側へ自然循環する。従って、高圧汽水分離器22の下部から高圧蒸発器21へ飽和水は継続的に供給され、ガスタービン1の排ガスの入熱量変動等により高圧蒸発器21へ給水が供給されない運転状態になったとしても、高圧蒸発器21が異常加熱されることはない。 During this evaporator circulation operation, when sufficient circulation power is obtained due to the specific volume difference in the evaporator circulation system including the high pressure evaporator 21 and a large flow rate in the evaporator pipe can be secured, the high pressure steam separator 22 The separated saturated water naturally circulates to the inlet side of the high-pressure evaporator 21 only by pressure balance. Therefore, even if the saturated water is continuously supplied to the high-pressure evaporator 21 from the lower part of the high-pressure steam separator 22 and the feed water is not supplied to the high-pressure evaporator 21 due to fluctuations in the heat input of the exhaust gas of the gas turbine 1, etc. Also, the high-pressure evaporator 21 is not abnormally heated.

しかしながら、高圧蒸発器21の圧力損失が大きい場合には自然循環力が得られず、飽和水が蒸発器入口に循環しないため、蒸発器管内流量が著しく低下し、一時的に停滞することもある。このような場合は、蒸発器循環ライン24に設置された蒸発器循環ポンプ25を用いて強制循環運転を行って、高圧蒸発器21の異常加熱を防止する必要がある。この蒸発器循環ポンプ25は、高圧系41内に配置されるため、高コストであり、また、蒸発器循環ポンプ25を駆動させるための補機動力が必要となる。そのため、貫流式排熱回収ボイラ2の低コスト化の実現のためには、蒸発器循環ポンプ25および蒸発器循環ライン24をなくすことは非常に有効である。 However, when the pressure loss of the high-pressure evaporator 21 is large, the natural circulation force cannot be obtained, and the saturated water does not circulate to the evaporator inlet. . In such a case, it is necessary to prevent abnormal heating of the high-pressure evaporator 21 by performing forced circulation operation using the evaporator circulation pump 25 installed in the evaporator circulation line 24 . Since the evaporator circulation pump 25 is arranged in the high-pressure system 41 , it is expensive and requires auxiliary power for driving the evaporator circulation pump 25 . Therefore, it is very effective to eliminate the evaporator circulation pump 25 and the evaporator circulation line 24 in order to reduce the cost of the once-through heat recovery boiler 2 .

蒸発器循環ライン24を設けずに、高圧蒸発器21の異常加熱を防止するためには、蒸発量が低下した際にも、高圧蒸発器21への給水の供給を継続する手法を適用すれば良い。しかし、この手法では、過剰な給水に伴って高圧汽水分離器22の水位が上昇した際は、高圧汽水分離器22の飽和水を、起動ブローライン26を経由して復水器5に排出するか、あるいは、ブロータンク28へ排出することが必要となる。そのため、高圧蒸発器21までの各部で回収した熱を損失し、貫流式排熱回収ボイラ2の起動時間が増加するといった課題や、ブロータンク28に排水するため、補給水量が増加するといった課題が生じる。 In order to prevent abnormal heating of the high-pressure evaporator 21 without providing the evaporator circulation line 24, a method of continuing to supply water to the high-pressure evaporator 21 even when the amount of evaporation decreases is applied. good. However, in this method, when the water level of the high-pressure steam separator 22 rises due to excessive water supply, the saturated water of the high-pressure steam separator 22 is discharged to the condenser 5 via the start blow line 26. Alternatively, discharge to blow tank 28 is required. Therefore, the heat recovered in each part up to the high-pressure evaporator 21 is lost, and the start-up time of the once-through heat recovery boiler 2 is increased. occur.

本発明は、上記事情に鑑みてなされたもので、貫流式排熱回収ボイラにおいて、コストの上昇とエネルギの損失とを抑えつつ、起動時における安定した蒸発器循環運転を実現することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to realize stable evaporator circulation operation at startup while suppressing cost increases and energy loss in once-through heat recovery steam generators. do.

本発明は、それぞれ、ガスタービンからの排ガスが流通する排ガス流路の上流側から下流側に順に過熱器、蒸発器および節炭器を有する高圧系、中圧系および低圧系を備え、前記中圧系および前記低圧系は、それぞれ蒸気ドラムを備え、前記高圧系は、汽水分離器を備える貫流式排熱回収ボイラであって、前記汽水分離器の飽和水を、前記中圧系および前記低圧系のいずれかに戻す蒸発器循環ラインを備えることを特徴とする。 The present invention comprises a high-pressure system, an intermediate-pressure system and a low-pressure system each having a superheater, an evaporator and an economizer in order from the upstream side to the downstream side of an exhaust gas flow path through which exhaust gas from a gas turbine flows. The high-pressure system and the low-pressure system each comprise a steam drum, and the high-pressure system is a once-through heat recovery boiler comprising a steam separator, wherein the saturated water of the steam separator is transferred to the intermediate-pressure system and the low-pressure system. It is characterized by having an evaporator circulation line returning to either of the systems.

また、本発明は、それぞれ、ガスタービンからの排ガスが流通する排ガス流路の上流側から下流側に順に過熱器、蒸発器および節炭器を有する高圧系、中圧系および低圧系を備え、前記中圧系および前記低圧系は、それぞれ蒸気ドラムを備え、前記高圧系は、汽水分離器を備える貫流式排熱回収ボイラの制御システムであって、前記貫流式排熱回収ボイラは、前記汽水分離器の飽和水を、前記中圧系および前記低圧系のいずれかに戻す蒸発器循環ラインと、前記高圧系の蒸発器の管内流量を計測する高圧蒸発器入口給水流量計と、前記蒸発器循環ライン上に設けられる循環流量調節弁と、を備え、起動時に、前記高圧蒸発器入口給水流量計で計測された前記管内流量が予め定めた流量規定値となるよう前記循環流量調節弁の開度を制御することを特徴とする。 Further, the present invention comprises a high-pressure system, an intermediate-pressure system and a low-pressure system each having a superheater, an evaporator and an economizer in order from the upstream side to the downstream side of an exhaust gas flow path through which the exhaust gas from the gas turbine flows, The intermediate-pressure system and the low-pressure system each include a steam drum, and the high-pressure system is a control system for a once-through heat recovery boiler having a steam separator, wherein the once-through heat recovery boiler is equipped with a steam drum. An evaporator circulation line that returns the saturated water of the separator to either the intermediate pressure system or the low pressure system, a high pressure evaporator inlet feed water flow meter that measures the flow rate in the evaporator pipe of the high pressure system, and the evaporator. and a circulation flow rate control valve provided on the circulation line, wherein the circulation flow rate control valve is opened so that the pipe flow rate measured by the high-pressure evaporator inlet feed water flow meter becomes a predetermined flow rate specified value at the time of startup. It is characterized by controlling the degree.

本発明によれば、貫流式排熱回収ボイラにおいて、コストの上昇とエネルギの損失とを抑えつつ、起動時における安定した蒸発器循環運転状態を実現できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, in a once-through heat recovery boiler, it is possible to realize a stable evaporator circulation operation state at the time of start-up while suppressing an increase in cost and loss of energy. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

(a)は、第一の実施形態の貫流式排熱回収ボイラの系統構成を、(b)は、第一の実施形態の変形例1の貫流式排熱回収ボイラの系統構成を、それぞれ示す図である。(a) shows the system configuration of the once-through heat recovery boiler of the first embodiment, and (b) shows the system configuration of the once-through heat recovery boiler of Modification 1 of the first embodiment. It is a diagram. 第一の実施形態のコントローラの機能ブロック図である。3 is a functional block diagram of the controller of the first embodiment; FIG. (a)は、第一の実施形態と従来との調節弁開度を比較して示す図であり、(b)は、本発明の第一および第三の実施形態と従来との起動時の低圧節炭器給水入口温度特性を比較して示す図である。(a) is a diagram showing a comparison of the opening degrees of the control valve between the first embodiment and the conventional art; It is a figure which compares and shows a low-pressure economizer feed water inlet temperature characteristic. 第一の実施形態の変形例2の貫流式排熱回収ボイラの系統構成を示す図である。FIG. 3 is a diagram showing a system configuration of a once-through heat recovery steam generator of Modification 2 of the first embodiment; 第二の実施形態の貫流式排熱回収ボイラの系統構成を示す図である。FIG. 2 is a diagram showing a system configuration of a once-through heat recovery steam generator of a second embodiment; (a)は、第三の実施形態の貫流式排熱回収ボイラの系統構成を、(b)は、第三の実施形態の変形例の貫流式排熱回収ボイラの系統構成を、それぞれ示す図である。(a) shows the system configuration of the once-through heat recovery steam generator of the third embodiment, and (b) shows the system configuration of the once-through heat recovery boiler of the modified example of the third embodiment. is. (a)は、コンバインドサイクル発電設備のプラント構成を、(b)は、従来の貫流式排熱回収ボイラの系統構成を、それぞれ示す図である。(a) is a diagram showing a plant configuration of a combined cycle power generation facility, and (b) is a diagram showing a system configuration of a conventional once-through heat recovery boiler.

本発明の実施形態に係る貫流式排熱回収ボイラについて説明する。本発明の実施形態の貫流式排熱回収ボイラは、図7(a)に示すコンバインドサイクル発電設備100で用いられる。 A once-through heat recovery boiler according to an embodiment of the present invention will be described. A once-through heat recovery boiler according to an embodiment of the present invention is used in a combined cycle power generation facility 100 shown in FIG. 7(a).

本発明の実施形態に係る貫流式排熱回収ボイラは、図7(b)に示す従来の貫流式排熱回収ボイラ2における蒸発器循環ポンプ25および蒸発器循環ライン24を設けていない点に構成上の特徴がある。 The once-through heat recovery boiler according to the embodiment of the present invention is configured in that the evaporator circulation pump 25 and the evaporator circulation line 24 in the conventional once-through heat recovery boiler 2 shown in FIG. 7(b) are not provided. It has the above features.

具体的には、本発明の実施形態に係る貫流式排熱回収ボイラは、蒸発器循環ポンプ25および蒸発器循環ライン24の代わりに、高圧汽水分離器22の飽和水を、中圧系42および低圧系43のいずれかに戻す蒸発器循環ライン24a,24b,24cを備えている。そして、起動時等における蒸発器循環運転の際には、蒸発器循環ライン24a,24b,24cを流れる高圧汽水分離器22からの飽和水の戻り流量を調整することで、高圧蒸発器21への給水の供給を継続し、高圧蒸発器21の異常加熱を防止している。以下、本発明の各実施形態について詳しく説明するが、各実施形態において、図7(b)に示す従来の貫流式排熱回収ボイラ2と同一の構成については同一の符号を付して詳しい説明を省略する。 Specifically, in the once-through heat recovery boiler according to the embodiment of the present invention, instead of the evaporator circulation pump 25 and the evaporator circulation line 24, the saturated water of the high pressure steam separator 22 is used as the intermediate pressure system 42 and Evaporator circulation lines 24a, 24b, 24c returning to any of the low pressure systems 43 are provided. During the evaporator circulation operation at the time of start-up or the like, by adjusting the return flow rate of saturated water from the high pressure steam separator 22 flowing through the evaporator circulation lines 24a, 24b, 24c, the flow rate of saturated water to the high pressure evaporator 21 is adjusted. The supply of water is continued to prevent abnormal heating of the high-pressure evaporator 21 . Hereinafter, each embodiment of the present invention will be described in detail. In each embodiment, the same components as those of the conventional once-through heat recovery boiler 2 shown in FIG. omitted.

<<第一の実施形態>>
本発明の第一の実施形態を説明する。図1(a)に、本実施形態の貫流式排熱回収ボイラ2aの一例を示す。
<<First Embodiment>>
A first embodiment of the present invention will be described. FIG. 1(a) shows an example of a once-through heat recovery boiler 2a of the present embodiment.

本実施形態の貫流式排熱回収ボイラ2aにおいて、蒸発器循環ライン24aは、高圧汽水分離器22の飽和水排出口に接続された下降管から分岐し、低圧系43の低圧節炭器9の入口配管に接続される。また、蒸発器循環ライン24aには、蒸発器循環流量調節弁29が設けられる。 In the once-through heat recovery boiler 2a of the present embodiment, the evaporator circulation line 24a branches from a descending pipe connected to the saturated water outlet of the high-pressure steam separator 22, and the low-pressure economizer 9 of the low-pressure system 43 Connected to inlet piping. An evaporator circulation flow control valve 29 is provided in the evaporator circulation line 24a.

低圧節炭器9の入口には、復水器5からの給水を低圧節炭器9に供給する復水ライン37が接続される。復水ライン37には、復水ポンプ6と、復水脱塩装置7と、低圧給水ポンプ8と、が設けられる。また復水ライン37の、低圧節炭器9の入口近傍には、低圧節炭器9に供給される給水の温度を計測する低圧節炭器入口給水温度計34が設けられる。 An inlet of the low-pressure economizer 9 is connected to a condensate line 37 that supplies water from the condenser 5 to the low-pressure economizer 9 . The condensate line 37 is provided with a condensate pump 6 , a condensate demineralizer 7 , and a low-pressure feed water pump 8 . A low-pressure economizer inlet feedwater thermometer 34 for measuring the temperature of the feed water supplied to the low-pressure economizer 9 is provided in the condensate line 37 near the inlet of the low-pressure economizer 9 .

低圧節炭器9の出口には、低圧節炭器9で加熱された給水を中圧節炭器15および高圧節炭器19へと供給する高中圧給水ライン35が設けられる。この高中圧給水ライン35には、高中圧給水ポンプ13と、高圧給水調節弁20とが設けられる。 At the outlet of the low-pressure economizer 9, a high-intermediate-pressure water supply line 35 for supplying the water heated by the low-pressure economizer 9 to the medium-pressure economizer 15 and the high-pressure economizer 19 is provided. The high and intermediate pressure water supply line 35 is provided with a high and intermediate pressure water supply pump 13 and a high pressure water supply control valve 20 .

低圧節炭器9の出口には、さらに、低圧節炭器9で加熱された給水を、低圧節炭器9の入口に再循環させる節炭器再循環ライン14が設けられる。節炭器再循環ライン14には、節炭器再循環ポンプ36と、低圧節炭器入口温度調節弁32とが設けられる。 The outlet of the low pressure economizer 9 is further provided with an economizer recirculation line 14 for recirculating the feed water heated in the low pressure economizer 9 to the inlet of the low pressure economizer 9 . The economizer recirculation line 14 is provided with an economizer recirculation pump 36 and a low-pressure economizer inlet temperature control valve 32 .

また、本実施形態の貫流式排熱回収ボイラ2aは、コントローラ200を備え、低圧節炭器9の給水入口温度、高圧蒸発器21の管内流量、各蒸気系統の運転圧力、高圧汽水分離器22の水位等をモニタし、モニタ結果に応じて各調節弁の開閉を制御する。 In addition, the once-through heat recovery boiler 2a of the present embodiment is provided with a controller 200, the feed water inlet temperature of the low-pressure economizer 9, the flow rate in the high-pressure evaporator 21, the operating pressure of each steam system, the high-pressure steam separator 22 monitor the water level, etc., and control the opening and closing of each control valve according to the monitoring results.

次に、本実施形態のコントローラ200による制御を説明する。図2は、本実施形態のコントローラ200の機能ブロック図である。 Next, control by the controller 200 of this embodiment will be described. FIG. 2 is a functional block diagram of the controller 200 of this embodiment.

本実施形態のコントローラ200は、高圧蒸発器21の入口に設けられた高圧蒸発器入口給水流量計33の出力をモニタし、予め定めた規定値(流量規定値)となるよう、蒸発器循環流量調節弁29に対し、指令信号を出力する。これを実現するため、本実施形態のコントローラ200は、流量検出部211と、循環流量調節弁開閉制御部212と、を備える。 The controller 200 of the present embodiment monitors the output of a high-pressure evaporator inlet feed water flow meter 33 provided at the inlet of the high-pressure evaporator 21, and adjusts the evaporator circulation flow rate to a predetermined specified value (flow rate specified value). A command signal is output to the control valve 29 . In order to realize this, the controller 200 of the present embodiment includes a flow rate detection section 211 and a circulation flow rate adjustment valve opening/closing control section 212 .

また、本実施形態のコントローラ200は、低圧節炭器入口温度調節弁32の開閉も制御する。コントローラ200は、蒸発器循環流量調節弁29が開いている間は、低圧節炭器入口温度調節弁32を閉じる。一方、蒸発器循環運転が終了し、蒸発器循環流量調節弁29が閉じられると、コントローラ200は、低圧節炭器9の給水入口温度が、規定値(水温規定値)となるよう、低圧節炭器入口温度調節弁32の開度を調整する。これを実現するため、本実施形態のコントローラ200は、水温検出部213と、入口温度調節弁開閉制御部214と、を備える。 The controller 200 of this embodiment also controls opening and closing of the low-pressure economizer inlet temperature control valve 32 . The controller 200 closes the low pressure economizer inlet temperature control valve 32 while the evaporator circulation flow control valve 29 is open. On the other hand, when the evaporator circulation operation is completed and the evaporator circulation flow control valve 29 is closed, the controller 200 controls the low pressure economizer so that the feed water inlet temperature of the low pressure economizer 9 becomes a specified value (water temperature specified value). The opening degree of the charcoal inlet temperature control valve 32 is adjusted. In order to realize this, the controller 200 of this embodiment includes a water temperature detection section 213 and an inlet temperature control valve opening/closing control section 214 .

流量検出部211は、高圧蒸発器入口給水流量計33をモニタし、モニタ結果、すなわち、検出流量を、循環流量調節弁開閉制御部212に出力する。モニタは、例えば、ガスタービン1が点火された後、所定の時間間隔で行う。 The flow rate detection unit 211 monitors the high-pressure evaporator inlet feed water flow meter 33 and outputs the monitoring result, that is, the detected flow rate, to the circulation flow control valve opening/closing control unit 212 . Monitoring is performed, for example, at predetermined time intervals after the gas turbine 1 is ignited.

循環流量調節弁開閉制御部212は、高圧蒸発器21の管内流量が、流量規定値となるよう、蒸発器循環流量調節弁29の開度を調整する。本実施形態では、循環流量調節弁開閉制御部212は、流量検出部211から受信した高圧蒸発器21の管内流量に応じて、蒸発器循環流量調節弁29に開度を指示する指令信号(開度信号)を出力する。循環流量調節弁開閉制御部212は、流量検出部211から検出流量を受信する毎に開度を決定し、開度信号を出力する。なお、開度を0とする開度信号、すなわち、閉指令は、蒸発器循環流量調節弁29だけでなく、入口温度調節弁開閉制御部214にも出力する。 The circulation flow control valve opening/closing control unit 212 adjusts the opening degree of the evaporator circulation flow control valve 29 so that the flow rate in the pipe of the high-pressure evaporator 21 becomes a specified flow rate value. In this embodiment, the circulating flow control valve opening/closing control unit 212 outputs a command signal (open) to the evaporator circulating flow control valve 29 according to the flow rate in the pipe of the high-pressure evaporator 21 received from the flow detection unit 211 . degree signal). The circulation flow control valve opening/closing control unit 212 determines the degree of opening each time it receives the detected flow rate from the flow rate detection unit 211, and outputs an opening degree signal. An opening degree signal that sets the opening degree to 0, that is, a closing command is output not only to the evaporator circulation flow rate control valve 29 but also to the inlet temperature control valve opening/closing control section 214 .

循環流量調節弁開閉制御部212は、例えば、流量規定値を目標値、管内流量を制御量、蒸発器循環流量調節弁29の開度を操作量とするPID(Proportional-Integral-Differential)制御を行う比例積分調節器等で実現される。 The circulation flow control valve opening/closing control unit 212 performs PID (Proportional-Integral-Differential) control using, for example, the specified flow rate as the target value, the pipe flow rate as the control amount, and the opening of the evaporator circulation flow control valve 29 as the manipulated variable. It is realized by a proportional-integral controller or the like.

蒸発器循環流量調節弁29の開度の時間的な変化の一例を図3(a)上段のグラフ301に示す。ここでは、ガスタービン(GT)点火直前から、蒸発器循環運転終了直後までの変化の様子を示す。 An example of temporal changes in the degree of opening of the evaporator circulation flow control valve 29 is shown in graph 301 in the upper part of FIG. 3(a). Here, the state of change from immediately before ignition of the gas turbine (GT) to immediately after the end of the evaporator circulation operation is shown.

水温検出部213は、低圧節炭器入口給水温度計34をモニタし、モニタ結果、すなわち、検出水温を、入口温度調節弁開閉制御部214に出力する。モニタは、例えば、ガスタービン1が点火された後、所定の時間間隔で行う。 The water temperature detection unit 213 monitors the low-pressure economizer inlet feed water thermometer 34 and outputs the monitoring result, that is, the detected water temperature, to the inlet temperature control valve opening/closing control unit 214 . Monitoring is performed, for example, at predetermined time intervals after the gas turbine 1 is ignited.

入口温度調節弁開閉制御部214は、蒸発器循環流量調節弁29が閉じられている間、低圧節炭器9の給水入口温度が、水温規定値となるよう、低圧節炭器入口温度調節弁32の開度を調整する。 The inlet temperature control valve opening/closing control unit 214 controls the temperature at the inlet of the low-pressure economizer so that the feed water inlet temperature of the low-pressure economizer 9 reaches the water temperature specified value while the evaporator circulation flow rate control valve 29 is closed. Adjust the opening of 32.

本実施形態では、入口温度調節弁開閉制御部214は、循環流量調節弁開閉制御部212から閉指令を受信している間、水温検出部213から受信した水温に応じて、低圧節炭器入口温度調節弁32に開度信号を出力する。入口温度調節弁開閉制御部214も、循環流量調節弁開閉制御部212同様、例えば、比例積分調節器等で実現される。 In the present embodiment, the inlet temperature control valve opening/closing control unit 214 receives the closing command from the circulation flow rate control valve opening/closing control unit 212, according to the water temperature received from the water temperature detection unit 213, the low-pressure economizer inlet An opening degree signal is output to the temperature control valve 32 . The inlet temperature control valve opening/closing control unit 214 is also realized by, for example, a proportional-integral controller or the like, like the circulation flow rate control valve opening/closing control unit 212 .

低圧節炭器入口温度調節弁32の開度の時間的な変化の一例を図3(a)下段のグラフ302に示す。ここでは、ガスタービン(GT)1点火直前から、循環運転終了直後までの変化の様子を示す。 An example of a temporal change in the degree of opening of the low-pressure economizer inlet temperature control valve 32 is shown in the lower graph 302 of FIG. 3(a). Here, the state of change from immediately before the ignition of the gas turbine (GT) 1 to immediately after the end of the circulation operation is shown.

図3(a)に示すように、本実施形態では、蒸発器循環運転が終了し、蒸発器循環流量調節弁29が閉じてくると(303)、低圧節炭器入口温度調節弁32が開き、低圧節炭器9の給水入口温度の制御が開始される。 As shown in FIG. 3(a), in this embodiment, when the evaporator circulation operation ends and the evaporator circulation flow control valve 29 closes (303), the low-pressure economizer inlet temperature control valve 32 opens. , the control of the feed water inlet temperature of the low-pressure economizer 9 is started.

例えば、上述の従来の貫流式排熱回収ボイラ2では、本実施形態のように、低圧節炭器9の入口に接続される蒸発器循環ライン24aと、蒸発器循環流量調節弁29と、を備えない。従って、ガスタービン1の点火後から、低圧節炭器入口温度調節弁32を開くよう制御される。 For example, in the above-described conventional once-through heat recovery boiler 2, the evaporator circulation line 24a connected to the inlet of the low-pressure economizer 9 and the evaporator circulation flow control valve 29 are provided as in the present embodiment. Not prepared. Therefore, after the gas turbine 1 is ignited, the low-pressure economizer inlet temperature control valve 32 is controlled to open.

このときの、低圧節炭器入口温度調節弁32の開度の時間的な変化の一例をグラフ311に示す。 A graph 311 shows an example of a temporal change in the degree of opening of the low-pressure economizer inlet temperature control valve 32 at this time.

本図に示すように、ガスタービン1点火後、低圧節炭器入口温度調節弁32は開かれる(312)。しかし、低圧節炭器9の給水出口温度が低いため、低圧節炭器入口温度調節弁32が全開となっても、低圧節炭器9の給水入口温度は水温規定値まで上昇しない状態が継続する(313)。 As shown in the figure, after ignition of the gas turbine 1, the low pressure economizer inlet temperature control valve 32 is opened (312). However, since the feed water outlet temperature of the low-pressure economizer 9 is low, even if the low-pressure economizer inlet temperature control valve 32 is fully opened, the state where the feed water inlet temperature of the low-pressure economizer 9 does not rise to the specified water temperature continues. (313).

低圧節炭器9内の給水が加熱され、低圧節炭器9の給水出口温度が上昇し、低圧節炭器9の給水入口温度が水温規定値に達した場合、低圧節炭器入口温度調節弁32の開度を絞り(314)、低圧節炭器9の給水入口温度が水温規定値になるよう制御する。 When the feed water in the low-pressure economizer 9 is heated, the feed water outlet temperature of the low-pressure economizer 9 rises, and the feed water inlet temperature of the low-pressure economizer 9 reaches a water temperature specified value, the low-pressure economizer inlet temperature is adjusted. The degree of opening of the valve 32 is throttled (314), and the temperature of the feed water inlet of the low-pressure economizer 9 is controlled so as to reach the water temperature specified value.

本実施形態の貫流式排熱回収ボイラ2aおよび従来の貫流式排熱回収ボイラ2の低圧節炭器9の給水入口温度の変化の様子を、図3(b)に示す。図3(b)において、グラフ321は、本実施形態の貫流式排熱回収ボイラ2aの給水入口温度の変化を示すグラフであり、グラフ331は、従来の貫流式排熱回収ボイラ2の給水入口温度の変化を示すグラフである。なお、グラフ341は、後述の第三の実施形態の貫流式排熱回収ボイラ2cの給水入口温度の変化を示すグラフである。 FIG. 3(b) shows how the feed water inlet temperature of the low-pressure economizer 9 of the once-through heat recovery steam generator 2a of the present embodiment and the conventional once-through heat recovery boiler 2 changes. In FIG. 3(b), graph 321 is a graph showing changes in the feed water inlet temperature of the once-through heat recovery steam generator 2a of the present embodiment, and graph 331 is the feed water inlet temperature of the conventional once-through heat recovery boiler 2. It is a graph which shows a change of temperature. A graph 341 is a graph showing changes in the feed water inlet temperature of the once-through heat recovery boiler 2c of the third embodiment, which will be described later.

本実施形態では、高圧汽水分離器22からの飽和水を低圧節炭器9の入口配管へ循環させる。従って、低圧節炭器9の給水出口温度よりも高温の給水が、起動初期より低圧節炭器9に供給される。このため、図3(b)に示すように、低圧節炭器9にて加熱された給水のみにより低圧節炭器9の給水入口温度を上昇させる従来の貫流式排熱回収ボイラ2に比べて、低圧節炭器9の給水入口温度を早く上昇させることができる。 In this embodiment, the saturated water from the high-pressure steam separator 22 is circulated to the inlet pipe of the low-pressure economizer 9 . Therefore, water having a higher temperature than the water supply outlet temperature of the low-pressure economizer 9 is supplied to the low-pressure economizer 9 from the initial stage of startup. For this reason, as shown in FIG. , the feed water inlet temperature of the low-pressure economizer 9 can be raised quickly.

なお、上記例では、本実施形態の入口温度調節弁開閉制御部214は、蒸発器循環流量調節弁29が閉じられている間のみ、低圧節炭器入口温度調節弁32の開度を制御しているが、これに限定されない。例えば、蒸発器循環流量が低下し、低圧節炭器9の給水入口温度が水温規定値まで低下した場合、蒸発器循環流量調節弁29を開いている間であっても、低圧節炭器入口温度調節弁32を開くよう制御してもよい。 In the above example, the inlet temperature control valve opening/closing control unit 214 of the present embodiment controls the opening degree of the low-pressure economizer inlet temperature control valve 32 only while the evaporator circulation flow rate control valve 29 is closed. but not limited to. For example, when the evaporator circulation flow rate drops and the feed water inlet temperature of the low-pressure economizer 9 drops to the water temperature specified value, even while the evaporator circulation flow control valve 29 is open, the low-pressure economizer inlet You may control so that the temperature control valve 32 may be opened.

本実施形態のコントローラ200は、さらに、運転圧力判別部215、水位検出部216、および、高圧給水調節弁制御部217を備える。 The controller 200 of this embodiment further includes an operating pressure determination section 215 , a water level detection section 216 , and a high pressure water supply control valve control section 217 .

運転圧力判別部215は、高圧蒸発器21の蒸気出口圧力が低圧節炭器9の給水入口圧力より高いか否かを判別する。運転圧力判別部215は、高圧蒸発器21の蒸気出口、低圧節炭器9の給水入口にそれぞれ設けられた圧力センサ39からの出力を用い、この判別を行う。運転圧力判別部215は、ガスタービン1に点火後、各圧力をモニタし、上記条件を満たした場合、循環流量調節弁開閉制御部212に、制御信号を出力する。 The operating pressure determination unit 215 determines whether or not the steam outlet pressure of the high pressure evaporator 21 is higher than the feed water inlet pressure of the low pressure economizer 9 . The operating pressure determination unit 215 performs this determination using the output from the pressure sensors 39 provided at the steam outlet of the high-pressure evaporator 21 and the water supply inlet of the low-pressure economizer 9, respectively. After the gas turbine 1 is ignited, the operating pressure determination unit 215 monitors each pressure, and outputs a control signal to the circulation flow control valve opening/closing control unit 212 when the above conditions are satisfied.

本実施形態では、循環流量調節弁開閉制御部212は、運転圧力判別部215から、制御信号を受信後、蒸発器循環流量調節弁29を開く、開度信号の出力を開始する。すなわち、本実施形態の循環流量調節弁開閉制御部212は、起動後、高圧蒸発器21の蒸気出口圧力が、低圧節炭器9の給水入口圧力よりも高くなったことを確認後、蒸発器循環流量調節弁29に対し、開指示を与える。 In this embodiment, after receiving the control signal from the operating pressure determination unit 215 , the circulation flow control valve opening/closing control unit 212 starts outputting an opening degree signal for opening the evaporator circulation flow control valve 29 . That is, after starting, the circulation flow control valve opening/closing control unit 212 of the present embodiment confirms that the steam outlet pressure of the high-pressure evaporator 21 is higher than the feed water inlet pressure of the low-pressure economizer 9, and then An open instruction is given to the circulation flow control valve 29 .

水位検出部216は、高圧汽水分離器22の水位を検出する。水位検出部216は、高圧汽水分離器22の水位センサ40の出力をモニタし、モニタ結果を、高圧給水調節弁制御部217に出力する。 The water level detector 216 detects the water level of the high pressure steam separator 22 . The water level detection unit 216 monitors the output of the water level sensor 40 of the high pressure steam separator 22 and outputs the monitoring result to the high pressure water supply control valve control unit 217 .

高圧給水調節弁制御部217は、高圧汽水分離器22の水位が予め定めた規定値(水位規定値)となるよう、高圧給水調節弁20の開度を制御し、高中圧給水ライン35の流量を調整する。高圧給水調節弁制御部217は、例えば、循環流量調節弁開閉制御部212同様、比例積分調節器等で実現される。 The high-pressure water supply control valve control unit 217 controls the opening of the high-pressure water supply control valve 20 so that the water level of the high-pressure steam separator 22 becomes a predetermined specified value (water level specified value), and the flow rate of the high and intermediate pressure water supply line 35 to adjust. The high-pressure water supply control valve control unit 217 is realized by, for example, a proportional-integral control unit or the like, like the circulation flow rate control valve opening/closing control unit 212 .

なお、蒸発器循環運転時に高圧汽水分離器22の水位が水位設定値よりも上昇した場合は、起動ブロー弁27を開き、高圧汽水分離器22内の飽和水を、復水器5へと排水するよう制御する。なお、このとき、ブローライン38を介して、高圧汽水分離器22内の飽和水を、ブロータンク28へ排水するよう制御してもよい。 In addition, when the water level of the high-pressure steam separator 22 rises above the water level set value during the evaporator circulation operation, the start blow valve 27 is opened and the saturated water in the high-pressure steam separator 22 is discharged to the condenser 5. control to At this time, the saturated water in the high-pressure steam separator 22 may be drained to the blow tank 28 via the blow line 38 .

また、コントローラ200は、CPUとメモリと記憶装置とを備えた情報処理装置で実現されてもよい。この場合、コントローラ200が実現する各機能は、記憶装置に格納されたプログラムを、CPUがメモリにロードして実行することにより、実現される。 Also, the controller 200 may be realized by an information processing device that includes a CPU, a memory, and a storage device. In this case, each function realized by the controller 200 is realized by the CPU loading a program stored in the storage device into the memory and executing the program.

各処理に必要なデータは、処理途中および処理後に生成されるデータ等は、RAM等のメモリまたはROM等の記憶装置に格納される。上記例では、各規定値は、ROM等に予め記憶される。また、流量、水温、水位等のモニタ結果は、RAM等に一時的に記憶されてもよいし、ROM等に記憶されてもよい。 Data necessary for each process, data generated during and after the process, and the like are stored in a memory such as a RAM or a storage device such as a ROM. In the above example, each specified value is pre-stored in the ROM or the like. Further, the monitoring results of the flow rate, water temperature, water level, etc. may be temporarily stored in RAM or the like, or may be stored in ROM or the like.

また、コントローラ200の各機能は、比例積分調節器等、加算器、減算器、比較器、積分微分器、関数発生器等のハードウェアの組み合わせで実現されてもよい。 Also, each function of the controller 200 may be implemented by a combination of hardware such as a proportional-integral controller, an adder, a subtractor, a comparator, an integral-differentiator, a function generator, and the like.

このように、本実施形態によれば、高圧汽水分離器22の飽和水を、低圧節炭器9の入口に戻す蒸発器循環ライン24aを備える。そして、蒸発器循環ライン24aに設けられた蒸発器循環流量調節弁29の開閉を、高圧蒸発器21の入口に設けられた高圧蒸発器入口給水流量計33が検出した流量に応じて制御する。 As described above, according to this embodiment, the evaporator circulation line 24 a is provided to return the saturated water of the high pressure steam separator 22 to the inlet of the low pressure economizer 9 . Then, opening and closing of the evaporator circulation flow control valve 29 provided in the evaporator circulation line 24a is controlled according to the flow rate detected by the high pressure evaporator inlet feed water flow meter 33 provided at the inlet of the high pressure evaporator 21 .

高圧系41内の圧力は、低圧系43内の圧力よりも十分に高い。このため、飽和水量が不足するような場合であっても、圧力差で高圧汽水分離器22内の飽和水を前流側の系統へと循環させることができる。すなわち、高圧系41内で自然循環バランスが成立しない状態であっても、低圧系43を経由して高圧蒸発器21への給水を継続できる。これにより、本実施形態によれば、どのような状態であっても、高圧蒸発器21が異常加熱することがなく、安定した蒸発器循環運転を維持できる。従って、本実施形態によれば、強制的に飽和水を循環させるための蒸発器循環ポンプ25(図7(b)参照)が不要になり、コストを抑えられる。 The pressure within the high pressure system 41 is sufficiently higher than the pressure within the low pressure system 43 . Therefore, even if the amount of saturated water is insufficient, the pressure difference allows the saturated water in the high-pressure steam separator 22 to be circulated to the system on the upstream side. That is, even if the natural circulation balance is not established within the high-pressure system 41, the water supply to the high-pressure evaporator 21 can be continued via the low-pressure system 43. As a result, according to this embodiment, the high-pressure evaporator 21 does not overheat under any conditions, and a stable evaporator circulation operation can be maintained. Therefore, according to this embodiment, the evaporator circulation pump 25 (see FIG. 7(b)) for forcibly circulating the saturated water becomes unnecessary, and the cost can be suppressed.

また、本実施形態によれば、高圧汽水分離器22の飽和水が、低圧節炭器9に給水される。すなわち、高圧汽水分離器22の飽和水の熱エネルギが低圧系43の熱エネルギとして置き換わる。このため、熱の損失を抑制でき、補給水が増加することもない。 Further, according to this embodiment, the saturated water of the high-pressure steam separator 22 is supplied to the low-pressure economizer 9 . That is, the heat energy of the saturated water in the high-pressure steam separator 22 replaces the heat energy in the low-pressure system 43 . For this reason, heat loss can be suppressed, and supplementary water does not increase.

また、一般に、排ガス入熱のない停止時には低圧節炭器9の管内給水の温度は低下する。このため、起動初期は低圧節炭器9の給水入口温度が露点温度以下となり、排ガス中の水分が低圧節炭器9の管外面で結露する。 Moreover, generally, the temperature of the water supply in the pipe of the low-pressure economizer 9 decreases when the engine is stopped with no exhaust gas heat input. For this reason, the feed water inlet temperature of the low-pressure economizer 9 becomes lower than the dew point temperature at the initial stage of start-up, and moisture in the exhaust gas condenses on the pipe outer surface of the low-pressure economizer 9 .

上述のように、従来の貫流式排熱回収ボイラ2では、起動初期から、節炭器再循環ライン14により、低圧節炭器9の出口の給水を入口側へ再循環させる。これにより、低圧節炭器9の給水入口温度が上昇し、排ガス中の水分の結露による低圧節炭器9の外面の腐食の発生を抑制している。 As described above, in the conventional once-through heat recovery boiler 2, the feed water from the outlet of the low-pressure economizer 9 is recirculated to the inlet side by the economizer recirculation line 14 from the initial stage of startup. As a result, the temperature of the feed water inlet of the low-pressure economizer 9 rises, suppressing corrosion of the outer surface of the low-pressure economizer 9 due to condensation of moisture in the exhaust gas.

しかし、このような手法では、排ガスの最低温部に設置された低圧節炭器9の出口給水温度が上昇するまでには時間がかかる。例えば、図3(b)に示すように、従来の貫流式排熱回収ボイラ2では、水分露点温度に到達するまで、T1の時間がかかる。この間の結露の発生は避けられない。 However, with such a method, it takes time until the outlet water temperature of the low-pressure economizer 9 installed in the lowest temperature part of the exhaust gas rises. For example, as shown in FIG. 3B, in the conventional once-through heat recovery boiler 2, it takes time T1 to reach the water dew point temperature. The occurrence of dew condensation during this period is unavoidable.

しかしながら、本実施形態では、起動初期から、高圧汽水分離器22の飽和水が、低圧節炭器9に給水される。このため、低圧節炭器出口給水のみを加温に使用する従来の貫流式排熱回収ボイラ2に比べて、低圧節炭器9の給水入口温度を早く上昇させることができる。例えば、図3(b)の例では、T1より大幅に短い時間T3で水分露点温度に到達する。 However, in this embodiment, the saturated water of the high-pressure steam separator 22 is supplied to the low-pressure economizer 9 from the initial stage of startup. Therefore, compared to the conventional once-through heat recovery boiler 2 that uses only the low-pressure economizer outlet feed water for heating, the feed water inlet temperature of the low-pressure economizer 9 can be raised faster. For example, in the example of FIG. 3B, the moisture dew point temperature is reached in a time T3 significantly shorter than T1.

その結果、本実施形態によれば、低圧節炭器9の管外面で排ガス中の水分が結露する時間が大幅に減少し、それに伴い、低圧節炭器9の管外面の腐食を低減できる。 As a result, according to the present embodiment, the time for moisture in the exhaust gas to condense on the outer surface of the low-pressure economizer 9 can be significantly reduced, thereby reducing corrosion of the outer surface of the low-pressure economizer 9 .

従って、本実施形態によれば、貫流式排熱回収ボイラ2aにおいて、コストの上昇とエネルギの損失とを抑えつつ、起動時における安定した蒸発器循環運転を実現できる。これにより、貫流式排熱回収ボイラ2aの経済性と信頼性とが向上する。 Therefore, according to the present embodiment, in the once-through heat recovery boiler 2a, stable evaporator circulation operation can be realized at the time of start-up while suppressing an increase in cost and loss of energy. This improves the economic efficiency and reliability of the once-through heat recovery boiler 2a.

<変形例1>
なお、図1(b)に示すように、高中圧給水ライン35から蒸発器循環ライン24aへ給水を供給する、循環水減温ライン30をさらに備えてもよい。循環水減温ライン30は、高中圧給水ライン35の高中圧給水ポンプ13の出口と、高圧給水調節弁20との間で高中圧給水ライン35から分岐し、蒸発器循環流量調節弁29の手前で蒸発器循環ライン24aに接続される。循環水減温ライン30には、蒸発器循環水減温水調節弁31が設けられる。
<Modification 1>
In addition, as shown in FIG. 1(b), a circulating water reducing temperature line 30 may be further provided for supplying water from the high/intermediate pressure water supply line 35 to the evaporator circulation line 24a. The circulating water reducing temperature line 30 branches from the high and intermediate pressure water supply line 35 between the outlet of the high and intermediate pressure water supply pump 13 of the high and intermediate pressure water supply line 35 and the high pressure water supply control valve 20, and is before the evaporator circulation flow control valve 29. is connected to the evaporator circulation line 24a. An evaporator circulating water reducing temperature control valve 31 is provided in the circulating water reducing temperature line 30 .

高圧汽水分離器22内の飽和水の温度の変動が大きい場合、蒸発器循環流量調節弁29での減圧により、蒸発器循環ライン24内の飽和水が気液二相流体となる可能性がある。気液二相流体となった場合、接続先の低圧節炭器9の入口の低温水と混合されることにより、ウォータハンマ現象が発生する。 If the temperature of the saturated water in the high-pressure steam separator 22 fluctuates significantly, the saturated water in the evaporator circulation line 24 may become a gas-liquid two-phase fluid due to the pressure reduction in the evaporator circulation flow control valve 29. . When it becomes a gas-liquid two-phase fluid, it is mixed with the low-temperature water at the inlet of the low-pressure economizer 9 to which it is connected, thereby causing a water hammer phenomenon.

本変形例では、循環水減温ライン30を設け、高圧汽水分離器22からの飽和水に高中圧給水ポンプ13の出口の給水を混合する。これにより、高圧汽水分離器22からの飽和水は低圧節炭器9の入口給水の飽和温度未満まで減温される。このように、本変形例によれば、蒸発器循環流量調節弁29により減圧されても、蒸発器循環ライン24内の飽和水が気液二相流体となる可能性は減り、ウォータハンマ現象の発生を低減できる。 In this modification, a circulating water desuperheating line 30 is provided, and the saturated water from the high-pressure steam separator 22 is mixed with the feed water at the outlet of the high/intermediate-pressure feed pump 13 . As a result, the temperature of the saturated water from the high-pressure steam separator 22 is reduced to below the saturation temperature of the inlet feed water of the low-pressure economizer 9 . Thus, according to this modification, even if the pressure is reduced by the evaporator circulation flow control valve 29, the possibility that the saturated water in the evaporator circulation line 24 becomes a gas-liquid two-phase fluid is reduced, and the water hammer phenomenon occurs. Occurrence can be reduced.

<変形例2>
なお、本実施形態では、低圧節炭器9の出口に高中圧給水ライン35を設け、低圧節炭器9から高圧系41および中圧系42へ給水を供給している。しかし、高圧系および中圧系への給水の供給は、これに限定されない。例えば、図4に示すように、低圧ドラム10に高中圧給水ライン35を接続し、低圧ドラム10から供給してもよい。なお、図4では、循環水減温ライン30と蒸発器循環水減温水調節弁31とを備える場合を例示するが、上記実施形態同様、これらはなくてもよい。
<Modification 2>
In addition, in this embodiment, the outlet of the low-pressure economizer 9 is provided with a high-intermediate-pressure water supply line 35 to supply water from the low-pressure economizer 9 to the high-pressure system 41 and the intermediate-pressure system 42 . However, the supply of water to the high-pressure system and the medium-pressure system is not limited to this. For example, as shown in FIG. 4 , a high and intermediate pressure water supply line 35 may be connected to the low pressure drum 10 to supply water from the low pressure drum 10 . Although FIG. 4 illustrates the case where the circulating water desuperheating line 30 and the evaporator circulating water desuperheating control valve 31 are provided, they may be omitted as in the above embodiment.

<<第二の実施形態>>
次に、本発明の第二の実施形態を説明する。本実施形態では、蒸発器循環ライン24を、高圧汽水分離器22から高圧系41よりも低圧となる系に設置された蒸気ドラムに接続する。本実施形態では、特に、中圧系42の蒸気ドラムである中圧ドラム16に接続する。
<<Second Embodiment>>
Next, a second embodiment of the invention will be described. In this embodiment, the evaporator circulation line 24 is connected from the high-pressure steam separator 22 to a steam drum installed in a system having a lower pressure than the high-pressure system 41 . In this embodiment, in particular, it is connected to the intermediate pressure drum 16 which is the steam drum of the intermediate pressure system 42 .

図5は、本実施形態の貫流式排熱回収ボイラ2bの一例を示す図である。本実施形態の貫流式排熱回収ボイラ2bにおいて、蒸発器循環ライン24bは、高圧汽水分離器22の出口に接続された下降管から分岐し、中圧ドラム16に接続される。また、蒸発器循環ライン24bには、蒸発器循環流量調節弁29が設けられる。 FIG. 5 is a diagram showing an example of the once-through heat recovery boiler 2b of this embodiment. In the once-through heat recovery steam generator 2b of the present embodiment, the evaporator circulation line 24b branches from a downcomer connected to the outlet of the high pressure steam separator 22 and is connected to the intermediate pressure drum 16 . An evaporator circulation flow control valve 29 is provided in the evaporator circulation line 24b.

本実施形態の貫流式排熱回収ボイラ2bも、コントローラ200を備える。本実施形態のコントローラ200による、蒸発器循環流量調節弁29および高圧給水調節弁20の開閉制御については、第一の実施形態と同様である。 The once-through heat recovery boiler 2b of this embodiment also includes a controller 200. As shown in FIG. The opening/closing control of the evaporator circulation flow control valve 29 and the high-pressure feed water control valve 20 by the controller 200 of this embodiment is the same as in the first embodiment.

また、本実施形態のコントローラ200による低圧節炭器入口温度調節弁32の開閉制御も、基本的には、第一の実施形態と同様である。しかし、本実施形態では、蒸発器循環ライン24bの接続先が、中圧ドラム16である。このため、低圧節炭器入口温度調節弁32の開閉は、蒸発器循環流量調節弁29の開閉制御とは、独立に制御してもよい。 Further, the opening/closing control of the low-pressure economizer inlet temperature control valve 32 by the controller 200 of this embodiment is basically the same as that of the first embodiment. However, in the present embodiment, the connection destination of the evaporator circulation line 24b is the intermediate pressure drum 16 . Therefore, the opening/closing of the low-pressure economizer inlet temperature control valve 32 may be controlled independently of the opening/closing control of the evaporator circulation flow rate control valve 29 .

このように、本実施形態では、高圧汽水分離器22の飽和水を、中圧ドラム16に戻す蒸発器循環ライン24bを備える。そして、蒸発器循環ライン24bに設けられた蒸発器循環流量調節弁29の開閉を、高圧蒸発器21の入口に設けられた高圧蒸発器入口給水流量計33が検出した流量に応じて制御する。 Thus, in this embodiment, the evaporator circulation line 24 b is provided to return the saturated water from the high-pressure steam separator 22 to the intermediate-pressure drum 16 . Then, opening and closing of the evaporator circulation flow control valve 29 provided in the evaporator circulation line 24b is controlled according to the flow rate detected by the high pressure evaporator inlet feed water flow meter 33 provided at the inlet of the high pressure evaporator 21.

高圧系41内の圧力は、中圧ドラム16内の圧力より十分に高い。このため、本実施形態においても、圧力差で高圧汽水分離器22内の飽和水を前流側の系統へと循環させることができる。すなわち、高圧系41内で自然循環バランスが成立しない状態であっても、中圧系42を経由して高圧蒸発器21への給水を継続できる。これにより、本実施形態によれば、どのような状態であっても、高圧蒸発器21が異常加熱することがなく、安定した蒸発器循環運転を実現できる。従って、本実施形態によれば、強制的に飽和水を循環させるための蒸発器循環ポンプ25の設置が不要になり、コストを抑えられる。 The pressure within the high pressure system 41 is sufficiently higher than the pressure within the intermediate pressure drum 16 . Therefore, also in this embodiment, the saturated water in the high-pressure steam separator 22 can be circulated to the system on the upstream side by the pressure difference. That is, even if the natural circulation balance is not established within the high-pressure system 41, water supply to the high-pressure evaporator 21 via the medium-pressure system 42 can be continued. As a result, according to this embodiment, the high-pressure evaporator 21 does not overheat under any conditions, and stable evaporator circulation operation can be achieved. Therefore, according to this embodiment, it is unnecessary to install the evaporator circulation pump 25 for forcibly circulating the saturated water, and the cost can be reduced.

また、本実施形態の貫流式排熱回収ボイラ2bでは、高圧蒸発器系の給水を、中圧系42に循環させる。中圧系42は、低圧系43より運転圧力が高く、ガス前流側に設置される。このため、低圧系43に循環させる構成に比べて、減圧による回収熱の損失を抑制することができる。 In addition, in the once-through heat recovery boiler 2b of the present embodiment, the feed water of the high-pressure evaporator system is circulated to the medium-pressure system 42. As shown in FIG. The intermediate pressure system 42 has a higher operating pressure than the low pressure system 43 and is installed on the upstream side of the gas. For this reason, loss of recovered heat due to pressure reduction can be suppressed as compared with a configuration in which the refrigerant is circulated through the low-pressure system 43 .

また、接続先が、気液分離可能な蒸気ドラムであるため、蒸発器循環流量調節弁29での減圧により気液二相状態となった流体であっても、そのままの状態で受け入れることができ、循環を継続できる。このため、本実施形態では、第一の実施形態のような循環水減温ライン30の設置は不要となる。 In addition, since the connection destination is a steam drum capable of gas-liquid separation, even if the fluid is in a gas-liquid two-phase state due to the pressure reduction in the evaporator circulation flow control valve 29, it can be received as it is. , can continue to circulate. Therefore, in this embodiment, installation of the circulating water reducing temperature line 30 as in the first embodiment is not required.

なお、本実施形態においても、第一の実施形態同様、高圧系41および中圧系42への給水を、低圧ドラム10から行うよう構成してもよい。すなわち、低圧ドラム10に高中圧給水ライン35を接続してもよい。 Also in this embodiment, water supply to the high-pressure system 41 and the intermediate-pressure system 42 may be performed from the low-pressure drum 10 as in the first embodiment. That is, the high and medium pressure water supply line 35 may be connected to the low pressure drum 10 .

<<第三の実施形態>>
次に、本発明の第三の実施形態を説明する。本実施形態でも、蒸発器循環ライン24を、高圧汽水分離器22から高圧系41よりも低圧となる系に設置された蒸気ドラムに接続する。本実施形態では、特に、低圧系43の蒸気ドラムである低圧ドラム10に接続する。
<<Third Embodiment>>
Next, a third embodiment of the invention will be described. Also in this embodiment, the evaporator circulation line 24 is connected from the high-pressure steam separator 22 to a steam drum installed in a system having a lower pressure than the high-pressure system 41 . In this embodiment, in particular, it is connected to the low pressure drum 10 which is the steam drum of the low pressure system 43 .

図6(a)は、本実施形態の貫流式排熱回収ボイラ2cの一例を示す図である。本実施形態の貫流式排熱回収ボイラ2cにおいて、蒸発器循環ライン24cは、高圧汽水分離器22の出口に接続された下降管から分岐し、低圧ドラム10に接続される。また、蒸発器循環ライン24cは、蒸発器循環流量調節弁29を備える。 FIG. 6(a) is a diagram showing an example of the once-through heat recovery boiler 2c of the present embodiment. In the once-through heat recovery steam generator 2c of the present embodiment, the evaporator circulation line 24c branches from a downcomer pipe connected to the outlet of the high pressure steam separator 22 and is connected to the low pressure drum 10 . Also, the evaporator circulation line 24 c is provided with an evaporator circulation flow control valve 29 .

また、本実施形態のコントローラ200による、蒸発器循環流量調節弁29および高圧給水調節弁20の開閉制御についても、第一の実施形態と同様である。 The opening/closing control of the evaporator circulation flow control valve 29 and the high-pressure feed water control valve 20 by the controller 200 of this embodiment is also the same as in the first embodiment.

また、本実施形態のコントローラ200による低圧節炭器入口温度調節弁32の開閉制御も、基本的には、第一の実施形態と同様である。しかし、本実施形態では、蒸発器循環ライン24cの接続先が、低圧ドラム10である。このため、低圧節炭器入口温度調節弁32の開閉は、蒸発器循環流量調節弁29の開閉制御とは、独立に制御してもよい。 Further, the opening/closing control of the low-pressure economizer inlet temperature control valve 32 by the controller 200 of this embodiment is basically the same as that of the first embodiment. However, in this embodiment, the connection destination of the evaporator circulation line 24 c is the low pressure drum 10 . Therefore, the opening/closing of the low-pressure economizer inlet temperature control valve 32 may be controlled independently of the opening/closing control of the evaporator circulation flow rate control valve 29 .

このように、本実施形態では、高圧汽水分離器22の飽和水を、低圧ドラム10に戻す蒸発器循環ライン24cを備える。そして、蒸発器循環ライン24cに設けられた蒸発器循環流量調節弁29の開閉を、高圧蒸発器21の入口に設けられた高圧蒸発器入口給水流量計33が検出した流量に応じて制御する。 Thus, in this embodiment, the evaporator circulation line 24c for returning the saturated water of the high-pressure steam separator 22 to the low-pressure drum 10 is provided. Then, opening and closing of the evaporator circulation flow control valve 29 provided in the evaporator circulation line 24c is controlled according to the flow rate detected by the high pressure evaporator inlet feed water flow meter 33 provided at the inlet of the high pressure evaporator 21.

本実施形態においても、高圧系41内の圧力は、低圧ドラム10内の圧力より十分に高いた。このため、圧力差で高圧汽水分離器22内の飽和水を、前流側の系統へと循環させることができる。すなわち、高圧系41内で自然循環バランスが成立しない状態であっても、低圧系43を経由して高圧蒸発器21への給水を継続できる。これにより、本実施形態によれば、どのような状態であっても、高圧蒸発器21の異常加熱も発生することがなく、安定した蒸発器循環運転を実現できる。従って、本実施形態によれば、強制的に飽和水を循環させるための蒸発器循環ポンプ25が不要になり、コストを抑えられる。 Also in this embodiment, the pressure in the high pressure system 41 was sufficiently higher than the pressure in the low pressure drum 10 . Therefore, the saturated water in the high-pressure steam separator 22 can be circulated to the system on the upstream side due to the pressure difference. That is, even if the natural circulation balance is not established within the high-pressure system 41, the water supply to the high-pressure evaporator 21 can be continued via the low-pressure system 43. As a result, according to the present embodiment, no abnormal heating of the high-pressure evaporator 21 occurs, and stable evaporator circulation operation can be realized in any state. Therefore, according to this embodiment, the evaporator circulation pump 25 for forcibly circulating the saturated water becomes unnecessary, and the cost can be suppressed.

また、低圧ドラム10へ循環する高圧汽水分離器22の飽和水は、低圧ドラム10の缶水よりも高エンタルピである。起動時にこの飽和水を受け入れることにより、低圧ドラム10の圧力および飽和温度は早く上昇する。その結果、低圧節炭器9の入口側ガス温度の上昇も早くなり、低圧節炭器9での熱吸収量が急速に増加するため、低圧節炭器9の給水出口温度も早く上昇する。 Also, the saturated water of the high-pressure steam separator 22 circulating to the low-pressure drum 10 has a higher enthalpy than the boiled water of the low-pressure drum 10 . By accepting this saturated water at start-up, the pressure and saturation temperature of the low pressure drum 10 rises quickly. As a result, the gas temperature on the inlet side of the low-pressure economizer 9 rises quickly, and the amount of heat absorbed by the low-pressure economizer 9 rapidly increases, so the water supply outlet temperature of the low-pressure economizer 9 also rises quickly.

そして、このような低圧節炭器9の出口給水を、節炭器再循環ライン14により低圧節炭器9の入口側へ再循環させることで、低圧節炭器9の給水入口温度を早く上昇させることができる。 By recirculating such outlet water supply of the low-pressure economizer 9 to the inlet side of the low-pressure economizer 9 through the economizer recirculation line 14, the temperature of the water supply inlet of the low-pressure economizer 9 is quickly increased. can be made

例えば、本実施形態の貫流式排熱回収ボイラ2aでは、図3(b)のグラフ341で示すように低圧節炭器9の給水入口温度が変化する。図3(b)の例では、時間T2で水分露点温度に到達する。このように、本実施形態によれば、低圧節炭器出口給水のみを加温に使用する従来の貫流式排熱回収ボイラ2に比べて、低圧節炭器9の給水入口温度が早く上昇する。その結果、本実施形態によれば、低圧節炭器9の管外面で排ガス中の水分が結露する時間が減少し、それに伴い、低圧節炭器9の管外面の腐食を低減できる。 For example, in the once-through heat recovery boiler 2a of the present embodiment, the feedwater inlet temperature of the low-pressure economizer 9 changes as shown by the graph 341 in FIG. 3(b). In the example of FIG. 3B, the moisture dew point temperature is reached at time T2. Thus, according to the present embodiment, the temperature at the feed water inlet of the low-pressure economizer 9 rises faster than in the conventional once-through heat recovery boiler 2 that uses only the low-pressure economizer outlet feed water for heating. . As a result, according to the present embodiment, the time for moisture in the exhaust gas to condense on the outer surface of the low-pressure economizer 9 is reduced, and corrosion of the outer surface of the low-pressure economizer 9 can be reduced.

<変形例>
なお、本実施形態においても、図6(b)に示すように、第一の実施形態同様、高圧系41および中圧系42への給水を、低圧ドラム10から行うよう構成してもよい。すなわち、低圧ドラム10に高中圧給水ライン35を接続してもよい。
<Modification>
Also in this embodiment, as shown in FIG. 6B, water supply to the high-pressure system 41 and the intermediate-pressure system 42 may be performed from the low-pressure drum 10, as in the first embodiment. That is, the high and medium pressure water supply line 35 may be connected to the low pressure drum 10 .

特に、本変形例によれば、低圧ドラム10内の水温が上昇する。このため、中圧系42および高圧系41へ供給される給水温度が上昇する。これにより、中圧系42および高圧系41が温められ、起動時の急激な温度変化に伴う熱疲労等の発生が低減する。 In particular, according to this modified example, the water temperature in the low-pressure drum 10 rises. Therefore, the temperature of the feed water supplied to the intermediate pressure system 42 and the high pressure system 41 rises. As a result, the intermediate pressure system 42 and the high pressure system 41 are warmed, and the occurrence of thermal fatigue or the like due to a sudden temperature change at startup is reduced.

さらに、第三の実施形態と同様に、低圧節炭器9の給水入口温度の上昇も早くなり、低圧節炭器9の管外面の腐食を低減できる。 Furthermore, similarly to the third embodiment, the temperature at the feed water inlet of the low-pressure economizer 9 rises quickly, and corrosion of the pipe outer surface of the low-pressure economizer 9 can be reduced.

以上説明したように、各実施形態および変形例によれば、高圧汽水分離器22からの蒸発器循環ライン24(24a~24c)の接続先を、中圧系42および低圧系43のいずれかの構成にする。これにより、起動時等であっても、回収熱や補給水の損失なしに、蒸発器循環ポンプ25を設置することなく、高圧蒸発器21への給水を継続でき、安定した蒸発器循環運転を行うことができる。従って、経済性に優れた貫流式排熱回収ボイラを提供できる。また、接続先によっては、低圧節炭器9の入口側での結露による外面腐食の発生を抑制し、信頼性も向上する。 As described above, according to each of the embodiments and modifications, the evaporator circulation line 24 (24a to 24c) from the high-pressure steam separator 22 is connected to either the medium-pressure system 42 or the low-pressure system 43. Make configuration. As a result, even during start-up or the like, water supply to the high-pressure evaporator 21 can be continued without loss of recovered heat or make-up water, without installing the evaporator circulation pump 25, and stable evaporator circulation operation can be performed. It can be carried out. Therefore, it is possible to provide an economical once-through heat recovery boiler. In addition, depending on the connection destination, occurrence of corrosion of the outer surface due to dew condensation on the inlet side of the low-pressure economizer 9 is suppressed, and reliability is also improved.

1:ガスタービン、2:貫流式排熱回収ボイラ、2a:貫流式排熱回収ボイラ、2b:貫流式排熱回収ボイラ、2c:貫流式排熱回収ボイラ、3:蒸気タービン、4:発電機、5:復水器、6:復水ポンプ、7:復水脱塩装置、8:低圧給水ポンプ、9:低圧節炭器、10:低圧ドラム、11:低圧蒸発器、12:低圧過熱器、13:高中圧給水ポンプ、14:節炭器再循環ライン、15:中圧節炭器、16:中圧ドラム、17:中圧蒸発器、18:中圧過熱器、19:高圧節炭器、20:高圧給水調節弁、21:高圧蒸発器、22:高圧汽水分離器、23:高圧過熱器、24:蒸発器循環ライン、24a:蒸発器循環ライン、24b:蒸発器循環ライン、24c:蒸発器循環ライン、25:蒸発器循環ポンプ、26:起動ブローライン、27:起動ブロー弁、28:ブロータンク、29:蒸発器循環流量調節弁、30:循環水減温ライン、31:蒸発器循環水減温水調節弁、32:低圧節炭器入口温度調節弁、33:高圧蒸発器入口給水流量計、34:低圧節炭器入口給水温度計、35:高中圧給水ライン、36:節炭器再循環ポンプ、37:復水ライン、38:ブローライン、39:圧力センサ、40:水位センサ、41:高圧系、42:中圧系、43:低圧系、
100:コンバインドサイクル発電設備、200:コントローラ、211:流量検出部、212:循環流量調節弁開閉制御部、213:水温検出部、214:入口温度調節弁開閉制御部、215:運転圧力判別部、216:水位検出部、217:高圧給水調節弁制御部、
301:グラフ、302:グラフ、311:グラフ、321:グラフ、331:グラフ、341:グラフ
1: gas turbine, 2: once-through heat recovery boiler, 2a: once-through heat recovery boiler, 2b: once-through heat recovery boiler, 2c: once-through heat recovery boiler, 3: steam turbine, 4: generator , 5: Condenser, 6: Condensate pump, 7: Condensate demineralizer, 8: Low pressure feed water pump, 9: Low pressure economizer, 10: Low pressure drum, 11: Low pressure evaporator, 12: Low pressure superheater , 13: high and medium pressure feed water pump, 14: economizer recirculation line, 15: medium pressure economizer, 16: medium pressure drum, 17: medium pressure evaporator, 18: medium pressure superheater, 19: high pressure economizer device, 20: high-pressure feed water control valve, 21: high-pressure evaporator, 22: high-pressure steam separator, 23: high-pressure superheater, 24: evaporator circulation line, 24a: evaporator circulation line, 24b: evaporator circulation line, 24c : Evaporator circulation line, 25: Evaporator circulation pump, 26: Starting blow line, 27: Starting blow valve, 28: Blow tank, 29: Evaporator circulation flow control valve, 30: Circulating water reducing temperature line, 31: Evaporation Circulating water reducing water control valve, 32: Low pressure economizer inlet temperature control valve, 33: High pressure evaporator inlet feed water flow meter, 34: Low pressure economizer inlet feed water temperature gauge, 35: High and medium pressure water supply line, 36: Node coal recirculation pump, 37: condensate line, 38: blow line, 39: pressure sensor, 40: water level sensor, 41: high pressure system, 42: intermediate pressure system, 43: low pressure system,
100: Combined cycle power generation facility, 200: Controller, 211: Flow rate detection unit, 212: Circulation flow rate control valve opening/closing control unit, 213: Water temperature detection unit, 214: Inlet temperature control valve opening/closing control unit, 215: Operating pressure determination unit, 216: Water level detection unit, 217: High pressure water supply control valve control unit,
301: graph, 302: graph, 311: graph, 321: graph, 331: graph, 341: graph

Claims (5)

それぞれ、ガスタービンからの排ガスが流通する排ガス流路の上流側から下流側に順に過熱器、蒸発器および節炭器を有する高圧系、中圧系および低圧系を備え、前記中圧系および前記低圧系は、それぞれ蒸気ドラムを備え、前記高圧系は、汽水分離器を備える貫流式排熱回収ボイラであって、
前記汽水分離器の飽和水を、前記中圧系および前記低圧系のいずれかに戻す蒸発器循環ラインを備え、
前記蒸発器循環ラインは、前記汽水分離器の飽和水排出口に接続された下降管から分岐して前記低圧系の節炭器の入口配管に接続され、
前記低圧系から前記高圧系および前記中圧系へ給水を供給する高中圧給水ラインから分岐して前記蒸発器循環ラインに接続される循環水減温ラインをさらに備えること
を特徴とする貫流式排熱回収ボイラ。
A high-pressure system, an intermediate-pressure system, and a low-pressure system each having a superheater, an evaporator, and an economizer in order from the upstream side to the downstream side of an exhaust gas passage through which the exhaust gas from the gas turbine flows, and the intermediate-pressure system and the low-pressure system are provided. the low pressure systems each comprising a steam drum and the high pressure system being a once-through heat recovery boiler comprising a steam separator,
An evaporator circulation line returning the saturated water of the steam separator to either the intermediate pressure system or the low pressure system ,
The evaporator circulation line is branched from a descending pipe connected to the saturated water outlet of the steam separator and connected to the inlet pipe of the low-pressure economizer,
further comprising a circulating water desuperheating line branched from a high and intermediate pressure water supply line for supplying water from the low pressure system to the high pressure system and the intermediate pressure system and connected to the evaporator circulation line;
A once-through heat recovery boiler characterized by
請求項1記載の貫流式排熱回収ボイラであって、
前記高圧系および前記中圧系へは、前記低圧系の節炭器から給水が供給されること
を特徴とする貫流式排熱回収ボイラ。
The once-through heat recovery boiler according to claim 1 ,
A once-through heat recovery steam generator, wherein feed water is supplied from the low-pressure economizer to the high-pressure system and the intermediate-pressure system.
請求項1記載の貫流式排熱回収ボイラであって、
前記高圧系および前記中圧系へは、前記低圧系の蒸気ドラムから給水が供給されること
を特徴とする貫流式排熱回収ボイラ。
The once-through heat recovery boiler according to claim 1 ,
A once-through heat recovery boiler, wherein feed water is supplied from a steam drum of the low-pressure system to the high-pressure system and the intermediate-pressure system.
それぞれ、ガスタービンからの排ガスが流通する排ガス流路の上流側から下流側に順に過熱器、蒸発器および節炭器を有する高圧系、中圧系および低圧系を備え、前記中圧系および前記低圧系は、それぞれ蒸気ドラムを備え、前記高圧系は、汽水分離器を備える貫流式排熱回収ボイラの制御システムであって、
前記貫流式排熱回収ボイラは、
前記汽水分離器の飽和水を、前記中圧系および前記低圧系のいずれかに戻す蒸発器循環ラインと、
前記高圧系の蒸発器の管内流量を計測する高圧蒸発器入口給水流量計と、
前記蒸発器循環ライン上に設けられる循環流量調節弁と、を備え、
起動時に、前記高圧蒸発器入口給水流量計で計測された前記管内流量が予め定めた流量規定値となるよう前記循環流量調節弁の開度を制御すること
を特徴とする貫流式排熱回収ボイラの制御システム。
A high-pressure system, an intermediate-pressure system, and a low-pressure system each having a superheater, an evaporator, and an economizer in order from the upstream side to the downstream side of an exhaust gas passage through which the exhaust gas from the gas turbine flows, and the intermediate-pressure system and the low-pressure system are provided. A control system for a once-through heat recovery steam generator, wherein the low pressure systems each comprise a steam drum, and the high pressure system comprises a steam separator,
The once-through heat recovery boiler is
an evaporator circulation line returning the saturated water of the steam separator to either the intermediate pressure system or the low pressure system;
a high-pressure evaporator inlet water flow meter for measuring the flow rate in the pipe of the high-pressure evaporator;
a circulation flow control valve provided on the evaporator circulation line,
A once-through heat recovery boiler characterized by controlling the opening degree of the circulation flow control valve so that the flow rate in the pipe measured by the high-pressure evaporator inlet feed water flow meter becomes a predetermined flow rate regulation value at the time of start-up. control system.
請求項4記載の貫流式排熱回収ボイラの制御システムであって、
前記貫流式排熱回収ボイラは、
前記低圧系の節炭器の出口から入口に水を再循環させる再循環ラインと、
前記再循環ライン上に設けられる入口温度調節弁と、をさらに備え、
前記循環流量調節弁が閉じられた後、前記低圧系の節炭器の給水入口温度が、予め定めた水温規定値となるよう前記入口温度調節弁の開度を制御すること
を特徴とする貫流式排熱回収ボイラの制御システム。
A control system for a once-through heat recovery boiler according to claim 4 ,
The once-through heat recovery boiler is
a recirculation line for recirculating water from the outlet to the inlet of the low-pressure system economizer;
an inlet temperature control valve provided on the recirculation line;
After the circulation flow rate control valve is closed, the opening of the inlet temperature control valve is controlled so that the temperature of the feed water at the inlet of the low-pressure economizer reaches a predetermined water temperature specified value. A control system for a heat recovery boiler.
JP2018120055A 2018-06-25 2018-06-25 Once-through heat recovery boiler and control system for once-through heat recovery boiler Active JP7111525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018120055A JP7111525B2 (en) 2018-06-25 2018-06-25 Once-through heat recovery boiler and control system for once-through heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018120055A JP7111525B2 (en) 2018-06-25 2018-06-25 Once-through heat recovery boiler and control system for once-through heat recovery boiler

Publications (2)

Publication Number Publication Date
JP2020003090A JP2020003090A (en) 2020-01-09
JP7111525B2 true JP7111525B2 (en) 2022-08-02

Family

ID=69099593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018120055A Active JP7111525B2 (en) 2018-06-25 2018-06-25 Once-through heat recovery boiler and control system for once-through heat recovery boiler

Country Status (1)

Country Link
JP (1) JP7111525B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184103B2 (en) * 2020-02-27 2022-12-06 Jfeスチール株式会社 Exhaust heat recovery boiler and its operation method
CN114906898A (en) * 2022-04-13 2022-08-16 西安热工研究院有限公司 System and method for desalinating seawater by using heat supply back pressure steam turbine generator unit
CN114993091B (en) * 2022-05-18 2023-05-12 北京航化节能环保技术有限公司 Zero-power consumption self-adaptive distributed waste heat recycling system of ethylene device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075966A (en) 2006-09-21 2008-04-03 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2009074726A (en) 2007-09-19 2009-04-09 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2016194396A (en) 2015-04-01 2016-11-17 三菱日立パワーシステムズ株式会社 Exhaust heat recovery system, and operating method of exhaust heat recovery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101U (en) * 1981-06-24 1983-01-05 株式会社日立製作所 Water supply device to exhaust heat recovery boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075966A (en) 2006-09-21 2008-04-03 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2009074726A (en) 2007-09-19 2009-04-09 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2016194396A (en) 2015-04-01 2016-11-17 三菱日立パワーシステムズ株式会社 Exhaust heat recovery system, and operating method of exhaust heat recovery system

Also Published As

Publication number Publication date
JP2020003090A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
US8463445B2 (en) Method and system for safe drum water level determination in a combined cycle operation
JP6670123B2 (en) Exhaust heat recovery device and binary power generation device
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP5595595B2 (en) Method of operating a combined gas / steam turbine facility, gas / steam turbine facility for implementing this method, and corresponding regulator
US9869467B2 (en) Once-through steam generator
JP5183305B2 (en) Startup bypass system in steam power plant
JP5855105B2 (en) Method for adjusting the short-term power increase of a steam turbine
US10208630B2 (en) Method for operating a steam power plant and steam power plant for conducting said method
US7827793B2 (en) Power generation system
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP2001108201A (en) Multiple pressure waste heat boiler
JPH10292902A (en) Main steam temperature controller
JPH112105A (en) Combined cycle power generation plant
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP3745419B2 (en) Waste heat recovery boiler
JPH10317916A (en) Thermal power plant
JP2004190989A (en) Start control device and method for variable pressure once-through boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
WO2020255719A1 (en) Power plant
RU2067668C1 (en) Combined-cycle plant operation process
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JPH09195718A (en) Main steam temperature control device
JP3650277B2 (en) Thermal power plant control device and thermal power plant control method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220721

R150 Certificate of patent or registration of utility model

Ref document number: 7111525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150