JP2008075966A - Once-through exhaust heat recovery boiler - Google Patents

Once-through exhaust heat recovery boiler Download PDF

Info

Publication number
JP2008075966A
JP2008075966A JP2006255752A JP2006255752A JP2008075966A JP 2008075966 A JP2008075966 A JP 2008075966A JP 2006255752 A JP2006255752 A JP 2006255752A JP 2006255752 A JP2006255752 A JP 2006255752A JP 2008075966 A JP2008075966 A JP 2008075966A
Authority
JP
Japan
Prior art keywords
evaporator
fluid
economizer
heat recovery
brackish water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006255752A
Other languages
Japanese (ja)
Inventor
Hideyuki Uchimura
英幸 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006255752A priority Critical patent/JP2008075966A/en
Publication of JP2008075966A publication Critical patent/JP2008075966A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery boiler capable of being started at a high speed by disposing a heating system in an evaporator circulation system of the once-through exhaust heat recovery boiler, and having high controllability and reliability. <P>SOLUTION: An economizer 1, an evaporator 2, and a superheater 4 are successively disposed from a downstream side to an upstream side in a combustion exhaust gas flow channel, fluid pipes are respectively disposed to allow the fluid to successively flow from the economizer 1 to the evaporator 2, a steam separator 3 and the superheater 4, and further a circulation pipe 15 is disposed to return the water separated by the steam separator 3 to the evaporator 2. The water inside of the evaporator 2 is warmed by the steam supplied from an auxiliary steam system 7 through a steam injection nozzle 12 in the circulation pipe 15 returning to an inlet of the evaporator 2 during a standby of an operation of a boiler, and circulated by using a circulation pump 6 to prevent the temperature decrease of the water in the evaporator 2 and its communication pipe 14 and to keep the water at a constant temperature, thus the temperature change in the system of the evaporator 2 is reduced in restarting the boiler, and the boiler can be started in a short time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガスタービンと排熱回収ボイラと蒸気タービンからなる複合発電プラント、いわゆるコンバインドプラントの排熱回収ボイラに係わり、特に貫流式排熱回収ボイラのシステムに関するものである。   The present invention relates to a combined power plant including a gas turbine, an exhaust heat recovery boiler, and a steam turbine, that is, an exhaust heat recovery boiler of a so-called combined plant, and more particularly to a system of a once-through exhaust heat recovery boiler.

前記コンバインドサイクルプラントは、起動停止を頻繁に行う運用が求められることが多く、その主機の一つである排熱回収ボイラに対しても起動時間短縮が可能なシステムが要求されている。
図7にコンバインドサイクルにおける従来の自然循環式排熱回収ボイラ概略系統図を示す。ガスタービンからの高温排ガスが流れる流路である排熱回収ボイラ内には高温部から低温部に向けて順に過熱器4、蒸発器2及び節炭器1などが配置されている。
The combined cycle plant is often required to be frequently started and stopped, and a system capable of shortening the start-up time is required for an exhaust heat recovery boiler that is one of the main machines.
FIG. 7 shows a schematic system diagram of a conventional natural circulation type exhaust heat recovery boiler in a combined cycle. A superheater 4, an evaporator 2, a economizer 1, and the like are arranged in order from a high temperature portion to a low temperature portion in an exhaust heat recovery boiler that is a flow path through which high-temperature exhaust gas from a gas turbine flows.

給水は該節炭器1で加熱された後に、高温排ガス流路の外側に配置されている汽水分離ドラム24に送られる。該汽水分離ドラム24で蒸気から分離された水は蒸発器2に送られ、該蒸発器2で加熱され蒸気となり、再び汽水分離ドラム24内に送られ、汽水分離ドラム24内で分離された蒸気は、該汽水分離ドラム24から過熱器4に送られて過熱器4で過熱されて蒸気タービンに供給される。   The feed water is heated by the economizer 1 and then sent to the brackish water separation drum 24 disposed outside the high-temperature exhaust gas passage. The water separated from the steam by the brackish water separation drum 24 is sent to the evaporator 2, heated by the evaporator 2 to become steam, sent again into the brackish water separation drum 24, and steam separated in the brackish water separation drum 24 Is sent from the brackish water separation drum 24 to the superheater 4, superheated by the superheater 4, and supplied to the steam turbine.

図8にコンバインドサイクルにおける従来の貫流式排熱回収ボイラ概略系統図を示す。この場合も排熱回収ボイラ内には高温部から低温部に向けて順に過熱器4、蒸発器2及び節炭器1が配置されている。節炭器1において加熱された給水は蒸発器2へ送られ、蒸気となった後、汽水分離器3で汽水分離され、分離された蒸気は過熱器4で過熱されて蒸気タービンへ送られる。その際、汽水分離器3では蒸発器2で蒸気に状態変化した水から飽和水分を取り除くことになるが、ボイラ起動時には比較的多量の飽和水が発生することから、分離された水は汽水分離器貯水タンク5に回収された後、蒸発器2の入口に再循環させて熱の回収を図っている(特表2001−505645号公報)。   FIG. 8 shows a schematic system diagram of a conventional once-through exhaust heat recovery boiler in a combined cycle. Also in this case, the superheater 4, the evaporator 2, and the economizer 1 are arranged in order from the high temperature portion to the low temperature portion in the exhaust heat recovery boiler. The feed water heated in the economizer 1 is sent to the evaporator 2 and converted into steam, and then the steam is separated by the brackish water separator 3, and the separated steam is superheated by the superheater 4 and sent to the steam turbine. At that time, in the brackish water separator 3, saturated water is removed from the water whose state has been changed to steam in the evaporator 2, but since a relatively large amount of saturated water is generated when the boiler is started, the separated water is separated into brackish water. After being recovered in the water storage tank 5, the heat is recovered by recirculation to the inlet of the evaporator 2 (Japanese Patent Publication No. 2001-505645).

また、特開2003−294201号公報には、自然循環型排熱回収ボイラの起動前に給水をボイラ系内で循環させる給水循環手段を設けて、ボイラ系内の給水全体を徐々に昇温させてスチームハンマーを発生させないようにした構成が開示されている。この発明では給水循環手段に供給される給水は加熱される場合もあるが、その加熱手段としてボイラ系内の蒸気を使用する例が開示されいる。   Japanese Patent Application Laid-Open No. 2003-294201 provides a water supply circulation means for circulating water in the boiler system before starting the natural circulation type exhaust heat recovery boiler, and gradually raises the temperature of the entire water supply in the boiler system. A configuration is disclosed in which a steam hammer is not generated. In this invention, the feed water supplied to the feed water circulation means may be heated, but an example is disclosed in which steam in the boiler system is used as the heating means.

また、特開2000−46301号公報には、コンバインドサイクルプラントの自然循環型排熱回収ボイラにおけるガスタービンの起動点火の前に脱硝装置の排ガス上流側に設置した蒸発器内の缶水に外部蒸気を導入してボイラ起動時の脱硝装置入口温度を上げて脱硝触媒の性能を維持させ、同時に蒸発器の熱交換部のスチームハンマーを回避する構成が開示されている。
特表2001−505645号公報 特開2003−294201号公報 特開2000−46301号公報
Japanese Patent Laid-Open No. 2000-46301 discloses an external steam in the can water in the evaporator installed upstream of the exhaust gas of the denitration device before the start-up ignition of the gas turbine in the natural circulation type exhaust heat recovery boiler of the combined cycle plant. Is introduced to increase the temperature at the inlet of the denitration device when the boiler is started to maintain the performance of the denitration catalyst, and at the same time, avoid the steam hammer in the heat exchange section of the evaporator.
Special table 2001-505645 gazette JP 2003-294201 A JP 2000-46301 A

自然循環型ボイラでは循環される水を蒸発して蒸気とするための蒸発管において、該蒸発管内を流れる間に水を全て蒸気化することはできなく、蒸発していない水は汽水分離ドラムに送られ、蒸気と分離することが必要である。
これに対して貫流式ボイラでは蒸発管内の水は循環されないで、ボイラ出口部では十分過熱された蒸気となるように、ボイラ入口からボイラ出口に向かって流れる間に蒸気化される。
In the natural circulation boiler, the evaporation pipe for evaporating the circulated water into steam is not capable of evaporating all of the water while flowing through the evaporation pipe, and the water that has not evaporated is sent to the brackish water separation drum. It is necessary to be sent and separated from the steam.
On the other hand, in the once-through boiler, the water in the evaporation pipe is not circulated, but is vaporized while flowing from the boiler inlet toward the boiler outlet so that the steam is sufficiently superheated at the boiler outlet.

ところで、排熱回収ボイラ運転停止時には、通常熱の拡散により配管内部の水温が徐々に低下する。そのため、プラントの再起動時には、温度の急上昇による排熱回収ボイラ各部で熱疲労が生じないようにガスタービンの起動速度を抑える必要があり、排熱回収ボイラを設置したコンバインドサイクルプラントにおいて特に要求される高速での起動の妨げになる問題があった。   By the way, when the operation of the exhaust heat recovery boiler is stopped, the water temperature inside the pipe gradually decreases due to diffusion of normal heat. Therefore, when restarting the plant, it is necessary to suppress the startup speed of the gas turbine so that thermal fatigue does not occur in each part of the exhaust heat recovery boiler due to a rapid rise in temperature, which is particularly required in a combined cycle plant where an exhaust heat recovery boiler is installed. There was a problem that hindered startup at high speed.

前記自然循環型ボイラでは大径、厚肉の高圧汽水分離ドラムを用いるために熱疲労を抑制するようにガスタービンの起動速度を抑える必要があり、前記排熱回収ボイラ運転停止後のプラントの高速再起動ができない。そのため、最近では高速起動に適した貫流式ボイラが注目されている。   Since the natural circulation boiler uses a large-diameter, thick-walled high-pressure brackish water separation drum, it is necessary to suppress the startup speed of the gas turbine so as to suppress thermal fatigue, and the high speed of the plant after the operation of the exhaust heat recovery boiler is stopped. Cannot restart. For this reason, recently, once-through boilers suitable for high-speed startup have attracted attention.

そこで、本発明は貫流式排熱回収ボイラの蒸発器循環系統に加熱系統を設置することにより貫流式排熱回収ボイラのさらなる起動時間の短縮を可能とすると共に制御性に優れ、且つ信頼性の高い排熱回収ボイラを提供するものである。   Therefore, the present invention can further shorten the start-up time of the once-through exhaust heat recovery boiler by installing a heating system in the evaporator circulation system of the once-through exhaust heat recovery boiler, and has excellent controllability and reliability. A high exhaust heat recovery boiler is provided.

本発明には上記課題は次の解決手段により解決される。
請求項1記載の発明は、燃焼排ガス流路内の下流側から上流側に向けて節炭器(1)と蒸発器(2)と過熱器(4)を含む熱交換器を順次配置し、節炭器(1)から蒸発器(2)、蒸発器(2)から汽水分離器(3)及び汽水分離器(3)から過熱器(4)へ流体を順次流す流体配管(14など)をそれぞれ設け、さらに汽水分離器(3)で汽水混合流体から分離した水を蒸発器(2)に戻す循環配管(15)を設けた貫流式排熱回収ボイラにおいて、該循環配管(15)に圧力ポンプ(6)を設置し、該圧力ポンプ(6)の下流側に補助蒸気供給系統(7)を設置した貫流式排熱回収ボイラである。
In the present invention, the above problem is solved by the following means.
The invention according to claim 1 sequentially arranges a heat exchanger including a economizer (1), an evaporator (2), and a superheater (4) from the downstream side to the upstream side in the flue gas passage, Fluid pipes (14, etc.) that sequentially flow fluid from the economizer (1) to the evaporator (2), from the evaporator (2) to the brackish water separator (3), and from the brackish water separator (3) to the superheater (4) In a once-through exhaust heat recovery boiler provided with a circulation pipe (15) for returning the water separated from the brackish water mixed fluid by the brackish water separator (3) to the evaporator (2), pressure is applied to the circulation pipe (15). It is a once-through exhaust heat recovery boiler in which a pump (6) is installed and an auxiliary steam supply system (7) is installed downstream of the pressure pump (6).

請求項2記載の発明は、燃焼排ガス流路内の下流側から上流側に節炭器(1)と蒸発器(2)と過熱器(4)を含む熱交換器を順次配置し、節炭器(1)から蒸発器(2)、蒸発器(2)から汽水分離器(3)及び汽水分離器(3)から過熱器(4)へ流体を順次流す流体配管(14など)をそれぞれ設け、さらに汽水分離器(3)で汽水混合流体から分離した水を蒸発器(2)に戻す循環配管(15)を設けた貫流式排熱回収ボイラにおいて、該循環配管(15)の並列位置に汽水混合流体から分離した水を蒸発器(2)に戻す圧力ポンプ(16)を備えた補助循環配管(17)を設け、該圧力ポンプ(16)の下流側に補助蒸気供給系統(7)を設置した貫流式排熱回収ボイラである。   According to the second aspect of the present invention, a heat exchanger including a economizer (1), an evaporator (2), and a superheater (4) is sequentially arranged from the downstream side to the upstream side in the flue gas flow path. Fluid pipes (14, etc.) for sequentially flowing fluid from the evaporator (1) to the evaporator (2), from the evaporator (2) to the brackish water separator (3), and from the brackish water separator (3) to the superheater (4), respectively Furthermore, in the once-through exhaust heat recovery boiler provided with a circulation pipe (15) for returning water separated from the brackish water mixed fluid by the brackish water separator (3) to the evaporator (2), the water is separated at a parallel position of the circulation pipe (15). An auxiliary circulation pipe (17) provided with a pressure pump (16) for returning water separated from the brackish water mixed fluid to the evaporator (2) is provided, and an auxiliary steam supply system (7) is provided downstream of the pressure pump (16). This is an installed once-through exhaust heat recovery boiler.

請求項3記載の発明は、燃焼排ガス流路内の下流側から上流側に低圧節炭器(8)と節炭器(1)と蒸発器(2)と過熱器(4)を含む熱交換器を順次配置し、節炭器(1)から蒸発器(2)、蒸発器(2)から汽水分離器(3)及び汽水分離器(3)から過熱器(4)へ流体を順次流す流体配管(14など)をそれぞれ設け、さらに汽水分離器(3)で汽水混合流体から分離した水を蒸発器(2)に戻す循環配管(15)を設けた貫流式排熱回収ボイラにおいて、前記低圧節炭器(8)の出口流体配管からの流体を低圧節炭器(8)の入口流体配管に向けて流体を流す圧力ポンプ(9)を備えた低圧節炭器再循環配管(10)を接続し、前記汽水分離器(3)で分離した水を蒸発器(2)に戻す循環配管(15)から分岐して前記低圧節炭器再循環配管(10)の圧力ポンプ(9)の上流側に流体を流す分岐循環配管(18)を接続し、前記低圧節炭器再循環配管(10)の圧力ポンプ(9)の下流側から前記汽水分離器(3)で分離した水を蒸発器(2)に戻す循環配管(15)の蒸発器入口部に流体を流す蒸発器循環配管(19)を接続し、該蒸発器循環配管(19)に補助蒸気供給系統(7)を設置したことを特徴とする貫流式排熱回収ボイラである。   The invention according to claim 3 is a heat exchange system including a low pressure economizer (8), a economizer (1), an evaporator (2), and a superheater (4) from the downstream side to the upstream side in the flue gas passage. Fluid is arranged in order, and the fluid is flowed sequentially from the economizer (1) to the evaporator (2), from the evaporator (2) to the brackish water separator (3), and from the brackish water separator (3) to the superheater (4). In the once-through exhaust heat recovery boiler provided with a pipe (14) and a circulation pipe (15) for returning water separated from the brackish water mixed fluid by the brackish water separator (3) to the evaporator (2), the low pressure A low pressure economizer recirculation pipe (10) provided with a pressure pump (9) for flowing fluid from an outlet fluid pipe of the economizer (8) toward an inlet fluid pipe of the low pressure economizer (8) Connected and branched from the circulation pipe (15) for returning the water separated by the brackish water separator (3) to the evaporator (2), and the low-pressure charcoal saving A branch circulation pipe (18) for flowing a fluid is connected to the upstream side of the pressure pump (9) of the recirculation pipe (10), and from the downstream side of the pressure pump (9) of the low pressure economizer recirculation pipe (10). An evaporator circulation pipe (19) for flowing a fluid to an evaporator inlet of a circulation pipe (15) for returning water separated by the brackish water separator (3) to the evaporator (2) is connected to the evaporator circulation pipe ( 19) A once-through exhaust heat recovery boiler characterized in that an auxiliary steam supply system (7) is installed in 19).

請求項1記載の発明によれば、汽水分離器(3)で汽水混合流体から分離した水を蒸発器(2)に戻す蒸発器循環配管(15)に補助蒸気供給系統(7)を設置して蒸発器(2)の供給される流体を加温することで、排熱回収ボイラの起動時間の短縮が可能となる。   According to invention of Claim 1, an auxiliary steam supply system (7) is installed in the evaporator circulation piping (15) which returns the water isolate | separated from the brackish water mixed fluid with the brackish water separator (3) to the evaporator (2). By heating the fluid supplied to the evaporator (2), the startup time of the exhaust heat recovery boiler can be shortened.

請求項2記載の発明によれば、汽水分離器(3)で汽水混合流体から分離した水を蒸発器(2)に戻す循環配管(15)の並列位置に設けた補助循環配管(17)に補助蒸気供給系統(7)を設置して蒸発器(2)の供給される流体を加温することで、排熱回収ボイラの起動時間の短縮が可能となる。   According to the invention described in claim 2, in the auxiliary circulation pipe (17) provided at the parallel position of the circulation pipe (15) for returning the water separated from the brackish water mixed fluid by the brackish water separator (3) to the evaporator (2). By installing the auxiliary steam supply system (7) and heating the fluid supplied to the evaporator (2), the startup time of the exhaust heat recovery boiler can be shortened.

請求項3記載の発明によれば、汽水分離器(3)で汽水混合流体から分離した水を蒸発器(2)に戻す循環配管(15)から分岐した分岐循環配管(18)内の流体を圧力ポンプ(9)の上流側の低圧節炭器再循環配管(10)に流し、さらに圧力ポンプ(9)の下流側から蒸発器循環配管(19)を経由して蒸発器(2)の入口部に接続した蒸発器循環配管(15)に流し、蒸発器循環配管(19)に補助蒸気供給系統(7)を設置して蒸発器(2)の供給される流体を加温することで、排熱回収ボイラの起動時間の短縮が可能となる。   According to invention of Claim 3, the fluid in the branch circulation piping (18) branched from the circulation piping (15) which returns the water isolate | separated from the brackish water mixed fluid with the brackish water separator (3) to an evaporator (2) is used. It flows into the low pressure economizer recirculation pipe (10) on the upstream side of the pressure pump (9), and further from the downstream side of the pressure pump (9) via the evaporator circulation pipe (19) to the inlet of the evaporator (2). By flowing to the evaporator circulation pipe (15) connected to the unit, and installing the auxiliary steam supply system (7) in the evaporator circulation pipe (19) to heat the fluid supplied to the evaporator (2), The start-up time of the exhaust heat recovery boiler can be shortened.

本発明を図面と共に説明する。なお、本発明の実施例を説明するに当たり、次のことを前提としている。
すなわち、貫流式ボイラの蒸発器は自然循環式ボイラの蒸発器とは、その構造が異なり、貫流式ボイラでは水を蒸発器に戻す循環配管が必要であるが、自然循環式ボイラでは蒸発器には水を戻さない。また貫流式ボイラでは汽水分離器は起動時にのみ汽水分離するために設置されるが、自然循環式ボイラではボイラの全運転範囲で汽水分離のために汽水分離器が用いられる。このように貫流式ボイラと自然循環式ボイラとを同列視することはできない。
The present invention will be described with reference to the drawings. In the description of the embodiments of the present invention, the following is assumed.
That is, the evaporator of a once-through boiler differs from the evaporator of a natural-circulation boiler, and the once-through boiler requires a circulation pipe that returns water to the evaporator. Does not return water. In the once-through boiler, the brackish water separator is installed to separate the brackish water only at start-up, but in the natural circulation boiler, the brackish water separator is used for brackish water separation in the entire operating range of the boiler. Thus, the once-through boiler and the natural circulation boiler cannot be viewed in the same row.

図1に本発明のコンバインドサイクル用貫流式排熱回収ボイラの実施例の構成について詳述する。この場合も排熱回収ボイラ内には高温部から低温部に向けて順に過熱器4、蒸発器2及び節炭器1、場合によっては低圧節炭器8及び/又は再熱器(図示せず)が配置されている。また、低圧節炭器8の出口配管から入口配管に向けて循環配管10と再循環ポンプ9を低温腐蝕防止のために設け、再循環ポンプ9の出入口の循環配管10には止め弁13を配置している。 また、低圧節炭器8から出た流体はポンプ11により節炭器1に送られ、該節炭器1で加熱された給水は蒸発器2へ送られて蒸気となった後、汽水分離器3で汽水分離され、分離された蒸気は過熱器4で過熱されて蒸気タービンへ送られる。その際、汽水分離器3では蒸発器2で蒸気に状態変化した水から飽和水分を取り除くことになるが、ボイラ起動時には比較的多量の飽和水が発生することから、分離された水を汽水分離器貯水タンク5に回収した後、蒸発器2の入口に再循環させ、熱の回収を図っていることは図8で説明したとおりである。   FIG. 1 illustrates in detail the configuration of an embodiment of a once-through exhaust heat recovery boiler for a combined cycle according to the present invention. Also in this case, in the exhaust heat recovery boiler, the superheater 4, the evaporator 2 and the economizer 1, and in some cases the low-pressure economizer 8 and / or the reheater (not shown) from the high temperature portion to the low temperature portion. ) Is arranged. In addition, a circulation pipe 10 and a recirculation pump 9 are provided from the outlet pipe of the low pressure economizer 8 to the inlet pipe to prevent low-temperature corrosion, and a stop valve 13 is disposed in the circulation pipe 10 at the inlet / outlet of the recirculation pump 9. is doing. In addition, the fluid discharged from the low-pressure economizer 8 is sent to the economizer 1 by the pump 11, and the feed water heated by the economizer 1 is sent to the evaporator 2 to become steam, and then the brackish water separator The steam is separated by steam at 3, and the separated steam is superheated by the superheater 4 and sent to the steam turbine. At that time, in the brackish water separator 3, saturated water is removed from the water whose state has been changed to steam in the evaporator 2, but since a relatively large amount of saturated water is generated when the boiler is started, the separated water is braced. As described with reference to FIG. 8, the heat is collected in the water storage tank 5 and then recirculated to the inlet of the evaporator 2 to recover the heat.

本実施例では、汽水分離器貯水タンク5から蒸発器2入口に戻る循環配管15の中間に蒸気注入ノズル12を備えた補助蒸気注入系統7を設置すると共に、汽水分離器貯水タンク5と補助蒸気系統7の中間に循環ポンプ6を設置している。   In the present embodiment, an auxiliary steam injection system 7 having a steam injection nozzle 12 is installed in the middle of a circulation pipe 15 returning from the brackish water separator water tank 5 to the evaporator 2 inlet, and the brackish water separator water tank 5 and the auxiliary steam. A circulation pump 6 is installed in the middle of the system 7.

上記排熱回収ボイラは起動時には蒸発器2は水が張られた状態であり、蒸発器2の内部の流体は水である。ボイラの定常運転時には、蒸発器2では水の蒸発が起こり、水と蒸気の二相流が生じる。該二相流が汽水分離器3で汽水分離され、分離された蒸気は過熱器4で過熱されて蒸気タービン(図示せず)へ送られる。
また排熱回収ボイラの運転停止の初期には蒸発器2は、残熱により水の蒸発が起こっているが、徐々に冷却されて水の蒸発が起こらなくなり、水と蒸気の二相流が水相だけになる。
When the exhaust heat recovery boiler is activated, the evaporator 2 is in a state of being filled with water, and the fluid inside the evaporator 2 is water. During the steady operation of the boiler, water is evaporated in the evaporator 2 and a two-phase flow of water and steam is generated. The two-phase flow is steam-separated by the steam separator 3, and the separated steam is superheated by the superheater 4 and sent to a steam turbine (not shown).
In the initial stage of shutdown of the exhaust heat recovery boiler, the evaporator 2 is evaporated due to residual heat, but is gradually cooled to stop the evaporation of water, and the two-phase flow of water and steam is water. Only phase.

さらにボイラの運転待機中には蒸発器2入口に戻る循環配管15にある蒸気注入ノズル12を経由して補助蒸気系統7から供給される蒸気により蒸発器2内部の水が加温され、循環ポンプ6を用いて循環させることで蒸発器2及びその連絡管14内の水の温度低下が防止され、一定温度に保たれる。
こうして、排熱回収ボイラを再起動する際に蒸発器2及び流体が流れる系統で温度変化が緩和され、短時間で起動可能となる。また、前記再起動時に蒸発器2入口に戻る循環配管15に設けた蒸気注入ノズル12に補助蒸気系統7から供給される蒸気が該循環配管15内を流れる水と混合され、ウォーターハンマーの発生を防止する。
Further, during operation of the boiler, the water in the evaporator 2 is heated by the steam supplied from the auxiliary steam system 7 via the steam injection nozzle 12 in the circulation pipe 15 returning to the inlet of the evaporator 2, and the circulation pump 6 is used to prevent the temperature of the water in the evaporator 2 and its connecting pipe 14 from being lowered and maintained at a constant temperature.
In this way, when the exhaust heat recovery boiler is restarted, the temperature change is mitigated by the system through which the evaporator 2 and the fluid flow, and the startup can be performed in a short time. Further, the steam supplied from the auxiliary steam system 7 is mixed with the water flowing through the circulation pipe 15 to the steam injection nozzle 12 provided in the circulation pipe 15 that returns to the inlet of the evaporator 2 at the time of restarting, thereby generating a water hammer. To prevent.

図5に排熱回収ボイラ運転停止及び再起動時の蒸発器2内での水の温度変化を示す。図5に示すように、従来ボイラ停止時に蒸発器2内の水が100℃まで低下するのに対し、補助蒸気を供給することで一定温度(200℃)に保つことができるため、温度変化が緩和され、短時間で起動可能になる。   FIG. 5 shows the temperature change of the water in the evaporator 2 when the exhaust heat recovery boiler is stopped and restarted. As shown in FIG. 5, the water in the evaporator 2 is lowered to 100 ° C. when the boiler is stopped, but it can be maintained at a constant temperature (200 ° C.) by supplying auxiliary steam. It is relaxed and can be started in a short time.

また、図6に従来の自然循環式排熱回収ボイラと本実施例で用いた貫流式排熱回収ボイラの起動時間の比較を示す。従来の自然循環式排熱回収ボイラの起動時間はホット起動時に約60分、貫流式排熱回収ボイラの起動時間は約40分に対し、本発明を用いた場合は約30分で起動可能となる。このように本実施例では貫流式排熱回収ボイラの起動時間が従来の貫流式排熱回収ボイラに比較しても短くなる。   FIG. 6 shows a comparison of the startup times of the conventional natural circulation type exhaust heat recovery boiler and the once-through type exhaust heat recovery boiler used in this embodiment. The start-up time of the conventional natural circulation type exhaust heat recovery boiler is about 60 minutes at the time of hot start, and the start-up time of the once-through type exhaust heat recovery boiler is about 40 minutes. Become. As described above, in this embodiment, the start-up time of the once-through exhaust heat recovery boiler is shorter than that of the conventional once-through exhaust heat recovery boiler.

図2に本発明の他の実施例について詳述する。本発明では、図1に示す実施例1の構成の汽水分離器貯水タンク5から蒸発器2入口に戻る循環配管15に循環ポンプ6を設ける代わりに、循環配管15に並行に循環ポンプ16を備えた補助循環配管17を設け、該補助循環配管17に蒸気注入ノズル12を介して補助蒸気系統7から供給される蒸気を供給する構成を採用する。   FIG. 2 details another embodiment of the present invention. In the present invention, a circulation pump 16 is provided in parallel with the circulation pipe 15 instead of providing the circulation pump 6 in the circulation pipe 15 returning to the evaporator 2 inlet from the brackish water separator storage tank 5 having the configuration of the first embodiment shown in FIG. A configuration in which the auxiliary circulation pipe 17 is provided and steam supplied from the auxiliary steam system 7 through the steam injection nozzle 12 to the auxiliary circulation pipe 17 is adopted.

図2に示す構成で排熱回収ボイラの運転停止時には循環配管15に設けた電動弁10を閉じ、補助蒸気系統7から補助循環配管17に供給される蒸気により蒸発器2に循環させる給水を加熱し、蒸発器2及び連絡管14の温度低下を防止する。補助蒸気系統7には図4に示す蒸気注入ノズル12を設置しているので、補助循環配管17内では蒸気と水のミキシングがスムーズに行われ、ウォーターハンマーの発生が防止できる。
本実施例により蒸発器2内の給水が高温で保護されることになり、排熱回収ボイラを再起動する際に蒸発器系統で温度変化が緩和され短時間で起動可能となる。
In the configuration shown in FIG. 2, when the operation of the exhaust heat recovery boiler is stopped, the motor-operated valve 10 provided in the circulation pipe 15 is closed, and the feed water circulated to the evaporator 2 by the steam supplied from the auxiliary steam system 7 to the auxiliary circulation pipe 17 is heated. Thus, the temperature drop of the evaporator 2 and the communication pipe 14 is prevented. Since the steam injection nozzle 12 shown in FIG. 4 is installed in the auxiliary steam system 7, steam and water are smoothly mixed in the auxiliary circulation pipe 17, and generation of a water hammer can be prevented.
According to this embodiment, the feed water in the evaporator 2 is protected at a high temperature, and when the exhaust heat recovery boiler is restarted, the temperature change is mitigated in the evaporator system, and the start-up can be started in a short time.

なお、排熱回収ボイラの起動初期に流体のヘッド差のみの循環力を利用するため、図1に示す循環ポンプ6を循環配管15に設置していない。そのため図1に示す循環配管15に補助蒸気系統7を追加した構成に比較してボイラ運転停止時には循環配管15内の流体の温度低下が早いという問題がある。
表1には実施例1と実施例2の起動時と通常運転時と運転停止時と待機時における使用される流体流路を分かりやすくまとめている。

Figure 2008075966
Note that the circulation pump 6 shown in FIG. 1 is not installed in the circulation pipe 15 in order to use the circulation force of only the fluid head difference at the start of the exhaust heat recovery boiler. Therefore, there is a problem that the temperature of the fluid in the circulation pipe 15 is rapidly reduced when the boiler operation is stopped, as compared with the configuration in which the auxiliary steam system 7 is added to the circulation pipe 15 shown in FIG.
Table 1 summarizes the fluid flow paths used during start-up, normal operation, operation stop, and standby in the first and second embodiments in an easy-to-understand manner.
Figure 2008075966

図3に示す実施例について詳述する。本実施例では図1に示す実施例1の構成の汽水分離器貯水タンク5から蒸発器2入口に戻る循環配管15から分岐して低圧節炭器8出口に戻る分岐循環配管18を設置する。そして蒸発器2入口に戻る循環配管15には図1に示す循環ポンプ6を設けないで止め弁20を設ける。また、低圧節炭器8の出入口は循環配管10で接続され、該循環配管10には低圧節炭器再循環ポンプ9を設け、さらに低圧節炭器再循環ポンプ9の出入口には止め弁13,13を設ける。また低圧節炭器8入口側の止め弁13へ流体を供給するの循環配管10から分岐させて蒸発器2入口に戻る循環配管15に接続する循環配管19を設ける。この循環配管19には蒸気注入ノズル12を設け、該蒸気注入ノズル12には補助蒸気系統7から蒸気を供給できる構成を備えている。   The embodiment shown in FIG. 3 will be described in detail. In this embodiment, a branch circulation pipe 18 branched from the circulation pipe 15 returning to the evaporator 2 inlet from the brackish water separator water storage tank 5 having the configuration of Embodiment 1 shown in FIG. 1 and returning to the low pressure economizer 8 outlet is installed. The circulation pipe 15 returning to the evaporator 2 inlet is provided with a stop valve 20 without providing the circulation pump 6 shown in FIG. In addition, the low pressure economizer 8 has an inlet / outlet connected by a circulation pipe 10, a low pressure economizer recirculation pump 9 is provided in the circulation pipe 10, and a stop valve 13 is provided at the inlet / outlet of the low pressure economizer recirculation pump 9. , 13 are provided. In addition, a circulation pipe 19 is provided that is connected to a circulation pipe 15 that branches from the circulation pipe 10 that supplies fluid to the stop valve 13 on the inlet side of the low-pressure economizer 8 and returns to the evaporator 2 inlet. The circulation pipe 19 is provided with a steam injection nozzle 12, and the steam injection nozzle 12 has a configuration capable of supplying steam from the auxiliary steam system 7.

上記構成において、排熱回収ボイラの運転停止時は低圧節炭器8の出入口を接続する循環配管10にある止め弁13を閉じる。前記止め弁13を閉じた状態で低圧節炭器再循環ポンプ9の吐出圧を利用して汽水分離器貯水タンク5出口の流体(水)を循環配管15から分岐循環配管18を経由して低圧節炭器再循環ポンプ9入口に送り、再循環配管10から循環配管19に設けられた蒸気注入ノズル12において、前記流体(水)は補助蒸気系統7からの蒸気と混合されて蒸発器2に送られる。   In the above configuration, when the operation of the exhaust heat recovery boiler is stopped, the stop valve 13 in the circulation pipe 10 connecting the inlet / outlet of the low pressure economizer 8 is closed. With the stop valve 13 closed, the discharge pressure of the low pressure economizer recirculation pump 9 is used to reduce the fluid (water) at the outlet of the brackish water separator storage tank 5 from the circulation pipe 15 via the branch circulation pipe 18. The fluid (water) is mixed with the steam from the auxiliary steam system 7 and sent to the evaporator 2 at the steam injection nozzle 12 provided from the recirculation pipe 10 to the circulation pipe 19. Sent.

こうして補助蒸気系統7から供給される蒸気により循環給水は加熱され、蒸発器2及びその連絡管14の温度低下を防止することができる。
また、補助蒸気系統7には図4に示す蒸気注入ノズル12を設置して蒸気と水のミキシングを行い、ウォーターハンマーの発生を防止する。
In this way, the circulating feed water is heated by the steam supplied from the auxiliary steam system 7, and the temperature of the evaporator 2 and its connecting pipe 14 can be prevented from lowering.
In addition, a steam injection nozzle 12 shown in FIG. 4 is installed in the auxiliary steam system 7 to perform mixing of steam and water to prevent generation of a water hammer.

本実施例により蒸発器2内の給水が高温で保護されることになり、排熱回収ボイラを再起動する際に蒸発器系統で温度変化が緩和され、短時間で起動可能となる。
表2には実施例3の起動時と通常運転時と運転停止時と待機時における使用される流体流路を分かりやすくまとめている。

Figure 2008075966
さらに表3に実施例1、2、3を採用した場合の各々の利点を比較して示す。
Figure 2008075966
According to this embodiment, the feed water in the evaporator 2 is protected at a high temperature, and when the exhaust heat recovery boiler is restarted, the temperature change is mitigated in the evaporator system, and the start-up can be started in a short time.
Table 2 summarizes the fluid flow paths used in Example 3 during start-up, normal operation, operation stop, and standby.
Figure 2008075966
Further, Table 3 shows a comparison of the respective advantages when Examples 1, 2, and 3 are employed.
Figure 2008075966

本発明により、排熱回収ボイラコンバインドプラントの起動時間短縮が期待でき、また電力需要に合わせた起動特性の高い発電設備としてコンバインドサイクルプラントの優位性をさらに高めることが可能である。   According to the present invention, the start-up time of the exhaust heat recovery boiler combined plant can be expected to be shortened, and the superiority of the combined cycle plant can be further enhanced as a power generation facility with high start-up characteristics according to power demand.

本発明の実施例1の概略系統図である。It is a schematic systematic diagram of Example 1 of the present invention. 本発明の実施例2の概略系統図である。It is a schematic systematic diagram of Example 2 of the present invention. 本発明の実施例3の概略系統図である。It is a schematic systematic diagram of Example 3 of the present invention. 本発明の実施例で使用する流体配管への蒸気注入ノズルの概略図である。It is the schematic of the steam injection nozzle to the fluid piping used in the Example of this invention. 本発明の実施例の蒸発器内での水の温度変化を示す図である。It is a figure which shows the temperature change of the water in the evaporator of the Example of this invention. 本発明の実施例の貫流式排熱回収ボイラと従来の自然循環式排熱回収ボイラの起動時間の比較を示す図である。It is a figure which shows the comparison of the starting time of the once-through-type waste heat recovery boiler of the Example of this invention, and the conventional natural circulation type waste heat recovery boiler. 従来の自然循環式排熱回収ボイラの概略系統図である。It is a schematic system diagram of the conventional natural circulation type exhaust heat recovery boiler. 従来の貫流式排熱回収ボイラの概略系統図である。It is a schematic system diagram of the conventional once-through exhaust heat recovery boiler.

符号の説明Explanation of symbols

1 節炭器 2 蒸発器
3 汽水分離器 4 過熱器
5 汽水分離器貯水タンク 6,16 循環ポンプ
7 補助蒸気系統 8 低圧節炭器
9 低圧節炭器再循環ポンプ 10 電動弁
11 給水ポンプ 12 蒸気注入ノズル
13,20 止め弁 14 連絡管
15 蒸発器循環配管 17 補助循環配管
18 分岐循環配管 19 循環配管
24 汽水分離ドラム
DESCRIPTION OF SYMBOLS 1 Economizer 2 Evaporator 3 Steam separator 4 Superheater 5 Steam separator water storage tank 6,16 Circulation pump 7 Auxiliary steam system 8 Low pressure economizer 9 Low pressure economizer recirculation pump 10 Motor operated valve 11 Feed water pump 12 Steam Injection nozzles 13 and 20 Stop valve 14 Connecting pipe 15 Evaporator circulation pipe 17 Auxiliary circulation pipe 18 Branch circulation pipe 19 Circulation pipe 24 Brackish water separation drum

Claims (3)

燃焼排ガス流路内の下流側から上流側に向けて節炭器と蒸発器と過熱器を含む熱交換器を順次配置し、節炭器から蒸発器、蒸発器から汽水分離器及び汽水分離器から過熱器へ流体を順次流す流体配管をそれぞれ設け、さらに汽水分離器で汽水混合流体から分離した水を蒸発器に戻す循環配管を設けた貫流式排熱回収ボイラにおいて、
該循環配管に圧力ポンプを設置し、該圧力ポンプの下流側に補助蒸気供給系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A heat exchanger including a economizer, an evaporator, and a superheater is sequentially arranged from the downstream side to the upstream side in the combustion exhaust gas flow path, and the economizer is connected to the evaporator, and the evaporator to the brackish water separator and the brackish water separator. In the once-through type exhaust heat recovery boiler provided with fluid piping that sequentially flows the fluid from the superheater to the superheater, and further provided with a circulation piping that returns the water separated from the brackish water mixed fluid by the brackish water separator to the evaporator,
A once-through exhaust heat recovery boiler, characterized in that a pressure pump is installed in the circulation pipe, and an auxiliary steam supply system is installed downstream of the pressure pump.
燃焼排ガス流路内の下流側から上流側に節炭器と蒸発器と過熱器を含む熱交換器を順次配置し、節炭器から蒸発器、蒸発器から汽水分離器及び汽水分離器から過熱器へ流体を順次流す流体配管をそれぞれ設け、さらに汽水分離器で汽水混合流体から分離した水を蒸発器に戻す循環配管を設けた貫流式排熱回収ボイラにおいて、
該循環配管の並列位置に汽水混合流体から分離した水を蒸発器に戻す圧力ポンプを備えた補助循環配管を設け、該圧力ポンプの下流側に補助蒸気供給系統を設置したことを特徴とする貫流式排熱回収ボイラ。
Heat exchanger including economizer, evaporator and superheater are arranged sequentially from the downstream side to the upstream side in the flue gas flow path, and the superheater is fed from the economizer, from the evaporator to the brackish water separator, and from the brackish water separator. In the once-through exhaust heat recovery boiler provided with a fluid piping that sequentially flows the fluid to the evaporator, and further provided with a circulation piping that returns the water separated from the brackish water mixed fluid in the steam separator to the evaporator,
A once-through flow characterized in that an auxiliary circulation pipe having a pressure pump for returning water separated from the brackish water mixed fluid to the evaporator is provided at a parallel position of the circulation pipe, and an auxiliary steam supply system is installed downstream of the pressure pump. Type exhaust heat recovery boiler.
燃焼排ガス流路内の下流側から上流側に低圧節炭器と節炭器と蒸発器と過熱器を含む熱交換器を順次配置し、節炭器から蒸発器、蒸発器から汽水分離器及び汽水分離器から過熱器へ流体を順次流す流体配管をそれぞれ設け、さらに汽水分離器で汽水混合流体から分離した水を蒸発器に戻す循環配管を設けた貫流式排熱回収ボイラにおいて、
前記低圧節炭器の出口流体配管からの流体を低圧節炭器の入口流体配管に向けて流体を流す圧力ポンプを備えた低圧節炭器再循環配管を接続し、前記汽水分離器で分離した水を蒸発器に戻す循環配管から分岐して前記低圧節炭器再循環配管の圧力ポンプの上流側に流体を流す分岐循環配管を接続し、前記低圧節炭器再循環配管の圧力ポンプの下流側から前記汽水分離器で分離した水を蒸発器に戻す循環配管の蒸発器入口部に流体を流す蒸発器循環配管を接続し、該蒸発器循環配管に補助蒸気供給系統を設置したことを特徴とする貫流式排熱回収ボイラ。
A heat exchanger including a low pressure economizer, economizer, evaporator and superheater is sequentially arranged from the downstream side to the upstream side in the combustion exhaust gas flow path, from the economizer to the evaporator, from the evaporator to the brackish water separator, and In the once-through exhaust heat recovery boiler provided with fluid pipings that sequentially flow the fluid from the brackish water separator to the superheater, and further provided with circulation piping that returns the water separated from the brackish water mixed fluid by the brackish water separator to the evaporator,
A low pressure economizer recirculation pipe having a pressure pump for flowing fluid from an outlet fluid pipe of the low pressure economizer toward an inlet fluid pipe of the low pressure economizer is connected and separated by the brackish water separator A branch circulation pipe that branches from the circulation pipe for returning water to the evaporator and flows the fluid to the upstream side of the pressure pump of the low pressure economizer recirculation pipe is connected downstream of the pressure pump of the low pressure economizer recirculation pipe. An evaporator circulation pipe for flowing fluid is connected to an evaporator inlet of a circulation pipe for returning water separated by the brackish water separator from the side to the evaporator, and an auxiliary steam supply system is installed in the evaporator circulation pipe A once-through exhaust heat recovery boiler.
JP2006255752A 2006-09-21 2006-09-21 Once-through exhaust heat recovery boiler Pending JP2008075966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255752A JP2008075966A (en) 2006-09-21 2006-09-21 Once-through exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255752A JP2008075966A (en) 2006-09-21 2006-09-21 Once-through exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2008075966A true JP2008075966A (en) 2008-04-03

Family

ID=39348231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255752A Pending JP2008075966A (en) 2006-09-21 2006-09-21 Once-through exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2008075966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003090A (en) * 2018-06-25 2020-01-09 三菱日立パワーシステムズ株式会社 Once-through type waste heat recovery boiler and control system therefor
CN112781025A (en) * 2020-12-29 2021-05-11 哈尔滨锅炉厂有限责任公司 Direct-flow steam-water system for waste heat boiler and use method thereof
CN114135853A (en) * 2021-11-03 2022-03-04 中山嘉明电力有限公司 Method and system for increasing outlet smoke temperature of low-pressure economizer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126801A (en) * 1978-02-17 1979-10-02 Kraftwerk Union Ag Circulating type boiler having circulating apparatus
JPS5818003A (en) * 1981-07-24 1983-02-02 バブコツク日立株式会社 Method of keeping can
JPS60165767U (en) * 1984-04-10 1985-11-02 松下電工株式会社 Solar heat water heater
JPH109502A (en) * 1996-06-24 1998-01-16 Babcock Hitachi Kk Water tube boiler
JP2001248905A (en) * 2000-03-08 2001-09-14 Osaka Gas Co Ltd Home cogeneration system
JP2002507272A (en) * 1997-06-30 2002-03-05 シーメンス アクチエンゲゼルシヤフト Waste heat boiler
JP2004198006A (en) * 2002-12-17 2004-07-15 Kansai Electric Power Co Inc:The Iron ion crystallization restricting system and superheated steam plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126801A (en) * 1978-02-17 1979-10-02 Kraftwerk Union Ag Circulating type boiler having circulating apparatus
JPS5818003A (en) * 1981-07-24 1983-02-02 バブコツク日立株式会社 Method of keeping can
JPS60165767U (en) * 1984-04-10 1985-11-02 松下電工株式会社 Solar heat water heater
JPH109502A (en) * 1996-06-24 1998-01-16 Babcock Hitachi Kk Water tube boiler
JP2002507272A (en) * 1997-06-30 2002-03-05 シーメンス アクチエンゲゼルシヤフト Waste heat boiler
JP2001248905A (en) * 2000-03-08 2001-09-14 Osaka Gas Co Ltd Home cogeneration system
JP2004198006A (en) * 2002-12-17 2004-07-15 Kansai Electric Power Co Inc:The Iron ion crystallization restricting system and superheated steam plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003090A (en) * 2018-06-25 2020-01-09 三菱日立パワーシステムズ株式会社 Once-through type waste heat recovery boiler and control system therefor
JP7111525B2 (en) 2018-06-25 2022-08-02 三菱重工業株式会社 Once-through heat recovery boiler and control system for once-through heat recovery boiler
CN112781025A (en) * 2020-12-29 2021-05-11 哈尔滨锅炉厂有限责任公司 Direct-flow steam-water system for waste heat boiler and use method thereof
CN114135853A (en) * 2021-11-03 2022-03-04 中山嘉明电力有限公司 Method and system for increasing outlet smoke temperature of low-pressure economizer

Similar Documents

Publication Publication Date Title
JP5674922B2 (en) Energy recovery and steam supply for increased power output in combined cycle power systems
US8186142B2 (en) Systems and method for controlling stack temperature
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
JPH094417A (en) Composite cycle-system
JP2007163126A (en) Composite cycle power generation system improved in efficiency
JP2005534883A (en) Waste heat steam generator
JP2010038163A (en) System and assemblies for hot water extraction to pre-heat fuel in combined cycle power plant
KR101584418B1 (en) Boiler plant
JP2010249505A (en) Method and system for operating steam generation facility
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP2008075966A (en) Once-through exhaust heat recovery boiler
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP5463313B2 (en) Thermal power plant
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
KR101933883B1 (en) Gas turbine generating apparatus and startup operating method of the same
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
JP5901194B2 (en) Gas turbine cooling system and gas turbine cooling method
JP2012159238A (en) Steam system
JP2007183068A (en) Once-through exhaust heat recovery boiler
JP2006052738A (en) Gas turbine plant
JP2011208875A (en) Hydraulic test method of high-pressure water supply system in power generation facility
JP5072935B2 (en) Thermal power generation facility and operation method of thermal power generation facility
JP2001033004A (en) Method of draining for waste heat recovery boiler
KR100567914B1 (en) Heat Recovery Steam Generator for Turbine Application

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111018

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403