JP2001033004A - Method of draining for waste heat recovery boiler - Google Patents

Method of draining for waste heat recovery boiler

Info

Publication number
JP2001033004A
JP2001033004A JP11202998A JP20299899A JP2001033004A JP 2001033004 A JP2001033004 A JP 2001033004A JP 11202998 A JP11202998 A JP 11202998A JP 20299899 A JP20299899 A JP 20299899A JP 2001033004 A JP2001033004 A JP 2001033004A
Authority
JP
Japan
Prior art keywords
boiler
steam
water
heat recovery
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11202998A
Other languages
Japanese (ja)
Inventor
Keiichi Nagamatsu
圭一 永末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11202998A priority Critical patent/JP2001033004A/en
Publication of JP2001033004A publication Critical patent/JP2001033004A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of draining water held in a waste-heat recovery boiler therefrom safely and in a short time without stopping a gas-turbine and the like. SOLUTION: In a waste heat recovery boiler, which comprises an economizer 2 having purge gas feed-in means and drain valves 16, 17, and 18, and a steam generator 10 connected to a condenser through a turbine by-pass valve, and generates steam for operating a steam turbine by exhaust gas, the inlet and outlet sides of the economizer 2 are closed in a state that the exhaust gas is fed thereto and purge gas is fed to the economizer 2 from the purge gas feed-in means to drain boiler-retained water in the economizer through the drain valves 16, 17, and 18, and in addition the inlet and outlet sides of the steam generator 10 are closed and the boiler-retained water is evaporated to be discharged into the condenser through a turbine by-pass valve 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンやデ
ィーゼルエンジンなどと組み合わせて使用される排熱回
収ボイラの内部保有水の排水方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for draining water retained in an exhaust heat recovery boiler used in combination with a gas turbine or a diesel engine.

【0002】[0002]

【従来の技術】ガスタービンやディーゼルエンジンなど
の原動機からの高温の排気ガスの熱回収を目的として、
排熱回収ボイラが組み合わされて用いられる場合があ
り、発電用途の例としてはLNG等のガス燃料焚きのガ
スタービンに排熱回収ボイラ及び蒸気タービン設備を組
み合わせた排熱回収コンバインド・サイクル・プラント
が近年、多く計画、設置されている。
2. Description of the Related Art For the purpose of heat recovery of high-temperature exhaust gas from a prime mover such as a gas turbine or a diesel engine,
An exhaust heat recovery boiler is sometimes used in combination. As an example of a power generation application, an exhaust heat recovery combined cycle plant that combines an exhaust heat recovery boiler and steam turbine equipment with a gas turbine burning gas fuel such as LNG is used. In recent years, many are planned and installed.

【0003】このような排熱回収コンバインド・サイク
ル・プラントの場合、ガスタービンなどからの高温の排
ガスは、排熱回収ボイラに導かれる。排ガスの持つ熱エ
ネルギーは、同排熱回収ボイラで回収され、蒸気タービ
ンプラントからの給水系統から供給される給水を加熱、
蒸発させて、蒸気の発生のために使用される。熱回収の
結果、排熱回収ボイラを通過した排ガスは燃料成分にも
よるが、LNGなどのクリーンな燃料では約100℃程
度まで冷却された後、大気に排出される。また、排熱回
収ボイラで発生した蒸気は蒸気タービンへ送られ、発電
や暖房などの熱供給用途等に用いられる。
In such a waste heat recovery combined cycle plant, high-temperature exhaust gas from a gas turbine or the like is guided to an exhaust heat recovery boiler. The thermal energy of the exhaust gas is recovered by the waste heat recovery boiler and heats the water supplied from the water supply system from the steam turbine plant,
Evaporated and used for steam generation. As a result of the heat recovery, the exhaust gas that has passed through the exhaust heat recovery boiler is discharged to the atmosphere after being cooled to about 100 ° C. with a clean fuel such as LNG, depending on the fuel component. The steam generated by the exhaust heat recovery boiler is sent to a steam turbine and used for heat supply such as power generation and heating.

【0004】排熱回収ボイラにおいては、内部の水(以
後、ボイラ保有水と言う)を排水する場合には、大気圧
のタンクなどへ排出する際にフラッシュして蒸発しない
ように、100℃未満に冷えるまで待ってから、排水を
行うのが一般的である。この場合、排熱回収ボイラへの
入熱となる高温の排ガスを発生するガスタービンなどを
停止した後にボイラを冷却し、ボイラ水温度が約100
℃未満になってから排水を行うことになる。
[0004] In the waste heat recovery boiler, when the internal water (hereinafter referred to as boiler holding water) is drained, the water is kept at a temperature lower than 100 ° C so as not to flash and evaporate when discharged into an atmospheric tank or the like. It is common to wait until it cools down before draining. In this case, the boiler is cooled after stopping a gas turbine or the like that generates high-temperature exhaust gas that becomes heat input to the exhaust heat recovery boiler, and the boiler water temperature is reduced to about 100%.
Drainage will be performed after the temperature falls below ℃.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような排熱回収コンバインド・サイクル・プラントにお
いて、場合によっては排ガス供給側のガスタービンなど
を運転したまま、排熱回収ボイラ及び蒸気タービン設備
を停止し、ガスタービンなどの原動機のみでの運転継続
を行いたいというニーズが生ずるようになった。
However, in the exhaust heat recovery combined cycle plant as described above, the exhaust heat recovery boiler and the steam turbine equipment may be stopped while the gas turbine on the exhaust gas supply side is operated in some cases. However, there has been a need to continue operation with only a prime mover such as a gas turbine.

【0006】すなわち、従来の技術では、排熱回収ボイ
ラから排水する場合には、ガスタービンなどを停止して
から、ボイラが冷却するのを待った上で、ボイラ保有水
を排水していたが、これに対してガスタービンを停止す
ることなく、ボイラ保有水を安全に、かつ短時間に排水
する方法が求められるようになった。
That is, in the prior art, when draining water from an exhaust heat recovery boiler, the gas turbine or the like is stopped, and after the boiler cools, the boiler water is drained. On the other hand, there has been a demand for a method of safely and quickly draining water held in a boiler without stopping a gas turbine.

【0007】本発明は、かかるニーズに対応し、タービ
ンなどを停止させることなく、安全且つ短時間に排熱回
収ボイラのボイラ保有水を排水して、ボイラから蒸気を
発生しないようにして、蒸気タービン設備も停止させ、
その後、排熱回収ボイラに水の入っていない状態で、ガ
スタービンなどからの排ガスを通し、そのまま排ガスを
大気中に放出するような運転を行える排熱回収ボイラの
排水方法を提供することを課題とするものである。
SUMMARY OF THE INVENTION The present invention meets the above-mentioned needs and safely and quickly drains the boiler-holding water of an exhaust heat recovery boiler without stopping a turbine or the like so as not to generate steam from the boiler. Also shut down the turbine equipment,
Thereafter, it is an object of the present invention to provide a method of draining an exhaust heat recovery boiler that can perform an operation of passing exhaust gas from a gas turbine or the like and releasing the exhaust gas to the atmosphere as it is without water in the exhaust heat recovery boiler. It is assumed that.

【0008】[0008]

【課題を解決するための手段】(1)本発明は上記の課
題を解決するためになされたものであって、請求項1の
発明は、パージガス送入手段とドレン弁を有する節炭器
と、タービンバイパス弁を介して復水器に接続された蒸
気発生装置とを備え、排ガスにより蒸気タービンの作動
蒸気を発生する排熱回収ボイラにおいて、同排ガスを通
じた状態で、節炭器の入口側と出口側を閉じ上記パージ
ガス送入手段からパージガスを送入して節炭器内をその
飽和圧力以上に加圧しながら節炭器内のボイラ保有水を
上記ドレン弁から排水し、且つ上記蒸気発生装置の入口
側と出口側を閉じ同装置内のボイラ保有水を蒸発させ上
記タービンバイパス弁を介して復水器に排出することを
特徴とする排熱回収ボイラの排水方法を提供するもので
ある。
Means for Solving the Problems (1) The present invention has been made to solve the above-mentioned problems, and the invention of claim 1 provides a conserving device having a purge gas feeding means and a drain valve. A steam generator connected to the condenser through a turbine bypass valve, and the exhaust heat recovery boiler that generates the working steam of the steam turbine by the exhaust gas. And the outlet side is closed, and purge gas is supplied from the purge gas supply means to pressurize the economizer to a pressure equal to or higher than its saturation pressure, while draining the boiler water in the economizer from the drain valve, and generating the steam. The present invention provides a method for draining a waste heat recovery boiler, comprising closing an inlet side and an outlet side of a device, evaporating boiler water in the device, and discharging the water to a condenser through the turbine bypass valve. .

【0009】すなわち請求項1の発明によれば、内部で
蒸発することを考慮して設計されていない節炭器を備え
た排熱回収ボイラにおいて、ガスタービン等の排ガス供
給側の装置の運転を継続し、排ガスを排熱回収ボイラに
通したまま、同排熱回収ボイラ内部のボイラ保有水およ
びその蒸気を排出することが可能となる。
That is, according to the first aspect of the present invention, in an exhaust heat recovery boiler provided with a economizer which is not designed in consideration of evaporation inside, the operation of a device on the exhaust gas supply side such as a gas turbine is performed. It is possible to discharge the boiler water and its steam inside the exhaust heat recovery boiler while continuing the exhaust gas through the exhaust heat recovery boiler.

【0010】(2)また、請求項2の発明は、それぞれ
にパージガス送入手段とドレン弁を有する復水予熱器お
よび節炭器と、タービンバイパス弁を介して復水器に接
続された蒸気発生装置とを備え、排ガスにより蒸気ター
ビンの作動蒸気を発生する排熱回収ボイラにおいて、同
排ガスを通じた状態で、上記復水予熱器と節炭器のそれ
ぞれにおいて入口側と出口側を閉じ、上記パージガス送
入手段からパージガスを送入してボイラ保有水を上記ド
レン弁から排水し、且つ上記蒸気発生装置の入口側と出
口側を閉じ、同装置内のボイラ保有水を蒸発させ上記タ
ービンバイパス弁を介して復水器に排出することを特徴
とする排熱回収ボイラの排水方法を提供するものであ
る。
(2) A second aspect of the present invention provides a condensate preheater and a economizer, each having a purge gas supply means and a drain valve, and steam connected to the condenser via a turbine bypass valve. A waste heat recovery boiler that includes a generator and generates the working steam of the steam turbine by the exhaust gas.In the state where the exhaust gas is passed, the inlet side and the outlet side of each of the condensate preheater and the economizer are closed, The purge gas is supplied from the purge gas supply means to drain the boiler water from the drain valve, close the inlet side and the outlet side of the steam generator, evaporate the boiler water in the apparatus, and remove the turbine bypass valve. And a drainage method for a waste heat recovery boiler, wherein the wastewater is discharged to a condenser via a condenser.

【0011】すなわち請求項2の発明によれば、内部で
蒸発することを考慮して設計されていない復水予熱器と
節炭器を備えた排熱回収ボイラにおいて、ガスタービン
等の排ガス供給側の装置の運転を継続し、排ガスを排熱
回収ボイラに通したまま、同排熱回収ボイラ内部のボイ
ラ保有水およびその蒸気を排出することが可能となる。
That is, according to the second aspect of the present invention, in an exhaust heat recovery boiler provided with a condensate preheater and a economizer which is not designed in consideration of evaporation inside, an exhaust gas supply side of a gas turbine or the like is provided. It is possible to discharge the boiler water and its steam inside the exhaust heat recovery boiler while the operation of the apparatus is continued and the exhaust gas is passed through the exhaust heat recovery boiler.

【0012】(3)また、請求項3の発明は、節炭器
と、同節炭器の後流に接続されタービンバイパス弁を介
して復水器に接続された蒸気発生装置とを備え、排ガス
により蒸気タービンの作動蒸気を発生する排熱回収ボイ
ラにおいて、同排ガスを通じた状態で、節炭器の入口側
と蒸気発生装置の出口側を閉じ、同節炭器内と同蒸気発
生装置内のボイラ保有水を蒸発させ上記タービンバイパ
ス弁を介して復水器に排出することを特徴とする排熱回
収ボイラの排水方法を提供するものである。
(3) The invention according to claim 3 includes a economizer and a steam generator connected to a downstream side of the economizer and connected to a condenser via a turbine bypass valve. In the exhaust heat recovery boiler that generates the working steam of the steam turbine by the exhaust gas, the inlet side of the economizer and the outlet side of the steam generator are closed with the exhaust gas passing through, and the interior of the economizer and the interior of the steam generator The present invention also provides a method for draining an exhaust heat recovery boiler, wherein the boiler-owned water is evaporated and discharged to a condenser through the turbine bypass valve.

【0013】すなわち請求項3の発明によれば、内部で
蒸発することを考慮して設計された節炭器を備えた排熱
回収ボイラにおいて、ガスタービン等の排ガス供給側の
装置の運転を継続し、排ガスを排熱回収ボイラに通した
まま、同排熱回収ボイラ内部のボイラ保有水およびその
蒸気を排出することが可能となる。
That is, according to the third aspect of the present invention, in the exhaust heat recovery boiler provided with the economizer designed in consideration of evaporation inside, the operation of the exhaust gas supply side device such as the gas turbine is continued. Then, it is possible to discharge the boiler water and its steam inside the exhaust heat recovery boiler while passing the exhaust gas through the exhaust heat recovery boiler.

【0014】[0014]

【発明の実施の形態】図1および図2に基づき、本発明
の実施の第1形態を説明する。図1は排熱回収ボイラの
水・蒸気系統を模式的に示した系統図であり、節炭器に
再循環系統を有する場合の例で、蒸気タービンへ蒸気を
送っている通常運転状態を示す。図2は同系統図におい
てボイラ保有水の排水を行っている状態を示す。なお、
図中の弁は、白抜きのものは開状態を、黒塗りのものは
閉状態を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a system diagram schematically showing a water / steam system of an exhaust heat recovery boiler, and shows an example in which a recirculation system is provided in a saver, and shows a normal operation state in which steam is sent to a steam turbine. . FIG. 2 shows a state in which the boiler-owned water is being drained in the same system diagram. In addition,
The valves in the figure indicate an open state when the valve is white, and indicate a closed state when black.

【0015】図1において、図示しない復水ポンプから
の給水は節炭器の入口側の節炭器入口止弁1を通り、排
熱回収ボイラの節炭器2へ供給され、節炭器2で加熱さ
れた給水は、その出口側の給水管3に設置された給水調
節弁4、給水調節弁出口弁5を通り、蒸気ドラム6に給
水される。給水調節弁4は蒸気ドラム6内のドラムレベ
ルが一定になるように、その開度を調節する。給水調節
弁4の故障時などを考慮し、給水調節弁バイパス弁7が
設置されることがある。
In FIG. 1, the water supply from a condensate pump (not shown) passes through a economizer inlet stop valve 1 on the inlet side of the economizer and is supplied to an economizer 2 of the exhaust heat recovery boiler. Is supplied to the steam drum 6 through a water supply control valve 4 and a water supply control valve outlet valve 5 installed in a water supply pipe 3 on the outlet side. The opening of the water supply control valve 4 is adjusted so that the drum level in the steam drum 6 becomes constant. The water supply control valve bypass valve 7 may be installed in consideration of, for example, a failure of the water supply control valve 4.

【0016】また、節炭器入口の給水温度を一定温度以
上にするために、節炭器2の出口の給水の一部を節炭器
再循環ポンプ8により再循環している。再循環する量は
節炭器再循環調節弁9にて調節される。
Further, in order to keep the feedwater temperature at the inlet of the economizer above a certain temperature, part of the feedwater at the outlet of the economizer 2 is recirculated by the economizer recirculation pump 8. The amount of recirculation is adjusted by the economizer recirculation control valve 9.

【0017】蒸気ドラム6、蒸発器10、加熱器11は
排熱回収ボイラの蒸気発生装置を構成しており(特許請
求の範囲を含め本明細書中において「蒸気発生装置」と
は、その意味で用いる。)、蒸気ドラム6内のボイラ水
は、蒸発器10を循環して、再び蒸気ドラム6に戻る
が、この循環の間に蒸発器10において加熱されること
によって水と蒸気の2相流となり蒸気ドラム6に戻って
くる。蒸気ドラム6では、水と飽和蒸気に分離され、水
は再度蒸発器10へ循環し、飽和蒸気は過熱器11に導
かれ過熱された後、主蒸気管12に設けられたボイラ出
口蒸気止弁13を介して図示しない蒸気タービンに送ら
れる。
The steam drum 6, the evaporator 10, and the heater 11 constitute a steam generator of an exhaust heat recovery boiler ("steam generator" in this specification including the claims means the same). The boiler water in the steam drum 6 circulates through the evaporator 10 and returns to the steam drum 6 again. During this circulation, the boiler water is heated in the evaporator 10 so that two phases of water and steam are formed. It returns to the steam drum 6 as a flow. In the steam drum 6, the water is separated into water and saturated steam, the water is circulated again to the evaporator 10, and the saturated steam is guided to the superheater 11 to be superheated, and then the boiler outlet steam stop valve provided in the main steam pipe 12. 13 to a steam turbine (not shown).

【0018】過熱器11を出た過熱蒸気は起動時など全
ての蒸気を蒸気ター0ンに流せない場合など、排熱回収
ボイラの蒸発量と蒸気タービンの飲み込み量にアンバラ
ンスがある場合は、その余剰蒸気はタービンバイパス弁
14を介して、図示しない復水器に回収される。ボイラ
の各頂部には空気抜き弁15、各最下部にはドレン弁1
6,17,18が設置され、ボイラへの水張り、排水を
行う際に開け閉めされる。空気抜き弁15には、通常、
ボイラ長期停止中のボイラ内面防錆を考慮し、パージガ
スとしての窒素ガスを封入できるようにN2 (窒素ガ
ス)系統19が接続されている。
When the superheated steam exiting the superheater 11 has an imbalance between the evaporation amount of the exhaust heat recovery boiler and the swallowing amount of the steam turbine, for example, when all the steam cannot be supplied to the steam turn, such as at the time of startup, The surplus steam is collected by a condenser (not shown) via a turbine bypass valve 14. An air vent valve 15 at each top of the boiler and a drain valve 1 at each bottom
6, 17 and 18 are installed and opened and closed when filling and draining the boiler. Normally, the air vent valve 15
An N 2 (nitrogen gas) system 19 is connected so that nitrogen gas as a purge gas can be charged in consideration of rust prevention on the inner surface of the boiler during a long-term shutdown of the boiler.

【0019】以上、図1により、節炭器再循環系統を有
する排熱回収ボイラの水・蒸気系統を示す系統図を示
し、発生蒸気を蒸気タービンへ送っている通常運転状態
を説明したが、図1に示すような排熱回収ボイラからボ
イラ保有水を排水するためには、前述のように従来の方
法では、まず入熱源である高温の排ガスを排出している
ガスタービンなどを停止し、ボイラへの入熱を無くし、
ボイラを冷却せしめる。この状態で、ボイラチューブな
どの耐圧部が冷却するのを待って、ボイラ保有水が約1
00℃未満になるまで冷えた時点で、各部の空気抜き弁
15及びドレン弁16,17,18を開けて、ボイラ水
をドレン弁16,17,18から排水する。各ドレン弁
16,17,18から排水された冷えたボイラ保有水は
図示しないブロータンクなどの大気開放タンクに集めら
れ、排水処理設備などで使用されているコンクリート製
の排水漕で処理可能なように60℃未満程度まで冷却さ
れる。この冷却は、工業用水などを冷却水として注入す
ることにより行われることが多い。
As described above, FIG. 1 shows a system diagram showing a water / steam system of an exhaust heat recovery boiler having a economizer recirculation system, and has described a normal operation state in which generated steam is sent to a steam turbine. In order to drain the boiler water from the exhaust heat recovery boiler as shown in FIG. 1, in the conventional method as described above, first, a gas turbine or the like that discharges high-temperature exhaust gas as a heat input source is stopped, Eliminate heat input to the boiler,
Let the boiler cool down. In this state, wait for the boiler tube and other pressure-resistant parts to cool, and then reduce the boiler water
When it cools down to less than 00 ° C., the air vent valve 15 and the drain valves 16, 17, 18 of each part are opened, and the boiler water is drained from the drain valves 16, 17, 18. Cooled boiler water drained from the drain valves 16, 17, and 18 is collected in an open-to-atmosphere tank such as a blow tank (not shown) and can be treated by a concrete drain tank used in a wastewater treatment facility. To about 60 ° C. or less. This cooling is often performed by injecting industrial water or the like as cooling water.

【0020】一方、ガスタービンなどの排熱回収ボイラ
への入熱源を停止させずに、ボイラ保有水を排水する場
合には、ボイラ水温度が100℃未満に冷えた状態での
排水は不可能であるため従来の方法は採用出来ない。
On the other hand, in the case where the water stored in the boiler is drained without stopping the heat input source to the exhaust heat recovery boiler such as a gas turbine, it is impossible to drain the water in a state where the temperature of the boiler water is cooled below 100 ° C. Therefore, the conventional method cannot be adopted.

【0021】このため、本発明はボイラへの給水を停止
した状態で、ボイラからの発生蒸気をタービンバイパス
弁14経由、復水器に回収するようにし、ボイラ保有水
を蒸発させてしまうものである。もちろん、ボイラのチ
ューブなどの耐圧部はボイラが空(規定水位までボイラ
水が張られていないという意味)の状態で、ガスタービ
ンなどからの排ガスを通しても問題ないように設計され
ている、ということが前提条件となる。しかし、排ガス
を通したまま、ボイラ保有水を抜くというニーズ自体は
こうしたボイラが空の状態で、ガスタービンなどを運転
したいという運転形態を要求された場合であることか
ら、この前提条件は、設計上考慮されており、既に満足
されている。
Therefore, in the present invention, the steam generated from the boiler is recovered to the condenser via the turbine bypass valve 14 in a state where the water supply to the boiler is stopped, thereby evaporating the water held in the boiler. is there. Of course, the pressure-resistant parts such as the boiler tubes are designed so that the boiler is empty (meaning that the boiler water is not filled up to the specified water level) and that there is no problem with passing exhaust gas from gas turbines etc. Is a prerequisite. However, the necessity of draining the boiler's water with the exhaust gas passing is when the boiler is required to operate a gas turbine, etc. in an empty state. Considered above and already satisfied.

【0022】図2は本発明の排水方法を実施し、ボイラ
への給水を停止し、ボイラ発生蒸気をタービンバイパス
弁経由で復水器に回収している状態を示すものであり、
図2に基づき本発明の実施の第1形態に係る排水方法を
以下、具体的に説明する。なお、図2において、図1に
示されたものと同じ機能のものには同じ符号を付して示
し説明を省略する。
FIG. 2 shows a state in which the drainage method of the present invention is carried out, the supply of water to the boiler is stopped, and steam generated by the boiler is collected in a condenser via a turbine bypass valve.
The drainage method according to the first embodiment of the present invention will be specifically described below with reference to FIG. In FIG. 2, components having the same functions as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0023】図1に示す通常の運転状態から、節炭器の
入口側の節炭器入口止弁1および出口側の給水調節弁出
口弁5を全閉する。これにより、ボイラ給水ポンプから
の給水は停止されるとともに、節炭器2内の給水は蒸気
ドラム6側とは隔離される。
In the normal operation state shown in FIG. 1, the economizer inlet stop valve 1 on the inlet side of the economizer and the water supply control valve outlet valve 5 on the outlet side are fully closed. Thereby, the water supply from the boiler water supply pump is stopped, and the water supply in the economizer 2 is isolated from the steam drum 6 side.

【0024】蒸発器10に水・蒸気の混合流体が存在す
る限り、節炭器2内の加圧された給水は蒸発することは
無いので、空気抜き弁15近傍のN2 ガス封入ライン1
9より、この部分に封じ込められた給水温度に相当する
飽和圧力以上にN2 ガスで加圧、パージすることによ
り、節炭器入口止弁1と、給水調節弁出口弁5及び給水
調節弁バイパス弁7の間に閉じ込められた給水を、自己
蒸発させることなく、ドレン弁16経由で図示しないブ
ロータンクに排出することが可能である。
[0024] As long as the mixed fluid of the evaporator 10 to the water-steam is present, since it is not the water pressurized in the economizer 2 is evaporated, the air vent valve 15 near the N 2 gas filled line 1
9, by pressurizing and purging with N 2 gas to a saturation pressure equivalent to or higher than the feedwater temperature enclosed in this portion, the economizer inlet stop valve 1, feedwater control valve outlet valve 5, and feedwater control valve bypass The water supply trapped between the valves 7 can be discharged to a blow tank (not shown) via the drain valve 16 without self-evaporation.

【0025】一方、給水調節弁出口弁5および給水調節
弁バイパス弁7から下流側である蒸発器10や蒸気ドラ
ム6及びそれらを連絡する連絡管部分は、本来、蒸発す
ることを目的に設計されている部位であり、この部分に
蓄積された水・蒸気の混合体は積極的に蒸発させること
とし、その蒸気を加熱器11経由復水器に回収すること
で、この部位の内部流体を排出することが可能であり、
実質的にボイラ保有水の排水を行うことが可能である。
On the other hand, the evaporator 10 and the steam drum 6, which are downstream from the water supply control valve outlet valve 5 and the water supply control valve bypass valve 7, and the connecting pipe portion connecting them are originally designed for the purpose of evaporating. The mixture of water and steam accumulated in this portion is positively evaporated, and the steam is recovered in the condenser via the heater 11 to discharge the internal fluid in this portion. It is possible to
It is possible to substantially drain the boiler-owned water.

【0026】すなわち、蒸気発生装置の入口側の給水調
節弁出口弁5および給水調節弁バイパス弁7を全閉し
て、蒸気ドラム6への給水を停止した状態にした後、同
出口側のボイラ出口蒸気止弁13を閉じ、もしくはこの
弁が設置されていない場合は図示しない蒸気タービンの
加減弁を閉じて、蒸気タービンに蒸気が流れないように
隔離し、これと同時にタービンバイパス弁14を開い
て、ボイラからの蒸気を図示しない復水器に回収する。
ここで、ボイラ出口蒸気止弁13、蒸気タービンの加減
弁は出口側弁装置を構成する。
That is, the water supply control valve outlet valve 5 and the water supply control valve bypass valve 7 on the inlet side of the steam generator are fully closed to stop supplying water to the steam drum 6, and then the boiler on the outlet side is stopped. The outlet steam stop valve 13 is closed, or, if this valve is not installed, the steam turbine control valve (not shown) is closed to isolate the steam from flowing to the steam turbine, and at the same time, the turbine bypass valve 14 is opened. Then, the steam from the boiler is collected in a condenser (not shown).
Here, the boiler outlet steam stop valve 13 and the control valve of the steam turbine constitute an outlet side valve device.

【0027】この状態を保ち時間が経つに連れて、蒸発
によりボイラ保有水が減少していき、同時にボイラ内の
圧力も減少していく。ボイラ内の圧力が大気圧をやや下
回った時点で、タービンバイパス弁14を全閉する。高
温の排ガスが継続してボイラに供給されているので、こ
の時点では、ボイラ保有水のほとんどは蒸発してしま
い、復水器に回収されている。
As time elapses while maintaining this state, the water held in the boiler decreases due to evaporation, and at the same time, the pressure in the boiler also decreases. When the pressure in the boiler falls slightly below the atmospheric pressure, the turbine bypass valve 14 is fully closed. Since high-temperature exhaust gas is continuously supplied to the boiler, at this point, most of the boiler-owned water has evaporated and is collected in the condenser.

【0028】給水調節弁出口弁5及び給水調節弁バイパ
ス弁7以降の蒸気ドラム6、蒸発器10などの排水が終
了した時点で、給水調節弁バイパス弁7を全開として、
節炭器2側と蒸発器10側の隔離を無くし、ボイラ保有
水の排水作業の完了となる。尚、この時に給水調節弁出
口弁4を全閉したままにするのは、万一、節炭器2側に
少量のドレン等が残っており、これが蒸発した水・蒸気
の2相流が給水調節弁3を通過すると、複雑な構造をし
た内弁などの弁内部品を損傷する恐れがあるため、これ
を防止することが可能となるからである。
When the drainage of the steam drum 6, the evaporator 10 and the like after the water supply control valve outlet valve 5 and the water supply control valve bypass valve 7 is completed, the water supply control valve bypass valve 7 is fully opened.
The separation between the economizer 2 side and the evaporator 10 side is eliminated, and the drainage operation of the boiler possession water is completed. It should be noted that at this time, the water supply control valve outlet valve 4 should be kept fully closed in the unlikely event that a small amount of drain or the like remains on the side of the economizer 2 and the two-phase flow of water and steam evaporated from the water supply. This is because when passing through the control valve 3, there is a risk that internal components such as an internal valve having a complicated structure may be damaged, and this can be prevented.

【0029】次に、図3に基づき、本発明の実施の第2
形態について説明する。図3は節炭器の前段に復水予熱
器を有する場合の排熱回収ボイラの系統図の例であり、
本発明の排水方法を実施している状態を示す。尚、図1
と同じ機能の部分には同じ符号を付して説明を省略し、
図中の弁は、白抜きのものは開状態を、黒塗りのものは
閉状態を示す。
Next, a second embodiment of the present invention will be described with reference to FIG.
The form will be described. FIG. 3 is an example of a system diagram of an exhaust heat recovery boiler in a case where a condensate preheater is provided in a stage preceding the economizer.
3 shows a state in which the drainage method of the present invention is being performed. FIG.
Parts having the same functions as those described above are given the same reference numerals, and description thereof is omitted.
The valves in the figure indicate an open state when the valve is white, and indicate a closed state when black.

【0030】図3において、図示しない復水ポンプ(図
示せず)からの給水は、節炭器2に入る前に、復水予熱
器21において予熱された後に、節炭器2へ行く系統構
成となる。同復水ポンプからの給水は復水予熱器入口弁
20を通り、復水予熱器21に導かれ、排ガスにより暖
められ、復水予熱器出口弁22を介して、図示しない脱
気器に送られる。復水予熱器21にて暖められた給水の
一部は、復水予熱器21の入口温度を一定温度以上にす
るために、復水予熱器再循環ポンプ23により再循環し
ている。再循環する量は復水予熱器再循環調節弁24に
て調節される。なお、25は空気抜き弁、26はパージ
ガスとしてのN2 (窒素ガス)系統であり、復水予熱器
入口弁20と復水予熱器21との間に接続されている。
27はドレン弁である。
In FIG. 3, the water supply from a not-shown condensate pump (not shown) is preheated by a condensate preheater 21 before entering the economizer 2 and then goes to the economizer 2. Becomes The water supply from the condensate pump passes through a condensate preheater inlet valve 20, is guided to a condensate preheater 21, is heated by exhaust gas, and is sent to a deaerator (not shown) via a condensate preheater outlet valve 22. Can be Part of the feed water heated by the condensate preheater 21 is recirculated by the condensate preheater recirculation pump 23 in order to keep the inlet temperature of the condensate preheater 21 at a certain temperature or higher. The amount of recirculation is adjusted by a condensate preheater recirculation control valve 24. Reference numeral 25 denotes an air vent valve, and reference numeral 26 denotes an N 2 (nitrogen gas) system as a purge gas, which is connected between the condensate preheater inlet valve 20 and the condensate preheater 21.
27 is a drain valve.

【0031】復水予熱器21にて暖められた給水はとも
に図示しない脱気器、ボイラ給水ポンプへと送られて、
再度、ボイラに給水される。この給水は節炭器入口止弁
1を通り、節炭器2へ供給され、節炭器2で加熱された
給水は、給水管3に設置された給水調節弁4、給水調節
弁出口弁5を通り、蒸気ドラム6に給水される。給水調
節弁4は蒸気ドラム6内のドラムレベルが一定になるよ
うに、その開度を調節する。給水調節弁4の故障時など
を考慮し、給水調節弁バイパス弁7が設置されることが
ある。蒸気ドラム6以降は、前述の実施の第1形態を示
す図2と同様である。
The feed water heated by the condensate preheater 21 is sent to a deaerator (not shown) and a boiler feed pump.
Water is supplied to the boiler again. This water supply is supplied to the economizer 2 through the economizer inlet stop valve 1, and the feedwater heated by the ecommerce 2 is supplied to the water supply control valve 4 and the water supply control valve outlet valve 5 installed in the water supply pipe 3. , And water is supplied to the steam drum 6. The opening of the water supply control valve 4 is adjusted so that the drum level in the steam drum 6 becomes constant. The water supply control valve bypass valve 7 may be installed in consideration of, for example, a failure of the water supply control valve 4. The configuration after the steam drum 6 is the same as that in FIG. 2 showing the first embodiment.

【0032】以上説明した図3の復水予熱器及び同再循
環系統を有する排熱回収ボイラにおける排水方法は以下
のとおりである。
The drainage method in the waste heat recovery boiler having the condensate preheater and the recirculation system of FIG. 3 described above is as follows.

【0033】通常の運転状態から、復水予熱器21の入
口側、出口側の復水予熱器入口弁20および復水予熱器
出口弁22を全閉し、復水予熱器21廻りを隔離する。
また、同様に節炭器2の入口側、出口側となる節炭器入
口止弁1および給水調節弁出口弁5、給水調節弁バイパ
ス弁7を全閉する。これにより、ボイラ給水ポンプから
の給水は停止されるとともに、節炭器内2の給水は蒸気
ドラム9側とは隔離される。
From the normal operation state, the condensate preheater inlet valve 20 and the condensate preheater outlet valve 22 on the inlet side and the outlet side of the condensate preheater 21 are fully closed to isolate around the condensate preheater 21. .
Similarly, the inlet / outlet valve 1, the water supply control valve outlet valve 5, and the water supply control valve bypass valve 7, which are the inlet side and outlet side of the economizer 2, are fully closed. Thereby, the water supply from the boiler water supply pump is stopped, and the water supply in the economizer 2 is isolated from the steam drum 9 side.

【0034】蒸発器10に水・蒸気の混合流体が存在す
る限り、復水予熱器21内及び節炭器2内の加圧された
給水は蒸発することは無いので、空気抜き弁25,15
近傍のN2 ガス封入ライン26,19より、これらの部
分に封じ込められた給水温度に相当する飽和圧力以上に
2 ガスで加圧することにより、復水予熱器入口弁20
から復水予熱器出口弁22までに閉じ込められた給水、
並びに節炭器入口止弁1と、給水調節弁出口弁4及び給
水調節弁バイパス弁5の間に閉じ込められた給水を、自
己蒸発させることなく、ドレン弁27,16経由で図示
しないブロータンクに排出することが可能である。
As long as the mixed fluid of water and steam is present in the evaporator 10, the pressurized feedwater in the condensate preheater 21 and the economizer 2 does not evaporate.
The condensate preheater inlet valve 20 is pressurized from the nearby N 2 gas filling lines 26 and 19 with N 2 gas at a pressure higher than the saturation pressure corresponding to the temperature of the feedwater sealed in these parts.
From the condensate preheater outlet valve 22
In addition, the water confined between the economizer inlet stop valve 1, the water supply control valve outlet valve 4 and the water supply control valve bypass valve 5 is supplied to the blow tank (not shown) via the drain valves 27 and 16 without self-evaporation. It is possible to discharge.

【0035】給水調節弁出口弁5及び給水調節弁バイパ
ス弁7から下流側の蒸気発生装置を構成する蒸発器10
や蒸気ドラム6及びそれらを連絡する連絡管部分につい
ては、図2で説明した前述の実施の第1形態の場合と同
様の方法にてボイラ保有水の排出が可能である。
An evaporator 10 constituting a steam generator downstream from the water supply control valve outlet valve 5 and the water supply control valve bypass valve 7.
For the steam drum 6 and the connecting pipe portion connecting them, the boiler water can be discharged in the same manner as in the case of the first embodiment described above with reference to FIG.

【0036】次に、図4に基づき、本発明の実施の第3
形態を説明する。図4は給水調節弁4を節炭器2の給水
の上流側に設置し、節炭器2出口にて給水の一部が蒸発
することを許容する場合の排熱回収ボイラの系統図の例
であり、本発明の排水方法を実施している状態を示す。
なお、図1と同じ機能の部分には同じ符号を付して説明
を省略し、図中の弁は、白抜きのものは開状態を、黒塗
りのものは閉状態を示す。
Next, a third embodiment of the present invention will be described with reference to FIG.
The form will be described. FIG. 4 is an example of a system diagram of an exhaust heat recovery boiler in which the feedwater control valve 4 is installed on the upstream side of feedwater of the economizer 2 and a part of feedwater is allowed to evaporate at the outlet of the economizer 2. Shows a state in which the drainage method of the present invention is performed.
The parts having the same functions as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. The valves in the figure indicate an open state when the valve is white, and indicate a closed state when black.

【0037】図4において、図示しないボイラ給水ポン
プからの給水は、節炭器2の入口側の節炭器入口止弁1
を通り、次いで給水調節弁4を通った後、節炭器2へ供
給され、節炭器2で加熱された給水は、蒸気ドラム6に
給水される。節炭器2より上流側に設置されている給水
調節弁4は、前述の図2の実施の第1形態、図3の実施
の第2形態と同様に、蒸気ドラム6内のドラムレベルが
一定になるように、その開度を調節する。蒸気ドラム6
以降は、前述の実施の第1形態を示す図2の場合と同様
である。
In FIG. 4, water supplied from a boiler water supply pump (not shown) is supplied to an economizer inlet stop valve 1 on the inlet side of the economizer 2.
After passing through the water supply control valve 4, the water is supplied to the economizer 2, and the feedwater heated by the economizer 2 is supplied to the steam drum 6. The water supply control valve 4 installed upstream of the economizer 2 has a constant drum level in the steam drum 6 as in the first embodiment of FIG. 2 and the second embodiment of FIG. Adjust the opening so that Steam drum 6
Subsequent steps are the same as in the case of FIG. 2 showing the first embodiment.

【0038】以上説明した図4に示されるような、給水
調節弁を節炭器の上流側に設置し、節炭器出口にて給水
の一部が蒸発することを許容する排熱回収ボイラにおけ
る排水方法は以下のとおりである。
A water supply control valve as shown in FIG. 4 described above is installed upstream of the economizer to allow a part of feedwater to evaporate at the economizer outlet. The drainage method is as follows.

【0039】通常の運転状態から、節炭器入口止弁1を
全閉する。これにより、ボイラ給水ポンプからの給水は
停止される。一方、給水調節弁4を節炭器2よりも上流
側に設置する系統構成の場合、節炭器2にて暖められた
給水は、その出口にて一部が蒸発することを許容するよ
うに設計されていることが多い。また、節炭器2と蒸気
ドラム6の間には一般に、隔離するような弁は設置され
ていないため、節炭器2内の給水も、蒸発器10や蒸気
ドラム6及びそれらを連絡する連絡管部分についてと同
様に、図2に基づき説明した実施の第1形態の場合と同
様の方法にてボイラ保有水を排出する。
From the normal operation state, the economizer inlet stop valve 1 is fully closed. Thereby, the water supply from the boiler water supply pump is stopped. On the other hand, in the case of a system configuration in which the feedwater control valve 4 is installed upstream of the economizer 2, the feedwater warmed by the economizer 2 is allowed to partially evaporate at its outlet. Often designed. In general, there is no isolation valve installed between the economizer 2 and the steam drum 6, so that the water supply in the economizer 2 is also controlled by the evaporator 10 and the steam drum 6 and the communication between them. As in the case of the pipe section, the water stored in the boiler is discharged in the same manner as in the first embodiment described with reference to FIG.

【0040】すなわち、節炭器入口止弁1を全閉して、
節炭器2及び蒸気ドラム6への給水を停止した状態にし
た後、ボイラ出口蒸気止弁13を閉じ、もしくはこの弁
が設置されていない場合は図示しない蒸気タービンの加
減弁を閉じて、蒸気タービンに蒸気が流れないように隔
離し、これと同時にタービンバイパス弁14を開いて、
ボイラからの蒸気を図示しない復水器に回収する。
That is, the economizer inlet stop valve 1 is fully closed,
After the water supply to the economizer 2 and the steam drum 6 is stopped, the boiler outlet steam stop valve 13 is closed, or, if this valve is not installed, the steam turbine control valve (not shown) is closed to close the steam generator. Isolate the turbine so that steam does not flow, and at the same time open the turbine bypass valve 14,
The steam from the boiler is collected in a condenser not shown.

【0041】この状態を保ち時間が経つに連れて、蒸発
によりボイラ保有水が減少していき、同時にボイラ内の
圧力も減少していく。ボイラ内の圧力が大気圧をやや下
回った時点で、タービンバイパス弁14を全閉する。高
温の排ガスが継続してボイラに供給されているので、こ
の時点では、ボイラ保有水のほとんどは蒸発してしま
い、復水器に回収されている。
As time elapses while maintaining this state, the water held in the boiler decreases due to evaporation, and at the same time, the pressure in the boiler also decreases. When the pressure in the boiler falls slightly below the atmospheric pressure, the turbine bypass valve 14 is fully closed. Since high-temperature exhaust gas is continuously supplied to the boiler, at this point, most of the boiler-owned water has evaporated and is collected in the condenser.

【0042】以上説明したように、本発明の実施の第1
形態ないし第3形態のいずれにおいても、ガスタービン
等の排ガス供給側の装置の運転を継続し、排ガスを排熱
回収ボイラに通したまま、同排熱回収ボイラ内部のボイ
ラ保有水およびその蒸気を安全に且つ短時間に排出する
ことが可能となる。
As described above, the first embodiment of the present invention is described.
In any of the embodiments to the third embodiment, the operation of the exhaust gas supply side device such as a gas turbine is continued, and while the exhaust gas is passed through the exhaust heat recovery boiler, the boiler water and the steam inside the exhaust heat recovery boiler are discharged. It is possible to discharge safely and in a short time.

【0043】なお、以上本発明の実施の形態を説明した
が、上記実施の形態に限定されるものではなく、本発明
の範囲内でその具体的構造に種々の変更を加えてもよい
ことは言うまでもない。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various changes may be made to the specific structure within the scope of the present invention. Needless to say.

【0044】[0044]

【発明の効果】(1)以上、請求項1の発明によれば、
排熱回収ボイラの排水方法を、パージガス送入手段とド
レン弁を有する節炭器と、タービンバイパス弁を介して
復水器に接続された蒸気発生装置とを備え、排ガスによ
り蒸気タービンの作動蒸気を発生する排熱回収ボイラに
おいて、同排ガスを通じた状態で、節炭器の入口側と出
口側を閉じ上記パージガス送入手段からパージガスを送
入して節炭器内のボイラ保有水を上記ドレン弁から排水
し、且つ上記蒸気発生装置の入口側と出口側を閉じ同装
置内のボイラ保有水を蒸発させ上記タービンバイパス弁
を介して復水器に排出するように構成したので、内部で
蒸発することを考慮して設計されていない節炭器を備え
た排熱回収ボイラにおいても、ガスタービン等の排ガス
供給側の装置の運転を継続し、排ガスを排熱回収ボイラ
に通したまま、同排熱回収ボイラ内部のボイラ保有水お
よびその蒸気を安全に且つ短時間に排出することが可能
となる。
(1) As described above, according to the first aspect of the present invention,
A method for draining a waste heat recovery boiler is provided, comprising: a economizer having a purge gas inlet and a drain valve; and a steam generator connected to a condenser via a turbine bypass valve. In the exhaust heat recovery boiler that generates the gas, the inlet side and the outlet side of the economizer are closed and the purge gas is fed from the purging gas supply means while the exhaust gas is passed to drain the boiler water in the economizer. The system is configured to drain water from the valve, close the inlet and outlet sides of the steam generator, evaporate the water held by the boiler in the steam generator, and discharge it to the condenser through the turbine bypass valve. Even in an exhaust heat recovery boiler equipped with a economizer that is not designed to take into consideration the exhaust gas supply side device such as a gas turbine, the operation continues, and the exhaust gas is passed through the exhaust heat recovery boiler. Boiler held water inside the heat recovery boiler and it is possible to discharge the steam safely and in a short time.

【0045】(2)また、請求項2の発明によれば、排
熱回収ボイラの排水方法を、それぞれにパージガス送入
手段とドレン弁を有する復水予熱器および節炭器と、タ
ービンバイパス弁を介して復水器に接続された蒸気発生
装置とを備え、排ガスにより蒸気タービンの作動蒸気を
発生する排熱回収ボイラにおいて、同排ガスを通じた状
態で、上記復水予熱器と節炭器のそれぞれにおいて入口
側と出口側を閉じ、上記パージガス送入手段からパージ
ガスを送入してボイラ保有水を上記ドレン弁から排水
し、且つ上記蒸気発生装置の入口側と出口側を閉じ、同
装置内のボイラ保有水を蒸発させ上記タービンバイパス
弁を介して復水器に排出するように構成したので、内部
で蒸発することを考慮して設計されていない復水予熱器
と節炭器を備えた排熱回収ボイラにおいても、ガスター
ビン等の排ガス供給側の装置の運転を継続し、排ガスを
排熱回収ボイラに通したまま、同排熱回収ボイラ内部の
ボイラ保有水およびその蒸気を安全に且つ短時間に排出
することが可能となる。
(2) According to the second aspect of the present invention, a method of draining an exhaust heat recovery boiler includes a condensate preheater and a economizer, each having a purge gas feeding means and a drain valve, a turbine bypass valve. And a steam generator connected to the condenser through the exhaust heat recovery boiler that generates the working steam of the steam turbine by the exhaust gas. In each case, the inlet side and the outlet side are closed, purge gas is supplied from the purge gas supply means to drain the boiler water from the drain valve, and the inlet side and the outlet side of the steam generator are closed. It is configured to evaporate the boiler-owned water and discharge it to the condenser through the turbine bypass valve.Therefore, it is equipped with a condenser preheater and a economizer that are not designed in consideration of evaporating inside. Exhaustion In the recovery boiler, the operation of the exhaust gas supply side device such as a gas turbine is continued, and the boiler water and its steam inside the waste heat recovery boiler are safely and quickly removed while the exhaust gas is passed through the waste heat recovery boiler. Can be discharged.

【0046】(3)また、請求項3の発明によれば、排
熱回収ボイラの排水方法を、節炭器と、同節炭器の後流
に接続されタービンバイパス弁を介して復水器に接続さ
れた蒸気発生装置とを備え、排ガスにより蒸気タービン
の作動蒸気を発生する排熱回収ボイラにおいて、同排ガ
スを通じた状態で、節炭器の入口側と蒸気発生装置の出
口側を閉じ、同節炭器内と同蒸気発生装置内のボイラ保
有水を蒸発させ上記タービンバイパス弁を介して復水器
に排出するように構成したので、内部で蒸発することを
考慮して設計された節炭器を備えた排熱回収ボイラにお
いて、ガスタービン等の排ガス供給側の装置の運転を継
続し、排ガスを排熱回収ボイラに通したまま、同排熱回
収ボイラ内部のボイラ保有水およびその蒸気を安全に且
つ短時間に排出することが可能となる。
(3) According to the third aspect of the present invention, a method for draining an exhaust heat recovery boiler is provided by using a condenser and a condenser connected to a downstream side of the condenser and a turbine bypass valve. A steam generator connected to the exhaust heat recovery boiler that generates working steam for the steam turbine by the exhaust gas, in a state where the exhaust gas is passed, closing the inlet side of the economizer and the outlet side of the steam generator, Since the boiler water in the coal-saving unit and the steam generator is evaporated and discharged to the condenser through the turbine bypass valve, the boiler is designed in consideration of evaporation inside. In an exhaust heat recovery boiler equipped with a charcoal unit, the operation of the exhaust gas supply side device such as a gas turbine is continued, and while the exhaust gas is passed through the exhaust heat recovery boiler, the boiler water inside the exhaust heat recovery boiler and its steam Safely and quickly It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係る排熱回収ボイラ
の水・蒸気系統の模式的系統図であり、蒸気タービンへ
蒸気を送っている通常運転状態を示す。
FIG. 1 is a schematic system diagram of a water / steam system of an exhaust heat recovery boiler according to a first embodiment of the present invention, showing a normal operation state in which steam is sent to a steam turbine.

【図2】図1と同じ模式的系統図であり、ボイラ保有水
の排水を行っている状態を示す。
FIG. 2 is the same schematic system diagram as FIG. 1, showing a state in which boiler-owned water is being drained.

【図3】本発明の実施の第2形態に係る排熱回収ボイラ
の水・蒸気系統の模式的系統図である。
FIG. 3 is a schematic system diagram of a water / steam system of an exhaust heat recovery boiler according to a second embodiment of the present invention.

【図4】本発明の実施の第3形態に係る排熱回収ボイラ
の水・蒸気系統の模式的系統図である。
FIG. 4 is a schematic system diagram of a water / steam system of an exhaust heat recovery boiler according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 節炭器入口止弁 2 節炭器 4 給水調節弁 5 給水調節弁出口弁 6 蒸気ドラム 7 給水調節弁バイパス弁 10 蒸発器 11 過熱器 13 ボイラ出口蒸気止弁 14 タービンバイパス弁 16,17,18 ドレン弁 19 N2 (窒素ガス)系統 20 復水予熱器入口弁 21 復水予熱器 22 復水予熱器出口弁 26 N2 (窒素ガス)系統 27 ドレン弁REFERENCE SIGNS LIST 1 economizer inlet stop valve 2 economizer 4 feedwater control valve 5 feedwater control valve outlet valve 6 steam drum 7 feedwater control valve bypass valve 10 evaporator 11 superheater 13 boiler outlet steam stop valve 14 turbine bypass valve 16,17, 18 Drain valve 19 N 2 (nitrogen gas) system 20 Condenser preheater inlet valve 21 Condenser preheater 22 Condenser preheater outlet valve 26 N 2 (nitrogen gas) system 27 Drain valve

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F22B 1/18 F22B 1/18 E F22D 11/00 F22D 11/00 H Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F22B 1/18 F22B 1/18 E F22D 11/00 F22D 11/00 H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 パージガス送入手段とドレン弁を有する
節炭器と、タービンバイパス弁を介して復水器に接続さ
れた蒸気発生装置とを備え、排ガスにより蒸気タービン
の作動蒸気を発生する排熱回収ボイラにおいて、同排ガ
スを通じた状態で、節炭器の入口側と出口側を閉じ上記
パージガス送入手段からパージガスを送入して節炭器内
のボイラ保有水を上記ドレン弁から排水し、且つ上記蒸
気発生装置の入口側と出口側を閉じ同装置内のボイラ保
有水を蒸発させ上記タービンバイパス弁を介して復水器
に排出することを特徴とする排熱回収ボイラの排水方
法。
A steam generator connected to a condenser via a turbine bypass valve, wherein the steam generator is configured to generate working steam of a steam turbine by exhaust gas. In the heat recovery boiler, with the exhaust gas passing through, the inlet side and the outlet side of the economizer are closed, purge gas is sent from the purge gas supply means, and the boiler water in the economizer is drained from the drain valve. A method for draining an exhaust heat recovery boiler, comprising closing an inlet side and an outlet side of the steam generator, evaporating water contained in the boiler, and discharging the water to a condenser through the turbine bypass valve.
【請求項2】 それぞれにパージガス送入手段とドレン
弁を有する復水予熱器および節炭器と、タービンバイパ
ス弁を介して復水器に接続された蒸気発生装置とを備
え、排ガスにより蒸気タービンの作動蒸気を発生する排
熱回収ボイラにおいて、同排ガスを通じた状態で、上記
復水予熱器と節炭器のそれぞれにおいて入口側と出口側
を閉じ、上記パージガス送入手段からパージガスを送入
してボイラ保有水を上記ドレン弁から排水し、且つ上記
蒸気発生装置の入口側と出口側を閉じ、同装置内のボイ
ラ保有水を蒸発させ上記タービンバイパス弁を介して復
水器に排出することを特徴とする排熱回収ボイラの排水
方法。
2. A condensate preheater and a economizer, each having a purge gas feeding means and a drain valve, and a steam generator connected to the condenser via a turbine bypass valve. In the exhaust heat recovery boiler that generates the working steam, the inlet side and the outlet side of each of the condensate preheater and the economizer are closed while the exhaust gas is passed, and purge gas is supplied from the purge gas supply means. Draining the boiler water from the drain valve, closing the inlet and outlet sides of the steam generator, evaporating the boiler water in the apparatus, and discharging it to the condenser through the turbine bypass valve. A method for draining an exhaust heat recovery boiler.
【請求項3】 節炭器と、同節炭器の後流に配置されタ
ービンバイパス弁を介して復水器に接続された蒸気発生
装置とを備え、排ガスにより蒸気タービンの作動蒸気を
発生する排熱回収ボイラにおいて、同排ガスを通じた状
態で、節炭器の入口側と蒸気発生装置の出口側を閉じ、
同節炭器内と同蒸気発生装置内のボイラ保有水を蒸発さ
せ上記タービンバイパス弁を介して復水器に排出するこ
とを特徴とする排熱回収ボイラの排水方法。
3. A steam saver, and a steam generator disposed downstream of the steam saver and connected to a condenser via a turbine bypass valve to generate working steam for a steam turbine by exhaust gas. In the exhaust heat recovery boiler, the inlet side of the economizer and the outlet side of the steam generator are closed with the exhaust gas passing through,
A method for draining an exhaust heat recovery boiler, comprising: evaporating water held in a boiler in the coal saver and in the steam generator and discharging the water to a condenser through the turbine bypass valve.
JP11202998A 1999-07-16 1999-07-16 Method of draining for waste heat recovery boiler Withdrawn JP2001033004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11202998A JP2001033004A (en) 1999-07-16 1999-07-16 Method of draining for waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11202998A JP2001033004A (en) 1999-07-16 1999-07-16 Method of draining for waste heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2001033004A true JP2001033004A (en) 2001-02-09

Family

ID=16466648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11202998A Withdrawn JP2001033004A (en) 1999-07-16 1999-07-16 Method of draining for waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2001033004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011182A (en) * 2011-06-28 2013-01-17 Ihi Corp Waste heat power generation device
KR101341767B1 (en) 2012-11-30 2013-12-16 한국서부발전 주식회사 Heat exchanger for generating electric power
WO2018033303A1 (en) * 2016-08-18 2018-02-22 IFP Energies Nouvelles Closed circuit functioning according to a rankine cycle with a device for the emergency stopping of the circuit and method using such a circuit
KR20180072558A (en) * 2016-12-21 2018-06-29 제네럴 일렉트릭 컴퍼니 System and method for managing heat duty for a heat recovery system
JP2019522140A (en) * 2016-05-23 2019-08-08 シーメンス エナジー インコーポレイテッド Combined cycle power plant with condensate recirculation pump using the venturi effect

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011182A (en) * 2011-06-28 2013-01-17 Ihi Corp Waste heat power generation device
KR101341767B1 (en) 2012-11-30 2013-12-16 한국서부발전 주식회사 Heat exchanger for generating electric power
JP2019522140A (en) * 2016-05-23 2019-08-08 シーメンス エナジー インコーポレイテッド Combined cycle power plant with condensate recirculation pump using the venturi effect
US11041409B2 (en) 2016-05-23 2021-06-22 Siemens Energy, Inc. Combined cycle power plant having condensate recirculation pump using venturi effect
FR3055149A1 (en) * 2016-08-18 2018-02-23 IFP Energies Nouvelles CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE WITH A DEVICE FOR EMERGENCY STOP OF THE CIRCUIT AND METHOD USING SUCH A CIRCUIT
CN109690029A (en) * 2016-08-18 2019-04-26 Ifp新能源公司 The closed circuit operated according to Rankine cycle with the equipment for emergency stop circuit and the method using such circuit
JP2019525072A (en) * 2016-08-18 2019-09-05 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Closed circuit functioning according to the Rankine cycle with a device for emergency stop of the circuit and method of using such a circuit
WO2018033303A1 (en) * 2016-08-18 2018-02-22 IFP Energies Nouvelles Closed circuit functioning according to a rankine cycle with a device for the emergency stopping of the circuit and method using such a circuit
US11060423B2 (en) 2016-08-18 2021-07-13 IFP Energies Nouvelles Closed circuit functioning according to a Rankine cycle with a device for the emergency stopping of the circuit, and method using such a circuit
CN109690029B (en) * 2016-08-18 2021-11-30 Ifp新能源公司 Closed circuit operating according to a rankine cycle with a device for emergency stop of the circuit and method using such a circuit
JP7166247B2 (en) 2016-08-18 2022-11-07 イエフペ エネルジ ヌヴェル A closed circuit functioning according to the Rankine cycle with a device for emergency stop of the circuit and a method of using such a circuit
KR20180072558A (en) * 2016-12-21 2018-06-29 제네럴 일렉트릭 컴퍼니 System and method for managing heat duty for a heat recovery system
KR102414338B1 (en) 2016-12-21 2022-06-29 제네럴 일렉트릭 컴퍼니 System and method for managing heat duty for a heat recovery system

Similar Documents

Publication Publication Date Title
US4896500A (en) Method and apparatus for operating a combined cycle power plant having a defective deaerator
KR100284392B1 (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant.
JP3993823B2 (en) Fuel heating apparatus and method for gas / steam combined turbine equipment
JP4901749B2 (en) Steam driving equipment, in particular, a method of operating steam driving equipment of a power plant for generating at least electric energy and the steam driving equipment
US6250258B1 (en) Method for starting up a once-through heat recovery steam generator and apparatus for carrying out the method
JP4463423B2 (en) Gas / steam turbine combined equipment
JP2007163126A (en) Composite cycle power generation system improved in efficiency
JP3866976B2 (en) Gas / steam combined turbine equipment
JP3935232B2 (en) Cleaning method for water-steam circuit of combined gas-steam-power plant
JP4390391B2 (en) Gas / steam turbine combined equipment
JPH09170701A (en) Composite plant with mixed-pressure waste heat boiler
KR100399241B1 (en) Process and device for degassing a condensate
JP3679094B2 (en) Operation method and equipment of gas / steam combined turbine equipment
JP4632901B2 (en) Boiler scale removal method
JP2001033004A (en) Method of draining for waste heat recovery boiler
JP7086523B2 (en) A combined cycle power plant and a method for operating this combined cycle power plant
KR101734326B1 (en) Pre-heating apparatus and method of a integral reactor
JP5463313B2 (en) Thermal power plant
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
US5904039A (en) Method and configuration for deaerating a condensate
JP4452328B2 (en) Combined power plant
KR101825316B1 (en) Flash tank design
JP2012092734A (en) Blow fluid treatment equipment in ejector main steam system
JP2008075966A (en) Once-through exhaust heat recovery boiler
JP7561094B2 (en) Heating steam system for carbon dioxide capture system, carbon dioxide capture system, and method of operating the heating steam system for carbon dioxide capture system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003