JP2012102711A - Temperature reducing device steam heat recovery facilities - Google Patents

Temperature reducing device steam heat recovery facilities Download PDF

Info

Publication number
JP2012102711A
JP2012102711A JP2010254307A JP2010254307A JP2012102711A JP 2012102711 A JP2012102711 A JP 2012102711A JP 2010254307 A JP2010254307 A JP 2010254307A JP 2010254307 A JP2010254307 A JP 2010254307A JP 2012102711 A JP2012102711 A JP 2012102711A
Authority
JP
Japan
Prior art keywords
steam
feed water
boiler
temperature
boiler feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010254307A
Other languages
Japanese (ja)
Inventor
Masakatsu Matsuwaka
雅勝 松若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010254307A priority Critical patent/JP2012102711A/en
Publication of JP2012102711A publication Critical patent/JP2012102711A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a practical temperature reducing device steam heat recovery facilities, provided at a steam power generating plant and recovering and effectively utilizing heat of steam sent out from a temperature reducing device after boiler starting until usual load operation.SOLUTION: The temperature reducing device steam heat recovery facilities, which are provided at the steam power generating plant and recover heat of steam sent out from the temperature reducing device 55 after the boiler starting until the usual load operation, include: a boiler supply water heating steam system 41 connecting the temperature reducing device 55 to a boiler supply water system and sending steam, sent out from the temperature reducing device 55, to a deaerator 30 as a heating steam of a boiler supply water; a condensed water recovering system 42 connecting the temperature reducing device 55 to a condenser 21 and sending steam and/or drain sent out from the temperature reducing device 55 to the condenser 21; and a three-way valve 43 capable of switching two systems of the boiler supply water heating steam system 41 and/or the condensed water recovering system 42 so as to introduce the steam sent out from the temperature reducing device 55 to the two systems and distributing steam amounts to the two systems.

Description

本発明は、汽力発電プラントにおいて、ボイラ起動後、通常負荷運転時まで減温器から送出される蒸気の熱を回収する減温器蒸気熱回収設備に関する。   The present invention relates to a desuperheater steam heat recovery facility for recovering the heat of steam sent from a desuperheater until the normal load operation after a boiler is started in a steam power plant.

従来の一般的な汽力発電プラントは、石炭、重油、LNG等を燃料としボイラで蒸気を発生させ、発生した蒸気を蒸気タービンに導き発電機を駆動し発電する。蒸気タービンを駆動した蒸気は、海水を冷却媒体とする復水器で冷却され復水となる。この復水はボイラ給水となり低圧給水加熱器で加熱され、さらに脱気器で給水中の溶存酸素等が除去された後、高圧給水加熱器で加熱されボイラに送られる。低圧給水加熱器、脱気器及び高圧給水加熱器の加熱には、蒸気タービンの抽気蒸気が使用される。   Conventional general steam power plants use coal, heavy oil, LNG, or the like as fuel to generate steam in a boiler, and the generated steam is guided to a steam turbine to drive a generator to generate power. The steam that drives the steam turbine is cooled by a condenser using seawater as a cooling medium to become condensed water. This condensate becomes boiler feed water and is heated by a low pressure feed water heater, and further, dissolved oxygen and the like in the feed water is removed by a deaerator and then heated by a high pressure feed water heater and sent to the boiler. The steam extracted from the steam turbine is used to heat the low-pressure feed water heater, the deaerator, and the high-pressure feed water heater.

汽力発電プラントを起動する際には、ボイラの火炉水冷壁を保護するため、ボイラ定格給水量の25%程度の給水を行う必要がある。一方でボイラを起動しても発生する蒸気を直ちに蒸気タービンに供給することはできない。蒸気タービンに蒸気を供給するには蒸気を規定の温度、圧力とする必要があり、さらに蒸気タービンに供給後も蒸気量を徐々に増加させ、最終的に発生蒸気の全量を蒸気タービンに供給することとなる。このように汽力発電プラントの起動時にはボイラの給水量と蒸気タービンへの蒸気供給量とが異なるため、汽力発電プラントには起動バイパス装置が設けられ、余剰の蒸気はフラッシュタンクを経由して復水器へ導かれる。   When starting up a steam power plant, it is necessary to supply about 25% of the boiler's rated water supply to protect the boiler water wall of the boiler. On the other hand, even if the boiler is started, the generated steam cannot be immediately supplied to the steam turbine. In order to supply steam to the steam turbine, it is necessary to maintain the steam at a specified temperature and pressure. Further, after the steam is supplied to the steam turbine, the amount of steam is gradually increased, and finally all the generated steam is supplied to the steam turbine. It will be. As described above, since the boiler water supply amount and the steam supply amount to the steam turbine are different at the startup of the steam power plant, the steam power plant is provided with a startup bypass device, and surplus steam is condensed into the condensate via the flash tank. Led to the vessel.

これまで汽力発電プラントにおいて、発電効率の向上、エネルギーの有効利用、省エネルギー、さらにはランニングコストの低減に関する多くの提案がなされている。このようなエネルギーの有効利用等に対する提案は、通常運転に対応するもののみならず、起動バイパス運転に対応するものもある。例えば、汽力発電プラントの起動時には、ボイラを点火し発生させた蒸気を起動バイパス装置を用い、徐々に主蒸気管など各所に送り所定の温度まで昇温させるウォーミング操作が必要となる。従来、このウォーミングに使用した蒸気は有効利用されることなく外部に排出されていたが、このウォーミングに使用した蒸気を有効に利用するための提案がなされている(例えば特許文献1、2参照)。   In the past, many proposals have been made for power generation efficiency, effective use of energy, energy saving, and reduction of running costs in a steam power plant. Proposals for such effective use of energy include not only those corresponding to normal operation but also those corresponding to startup bypass operation. For example, when a steam power plant is started, a warming operation is required in which steam generated by igniting a boiler is gradually sent to various places such as a main steam pipe using a startup bypass device to raise the temperature to a predetermined temperature. Conventionally, steam used for this warming has been discharged to the outside without being effectively used, but proposals have been made for effectively using the steam used for this warming (for example, Patent Documents 1 and 2). reference).

特開2009−7954号公報JP 2009-7954 A 特開2009−293871号公報JP 2009-293871 A

汽力発電プラントにおいて、発電効率の向上、ランニングコストの低減等は、永遠の課題と言うべきものであり、今後も更なる改善が期待されている。例えば起動バイパス装置を備える汽力発電プラントでは、起動時、起動バイパス装置を用い主蒸気管などのウォーミング操作を行うが、従来の汽力発電プラントでは、主蒸気管をウォーミングした蒸気は、減温器に導かれここで所定の温度に減温された後、復水器に送られ復水とされる。このような排気蒸気の処理方法は、簡便な処理方法であるが有効利用にはつながっていない。主蒸気管をウォーミングし排気される蒸気などは、温度が高く有効利用可能であるが、これまで減温器に排気される蒸気及び減温器から送出される蒸気については、殆ど着目されておらず、有効利用方法も提案されていない。   In a steam power plant, improvement of power generation efficiency, reduction of running costs, etc. should be said to be eternal issues, and further improvements are expected in the future. For example, in a steam power plant equipped with a start-up bypass device, the warm-up operation of the main steam pipe is performed using the start-up bypass device at the time of start-up. After being led to a vessel and reduced to a predetermined temperature, it is sent to a condenser to be condensed. Such an exhaust steam processing method is a simple processing method, but has not led to effective utilization. The steam exhausted by warming the main steam pipe has a high temperature and can be used effectively. However, the steam exhausted to the temperature reducer and the steam delivered from the temperature reducer have received little attention. No effective use method has been proposed.

本発明の目的は、汽力発電プラントに設けられ、ボイラ起動後、通常負荷運転時まで減温器から送出される蒸気の熱を回収し有効利用する実用的な減温器蒸気熱回収設備を提供することである。   An object of the present invention is to provide a practical desuperheater steam heat recovery facility that is provided in a steam power plant and recovers and effectively uses the heat of steam sent from the desuperheater until the normal load operation after the boiler is started. It is to be.

本発明は、ボイラと、前記ボイラから送出される蒸気で駆動する蒸気タービンと、前記蒸気タービンの排気蒸気を復水にする復水器と、低圧給水加熱器、脱気器及び高圧給水加熱器を備え、前記復水器から送出される復水を加熱し前記ボイラに給水するボイラ給水系統と、前記ボイラ起動後、前記蒸気タービンに所定の蒸気が供給され通常負荷運転に切替わるまで水及び/又は蒸気を流通させ、排気される蒸気及び/又はドレンを減温器を経由させ前記復水器に送出し復水とする起動バイパス装置と、を備える汽力発電プラントに設けられ、前記ボイラ起動後、通常負荷運転時まで前記減温器から送出される蒸気の熱を回収する減温器蒸気熱回収設備であって、前記減温器と前記ボイラ給水系統とを結び、前記減温器から送出される蒸気をボイラ給水の加熱用蒸気として前記ボイラ給水系統に送出するボイラ給水加熱蒸気系統と、前記減温器と前記復水器とを結び、前記減温器から送出される蒸気及び/又はドレンを前記復水器に送出する復水回収系統と、前記ボイラ給水加熱蒸気系統及び/又は復水回収系統へ前記減温器から送出される蒸気を導くように前記2つの系統を切替え可能で、前記2つの系統への蒸気量を分配可能な系統制御手段と、を備えることを特徴とする減温器蒸気熱回収設備である。   The present invention relates to a boiler, a steam turbine driven by steam delivered from the boiler, a condenser for condensing exhaust steam from the steam turbine, a low-pressure feed water heater, a deaerator, and a high-pressure feed water heater. A boiler water supply system that heats the condensate delivered from the condenser and supplies the boiler with water, and after starting the boiler, water is supplied until a predetermined steam is supplied to the steam turbine and switched to a normal load operation. The steam generator is provided in a steam power plant comprising: a startup bypass device that circulates steam and delivers exhausted steam and / or drain to the condenser through a desuperheater and uses it as condensate And a steam heat recovery facility for recovering steam heat sent from the temperature reducer until normal load operation, connecting the temperature reducer and the boiler water supply system, from the temperature reducer The steam to be delivered The boiler feed water heating steam system that is sent to the boiler feed water system as steam for heating the feed water is connected to the temperature reducer and the condenser, and the steam and / or drain sent from the temperature reducer is returned to the condenser. The two systems can be switched so as to guide the steam sent from the desuperheater to the condensate recovery system to be sent to the water device, the boiler feed water heating steam system and / or the condensate recovery system, And a system controller that can distribute the amount of steam to the system.

また本発明は、前記減温器蒸気熱回収設備において、前記ボイラ給水加熱蒸気系統は、前記減温器と前記脱気器又は前記脱気器の下流側のボイラ給水系統とを結ぶことを特徴とする。   Moreover, the present invention is characterized in that, in the desuperheater steam heat recovery facility, the boiler feed water heating steam system connects the desuperheater and the boiler feed water system downstream of the deaerator or the deaerator. And

また本発明は、前記減温器蒸気熱回収設備において、前記ボイラ給水加熱蒸気系統は、途中で複数に分岐し、分岐した先端部が前記ボイラ給水系統の複数の箇所に接続し、前記ボイラ給水系統の1以上の箇所に蒸気を送出可能に形成され、さらに前記ボイラ給水加熱蒸気系統の蒸気送出先を制御する制御装置を備えることを特徴とする。   Further, the present invention is the above-described desuperheater steam heat recovery facility, wherein the boiler feed water heating steam system is branched into a plurality of parts on the way, and the branched tip ends are connected to a plurality of locations of the boiler water supply system. It is formed so that steam can be delivered to one or more locations of the system, and further includes a control device that controls the steam delivery destination of the boiler feed water heating steam system.

また本発明は、前記減温器蒸気熱回収設備において、前記制御装置は、前記複数の蒸気送出先の中から、送出先のボイラ給水温度が送出される蒸気温度以下で該蒸気温度に一番近い蒸気送出先を選定し、該蒸気送出先に蒸気を送出するように前記ボイラ給水加熱蒸気系統を制御することを特徴とする。   Further, the present invention provides the desuperheater steam heat recovery facility, wherein the control device has the highest steam temperature below the steam temperature at which the boiler feed water temperature of the delivery destination is less than the delivery temperature of the plurality of steam delivery destinations. A near steam delivery destination is selected, and the boiler feed water heating steam system is controlled so as to deliver steam to the steam delivery destination.

また本発明は、前記減温器蒸気熱回収設備において、前記汽力発電プラントが、週末起動停止(WSS)運転又は深夜起動停止(DSS)運転対応の汽力発電プラントであることを特徴とする。   Further, the present invention is characterized in that, in the desuperheater steam heat recovery facility, the steam power plant is a steam power plant that supports weekend start / stop (WSS) operation or midnight start / stop (DSS) operation.

本発明の減温器蒸気熱回収設備は、ボイラ起動後、通常負荷運転時まで減温器から送出される蒸気をボイラ給水系統に送出可能なボイラ給水加熱蒸気系統を備えるので、前記蒸気でボイラ給水を加熱可能であり、減温器から送出される蒸気を有効利用することができる。また減温器からの送出蒸気を復水器に送出可能な系統、2つの系統を切替え可能で、2つの系統への蒸気量を分配可能な系統制御手段を備えるので、減温器から送出される蒸気のうちボイラ給水加熱蒸気系統に送出されない蒸気は復水器に送出することができる。これにより減温器から送出される全ての蒸気を確実に処理することができ、汽力発電プラントの起動運転を支障なく行うことができる。   Since the desuperheater steam heat recovery equipment of the present invention includes a boiler feed water heating steam system capable of delivering steam delivered from the desuperheater to the boiler feed water system after the boiler is started until the normal load operation, the steam is used in the boiler. The feed water can be heated, and the steam delivered from the temperature reducer can be used effectively. Also, a system that can send out the steam sent from the temperature reducer to the condenser, two systems can be switched, and system control means that can distribute the amount of steam to the two systems is provided. Steam that is not sent to the boiler feed water heating steam system can be sent to the condenser. Thereby, all the steams sent from the temperature reducer can be reliably processed, and the start-up operation of the steam power plant can be performed without any trouble.

また本発明によれば、前記ボイラ給水加熱蒸気系統は、脱気器又は脱気器の下流側のボイラ給水系統に減温器からの送出蒸気を導くことができるので、送出される蒸気をボイラ給水と直接接触させるか、又はボイラ給水と熱交換し生成するドレンを脱気器に投入することで脱気器の水位が上昇する。この結果、脱気器への送水量が低下し、ボイラ給水を送水する復水ポンプ、復水昇圧ポンプの負荷が低下し、これらのランニングコストが低下する。   Further, according to the present invention, the boiler feed water heating steam system can guide the delivery steam from the desuperheater to the deaerator or the boiler feed water system on the downstream side of the deaerator. The water level of the deaerator is raised by bringing the drain generated by direct contact with the feed water or heat exchange with the boiler feed water into the deaerator. As a result, the amount of water supplied to the deaerator is reduced, the load of the condensate pump and the condensate booster pump for supplying boiler feed water is reduced, and the running cost thereof is reduced.

また本発明によれば、前記ボイラ給水加熱蒸気系統は、途中で複数に分岐し、ボイラ給水系統の1以上の箇所に蒸気を送出可能に形成され、さらに前記ボイラ給水加熱蒸気系統の蒸気送出先を制御する制御装置を備えるので、ボイラ給水系統の複数個所に減温器から送出される蒸気を送ることが可能である。ボイラ給水系統の複数個所に蒸気を送出することで蒸気消費量が増加し、復水器に送出する蒸気量が低下するので、減温器から送出される蒸気をより有効に利用することができる。   Further, according to the present invention, the boiler feed water heating steam system is divided into a plurality of parts on the way, is formed so as to be able to send steam to one or more locations of the boiler feed water system, and further, the steam delivery destination of the boiler feed water heating steam system Therefore, it is possible to send steam delivered from the temperature reducer to a plurality of locations in the boiler water supply system. By sending steam to several places in the boiler water supply system, the steam consumption increases and the amount of steam sent to the condenser decreases, so the steam sent from the temperature reducer can be used more effectively. .

また本発明によれば、制御装置が複数の蒸気送出先の中から、送出先のボイラ給水温度が送出される蒸気温度以下で該蒸気温度に一番近い蒸気送出先に蒸気を送出するようにボイラ給水加熱蒸気系統を制御するので、減温器から送出される蒸気の熱をボイラ給水の加熱により効率的に利用することができる。温度の低いボイラ給水は、温度の低い蒸気でも加熱できるが、温度の高いボイラ給水は、温度の低い蒸気では加熱できないことを考えれば、可能な限り温度の近いボイラ給水を加熱することが効率的である。   Further, according to the present invention, the control device sends steam from a plurality of steam destinations to a steam destination closest to the steam temperature below the steam temperature at which the boiler feed water temperature of the destination is sent. Since the boiler feed water heating steam system is controlled, the heat of the steam delivered from the temperature reducer can be efficiently utilized by heating the boiler feed water. Low temperature boiler feedwater can be heated with low temperature steam, but high temperature boiler feedwater cannot be heated with low temperature steam. It is.

また本発明によれば、本発明の減温器蒸気熱回収設備は、汽力発電プラントの起動時に排気される蒸気の処理に関するものであるから、起動停止の多い週末起動停止(WSS)運転、深夜起動停止(DSS)運転を行う汽力発電プラントに好適に使用することができる。   Further, according to the present invention, the desuperheater steam heat recovery facility of the present invention relates to the treatment of steam exhausted at the start of a steam power plant, so weekend start / stop (WSS) operation with many start / stops, midnight It can be suitably used for a steam power plant that performs start / stop (DSS) operation.

本発明の第1実施形態としての減温器蒸気熱回収設備を備える汽力発電プラントの概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of a steam power generation plant provided with a desuperheater steam heat recovery equipment as a 1st embodiment of the present invention. 本発明の第2実施形態としての減温器蒸気熱回収設備の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of a desuperheater steam heat recovery equipment as a 2nd embodiment of the present invention. 本発明の第3実施形態としての減温器蒸気熱回収設備の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of a desuperheater steam heat recovery equipment as a 3rd embodiment of the present invention.

図1は、本発明の第1実施形態としての減温器蒸気熱回収設備を備える汽力発電プラントの概略的構成を示すプロセスフロー図である。まず汽力発電プラントの全体構成を通常運転(通常負荷運転)時の蒸気及び復水・給水の流れに従って説明し、その後、起動バイパス装置の構成、汽力発電プラント起動時の運転要領と減温器蒸気熱回収設備の使用方法を説明する。   FIG. 1 is a process flow diagram showing a schematic configuration of a steam power plant including a desuperheater steam heat recovery facility as a first embodiment of the present invention. First, the overall configuration of the steam power plant will be described in accordance with the flow of steam and condensate / feed water during normal operation (normal load operation), and then the configuration of the startup bypass device, the operating procedure and steam cooler steam when starting the steam power plant How to use the heat recovery equipment will be explained.

ボイラ1は、燃料であるLNG(液化天然ガス)を燃焼させる火炉2、燃焼ガスによりボイラ給水を加熱する節炭器3、水冷壁4、ゲージ壁5さらには飽和蒸気を過熱蒸気とする1次過熱器6及び2次過熱器7を備える。2次加熱器7から送出される過熱蒸気は、主蒸気止弁11及び蒸気加減弁12が設けられた主蒸気管13を通じて高圧タービン14に送られ高圧タービン14を駆動する。高圧タービン14を駆動した蒸気は、ボイラの再熱器(図示を省略)で再加熱された後、図示を省略した中圧タービン及び低圧タービンを駆動する。発電機(図示を省略)は、高圧タービン14、中圧タービン、低圧タービンと連結しこれらタービンにより駆動され発電を行う。   The boiler 1 includes a furnace 2 that burns LNG (liquefied natural gas) as fuel, a economizer 3 that heats boiler feed water using the combustion gas, a water cooling wall 4, a gauge wall 5, and saturated steam as primary steam. A superheater 6 and a secondary superheater 7 are provided. The superheated steam delivered from the secondary heater 7 is sent to the high-pressure turbine 14 through the main steam pipe 13 provided with the main steam stop valve 11 and the steam control valve 12 to drive the high-pressure turbine 14. The steam that has driven the high-pressure turbine 14 is reheated by a boiler reheater (not shown), and then drives an intermediate-pressure turbine and a low-pressure turbine that are not shown. The generator (not shown) is connected to the high-pressure turbine 14, the intermediate-pressure turbine, and the low-pressure turbine, and is driven by these turbines to generate power.

低圧タービンから排出される蒸気は、復水器21で冷却され凝縮し復水となる。復水は、復水ポンプ22を介して脱塩装置23に送られ、復水中の塩類が除去される。塩類が除去された復水は、復水昇圧ポンプ24で昇圧された後、復水熱交換器25で軸冷水と熱交換し温度を上昇させる。その後、復水は、空気抽出装置26のクーラーの冷媒として使用され、グランドコンデンサ27、ドレンクーラ28の順に送られ、さらに低圧給水加熱器29で加熱された後、脱気器30に送られる。   The steam discharged from the low-pressure turbine is cooled and condensed by the condenser 21 to become condensed water. Condensate is sent to a desalinator 23 via a condensate pump 22 to remove salts in the condensate. The condensate from which salts have been removed is boosted by the condensate booster pump 24 and then heat-exchanged with the axial cold water by the condensate heat exchanger 25 to increase the temperature. Thereafter, the condensate is used as a refrigerant for the cooler of the air extraction device 26, sent in the order of the ground condenser 27 and the drain cooler 28, further heated by the low-pressure feed water heater 29, and then sent to the deaerator 30.

低圧給水加熱器29は、表面接触式の熱交換器であり、低圧タービン(LP)の抽気蒸気で加熱される。低圧給水加熱器29は、3基直列に設けられており、図1では1基のみ示した。脱気器30に送られた給水は、中圧タービンの抽気蒸気(脱気用蒸気)で加熱され、給水中の溶存酸素等不凝縮性ガスが除去された後、ボイラ給水ポンプ31により昇圧された後、高圧給水加熱器32に送られ、ここで高圧タービン14の抽気蒸気によりさらに加熱される。高圧給水加熱器32(32a、32b、32c)は、表面接触式の熱交換器であり、高圧タービン14の抽気蒸気で加熱された給水は、節炭器3に送られる。復水器21から節炭器3に至るまでの系統が、復水・給水系統である。   The low-pressure feed water heater 29 is a surface contact type heat exchanger, and is heated by extracted steam of a low-pressure turbine (LP). Three low-pressure feed water heaters 29 are provided in series, and only one is shown in FIG. The feed water sent to the deaerator 30 is heated by the extraction steam (deaeration steam) of the intermediate pressure turbine, and after the non-condensable gas such as dissolved oxygen in the feed water is removed, the pressure is increased by the boiler feed pump 31. After that, it is sent to the high-pressure feed water heater 32 where it is further heated by the extracted steam of the high-pressure turbine 14. The high-pressure feed water heater 32 (32 a, 32 b, 32 c) is a surface contact type heat exchanger, and feed water heated by the extraction steam of the high-pressure turbine 14 is sent to the economizer 3. A system from the condenser 21 to the economizer 3 is a condensate / water supply system.

減温器蒸気熱回収設備は、ボイラ1起動後、通常負荷運転時まで後述の起動バイパス装置の減温器55から送出される蒸気をボイラ給水の加熱に使用するための設備である。減温器蒸気熱回収設備は、起動バイパス装置の減温器55から送出される蒸気を脱気器30に導くボイラ給水加熱蒸気系統41、減温器55から送出されるドレン及び/又は蒸気を復水器21に導く復水回収系統42、減温器55から送出される蒸気をボイラ給水加熱蒸気系統41及び/又は復水回収系統42に導く三方弁43を備える。減温器55の出口部と三方弁43の入口部とが管路44で、三方弁43の一方の出口と脱気器30とが管路45で、三方弁43の他方の出口と復水器21とが管路46で結ばれ、三方弁43を間に挟み管路44と管路45とでボイラ給水加熱蒸気系統41が形成され、三方弁43を間に挟み管路44と管路46とで復水回収系統42が形成されている。三方弁43は、汽力発電プラントの運転を制御する運転制御装置(図示を省略)からの指令に基づき、脱気器30内の給水温度が所定の温度となるようにボイラ給水加熱蒸気系統41に送出する蒸気量を調整する。なお、三方弁43に代え、管路45及び管路46に流量調整弁を設け、ボイラ給水加熱蒸気系統41及び復水回収系統42への蒸気量を調整してもよい。   The desuperheater steam heat recovery facility is a facility for using the steam delivered from the desuperheater 55 of the startup bypass device described later after boiler 1 startup until the normal load operation for heating boiler feed water. The desuperheater steam heat recovery equipment is a boiler feed water heating steam system 41 that guides steam delivered from the desuperheater 55 of the startup bypass device to the deaerator 30, drain and / or steam delivered from the desuperheater 55. A condensate recovery system 42 that leads to the condenser 21 and a three-way valve 43 that guides steam delivered from the temperature reducer 55 to the boiler feed water heating steam system 41 and / or the condensate recovery system 42 are provided. The outlet portion of the temperature reducer 55 and the inlet portion of the three-way valve 43 are a conduit 44, one outlet of the three-way valve 43 and the deaerator 30 are a conduit 45, and the other outlet of the three-way valve 43 and condensate. The vessel 21 is connected by a pipe 46, and a boiler feed water heating steam system 41 is formed by the pipe 44 and the pipe 45 with the three-way valve 43 therebetween, and the pipe 44 and the pipe with the three-way valve 43 interposed therebetween. 46, a condensate recovery system 42 is formed. The three-way valve 43 is supplied to the boiler feed water heating steam system 41 so that the feed water temperature in the deaerator 30 becomes a predetermined temperature based on a command from an operation control device (not shown) that controls the operation of the steam power plant. Adjust the amount of steam delivered. Instead of the three-way valve 43, a flow rate adjusting valve may be provided in the pipe line 45 and the pipe line 46 to adjust the steam amount to the boiler feed water heating steam system 41 and the condensate recovery system 42.

上記汽力発電プラントには、起動する際に使用する起動バイパス装置が設けられている。起動バイパス装置は、1次過熱器6をバイパスする1次過熱器バイパス系統51、2次過熱器7をバイパスする2次過熱器バイパス系統52、1次過熱器バイパス系統51及び2次過熱器バイパス系統52と接続し、1次過熱器6をバイパスするように配置されたフラッシュタンク53、高圧タービン14の上流側に配置されたタービンバイパス系統54、フラッシュタンク53から排気される余剰の蒸気及びタービンバイパス系統54から排気される蒸気を減温する減温器55を備える。   The steam power plant is provided with a startup bypass device used when starting up. The startup bypass device includes a primary superheater bypass system 51 that bypasses the primary superheater 6, a secondary superheater bypass system 52 that bypasses the secondary superheater 7, a primary superheater bypass system 51, and a secondary superheater bypass. A flash tank 53 disposed so as to be connected to the system 52 and bypassing the primary superheater 6, a turbine bypass system 54 disposed upstream of the high-pressure turbine 14, surplus steam exhausted from the flash tank 53 and the turbine A temperature reducer 55 for reducing the temperature of steam exhausted from the bypass system 54 is provided.

1次過熱器バイパス系統51は、1次過熱器6の上流側とフラッシュタンク53とを結ぶ1次過熱器バイパス管56を有し、管路の途中に調整弁57を備える。2次過熱器バイパス系統52も1次過熱器バイパス系統51と同様に、2次過熱器7の上流側とフラッシュタンク53とを結ぶ2次過熱器バイパス管58を有し、管路の途中に調整弁59を備える。さらに2次過熱器バイパス系統52は、フラッシュタンク53から送出される蒸気で2次過熱器7をウォーミングする、加熱器通気弁60が介装された2次加熱器ウォーミング管61を備える。   The primary superheater bypass system 51 has a primary superheater bypass pipe 56 that connects the upstream side of the primary superheater 6 and the flash tank 53, and includes a regulating valve 57 in the middle of the pipeline. Similarly to the primary superheater bypass system 51, the secondary superheater bypass system 52 has a secondary superheater bypass pipe 58 that connects the upstream side of the secondary superheater 7 and the flash tank 53, and is in the middle of the pipeline. A regulating valve 59 is provided. Further, the secondary superheater bypass system 52 includes a secondary heater warming pipe 61 that warms the secondary superheater 7 with steam delivered from the flash tank 53 and is provided with a heater vent valve 60.

フラッシュタンク53は、1次過熱器バイパス管56及び2次過熱器バイパス管58を通じて排気される蒸気を受け入れ、蒸気を所定の圧力に調整する圧力容器であり、蒸気を2次過熱器7に送出すると共に、ボイラ給水を加熱する調整弁67、68が設けられた加熱蒸気管62を介して脱気器30及び高圧給水加熱器32cに加熱蒸気を送る。フラッシュタンク53には、所定の圧力以上で開き蒸気を逃すダンプ蒸気弁63が設けられ、ダンプ蒸気は、減温器55と接続する遮断弁69が設けられたダンプ蒸気送出管64を通じて減温器55に送られる。加熱蒸気管62は、ダンプ蒸気弁63の上流側でダンプ蒸気送出管64に接続する。さらにフラッシュタンク53は、発生したドレンを復水器21及び脱気器30に送出する調整弁70、71が設けられたドレン送出管65、66を備える。またドレン送出管65にはブロータンクと連絡する調整弁72を備える分岐管73が設けられている。   The flash tank 53 is a pressure vessel that receives steam exhausted through the primary superheater bypass pipe 56 and the secondary superheater bypass pipe 58 and adjusts the steam to a predetermined pressure, and sends the steam to the secondary superheater 7. At the same time, the heating steam is sent to the deaerator 30 and the high-pressure feed water heater 32c through the heating steam pipe 62 provided with the regulating valves 67 and 68 for heating the boiler feed water. The flash tank 53 is provided with a dump steam valve 63 that opens and escapes steam at a predetermined pressure or higher, and the dump steam is passed through a dump steam delivery pipe 64 provided with a shut-off valve 69 connected to the temperature reducer 55. 55. The heating steam pipe 62 is connected to the dump steam delivery pipe 64 on the upstream side of the dump steam valve 63. Further, the flush tank 53 includes drain delivery pipes 65 and 66 provided with adjusting valves 70 and 71 for delivering the generated drain to the condenser 21 and the deaerator 30. Further, the drain delivery pipe 65 is provided with a branch pipe 73 having an adjustment valve 72 communicating with the blow tank.

タービンバイパス系統54は、タービンバイパス弁75が設けられたタービンバイパス管76を有し、一端を主蒸気止弁11の上流側の主蒸気管13に他端を減温器55に接続する。   The turbine bypass system 54 has a turbine bypass pipe 76 provided with a turbine bypass valve 75, and one end is connected to the main steam pipe 13 on the upstream side of the main steam stop valve 11 and the other end is connected to the temperature reducer 55.

減温器55は、フラッシュタンク53のダンプ蒸気及びタービンバイパス管76を通じて排気される主蒸気管13のウォーミング蒸気を減温する装置である。減温器55には、復水昇圧ポンプ24の出口部に設けられた、調整弁78を有する減温水供給管77を介して減温用の水として復水が供給される。減温器55には温度検出器80が装着され、調整弁78は、温度検出器80と接続する温度調節器81からの信号により減温水量を調整する。これにより減温器55から排出される蒸気を所定の温度に調整する。   The temperature reducer 55 is a device that reduces the temperature of the dump steam in the flash tank 53 and the warming steam in the main steam pipe 13 exhausted through the turbine bypass pipe 76. Condensate is supplied to the temperature reducer 55 as water for temperature reduction through a temperature-reduced water supply pipe 77 having an adjustment valve 78 provided at the outlet of the condensate booster pump 24. A temperature detector 80 is attached to the temperature reducer 55, and the adjustment valve 78 adjusts the amount of water to be reduced by a signal from a temperature controller 81 connected to the temperature detector 80. Thereby, the steam discharged from the temperature reducer 55 is adjusted to a predetermined temperature.

次に汽力発電プラント起動時の運転要領と減温器55から送出される蒸気によるボイラ給水加熱方法を説明する。なお、以下の説明に使用する数値は例示であり、本発明はこの数値に拘束されるものではない。   Next, an operation procedure when starting the steam power plant and a boiler feed water heating method using steam delivered from the temperature reducer 55 will be described. In addition, the numerical value used for the following description is an illustration, and this invention is not restrained by this numerical value.

汽力発電プラントを起動する際には、ボイラ1の水冷壁4を保護するため、ボイラ定格給水量の25%程度の給水を行う必要がある。一方でボイラ1を起動しても発生する蒸気を直ちに蒸気タービンに供給することはできないので、起動バイパス装置を使用した起動バイパス運転により汽力発電プラントが起動される。ボイラ1には、起動バイパス運転が終了するまでボイラ定格給水量の25%程度の給水が行われる。   When starting a steam power plant, in order to protect the water cooling wall 4 of the boiler 1, it is necessary to supply about 25% of the boiler's rated water supply amount. On the other hand, since the generated steam cannot be immediately supplied to the steam turbine even when the boiler 1 is activated, the steam power plant is activated by the activation bypass operation using the activation bypass device. The boiler 1 is supplied with about 25% of the boiler rated water supply amount until the startup bypass operation is completed.

ボイラ1の水張り後、ボイラ1、1次過熱器バイパス系統51、フラッシュタンク53、復水・給水系統を通じた系統水循環が行われる。このとき1次過熱器6と2次過熱器7とを連絡する過熱器止弁8、過熱器加減弁9、2次過熱器バイパス系統52は閉止されている。ボイラ点火後、蒸気を1次過熱器バイパス系統51を通じてフラッシュタンク53へ送り、1次過熱器6の入口温度が160℃に達すると2次過熱器バイパス系統52の調整弁59が開き、1次過熱器6が加熱される。以降、フラッシュタンク53に送られる蒸気のうち、ウォーミング等に使用される以外の蒸気は、一部がドレンとなり復水器21、脱気器30に送られ、余剰の蒸気は、脱気器30、高圧給水過熱器32に送られ、ボイラ給水の加熱に使用される。さらにフラッシュタンク圧力が3.5MPaを超えるとダンプ蒸気弁63が開き、余剰の蒸気は減温器55へ送られる。   After water filling of the boiler 1, system water circulation is performed through the boiler 1, the primary superheater bypass system 51, the flash tank 53, and the condensate / water supply system. At this time, the superheater stop valve 8, the superheater control valve 9, and the secondary superheater bypass system 52 that connect the primary superheater 6 and the secondary superheater 7 are closed. After the boiler is ignited, the steam is sent to the flash tank 53 through the primary superheater bypass system 51, and when the inlet temperature of the primary superheater 6 reaches 160 ° C, the regulating valve 59 of the secondary superheater bypass system 52 is opened. The superheater 6 is heated. Thereafter, a part of the steam sent to the flash tank 53 other than that used for warming or the like becomes a drain and is sent to the condenser 21 and the deaerator 30, and the surplus steam is sent to the deaerator. 30 is sent to the high pressure feed water superheater 32 and used for heating boiler feed water. Further, when the flash tank pressure exceeds 3.5 MPa, the dump steam valve 63 is opened, and surplus steam is sent to the temperature reducer 55.

フラッシュタンク圧力が0.98MPaになると、加熱器通気弁60及びタービンバイパス弁75が開き、2次過熱器7及び主蒸気管13に蒸気が流れ込みこの部分がウォーミングされる。この主蒸気管13のウォーミングは、フラッシュタンク圧力が約3.5MPaとなるまで継続される。主蒸気管13をウォーミングした蒸気は、タービンバイパス管76から減温器55に送られる。   When the flash tank pressure becomes 0.98 MPa, the heater vent valve 60 and the turbine bypass valve 75 are opened, and the steam flows into the secondary superheater 7 and the main steam pipe 13 to be warmed. The warming of the main steam pipe 13 is continued until the flash tank pressure reaches about 3.5 MPa. The steam warming the main steam pipe 13 is sent from the turbine bypass pipe 76 to the temperature reducer 55.

主蒸気管13のウォーミングが終了すると、タービンバイパス弁75は閉止し、蒸気は蒸気タービン14に送られ並列される。蒸気タービン並列後、過熱器減圧弁9を開け、過熱器減圧弁9を経由し蒸気を供給し、徐々に加熱器減圧弁9の開度を増し、主蒸気圧力を15.576MPaとする。この操作をランピング操作と言う。なお、この状態でも蒸気の一部はフラッシュタンク53へ送られている。この操作の段階で過熱器止弁8が全開となる。その後、蒸気の制御を主蒸気止弁11から蒸気加減弁12により行う弁切替が行われ、蒸気は全て高圧タービン14に送られる。この時点で起動バイパス系統に蒸気を流す必要はなくなるので、1次過熱器バイパス系統51の調整弁57が閉じ、起動バイパス運転が終了し通常運転(通常負荷運転)へと移行する。起動バイパス系統を使用する運転をローロードオペレーションとも言う。   When the warming of the main steam pipe 13 is finished, the turbine bypass valve 75 is closed, and the steam is sent to the steam turbine 14 to be paralleled. After paralleling the steam turbine, the superheater pressure reducing valve 9 is opened, steam is supplied via the superheater pressure reducing valve 9, the opening degree of the heater pressure reducing valve 9 is gradually increased, and the main steam pressure is set to 15.576 MPa. This operation is called a ramping operation. Even in this state, a part of the steam is sent to the flash tank 53. At this stage of operation, the superheater stop valve 8 is fully opened. Thereafter, valve switching is performed in which the steam is controlled by the steam control valve 12 from the main steam stop valve 11, and all the steam is sent to the high-pressure turbine 14. At this time, since it is not necessary to flow steam to the startup bypass system, the regulating valve 57 of the primary superheater bypass system 51 is closed, the startup bypass operation is completed, and the operation shifts to the normal operation (normal load operation). Operation using the startup bypass system is also called low-load operation.

減温器55に送られるフラッシュタンク53からの余剰蒸気及びタービンバイパス管76から送られ主蒸気管13をウォーミングした蒸気は、蒸気温度が減温器55の設定温度を超えるときは、減温器55で設定温度、例えば170℃に調整された後、ボイラ給水加熱蒸気系統41を通じて脱気器30に送られ、給水を設定された温度に加熱する。脱気器30の給水の加熱に必要な蒸気量が少なく、減温器55から送出される蒸気を全て脱気器30に送出できないときは、余剰の蒸気は復水回収系統42を通じて復水器21に送られ復水になる。ボイラ給水加熱蒸気系統41、復水回収系統42への蒸気の送出の調整は、三方弁43が行い、減温器55から送出される蒸気は全て、ボイラ給水加熱蒸気系統41及び/又は復水回収系統42を通じて処理される。   The surplus steam from the flash tank 53 sent to the cooler 55 and the steam sent from the turbine bypass pipe 76 and warmed through the main steam pipe 13 are reduced when the steam temperature exceeds the set temperature of the cooler 55. After being adjusted to a set temperature, for example, 170 ° C. by the vessel 55, it is sent to the deaerator 30 through the boiler feed water heating steam system 41 to heat the feed water to the set temperature. When the amount of steam required for heating the feed water of the deaerator 30 is small and not all the steam sent from the temperature reducer 55 can be sent to the deaerator 30, the surplus steam passes through the condensate recovery system 42. 21 sent to condensate. Adjustment of the delivery of steam to the boiler feed water heating steam system 41 and the condensate recovery system 42 is performed by the three-way valve 43, and all the steam sent from the temperature reducer 55 is the boiler feed water heating steam system 41 and / or condensate. It is processed through the recovery system 42.

主蒸気管13のウォーミングの初期などには、減温器55に送られる蒸気の温度が低い、又は蒸気がドレンとなり減温器55に送られる場合もある。減温器55の温度と脱気器30内の給水温度を比較して、減温器55の温度が低い場合には、減温器55に送られる蒸気及び/又はドレンを全て復水器21に送出するように三方弁43を切り替える。   In the initial stage of warming of the main steam pipe 13, the temperature of the steam sent to the temperature reducer 55 may be low, or the steam may be drained and sent to the temperature reducer 55. When the temperature of the temperature reducer 55 is compared with the feed water temperature in the deaerator 30 and the temperature of the temperature reducer 55 is low, all the steam and / or drain sent to the temperature reducer 55 is recovered from the condenser 21. The three-way valve 43 is switched so as to be sent to

従来の汽力発電プラントでは、起動バイパス運転時に減温器55に排気される蒸気は、最終的に全て復水器21に送られ復水とされ、熱回収は行われていなかった。これに対して、本実施形態に示す汽力発電プラントでは、起動バイパス運転時に減温器55に排気され必要に応じて減温された、減温器55から送出される蒸気を給水加熱に使用するので、排気蒸気の保有する熱エネルギーを有効利用することができる。また脱気器30に送られる蒸気は、減温器55で温度が調整された蒸気であり、さらにフラッシュタンク53のダンプ蒸気及びタービンバイパス管76を通じて排気される主蒸気管13のウォーミング蒸気を、減温器55を経由し脱気器30に送出することで蒸気流量の変動も緩和され、脱気器30の給水加熱の制御性も容易となる。また脱気器30の給水の加熱に必要な蒸気量が少ない場合には、余剰の蒸気は復水器21に送られるので、汽力発電プラントの起動バイパス運転を支障なく行える。また脱気器30は、直接加熱式ゆえ、脱気器30に送られた蒸気は給水で冷却され復水となる。この結果、脱気器30の水位が上昇し、脱気器30への送水量が低下する。これにより脱気器30に給水を送る復水ポンプ22、復水昇圧ポンプ24の負荷が低下し、これらのランニングコストが低下する。   In the conventional steam power plant, all the steam exhausted to the temperature reducer 55 during the start-up bypass operation is finally sent to the condenser 21 to be condensate, and heat recovery is not performed. On the other hand, in the steam power generation plant shown in the present embodiment, the steam discharged from the temperature reducer 55 that is exhausted to the temperature reducer 55 during start-up bypass operation and reduced in temperature as needed is used for feed water heating. Therefore, the thermal energy possessed by the exhaust steam can be used effectively. The steam sent to the deaerator 30 is steam whose temperature has been adjusted by the temperature reducer 55, and further, the dump steam of the flash tank 53 and the warming steam of the main steam pipe 13 exhausted through the turbine bypass pipe 76. By sending the heat to the deaerator 30 via the temperature reducer 55, fluctuations in the steam flow rate are alleviated, and the feed water heating controllability of the deaerator 30 is facilitated. Further, when the amount of steam required for heating the feed water of the deaerator 30 is small, surplus steam is sent to the condenser 21, so that the start-up bypass operation of the steam power plant can be performed without any trouble. Moreover, since the deaerator 30 is a direct heating type, the steam sent to the deaerator 30 is cooled by feed water and becomes condensed water. As a result, the water level of the deaerator 30 rises and the amount of water supplied to the deaerator 30 decreases. As a result, the loads on the condensate pump 22 and the condensate booster pump 24 that feed water to the deaerator 30 are reduced, and the running costs thereof are reduced.

図2は、本発明の第2実施形態としての減温器蒸気熱回収設備の概略的構成を示すプロセスフロー図である。第1実施形態に示す減温器蒸気熱回収設備と同一の構成には、同一の符号を付して説明を省略する。   FIG. 2 is a process flow diagram showing a schematic configuration of a desuperheater steam heat recovery facility as a second embodiment of the present invention. The same code | symbol is attached | subjected to the structure same as the desuperheater steam heat recovery equipment shown in 1st Embodiment, and description is abbreviate | omitted.

第2実施形態に示す減温器蒸気熱回収設備も第1実施形態に示す減温器蒸気熱回収設備と同様、起動バイパス運転時、起動バイパス装置の減温器55に排気され必要に応じて減温された、減温器55から送出される蒸気を給水加熱に使用するための設備であり、ボイラ給水加熱蒸気系統47、復水回収系統42及び三方弁43を備える。但し、第2実施形態に示す減温器蒸気熱回収設備では、ボイラ給水加熱蒸気系統47が複数設けられ、複数のボイラ給水加熱蒸気系統47への蒸気の送出を制御する制御装置100を備える点が第1実施形態に示す減温器蒸気熱回収設備と異なる。以下、第1実施形態に示す減温器蒸気熱回収設備との相違点を中心に説明する。   Similarly to the desuperheater steam heat recovery facility shown in the first embodiment, the desuperheater steam heat recovery facility shown in the second embodiment is exhausted to the desuperheater 55 of the startup bypass device during the startup bypass operation, as necessary. This is a facility for using the steam delivered from the temperature reducer 55 for heating the feed water, and includes a boiler feed water heating steam system 47, a condensate recovery system 42, and a three-way valve 43. However, in the desuperheater steam heat recovery facility shown in the second embodiment, a plurality of boiler feed water heating steam systems 47 are provided, and a control device 100 that controls the delivery of steam to the plurality of boiler feed water heating steam systems 47 is provided. However, it differs from the desuperheater steam heat recovery equipment shown in the first embodiment. Hereinafter, the difference from the desuperheater steam heat recovery facility shown in the first embodiment will be mainly described.

ボイラ給水加熱蒸気系統47は、三方弁43の出口部の管路45が4つに分岐し、分岐した先端部に第1から第4の管路49a、49b、49c、49dが設けられ、4つのボイラ給水加熱蒸気系統47a、47b、47c、47dが形成されている。第1の管路49aは、端部に遮断弁50aを備え、遮断弁50aを介して管路45と接続し、他端部を脱気器30と接続する。第2の管路49bは、端部に遮断弁50bを備え、遮断弁50bを介して管路45と接続し、他端部を高圧給水加熱器32aと接続する。第3の管路49cは、端部に遮断弁50cを備え、遮断弁50cを介して管路45と接続し、他端部を高圧給水加熱器32bと接続する。第4の管路49dは、端部に遮断弁50dを備え、遮断弁50dを介して管路45と接続し、他端部を高圧給水加熱器32cと接続する。ボイラ給水加熱蒸気系統47aは、三方弁43を挟み管路44、管路45、遮断弁50a及び管路49aで形成されている。他のボイラ給水加熱蒸気系統47b、47c、47dも同様であり、三方弁43を挟む管路44及び管路45は共用部分である。遮断弁50(50a、50b、50c、50d)は、制御装置100からの信号で開閉する。   In the boiler feed water heating steam system 47, the pipe 45 at the outlet of the three-way valve 43 branches into four, and first to fourth pipes 49a, 49b, 49c, and 49d are provided at the branched tip. Two boiler feed water heating steam systems 47a, 47b, 47c, 47d are formed. The first pipe line 49 a includes a shutoff valve 50 a at an end, is connected to the pipe 45 via the shutoff valve 50 a, and is connected to the deaerator 30 at the other end. The second pipe line 49b includes a shutoff valve 50b at an end, is connected to the pipe line 45 through the shutoff valve 50b, and is connected to the high pressure feed water heater 32a at the other end. The third pipe line 49c is provided with a shutoff valve 50c at an end, is connected to the pipe 45 via the shutoff valve 50c, and is connected to the high pressure feed water heater 32b at the other end. The fourth pipe line 49d includes a shutoff valve 50d at an end, is connected to the pipe 45 via the shutoff valve 50d, and is connected to the high pressure feed water heater 32c at the other end. The boiler feed water heating steam system 47a is formed by a pipeline 44, a pipeline 45, a shutoff valve 50a, and a pipeline 49a with the three-way valve 43 interposed therebetween. The same applies to the other boiler feed water heating steam systems 47b, 47c, and 47d, and the pipeline 44 and the pipeline 45 sandwiching the three-way valve 43 are shared portions. The shut-off valves 50 (50a, 50b, 50c, 50d) are opened and closed by a signal from the control device 100.

制御装置100は、汽力発電プラントの運転を制御する運転制御装置(図示を省略)と信号を送受信可能に接続し、運転制御装置と協働し、複数のボイラ給水加熱蒸気系統47(47a、47b、47c、47d)の中から蒸気を供給するボイラ給水加熱蒸気系統47を選定し、選定したボイラ給水加熱蒸気系統47に蒸気を送出するように三方弁43及び遮断弁50を制御する。制御装置100は、運転制御装置から温度データを取得し、この温度データから送出先の給水温度が、減温器55以下の温度でかつ減温器55に一番近いボイラ給水加熱蒸気系統47a、47b、47c、47dを選定し、このボイラ給水加熱蒸気系統47に蒸気を送出するように制御する。さらに先に選定したボイラ給水加熱蒸気系統47のみに蒸気を供給しても、減温器55から送出される蒸気が余るときは、減温器55以下の温度でかつ次に減温器55に近い給水温度のボイラ給水加熱蒸気系統47を選定し、このボイラ給水加熱蒸気系統47へも蒸気を送出するように制御する。以下同様に、第3、第4番目のボイラ給水加熱蒸気系統47に蒸気を送出するように制御することもできる。なお、減温器55から送出される蒸気を全て脱気器30及び/又は高圧給水加熱器32a、32b、32cに送出できないときは、余剰の蒸気を復水回収系統42に送出する点は第1実施形態に示す減温器蒸気熱回収設備と同様である。   The control device 100 is connected to an operation control device (not shown) for controlling the operation of the steam power plant so that signals can be transmitted and received, and cooperates with the operation control device to provide a plurality of boiler feed water heating steam systems 47 (47a, 47b). 47c, 47d), the boiler feed water heating steam system 47 that supplies steam is selected, and the three-way valve 43 and the shutoff valve 50 are controlled so as to send the steam to the selected boiler feed water heating steam system 47. The control device 100 obtains temperature data from the operation control device, and from this temperature data, the boiler feed water heating steam system 47a, the supply water temperature of the delivery destination being a temperature equal to or lower than the temperature reducer 55 and closest to the temperature reducer 55, 47b, 47c, 47d are selected, and control is performed so that steam is delivered to the boiler feed water heating steam system 47. Further, even if steam is supplied only to the boiler feed water heating steam system 47 selected earlier, when the steam delivered from the temperature reducer 55 is excessive, the temperature is not more than the temperature reducer 55 and then to the temperature reducer 55. A boiler feed water heating steam system 47 having a close feed water temperature is selected, and control is performed so that steam is also sent to the boiler feed water heating steam system 47. Similarly, the steam can be controlled so as to be sent to the third and fourth boiler feed water heating steam systems 47. In addition, when all the steam sent from the temperature reducer 55 cannot be sent to the deaerator 30 and / or the high-pressure feed water heaters 32a, 32b, 32c, the surplus steam is sent to the condensate recovery system 42. This is the same as the desuperheater steam heat recovery equipment shown in the first embodiment.

温度の低い給水は、温度の低い蒸気でも加熱できるが、温度の高い給水は、温度の低い蒸気では加熱できないことは改めて言うまでもない。温度の高い給水は、それ以上の温度を有する蒸気でなければ加熱できないのであるから、本実施形態に示すボイラ給水の加熱方法は効率的な方法と言える。さらに本実施形態のように送出先の給水温度が減温器55以下の温度でかつ減温器55に一番近いボイラ給水加熱系統47に蒸気を供給すると、給水温度と蒸気温度との温度差が小さく、温度差に伴う装置への悪影響、例えば熱変形等を回避又は抑制することができ好ましい。また同時に2つ以上のボイラ給水加熱蒸気系統47、例えば、脱気器30と高圧給水加熱器32aとに同時に蒸気を送るように制御してもよいので、蒸気送出量が増加し、復水器21に逃がす蒸気を減少させることができ、送出蒸気をより有効に利用することができる。   The low temperature water supply can be heated even with the low temperature steam, but it goes without saying that the high temperature water supply cannot be heated with the low temperature steam. Since the hot water supply can be heated only by steam having a temperature higher than that, the heating method for boiler feed water shown in the present embodiment can be said to be an efficient method. Further, when steam is supplied to the boiler feed water heating system 47 whose supply water temperature is lower than the temperature reducer 55 and closest to the temperature reducer 55 as in this embodiment, the temperature difference between the water supply temperature and the steam temperature. This is preferable because it can avoid or suppress adverse effects on the apparatus due to temperature differences, such as thermal deformation. Moreover, since it may be controlled so that steam is simultaneously sent to two or more boiler feed water heating steam systems 47, for example, the deaerator 30 and the high pressure feed water heater 32a, the steam delivery amount increases and the condenser is increased. The steam released to 21 can be reduced, and the delivered steam can be used more effectively.

図3は、本発明の第3実施形態としての減温器蒸気熱回収設備の概略的構成を示すプロセスフロー図である。第1実施形態及び第2実施形態に示す減温器蒸気熱回収設備と同一の構成には、同一の符号を付して説明を省略する。   FIG. 3 is a process flow diagram showing a schematic configuration of a desuperheater steam heat recovery facility as a third embodiment of the present invention. The same components as those of the desuperheater steam heat recovery facility shown in the first embodiment and the second embodiment are denoted by the same reference numerals, and description thereof is omitted.

第3実施形態に示す減温器蒸気熱回収設備も第1実施形態に示す減温器蒸気熱回収設備と同様、起動バイパス運転時、起動バイパス装置の減温器55に排気され必要に応じて減温された、減温器55から送出される蒸気を給水加熱に使用するための設備であり、ボイラ給水加熱蒸気系統41、復水回収系統42、三方弁43を備える。但し、第3実施形態に示す減温器蒸気熱回収設備では、ボイラ給水ポンプ31と高圧給水加熱器32aとの間に新たに熱回収用の熱交換器90を設け、この熱交換器90に減温器55から送出される蒸気を導くようにボイラ給水加熱蒸気系統41を設ける。以下、第1実施形態に示す減温器蒸気熱回収設備との相違点を中心に説明する。   Similarly to the desuperheater steam heat recovery facility shown in the first embodiment, the desuperheater steam heat recovery facility shown in the third embodiment is exhausted to the desuperheater 55 of the startup bypass device during the startup bypass operation. This is a facility for using the steam discharged from the temperature reducer 55 for heating the feed water, and includes a boiler feed water heating steam system 41, a condensate recovery system 42, and a three-way valve 43. However, in the desuperheater steam heat recovery facility shown in the third embodiment, a heat exchanger 90 for heat recovery is newly provided between the boiler feed water pump 31 and the high-pressure feed water heater 32a. A boiler feed water heating steam system 41 is provided so as to guide steam delivered from the temperature reducer 55. Hereinafter, the difference from the desuperheater steam heat recovery facility shown in the first embodiment will be mainly described.

熱交換器90は、表面接触式の熱交換器であり、ボイラ給水加熱蒸気系統41を通じて送られた蒸気は、ボイラ給水を加熱し、ドレンとなりドレンタンク91に送られる。ドレンタンク91にはドレンを、ドレン加熱器28を経由して復水器21に送るドレン管93が接続する。ドレン管93にはドレンポンプ92、流量調整弁94が設けられ、ドレンは、ドレン加熱器28で給水と熱交換し、給水を加熱した後、復水器21に送られる。減温器55から送出される蒸気の熱交換器90への供給要領、ボイラ給水加熱蒸気系統41の構成なども第1実施形態に示す減温器蒸気熱回収設備と変わるところはない。   The heat exchanger 90 is a surface contact type heat exchanger, and the steam sent through the boiler feed water heating steam system 41 heats the boiler feed water, becomes drain, and is sent to the drain tank 91. A drain pipe 93 is connected to the drain tank 91 to send the drain to the condenser 21 via the drain heater 28. The drain pipe 93 is provided with a drain pump 92 and a flow rate adjusting valve 94. The drain exchanges heat with the feed water by the drain heater 28, heats the feed water, and is sent to the condenser 21. The supply procedure of the steam delivered from the temperature reducer 55 to the heat exchanger 90, the configuration of the boiler feed water heating steam system 41, and the like are not different from the temperature reducer steam heat recovery equipment shown in the first embodiment.

第3実施形態に示す減温器蒸気熱回収設備は、第1実施形態及び第2実施形態に示す減温器蒸気熱回収設備と異なり、脱気器30又は高圧給水加熱器32に蒸気を供給しないので、これら機器を改造する必要がなく、また運転要領も変更する必要がない。   Unlike the desuperheater steam heat recovery equipment shown in the first and second embodiments, the desuperheater steam heat recovery equipment shown in the third embodiment supplies steam to the deaerator 30 or the high-pressure feed water heater 32. Therefore, there is no need to modify these devices, and there is no need to change the operating procedure.

上記実施形態で示すように本発明に係る減温器蒸気熱回収設備は、汽力発電プラントの起動時に減温器から送出される蒸気をボイラの給水加熱に有効利用することができると共に、ボイラの給水加熱に利用できないときは復水として回収する系統も備えるので、起動バイパス運転に支障を与えることもなく実用的な設備である。また構成も比較的簡単なので、新設の汽力発電プラントはもちろん、既設の汽力発電プラントにも容易に適用することができる。   As shown in the above embodiment, the desuperheater steam heat recovery facility according to the present invention can effectively use the steam sent from the desuperheater at the start of the steam power plant for heating the boiler feedwater, Since it is equipped with a system that collects it as condensate when it cannot be used for heating the feedwater, it is a practical facility that does not interfere with the startup bypass operation. Moreover, since the configuration is relatively simple, it can be easily applied to existing steam power plants as well as newly installed power plants.

深夜起動停止(DSS)運転、週末起動停止(WSS)運転を頻繁に行う汽力発電プラントでは、通常運転に対する起動バイパス運転の割合が大きく、減温器55に排気される蒸気量も多くなるので、このような汽力発電プラントに対して本発明の減温器蒸気熱回収設備を設けることは効果的である。   In a steam power plant that frequently performs midnight start / stop (DSS) operation and weekend start / stop (WSS) operation, the ratio of start bypass operation to normal operation is large, and the amount of steam exhausted to the temperature reducer 55 increases. It is effective to provide the desuperheater steam heat recovery equipment of the present invention for such a steam power plant.

なお本発明は、上記実施形態に限定されるものではなく、要旨を変更しない範囲で種々の実施形態に変更し使用することができる。上記実施形態では、減温器55に減温水を供給し、減温器55から送出される蒸気を所定の温度に調整した後に送出する例を示したが、必要に応じて減温水の供給を停止し、温度の高い蒸気をボイラ給水加熱蒸気系統に送るようにしてもよい。さらに低圧給水加熱器29に蒸気を送るボイラ給水加熱蒸気系統を設け、ここで熱回収するようにしてもよい。また上記実施形態では、減温器55に排気される蒸気がフラッシュタンク53からの余剰蒸気及びタービンバイパス系統54からの排気蒸気であったが、減温器55に排気される蒸気はこれに限定されるものではない。例えば、空気抽出装置26に蒸気エゼクタを使用する場合、通常、蒸気エゼクタに主蒸気管13から駆動用蒸気を送るエゼクタ主蒸気管が設けられ、このエゼクタ主蒸気管は、起動バイパス運転時、蒸気ブローが行われる。このブロー蒸気が減温器55に排気される汽力発電プラントでは、このような排気蒸気も本発明に係る減温器蒸気熱回収設備で熱回収し有効利用することができる。   In addition, this invention is not limited to the said embodiment, It can change and use for various embodiment in the range which does not change a summary. In the above embodiment, the temperature-reducing water is supplied to the temperature-reducing device 55, and the steam delivered from the temperature-reducing device 55 is adjusted to a predetermined temperature and then delivered. However, if necessary, the temperature-reducing water is supplied. You may make it stop and send steam with high temperature to a boiler feed water heating steam system. Further, a boiler feed water heating steam system for sending steam to the low pressure feed water heater 29 may be provided to recover heat. In the above embodiment, the steam exhausted to the temperature reducer 55 is surplus steam from the flash tank 53 and exhaust steam from the turbine bypass system 54, but the steam exhausted to the temperature reducer 55 is limited to this. Is not to be done. For example, when a steam ejector is used for the air extraction device 26, an ejector main steam pipe that normally sends driving steam from the main steam pipe 13 is provided in the steam ejector. Blow is performed. In a steam power plant in which this blow steam is exhausted to the temperature reducer 55, such exhaust steam can also be recovered and used effectively by the temperature reducer steam heat recovery facility according to the present invention.

1 ボイラ
14 高圧タービン
21 復水器
29 低圧給水加熱器
30 脱気器
32、32a、32b、32c、32d 高圧給水加熱器
41 ボイラ給水加熱蒸気系統
42 復水回収系統
43 三方弁
44 管路
45 管路
46 管路
47、47a、47b、47c、47d ボイラ給水加熱蒸気系統
49a、49b、49c、49d 管路
50a、50b、50c、50d 遮断弁
55 減温器
77 減温水供給管
78 調整弁
80 温度検出器
81 温度調節器
90 熱交換器
100 制御装置
DESCRIPTION OF SYMBOLS 1 Boiler 14 High pressure turbine 21 Condenser 29 Low pressure feed water heater 30 Deaerator 32, 32a, 32b, 32c, 32d High pressure feed water heater 41 Boiler feed water heating steam system 42 Condensate recovery system 43 Three-way valve 44 Pipe 45 Pipe Line 46 Pipe lines 47, 47a, 47b, 47c, 47d Boiler feed water heating steam systems 49a, 49b, 49c, 49d Pipe lines 50a, 50b, 50c, 50d Shut-off valve 55 Temperature reducer 77 Temperature-reducing water supply pipe 78 Regulating valve 80 Temperature Detector 81 Temperature controller 90 Heat exchanger 100 Controller

Claims (5)

ボイラと、
前記ボイラから送出される蒸気で駆動する蒸気タービンと、
前記蒸気タービンの排気蒸気を復水にする復水器と、
低圧給水加熱器、脱気器及び高圧給水加熱器を備え、前記復水器から送出される復水を加熱し前記ボイラに給水するボイラ給水系統と、
前記ボイラ起動後、前記蒸気タービンに所定の蒸気が供給され通常負荷運転に切替わるまで水及び/又は蒸気を流通させ、排気される蒸気及び/又はドレンを減温器を経由させ前記復水器に送出し復水とする起動バイパス装置と、
を備える汽力発電プラントに設けられ、前記ボイラ起動後、通常負荷運転時まで前記減温器から送出される蒸気の熱を回収する減温器蒸気熱回収設備であって、
前記減温器と前記ボイラ給水系統とを結び、前記減温器から送出される蒸気をボイラ給水の加熱用蒸気として前記ボイラ給水系統に送出するボイラ給水加熱蒸気系統と、
前記減温器と前記復水器とを結び、前記減温器から送出される蒸気及び/又はドレンを前記復水器に送出する復水回収系統と、
前記ボイラ給水加熱蒸気系統及び/又は復水回収系統へ前記減温器から送出される蒸気を導くように前記2つの系統を切替え可能で、前記2つの系統への蒸気量を分配可能な系統制御手段と、
を備えることを特徴とする減温器蒸気熱回収設備。
With a boiler,
A steam turbine driven by steam delivered from the boiler;
A condenser for condensing exhaust steam of the steam turbine;
A boiler water supply system comprising a low-pressure feed water heater, a deaerator, and a high-pressure feed water heater, heating the condensate sent from the condenser and feeding the boiler;
After the boiler is started, water and / or steam is circulated until a predetermined steam is supplied to the steam turbine and switched to a normal load operation, and the exhaust steam and / or drain is passed through a temperature reducer to the condenser. A start-up bypass device to be sent to the condensate,
A steam power recovery facility that recovers the heat of steam delivered from the temperature reducer until the normal load operation after the boiler is started,
A boiler feed water heating steam system for connecting the temperature reducer and the boiler feed water system, and sending steam sent from the temperature reducer to the boiler feed water system as steam for heating boiler feed water;
A condensate recovery system for connecting the temperature reducer and the condenser, and sending steam and / or drain sent from the temperature reducer to the condenser;
System control capable of switching between the two systems so as to guide the steam delivered from the desuperheater to the boiler feed water heating steam system and / or condensate recovery system, and capable of distributing the amount of steam to the two systems Means,
A desuperheater steam heat recovery facility comprising:
前記ボイラ給水加熱蒸気系統は、前記減温器と前記脱気器又は前記脱気器の下流側のボイラ給水系統とを結ぶことを特徴とする請求項1に記載の減温器蒸気熱回収設備。   2. The desuperheater steam heat recovery facility according to claim 1, wherein the boiler feed water heating steam system connects the desuperheater and the deaerator or a boiler feed water system downstream of the deaerator. . 前記ボイラ給水加熱蒸気系統は、途中で複数に分岐し、分岐した先端部が前記ボイラ給水系統の複数の箇所に接続し、前記ボイラ給水系統の1以上の箇所に蒸気を送出可能に形成され、
さらに前記ボイラ給水加熱蒸気系統の蒸気送出先を制御する制御装置を備えることを特徴とする請求項1又は2に記載の減温器蒸気熱回収設備。
The boiler feed water heating steam system is divided into a plurality of parts in the middle, and the branched tip ends are connected to a plurality of locations of the boiler feed water system so that steam can be sent to one or more locations of the boiler feed water system,
3. The desuperheater steam heat recovery facility according to claim 1, further comprising a control device that controls a steam delivery destination of the boiler feed water heating steam system.
前記制御装置は、前記複数の蒸気送出先の中から、送出先のボイラ給水温度が送出される蒸気温度以下で該蒸気温度に一番近い蒸気送出先を選定し、該蒸気送出先に蒸気を送出するように前記ボイラ給水加熱蒸気系統を制御することを特徴とする請求項3に記載の減温器蒸気熱回収設備。   The control device selects a steam destination closest to the steam temperature below the steam temperature at which the boiler feed water temperature of the destination is sent out of the plurality of steam destinations, and sends steam to the steam destination. 4. The desuperheater steam heat recovery facility according to claim 3, wherein the boiler feed water heating steam system is controlled so as to be sent out. 前記汽力発電プラントが、週末起動停止(WSS)運転又は深夜起動停止(DSS)運転対応の汽力発電プラントであることを特徴とする請求項1から4のいずれか1に記載の減温器蒸気熱回収設備。   The steam generator steam heat according to any one of claims 1 to 4, wherein the steam power plant is a steam power plant that supports weekend start / stop (WSS) operation or midnight start / stop (DSS) operation. Recovery equipment.
JP2010254307A 2010-11-12 2010-11-12 Temperature reducing device steam heat recovery facilities Pending JP2012102711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254307A JP2012102711A (en) 2010-11-12 2010-11-12 Temperature reducing device steam heat recovery facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254307A JP2012102711A (en) 2010-11-12 2010-11-12 Temperature reducing device steam heat recovery facilities

Publications (1)

Publication Number Publication Date
JP2012102711A true JP2012102711A (en) 2012-05-31

Family

ID=46393374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254307A Pending JP2012102711A (en) 2010-11-12 2010-11-12 Temperature reducing device steam heat recovery facilities

Country Status (1)

Country Link
JP (1) JP2012102711A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049903A (en) * 2013-10-31 2015-05-08 대우조선해양 주식회사 Heating exchange system of Low pressure feed water heater
CN107060919A (en) * 2017-05-31 2017-08-18 邯钢集团邯宝钢铁有限公司 A kind of gas fired-boiler steam turbine power generation Quick starting energy-saving device and method
CN107387182A (en) * 2017-09-04 2017-11-24 中国电力工程顾问集团西南电力设计院有限公司 A kind of back pressure turbine starts Analysis of Exhaust Steam Recovering System
CN111396155A (en) * 2020-03-24 2020-07-10 清华大学 Injection self-balancing high-pressure steam supply full-load thermoelectric decoupling method for medium-pressure valve adjustment
CN113819400A (en) * 2021-07-30 2021-12-21 西安西热节能技术有限公司 Multi-source integrated automatic switching combined steam supply system and method
CN114087045A (en) * 2021-11-17 2022-02-25 连云港石化有限公司 Energy utilization system for steam of ethylene oxide glycol device and use method thereof
CN116734235A (en) * 2023-08-02 2023-09-12 瑞纳智能设备股份有限公司 Peak-to-frequency modulation system and method using steam heat supply network

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049903A (en) * 2013-10-31 2015-05-08 대우조선해양 주식회사 Heating exchange system of Low pressure feed water heater
KR101588223B1 (en) * 2013-10-31 2016-01-25 대우조선해양 주식회사 Heating exchange system of Low pressure feed water heater
CN107060919A (en) * 2017-05-31 2017-08-18 邯钢集团邯宝钢铁有限公司 A kind of gas fired-boiler steam turbine power generation Quick starting energy-saving device and method
CN107387182A (en) * 2017-09-04 2017-11-24 中国电力工程顾问集团西南电力设计院有限公司 A kind of back pressure turbine starts Analysis of Exhaust Steam Recovering System
CN111396155A (en) * 2020-03-24 2020-07-10 清华大学 Injection self-balancing high-pressure steam supply full-load thermoelectric decoupling method for medium-pressure valve adjustment
CN111396155B (en) * 2020-03-24 2024-04-19 清华大学 Injection self-balancing type high-pressure steam supply full-load thermal decoupling method with medium-pressure valve being regulated
CN113819400A (en) * 2021-07-30 2021-12-21 西安西热节能技术有限公司 Multi-source integrated automatic switching combined steam supply system and method
CN113819400B (en) * 2021-07-30 2023-04-25 西安西热节能技术有限公司 Multi-source integrated automatic switching combined steam supply system and method
CN114087045A (en) * 2021-11-17 2022-02-25 连云港石化有限公司 Energy utilization system for steam of ethylene oxide glycol device and use method thereof
CN114087045B (en) * 2021-11-17 2023-03-07 连云港石化有限公司 Energy utilization system for ethylene oxide glycol device steam and use method thereof
CN116734235A (en) * 2023-08-02 2023-09-12 瑞纳智能设备股份有限公司 Peak-to-frequency modulation system and method using steam heat supply network
CN116734235B (en) * 2023-08-02 2023-12-05 瑞纳智能设备股份有限公司 Peak-to-frequency modulation system and method using steam heat supply network

Similar Documents

Publication Publication Date Title
RU2152527C1 (en) Method of operation of gas-and-steam turbine plant and plant operating according to this method
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP5183305B2 (en) Startup bypass system in steam power plant
JP6400779B1 (en) Power plant and operation method thereof
JP2012102980A (en) Blow tank and method of using the same
JP6342539B1 (en) Power plant and operation method thereof
JP4895835B2 (en) Steam recovery equipment
EP3192984B1 (en) Method for operating a steam power plant and steam power plant for conducting said method
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP4415189B2 (en) Thermal power plant
US6405525B1 (en) Combination power plant with injection device for injecting water into the live steam
JP2012092734A (en) Blow fluid treatment equipment in ejector main steam system
JPS6160242B2 (en)
CN111156058A (en) Method for controlling operating pressure of regenerative steam turbine
JP5183649B2 (en) Forced cooling method for once-through boiler
JPH05322105A (en) Device for heating feedwater for boiler
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JP2002227611A (en) Pressure fluidized bed boiler power generation plant and its controlling method
JP5183714B2 (en) Steam supply equipment
JP2716442B2 (en) Waste heat recovery boiler device
JPH0233845B2 (en) JOKITAABIN PURANTONONTENHOHO
JP3276247B2 (en) Boiler / turbine condensate and water supply equipment
TW202248568A (en) Thermal power plant and method for controlling thermal power plant