JP4895835B2 - Steam recovery equipment - Google Patents

Steam recovery equipment Download PDF

Info

Publication number
JP4895835B2
JP4895835B2 JP2007014647A JP2007014647A JP4895835B2 JP 4895835 B2 JP4895835 B2 JP 4895835B2 JP 2007014647 A JP2007014647 A JP 2007014647A JP 2007014647 A JP2007014647 A JP 2007014647A JP 4895835 B2 JP4895835 B2 JP 4895835B2
Authority
JP
Japan
Prior art keywords
steam
pressure
deaerator
feed water
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007014647A
Other languages
Japanese (ja)
Other versions
JP2008180158A (en
Inventor
雅勝 松若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007014647A priority Critical patent/JP4895835B2/en
Publication of JP2008180158A publication Critical patent/JP2008180158A/en
Application granted granted Critical
Publication of JP4895835B2 publication Critical patent/JP4895835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

本発明は、発電設備においてボイラへの給水の加熱に用いられた蒸気の戻りを有効に熱回収する蒸気回収設備に関する。 The present invention is effectively vapor recovery set Bei relates to heat recovery steam return used to heat the feed water to the boiler in power plants.

火力発電所等の発電設備では、発生させた高温・高圧の蒸気をタービンに供給し、この蒸気によりタービンを駆動して発電を行っている。タービンを駆動した後の蒸気は、復水器により凝縮されて復水とされ、復水器で凝縮された復水を脱気器で脱気処理する。その後、脱気器で脱気処理された復水は、蒸気で加熱され昇温してからボイラに給水されている。   In power generation facilities such as a thermal power plant, generated high-temperature and high-pressure steam is supplied to a turbine, and the turbine is driven by this steam to generate power. The steam after driving the turbine is condensed by the condenser to be condensed water, and the condensed water condensed by the condenser is deaerated by the deaerator. After that, the condensate deaerated by the deaerator is heated by steam and heated to be supplied to the boiler.

このボイラに送られる給水は、高圧側のタービンから抽気された高温・高圧の蒸気により高圧熱交換手段で加熱されている。また、給水の加熱に用いられた蒸気の戻りは、タービン抽気の蒸気の圧力により脱気器のタンクに直接投入され、タンクで蒸気の熱エネルギーが回収される。一方、復水器で凝縮された復水は、低圧側のタービンから抽気された低温・低圧の蒸気により間接熱交換手段で間接的に加熱されている。発電設備の起動時等でタービンから抽気される蒸気の圧力が低下した際には、給水の加熱に用いられた蒸気の戻りは、復水を加熱する間接熱交換手段に送られる。   The feed water sent to the boiler is heated by high-pressure heat exchange means by high-temperature and high-pressure steam extracted from a high-pressure turbine. Further, the return of the steam used for heating the feed water is directly put into the tank of the deaerator by the steam pressure of the turbine bleed air, and the heat energy of the steam is recovered in the tank. On the other hand, the condensate condensed in the condenser is indirectly heated by the indirect heat exchange means by the low-temperature and low-pressure steam extracted from the low-pressure turbine. When the pressure of the steam extracted from the turbine decreases when the power generation facility is started, the return of steam used for heating the feed water is sent to an indirect heat exchange means for heating the condensate.

そして、発電設備は、一般に建家構造となっており(例えば、特許文献1参照)、脱気器で脱気処理された給水を加熱する高圧熱交換手段及び復水器で凝縮された復水を加熱する間接熱交換手段に対して、脱気器は高い位置に設置されている。脱気器は高い位置に設置されているが、タービンから抽気された蒸気の圧力が十分高い時には、タービン抽気の圧力が高く蒸気の戻りを押し揚げるので、高圧熱交換手段から高所に設置された脱気器に蒸気の戻りが圧送される。一方、発電設備の起動等、タービンから抽気された蒸気の圧力が低下した際には、抽気の圧力が低く高圧熱交換手段の蒸気の圧力が低下するため、高所に設置されている脱気器に蒸気の戻りを押し揚げる力が弱まる。そこで、高圧熱交換手段から同じ高さに設置されている間接熱交換手段に蒸気の戻りを流入させる。   The power generation equipment generally has a building structure (see, for example, Patent Document 1), and high-pressure heat exchange means for heating the feed water deaerated by the deaerator and condensate condensed by the condenser. The deaerator is installed at a high position with respect to the indirect heat exchange means for heating. Although the deaerator is installed at a high position, when the pressure of the steam extracted from the turbine is sufficiently high, the pressure of the turbine extraction is high and pushes the return of the steam. The return of steam is pumped to the deaerator. On the other hand, when the pressure of the steam extracted from the turbine decreases, such as when power generation equipment is started, the pressure of the extracted air is low and the pressure of the steam of the high-pressure heat exchange means decreases. The force to push the steam back into the vessel is weakened. Therefore, the return of steam is caused to flow from the high pressure heat exchange means to the indirect heat exchange means installed at the same height.

脱気器で脱気処理された給水を加熱する高圧熱交換手段で給水の加熱に用いられた蒸気の温度は、例えば120℃を超える高温であるのに対し、復水器で凝縮された復水を加熱する間接熱交換手段の蒸気の温度は、例えば100℃程度である。したがって、高圧熱交換手段で例えば120℃を超える高温の蒸気が、例えば120℃に近い温度を保持する脱気器のタンクに圧送されるので、脱気器のタンクで高温のまま有効に蒸気の戻りの熱エネルギーが回収される。   The temperature of the steam used for heating the feed water by the high-pressure heat exchange means for heating the feed water deaerated by the deaerator is, for example, a high temperature exceeding 120 ° C, whereas the condensed water condensed by the condenser is used. The temperature of the steam of the indirect heat exchange means for heating water is, for example, about 100 ° C. Therefore, high-temperature steam exceeding 120 ° C., for example, is pumped to the deaerator tank that maintains a temperature close to 120 ° C. by the high-pressure heat exchanging means. Return heat energy is recovered.

しかし、低負荷運転等タービン抽気の圧力が低下した際には、例えば100℃しかない間接熱交換手段に例えば120℃を超える高温の蒸気の戻りが送られることになってしまう。このため、蒸気の熱エネルギーの損失が大きくなってしまう。このように、タービン抽気の圧力が低下し高圧熱交換手段から脱気器に圧送する程度に十分な蒸気の圧力に達しない場合、給水の加熱に用いられた高温の蒸気の戻りが、同様に高温を保持する脱気器ではなく低温の間接熱交換手段に送られてしまうので、蒸気の熱エネルギーが十分に回収されないという問題があった。   However, when the pressure of the turbine bleed, such as in a low load operation, is reduced, the return of high-temperature steam exceeding 120 ° C., for example, is sent to the indirect heat exchange means having only 100 ° C., for example. For this reason, the loss of heat energy of the steam becomes large. In this way, when the pressure of the turbine bleed air drops and does not reach a sufficient steam pressure to pump from the high pressure heat exchange means to the deaerator, the return of the hot steam used to heat the feedwater is similarly Since it is sent to the low-temperature indirect heat exchange means rather than the deaerator that maintains the high temperature, there is a problem that the thermal energy of the steam is not sufficiently recovered.

特開平9−236209号公報JP-A-9-236209

本発明は上記状況に鑑みてなされたもので、発電設備が低負荷運転で抽気された蒸気の圧力が低下した際に、給水の加熱に用いた蒸気の戻りの熱エネルギーを有効に回収して、発電設備の効率を向上させることができる蒸気回収設備を提供することを目的とする The present invention has been made in view of the above situation, and when the pressure of steam extracted in a low-load operation of the power generation facility is reduced, the heat energy of returning steam used for heating the feed water is effectively recovered. , and to provide a vapor recovery equipment which can improve the efficiency of power generation equipment

上記目的を達成するための本発明の第1の態様は、ボイラからの蒸気により駆動されるタービンと、タービンで仕事を終えた蒸気を凝縮する復水器と、復水器で凝縮された復水を脱気処理して給水とする脱気器と、復水器で凝縮された復水を脱気器に圧送する復水供給ポンプと、脱気器で脱気処理された給水をボイラに圧送する給水ポンプと、ボイラに圧送される給水を高圧の蒸気により加温する高圧熱交換手段とを備えた発電設備であって、高圧熱交換手段の熱媒体とされた蒸気の戻りを脱気器に送るドレン経路と、ドレン経路を流通する蒸気の圧力が低下した際に蒸気を脱気器に送給するための圧力を付与する圧送ポンプと、ドレン経路を開閉する調整弁と、調整弁が開いていることを条件に高圧熱交換手段の蒸気量が所定量を超えた場合に圧送ポンプを駆動する制御手段とを備えたことを特徴とする蒸気回収設備にある。 In order to achieve the above object, a first aspect of the present invention includes a turbine driven by steam from a boiler, a condenser for condensing steam that has finished work in the turbine, and a condenser condensed by the condenser. A deaerator that degasses the water to supply water, a condensate supply pump that pumps the condensate condensed in the condenser to the deaerator, and a boiler that supplies the water degassed by the deaerator This is a power generation facility equipped with a feed water pump for pumping and high pressure heat exchange means for heating the feed water pumped to the boiler with high pressure steam, and degass the return of steam as the heat medium of the high pressure heat exchange means A drain path to be sent to the vessel, a pressure feed pump that applies pressure to supply steam to the deaerator when the pressure of the steam flowing through the drain path is reduced, an adjustment valve that opens and closes the drain path, and an adjustment valve If the amount of steam in the high-pressure heat exchange means exceeds the specified amount on the condition that the In the vapor recovery system, characterized in that a control means for driving the pressure pump to.

第1の態様では、送給される蒸気の圧力が低下した際に、圧送ポンプによって高圧熱交
換手段から脱気器に蒸気が送られるので、給水の加熱に用いられた蒸気の熱を有効に回収
することができる。
さらに、送給される蒸気の圧力が低下した際に、蒸気量を調整弁で調整しながら圧送ポンプを駆動させて、高圧熱交換手段から脱気器へ蒸気を圧送することができる。
In the first aspect, when the pressure of the supplied steam is reduced, the steam is sent from the high-pressure heat exchange means to the deaerator by the pump, so that the heat of the steam used for heating the feed water is effectively used. It can be recovered.
Furthermore, when the pressure of the steam to be fed is lowered, the steam can be pumped from the high pressure heat exchanging means to the deaerator by driving the pressure pump while adjusting the amount of steam with the regulating valve.

本発明の第2の態様は、第1の態様に記載の蒸気回収設備において、発電設備には、脱気器に圧送される復水を低圧の蒸気により加温する間接熱交換手段が備えられ、高圧熱交換手段の熱媒体とされた蒸気の戻りを間接熱交換手段に熱媒体として送るドレン配管をドレン経路から分岐して備えたことを特徴とする蒸気回収設備にある。   According to a second aspect of the present invention, in the steam recovery facility according to the first aspect, the power generation facility is provided with indirect heat exchange means for heating the condensate fed to the deaerator with low-pressure steam. The steam recovery facility is characterized by comprising a drain pipe branched from the drain path for sending a return of steam, which is used as a heat medium of the high-pressure heat exchange means, to the indirect heat exchange means as a heat medium.

第2の態様では、発電設備の起動時等、送給される蒸気の圧力が低下した際に、高圧熱交換手段から間接熱交換手段に蒸気の戻りを流入させることができる。   In the second aspect, when the pressure of the supplied steam is reduced, such as when the power generation facility is started, the return of the steam can be caused to flow from the high-pressure heat exchange means to the indirect heat exchange means.

本発明の第3の態様は、第1または第2の態様に記載の蒸気回収設備において、発電設備の脱気器は、高圧熱交換手段よりも高い位置に設置され、発電設備の高圧熱交換器には、タービンから抽気された蒸気が熱媒体として送られることを特徴とする蒸気回収設備にある。 According to a third aspect of the present invention, in the steam recovery facility according to the first or second aspect, the deaerator of the power generation facility is installed at a position higher than the high pressure heat exchange means, and the high pressure heat exchange of the power generation facility is performed. The steam recovery facility is characterized in that steam extracted from the turbine is sent as a heat medium.

第3の態様では、発電設備の運転負荷が高くタービンから抽気された蒸気の圧力が高い際には、蒸気の圧力によって高圧熱交換手段から高い位置に設置されている脱気器に蒸気
が送られる。
In the third aspect, when the operating load of the power generation facility is high and the pressure of the steam extracted from the turbine is high, the steam is sent from the high-pressure heat exchange means to the deaerator installed at a high position by the steam pressure. It is done.

本発明の第4の態様は、ボイラからの蒸気により駆動されるタービンと、タービンで仕
事を終えた蒸気を凝縮する復水器と、復水器で凝縮された復水を脱気処理して給水とする
脱気器と、復水器で凝縮された復水を脱気器に圧送する復水供給ポンプと、脱気器に圧送
される復水を低圧側タービンから抽気された蒸気により加温する間接熱交換手段と、脱気
器で脱気処理された給水をボイラに圧送する給水ポンプと、脱気器よりも低い位置に設置
されボイラに圧送される給水を高圧側タービンから抽気された蒸気により加温する高圧熱
交換手段と、高圧側タービンから抽気された蒸気を高圧熱交換手段に送る抽気経路とを備
えた発電設備であって、高圧熱交換手段の熱媒体とされた蒸気の戻りを抽気の圧力によっ
て脱気器に圧送するドレン経路と、ドレン経路から分岐して備えられ高圧熱交換手段の熱
媒体とされた蒸気の戻りを間接熱交換手段に熱媒体として送るドレン配管と、抽気の圧力
が低下した際に熱回収された蒸気を脱気器に送給するための圧力を付与する圧送ポンプと
、ドレン経路を開閉する調整弁と、調整弁が開いていることを条件に高圧熱交換手段の蒸
気量が所定量を超えた場合に圧送ポンプを駆動する制御手段とを備えたことを特徴とする
蒸気回収設備にある。
According to a fourth aspect of the present invention, a turbine driven by steam from a boiler, a condenser that condenses steam that has finished work in the turbine, and degassed condensate condensed in the condenser. A deaerator that supplies water, a condensate supply pump that pumps condensate condensed in the condenser to the deaerator, and condensate that is pumped to the deaerator are added by steam extracted from the low-pressure turbine. Indirect heat exchange means for heating, feed water pump that pumps feed water deaerated by the deaerator, and feed water that is installed at a lower position than the deaerator and pumped to the boiler is extracted from the high-pressure turbine Power generation equipment comprising high-pressure heat exchange means for heating by the heated steam and an extraction passage for sending steam extracted from the high-pressure side turbine to the high-pressure heat exchange means, and steam used as a heat medium for the high-pressure heat exchange means Drain path that pumps return of air to deaerator by bleed pressure A drain pipe that branches off from the drain path and is used as a heat medium for the high-pressure heat exchange means, and a drain pipe that sends the return to the indirect heat exchange means as a heat medium; When the amount of steam in the high-pressure heat exchanging means exceeds the specified amount, provided that the pump for applying pressure to feed the deaerator, the regulating valve for opening and closing the drain path, and the regulating valve are open And a control means for driving the pressure feed pump.

第4の態様では、発電設備の運転負荷が低く送給される蒸気の圧力が低下した際に、圧送ポンプを駆動し、調整弁で蒸気量を調整しながら高圧熱交換手段から高い位置に設置された脱気器に熱回収された蒸気を送給することができる。 In the fourth aspect, when the operating load of the power generation facility is low and the pressure of the steam to be fed is lowered, the pump is driven, and the amount of steam is adjusted by the regulating valve and installed at a high position from the high pressure heat exchange means The recovered steam can be fed to the deaerator.

本発明の蒸気回収設備及び蒸気回収方法によれば、発電設備が低負荷運転で抽気された蒸気の圧力が低下した際に、高圧熱交換手段で熱回収された蒸気の戻りを脱気器に圧送することができるので、給水の加熱に用いた蒸気の戻りの熱エネルギーを有効に回収し、発電設備の効率を向上させることができる。   According to the steam recovery facility and the steam recovery method of the present invention, when the pressure of steam extracted in a low load operation of the power generation facility decreases, the return of steam recovered by the high-pressure heat exchange means is returned to the deaerator. Since it can be pumped, it is possible to effectively recover the heat energy of returning steam used for heating the feed water and improve the efficiency of the power generation equipment.

図1には本発明の一実施形態例に係る蒸気回収設備を備えた発電設備の概略系統を示してある。   FIG. 1 shows a schematic system of a power generation facility provided with a steam recovery facility according to an embodiment of the present invention.

図に示すように、発電設備は燃料fが高温で燃焼されるボイラ1を備えており、ボイラ1は、蒸気の流通路でタービンと繋がっている。タービンは高圧側の高圧タービン2及び低圧側の低圧タービン3が直列に連結されている。ボイラ1とタービンを繋ぐ蒸気の流通路は、高圧タービン2及び低圧タービン3の各々に繋がれている。直列接続された高圧タービン2及び低圧タービン3の同軸上には、発電が行われる発電機4が設けられている。   As shown in the figure, the power generation facility includes a boiler 1 in which fuel f is burned at a high temperature, and the boiler 1 is connected to a turbine through a steam flow path. In the turbine, a high-pressure turbine 2 on a high-pressure side and a low-pressure turbine 3 on a low-pressure side are connected in series. A steam flow path connecting the boiler 1 and the turbine is connected to each of the high-pressure turbine 2 and the low-pressure turbine 3. A generator 4 for generating power is provided on the same axis of the high-pressure turbine 2 and the low-pressure turbine 3 connected in series.

また、低圧タービン3には、蒸気が凝縮されて復水とされる復水器5が設けられている。低圧タービン3に設けられた復水器5の出口側には、復水ポンプ6が備えられており、復水の流通路によって復水器5と低圧給水加熱器7A〜7C(間接熱交換手段)のうちの低圧給水加熱器7A,7Bに各々が連結されている。低圧給水加熱器7A〜7Cは並列に接続された低圧給水加熱器7A,7Bと、低圧給水加熱器7A,7Bで加熱された復水を加熱する低圧給水加熱器7Cとで構成されている。   The low-pressure turbine 3 is provided with a condenser 5 that condenses steam to be condensed. A condenser pump 6 is provided on the outlet side of the condenser 5 provided in the low-pressure turbine 3, and the condenser 5 and the low-pressure feed water heaters 7 </ b> A to 7 </ b> C (indirect heat exchange means) Are connected to the low-pressure feed water heaters 7A and 7B. The low-pressure feed water heaters 7A to 7C are configured by low-pressure feed water heaters 7A and 7B connected in parallel and a low-pressure feed water heater 7C that heats the condensate heated by the low-pressure feed water heaters 7A and 7B.

低圧給水加熱器7Cの出口側には、復水昇圧ポンプ10が備えられている。低圧給水加熱器7Cと低圧給水加熱器7Cより上方に位置する脱気器11は、復水の流通路で連結されている。復水昇圧ポンプ10によって低圧給水加熱器7Cから高所の脱気器11へ復水が圧送される。脱気器11では、復水器5から送られてきた復水が脱気処理され給水とされる。脱気器11の出口側には、給水昇圧ポンプ12が備えられており、脱気器11と脱気器11より下方に位置する高圧給水加熱器13Aが給水の流通路で連結されている。給水昇圧ポンプ12によって高所の脱気器11から高圧給水加熱器13Aへ給水が圧送される。高圧給水加熱器13Aは、上下方向に多段からなる(例えば、4段)高圧給水加熱器13(高圧熱交換手段)の最下段に設置されている。高圧給水加熱器13内は、最下段の高圧給水加熱器13Aから順に、高圧給水加熱器13B、高圧給水加熱器13C、そして最上段の高圧給水加熱器13Dが給水の流通路で連結されている。多段からなる高圧給水加熱器13の最上段に設置された高圧給水加熱器13Dとボイラ1は、給水の流通路で連結されている。   A condensate booster pump 10 is provided on the outlet side of the low-pressure feed water heater 7C. The low pressure feed water heater 7C and the deaerator 11 positioned above the low pressure feed water heater 7C are connected by a condensate flow passage. Condensate is pumped from the low pressure feed water heater 7 </ b> C to the high deaerator 11 by the condensate booster pump 10. In the deaerator 11, the condensate sent from the condenser 5 is deaerated and supplied as water. On the outlet side of the deaerator 11, a feed water boost pump 12 is provided, and the deaerator 11 and a high-pressure feed water heater 13 </ b> A located below the deaerator 11 are connected by a feed water flow passage. Feed water is pumped from the deaerator 11 at a high place to the high pressure feed water heater 13A by the feed water booster pump 12. The high-pressure feed water heater 13A is installed at the lowermost stage of the high-pressure feed water heater 13 (high-pressure heat exchange means) consisting of multiple stages (for example, four stages) in the vertical direction. In the high-pressure feed water heater 13, a high-pressure feed water heater 13B, a high-pressure feed water heater 13C, and an uppermost high-pressure feed water heater 13D are connected by a feed water flow path in order from the lowermost high-pressure feed water heater 13A. . The high-pressure feed water heater 13D installed at the uppermost stage of the multi-stage high-pressure feed water heater 13 and the boiler 1 are connected by a feed water flow passage.

上記したようにボイラ1から蒸気が発生されて、タービンで仕事をした蒸気が復水器5で復水とされ、復水が低圧給水加熱器7A〜7Cで加熱され、脱気器11で復水が脱気処理された後、高圧給水加熱器13で加熱されてボイラ1に給水される過程を実線で示した。   As described above, steam is generated from the boiler 1, steam that has worked in the turbine is converted into condensate by the condenser 5, the condensate is heated by the low-pressure feed water heaters 7 </ b> A to 7 </ b> C, and is recovered by the deaerator 11. A solid line indicates a process in which the water is deaerated and then heated by the high-pressure feed water heater 13 and supplied to the boiler 1.

一般に、発電設備において各機器は複数階状態の建家構造で配置されている。脱気器11は建家の上階に設置され、脱気器11より上流側の低圧給水加熱器7A〜7Cと脱気器11より下流側の高圧給水加熱器13は、建家の下階に設置されている。   Generally, in a power generation facility, each device is arranged in a multi-storey building structure. The deaerator 11 is installed on the upper floor of the building, and the low-pressure feed water heaters 7A to 7C on the upstream side of the deaerator 11 and the high-pressure feed water heater 13 on the downstream side of the deaerator 11 are located on the lower floor of the building. Is installed.

低圧給水加熱器7Cと低圧タービン3は第1抽気経路21で接続されており、低圧給水加熱器7Cと低圧給水加熱器7A,7Bがタービン抽気の通路で連結されている。   The low-pressure feed water heater 7C and the low-pressure turbine 3 are connected by a first extraction passage 21, and the low-pressure feed water heater 7C and the low-pressure feed water heaters 7A and 7B are connected by a passage for turbine extraction.

このため、低圧タービン3から抽気された蒸気が低圧給水加熱器7Cから低圧給水加熱器7A,7Bに導入される。低圧給水加熱器7A〜7Cでは、低圧給水加熱器7A〜7Cに導入された蒸気が熱媒体として給水を所望の温度に加熱している。   For this reason, the steam extracted from the low-pressure turbine 3 is introduced from the low-pressure feed water heater 7C to the low-pressure feed water heaters 7A and 7B. In the low pressure feed water heaters 7A to 7C, steam introduced into the low pressure feed water heaters 7A to 7C heats the feed water to a desired temperature as a heat medium.

高圧給水加熱器13の最上段の高圧給水加熱器13Dと高圧タービン2は第2抽気経路22で接続されている。多段からなる高圧給水加熱器13内は、最上段の高圧給水加熱器13Dから順に、高圧給水加熱器13C、高圧給水加熱器13B、そして最下段の高圧給水加熱器13Aが第2抽気経路22から延設されたタービン抽気の通路で連結されている。   The uppermost high pressure feed water heater 13 </ b> D of the high pressure feed water heater 13 and the high pressure turbine 2 are connected by a second extraction path 22. In the multi-stage high-pressure feed water heater 13, the high-pressure feed water heater 13 </ b> C, the high-pressure feed water heater 13 </ b> B, and the bottom-stage high-pressure feed water heater 13 </ b> A are arranged from the second extraction path 22 in order from the top high-pressure feed water heater 13 </ b> D. They are connected by an extended turbine bleed passage.

このため、高圧タービン2から抽気された蒸気が高圧給水加熱器13Dから、高圧給水加熱器13C、高圧給水加熱器13B、高圧給水加熱器13Aに導入される。高圧給水加熱器13では、高圧給水加熱器13に導入された蒸気が熱媒体として給水を所望の温度に加熱し、給水をさらに昇温させている。   For this reason, the steam extracted from the high-pressure turbine 2 is introduced from the high-pressure feed water heater 13D to the high-pressure feed water heater 13C, the high-pressure feed water heater 13B, and the high-pressure feed water heater 13A. In the high-pressure feed water heater 13, the steam introduced into the high-pressure feed water heater 13 serves as a heat medium to heat the feed water to a desired temperature, thereby further raising the temperature of the feed water.

また、高圧タービン2と第2抽気経路22で連結される高圧給水加熱器13Aでの蒸気の戻りの温度は、例えば120℃を超える高温である。同様に復水を脱器処理する脱気器11での温度は、例えば120℃近い高温を保持している。一方、低圧タービン3と第1抽気経路21で連結される低圧給水加熱器7Cでの蒸気の温度は、例えば100℃程度である。   Moreover, the return temperature of the steam in the high-pressure feed water heater 13 </ b> A connected to the high-pressure turbine 2 through the second extraction path 22 is a high temperature exceeding 120 ° C., for example. Similarly, the temperature in the deaerator 11 for degassing the condensate is maintained at a high temperature close to 120 ° C., for example. On the other hand, the temperature of the steam in the low-pressure feed water heater 7 </ b> C connected to the low-pressure turbine 3 through the first extraction path 21 is, for example, about 100 ° C.

高圧給水加熱器13Aと高圧給水加熱器13Aより上方に位置する脱気器11は第1ドレン経路18で連結されている。高圧給水加熱器13Aと脱気器11を繋ぐ第1ドレン経路18には、順に逆止弁23と第1調整弁14が備えられている。第1ドレン経路18上の逆止弁23と第1調整弁14の間から第2ドレン経路19が分岐して設けられている。第2ドレン経路19には、加圧ポンプ17(圧送ポンプ)と第2調整弁15が順に備えられている。第2調整弁15の後側から、第1ドレン経路18の第1調整弁14より後側に第2ドレン経路19が合流するように配設されている。第2ドレン経路19の加圧ポンプ17は、高圧給水加熱器13Aから高所の脱気器11に蒸気を圧送するためのものである。   The high pressure feed water heater 13 </ b> A and the deaerator 11 positioned above the high pressure feed water heater 13 </ b> A are connected by a first drain path 18. A first drain path 18 connecting the high-pressure feed water heater 13 </ b> A and the deaerator 11 is provided with a check valve 23 and a first adjustment valve 14 in order. A second drain path 19 is branched from between the check valve 23 and the first adjustment valve 14 on the first drain path 18. The second drain path 19 is provided with a pressurizing pump 17 (pressure feeding pump) and a second regulating valve 15 in this order. The second drain passage 19 is arranged so as to merge from the rear side of the second regulating valve 15 to the rear side of the first regulating valve 14 of the first drain passage 18. The pressurizing pump 17 in the second drain path 19 is for pumping steam from the high pressure feed water heater 13 </ b> A to the deaerator 11 at a high place.

上記のように本発明の実施形態に係る蒸気回収設備において熱媒体とされるタービン抽気の抽気経路及び、蒸気の戻りが熱回収されるための流通路を点線で示した。   As described above, the extraction path of the turbine extraction used as the heat medium in the steam recovery facility according to the embodiment of the present invention and the flow path for recovering the heat of returning steam are indicated by dotted lines.

建家の下階の高圧給水加熱器13Aと建家の上階の脱気器11が第1ドレン経路18及び加圧ポンプ17を備える第2ドレン経路19で連結されている。このため、タービン抽気の圧力が大きい高負荷運転時は、高圧給水加熱器13の蒸気が押し揚げられるので、下階の高圧給水加熱器13Aから第1ドレン経路18を経て、第1調整弁14で蒸気量が調整されながら、上階の脱気器11のタンクに直接蒸気の戻りが投入される。一方、タービン抽気の圧力が小さい低負荷運転時は、加圧ポンプ17が駆動されて高圧給水加熱器13の蒸気が押し揚げられるので、下階の高圧給水加熱器13Aから第2ドレン経路19を経て、第2調整弁15で蒸気量が調整されながら、上階の脱気器11のタンクに直接蒸気の戻りが投入される。   A high-pressure feed water heater 13 </ b> A on the lower floor of the building and a deaerator 11 on the upper floor of the building are connected by a second drain path 19 including a first drain path 18 and a pressurizing pump 17. For this reason, during high load operation where the pressure of the turbine bleed air is high, the steam of the high pressure feed water heater 13 is pushed up, so the first regulating valve 14 passes from the high pressure feed water heater 13A on the lower floor via the first drain path 18. While the amount of steam is adjusted, the return of steam is directly put into the tank of the deaerator 11 on the upper floor. On the other hand, when the turbine bleed air pressure is low and the load is low, the pressurization pump 17 is driven and the steam of the high-pressure feed water heater 13 is pushed up, so that the second drain path 19 passes from the high-pressure feed water heater 13A on the lower floor. Then, while the amount of steam is adjusted by the second regulating valve 15, the return of steam is put directly into the tank of the deaerator 11 on the upper floor.

また、建家の下階の高圧給水加熱器13Aと、建家の下階の低圧給水加熱器7Cは、ドレン配管20で連結されている。ドレン配管20は、第2ドレン経路19の第2調整弁15の後方から分岐して設けられ、高圧給水加熱器13Aと低圧給水加熱器7Cを繋いでいる。ドレン配管20には、第3調整弁16が備えられている。   Further, the high pressure feed water heater 13 </ b> A on the lower floor of the building and the low pressure feed water heater 7 </ b> C on the lower floor of the building are connected by a drain pipe 20. The drain pipe 20 is branched from the second regulating valve 15 of the second drain path 19 and connects the high pressure feed water heater 13A and the low pressure feed water heater 7C. The drain pipe 20 is provided with a third adjustment valve 16.

通常運転中、ドレン配管20上の第3調整弁16は、常時閉じられている。起動時等の低負荷運転時に、第3調整弁16を開状態にし、高圧給水加熱器13Aから低圧給水加熱器7Cに蒸気の戻りを流入させることもある。   During normal operation, the third adjustment valve 16 on the drain pipe 20 is always closed. At the time of low load operation such as start-up, the third regulating valve 16 may be opened to return the steam from the high pressure feed water heater 13A to the low pressure feed water heater 7C.

高負荷運転時には、高圧給水加熱器13は、送られる蒸気の抽気圧力が大きく蒸気が上階の脱気器11に押し揚げられるので、高圧給水加熱器13に蒸気は滞留しにくい。しかし、低負荷運転時には、送られる蒸気の抽気圧力が小さく蒸気が上階の脱気器11に押し揚げられないので、高圧給水加熱器13に蒸気が滞留する。   During high-load operation, the high-pressure feed water heater 13 has a large extraction pressure of the steam to be sent and the steam is pushed up by the deaerator 11 on the upper floor, so that the steam is unlikely to stay in the high-pressure feed water heater 13. However, at the time of low load operation, since the extraction pressure of the steam to be sent is small and the steam cannot be pushed up by the deaerator 11 on the upper floor, the steam stays in the high-pressure feed water heater 13.

低負荷運転時には、高圧給水加熱器13が上下方向に多段からなる構造のため、最下段の高圧給水加熱器13Aに蒸気が滞留し始める。さらに運転負荷が低下するにつれて、高圧給水加熱器13の下段から上段に蒸気が滞留していく。   During the low load operation, the high pressure feed water heater 13 has a multi-stage structure in the vertical direction, so that steam begins to stay in the lowermost high pressure feed water heater 13A. As the operating load further decreases, steam stays from the lower stage to the upper stage of the high-pressure feed water heater 13.

このように、高圧給水加熱器13に滞留する蒸気量が運転負荷切り替え制御のトリガーとなる。そこで、蒸気回収設備には、運転負荷に応じた加圧ポンプ17の起動・停止及び第1調整弁14と第2調整弁15の開閉を制御する制御手段24が設けられている。制御手段24は、滞留した蒸気量を検知する検出器(図示せず)からの入力値に基づいて指令を送る構成となっている。すなわち、制御手段24は、高圧給水加熱器13に滞留する蒸気量を検知する検出器からの入力値を読み取り、滞留した蒸気量が増加して入力された蒸気量がある定格値を超えた場合に、加圧ポンプ17を駆動させるとともに、第1調整弁14を閉状態にし、蒸気量に応じて第2調整弁15の開度を調整する指令を送る。一方、制御手段24は、蒸気が滞留せず入力された蒸気量が定格値以下の場合に、加圧ポンプ17を停止状態にし、第2調整弁15を閉状態にし、蒸気量に応じて第1調整弁14の開度を調整する指令を送る。   Thus, the amount of steam staying in the high-pressure feed water heater 13 becomes a trigger for the operation load switching control. Therefore, the steam recovery facility is provided with control means 24 for controlling the start / stop of the pressurizing pump 17 according to the operating load and the opening / closing of the first adjustment valve 14 and the second adjustment valve 15. The control means 24 is configured to send a command based on an input value from a detector (not shown) that detects the amount of accumulated steam. That is, the control means 24 reads the input value from the detector that detects the amount of steam staying in the high-pressure feed water heater 13, and the amount of staying steam increases and the input steam amount exceeds a certain rated value. In addition, the pressure pump 17 is driven, the first adjustment valve 14 is closed, and a command for adjusting the opening of the second adjustment valve 15 according to the amount of steam is sent. On the other hand, when the steam does not stay and the input steam amount is less than the rated value, the control unit 24 stops the pressurizing pump 17 and closes the second regulating valve 15 so that the second control valve 15 is closed. 1 Sends a command to adjust the opening of the adjusting valve 14.

タービン抽気の圧力が大きい高負荷運転時には、抽気蒸気の高い圧力で蒸気が上階の脱気器11に押し揚げられるので、高圧給水加熱器13に蒸気が滞留せず、検出される蒸気量は定格値以下となる。制御手段24は、検出器で検知された蒸気量が定格値以下であることを読み取る。すると、制御手段24から加圧ポンプ17を停止状態にし、第2調整弁15を閉状態にする指令が送られ、検出器からの蒸気量に応じて第1ドレン経路18の第1調整弁14の開度を調整する指令が送られる。   During high load operation where the turbine bleed pressure is high, the steam is pushed up to the deaerator 11 on the upper floor by the high pressure of the bleed steam, so that the steam does not stay in the high-pressure feed water heater 13 and the detected steam amount is Below the rated value. The control means 24 reads that the amount of steam detected by the detector is below the rated value. Then, a command for stopping the pressurizing pump 17 and closing the second adjustment valve 15 is sent from the control means 24, and the first adjustment valve 14 of the first drain path 18 is sent according to the amount of steam from the detector. A command is sent to adjust the opening.

このため、高負荷運転時には、制御手段24により第1ドレン経路18の第1調整弁14が開かれ、第2ドレン経路19の加圧ポンプ17は停止され、第2調整弁15が閉じられる。その結果、タービン抽気の蒸気の圧力が大きくなり、蒸気が押し揚げられるので、蒸気は第1ドレン経路18を通って高圧給水加熱器13Aから脱気器11のタンクに送られる。また、制御手段24によって、第1ドレン経路18の第1調整弁14で蒸気量が調整されながら、下階の高圧給水加熱器13Aから上階の脱気器11のタンクに、高温の蒸気が直接圧送される。   For this reason, during high load operation, the first regulating valve 14 of the first drain path 18 is opened by the control means 24, the pressurizing pump 17 of the second drain path 19 is stopped, and the second regulating valve 15 is closed. As a result, the steam pressure of the turbine extraction steam is increased and the steam is lifted, so that the steam is sent from the high-pressure feed water heater 13 </ b> A to the tank of the deaerator 11 through the first drain path 18. Further, while the amount of steam is adjusted by the first regulating valve 14 of the first drain path 18 by the control means 24, high-temperature steam is transferred from the high-pressure feed water heater 13A on the lower floor to the tank of the deaerator 11 on the upper floor. Directly pumped.

タービン抽気の圧力が小さい低負荷運転時には、抽気蒸気の圧力が小さく蒸気が上階の脱気器11に押し揚げられないので、高圧給水加熱器13に蒸気が滞留し、滞留する蒸気量が増大する。滞留する蒸気量が増大し続けると、高圧給水加熱器13の蒸気量が定格値より大きい値を示す。制御手段24は、検出器で検知された蒸気量が定格値より大きいことを読み取る。すると、制御手段24から第2ドレン経路19の加圧ポンプ17を駆動させ、第1ドレン経路18の第1調整弁14を閉状態にする指令が送られる。さらに、検出器からの蒸気量に応じて第2ドレン経路19の第2調整弁15の開度を調整する指令が送られる。   During low-load operation where the pressure of the turbine bleed air is low, the pressure of the bleed steam is small and the steam cannot be pushed up by the deaerator 11 on the upper floor, so that the steam stays in the high-pressure feed water heater 13 and the amount of staying steam increases. To do. When the amount of staying steam continues to increase, the amount of steam in the high-pressure feed water heater 13 shows a value greater than the rated value. The control means 24 reads that the amount of steam detected by the detector is larger than the rated value. Then, a command is sent from the control means 24 to drive the pressure pump 17 of the second drain path 19 and to close the first adjustment valve 14 of the first drain path 18. Furthermore, a command is sent to adjust the opening of the second regulating valve 15 in the second drain path 19 in accordance with the amount of steam from the detector.

このため、低負荷運転時には、制御手段24により第2ドレン経路19の加圧ポンプ17が駆動され第2調整弁15が開かれ、第1ドレン経路18の第1調整弁14が閉じられる。その結果、加圧ポンプ17によって蒸気が押し揚げられるので、蒸気は第2ドレン経路19を通って高圧給水加熱器13Aから脱気器11のタンクに送られる。制御手段24によって、第2ドレン経路19の第2調整弁15で蒸気量が調整されながら、下階の高圧給水加熱器13Aから上階の脱気器11のタンクに高温の蒸気が圧送される。   For this reason, at the time of low load operation, the pressurizing pump 17 of the second drain path 19 is driven by the control means 24, the second regulating valve 15 is opened, and the first regulating valve 14 of the first drain path 18 is closed. As a result, since the steam is lifted by the pressurizing pump 17, the steam is sent from the high-pressure feed water heater 13 </ b> A to the tank of the deaerator 11 through the second drain path 19. High-temperature steam is pumped from the lower-floor high-pressure feed water heater 13 </ b> A to the tank of the upper-stage deaerator 11 while the amount of steam is adjusted by the second regulating valve 15 of the second drain path 19 by the control means 24. .

上記のように、高負荷運転時だけでなく低負荷運転時にも、加圧ポンプ17が駆動されて高圧給水加熱器13Aの例えば120℃の蒸気が、例えば100℃しかない低圧給水加熱器7Cでなく、同じく120℃近い温度を保持する脱気器11のタンクに直接圧送されることによって、高温の蒸気の熱が高温の脱気器11のタンクで直接熱回収されるので、蒸気の戻りの熱エネルギーを有効に使うことができる。   As described above, not only during high load operation but also during low load operation, the pressurizing pump 17 is driven and the steam at 120 ° C. of the high-pressure feed water heater 13A is, for example, at the low-pressure feed heater 7C having only 100 ° C. Since the heat of the high-temperature steam is directly recovered in the tank of the high-temperature deaerator 11 by being directly pumped to the tank of the deaerator 11 that also maintains a temperature close to 120 ° C. Heat energy can be used effectively.

このようにして、発電設備が低負荷運転時で高圧タービン2から抽気された蒸気の圧力が低下した場合に、即ち、高圧給水加熱器13に滞留する蒸気量がある定格値を超えた場合に、制御手段24の指令によって第2ドレン経路19の加圧ポンプ17が駆動され、第2調整弁15で流量を調整されながら、下階の高圧給水加熱器13Aから上階の脱気器11のタンクに高温の蒸気を直接流入させることができる。このため、高温の蒸気の熱回収を効率よく行うことができ、発電設備の熱効率を向上させることができる。   Thus, when the pressure of the steam extracted from the high pressure turbine 2 is reduced during the low load operation of the power generation equipment, that is, when the amount of steam staying in the high pressure feed water heater 13 exceeds a certain rated value. The pressure pump 17 of the second drain path 19 is driven by the command of the control means 24 and the flow rate is adjusted by the second regulating valve 15, while the high-pressure feed water heater 13 </ b> A on the lower floor is connected to the deaerator 11 on the upper floor. Hot steam can flow directly into the tank. For this reason, heat recovery of high-temperature steam can be performed efficiently, and the thermal efficiency of the power generation facility can be improved.

ただし、上記したように、通常運転中は、ドレン配管20の第3調整弁16は閉じられているが、起動時等に制御手段24により第3調整弁16が開かれ、高圧給水加熱器13Aから低圧給水加熱器7Cに蒸気の戻りが流入される。   However, as described above, during the normal operation, the third adjustment valve 16 of the drain pipe 20 is closed, but the third adjustment valve 16 is opened by the control means 24 at the time of startup or the like, and the high-pressure feed water heater 13A. The steam return flows into the low-pressure feed water heater 7C.

尚、本実施形態例では、高圧タービン2と低圧タービン3を直列に配した構成をとったが、タービンの配列は発電設備によって異なり、上記した実施例に限定されるものではない。例えば、低圧・中圧・高圧のタービン等を発電設備に応じて適宜設置しても構わない。   In this embodiment, the high-pressure turbine 2 and the low-pressure turbine 3 are arranged in series. However, the arrangement of the turbine differs depending on the power generation equipment, and is not limited to the above-described embodiment. For example, low-pressure / medium-pressure / high-pressure turbines or the like may be installed as appropriate according to the power generation equipment.

また、発電設備が複数ある場合、1個の発電設備内にとどまらず、複数の水平展開された発電設備において蒸気回収設備を共通に利用することができる。   In addition, when there are a plurality of power generation facilities, the steam recovery facility can be commonly used in a plurality of horizontally deployed power generation facilities, not limited to one power generation facility.

本発明は、発電設備における蒸気の熱回収をする蒸気回収設備の産業分野で利用することができる。
The present invention can be utilized in the industrial fields of vapor recovery equipment for the heat recovery steam in power plants.

本発明の一実施形態例に係る蒸気回収設備を備えた発電設備の概略系統図である。1 is a schematic system diagram of a power generation facility including a steam recovery facility according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 ボイラ
2 高圧タービン
3 低圧タービン
4 発電機
5 復水器
6 復水ポンプ
7A、7B、7C 低圧給水加熱器
10 復水昇圧ポンプ
11 脱気器
12 給水昇圧ポンプ
13A、13B、13C、13D 高圧給水加熱器
14 第1調整弁
15 第2調整弁
16 第3調整弁
17 加圧ポンプ
18 第1ドレン経路
19 第2ドレン経路
20 ドレン配管
21 第1抽気経路
22 第2抽気経路
23 逆止弁
24 制御手段
DESCRIPTION OF SYMBOLS 1 Boiler 2 High pressure turbine 3 Low pressure turbine 4 Generator 5 Condenser 6 Condensate pump 7A, 7B, 7C Low pressure feed water heater 10 Condensate booster pump 11 Deaerator 12 Feed water booster pump 13A, 13B, 13C, 13D High pressure feed water Heater 14 First adjustment valve 15 Second adjustment valve 16 Third adjustment valve 17 Pressure pump 18 First drain path 19 Second drain path 20 Drain pipe 21 First extraction path 22 Second extraction path 23 Check valve 24 Control means

Claims (4)

ボイラからの蒸気により駆動されるタービンと、
タービンで仕事を終えた蒸気を凝縮する復水器と、
復水器で凝縮された復水を脱気処理して給水とする脱気器と、
復水器で凝縮された復水を脱気器に圧送する復水供給ポンプと、
脱気器で脱気処理された給水をボイラに圧送する給水ポンプと、
ボイラに圧送される給水を高圧の蒸気により加温する高圧熱交換手段とを備えた発電設備であって、
高圧熱交換手段の熱媒体とされた蒸気の戻りを脱気器に送るドレン経路と、
ドレン経路を流通する蒸気の圧力が低下した際に蒸気を脱気器に送給するための圧力を付与する圧送ポンプと
ドレン経路を開閉する調整弁と、
調整弁が開いていることを条件に高圧熱交換手段の蒸気量が所定量を超えた場合に圧送
ポンプを駆動する制御手段と
を備えたことを特徴とする蒸気回収設備。
A turbine driven by steam from the boiler;
A condenser that condenses the steam that has finished work in the turbine,
A deaerator for degassing the condensate condensed in the condenser to supply water;
A condensate supply pump for pumping the condensate condensed in the condenser to the deaerator,
A feed water pump for pumping the feed water deaerated by the deaerator to the boiler;
A power generation facility comprising high-pressure heat exchange means for heating the feed water pumped to the boiler with high-pressure steam,
A drain path for sending the return of steam, which is a heat medium of the high-pressure heat exchange means, to the deaerator;
A pressure-feeding pump that applies pressure to supply steam to the deaerator when the pressure of the steam flowing through the drain path decreases ;
An adjustment valve that opens and closes the drain path;
Pumping when the amount of steam in the high-pressure heat exchange means exceeds a predetermined amount on condition that the regulating valve is open
A steam recovery facility comprising a control means for driving a pump .
請求項1に記載の蒸気回収設備において、
発電設備には、脱気器に圧送される復水を低圧の蒸気により加温する間接熱交換手段が備えられ、
高圧熱交換手段の熱媒体とされた蒸気の戻りを間接熱交換手段に熱媒体として送るドレン配管をドレン経路から分岐して備えた
ことを特徴とする蒸気回収設備。
The steam recovery facility according to claim 1,
The power generation facility is equipped with indirect heat exchange means for heating the condensate pumped to the deaerator with low-pressure steam,
A steam recovery facility comprising: a drain pipe branched from a drain path for sending a return of steam as a heat medium of the high-pressure heat exchange means to the indirect heat exchange means as a heat medium.
請求項1または請求項2に記載の蒸気回収設備において、
発電設備の脱気器は、高圧熱交換手段よりも高い位置に設置され、
発電設備の高圧熱交換器には、タービンから抽気された蒸気が熱媒体として送られる ことを特徴とする蒸気回収設備。
In the steam recovery equipment according to claim 1 or 2 ,
The deaerator of the power generation facility is installed higher than the high-pressure heat exchange means,
Steam recovery equipment, characterized in that steam extracted from the turbine is sent as a heat medium to the high-pressure heat exchanger of the power generation equipment.
ボイラからの蒸気により駆動されるタービンと、
タービンで仕事を終えた蒸気を凝縮する復水器と、
復水器で凝縮された復水を脱気処理して給水とする脱気器と、
復水器で凝縮された復水を脱気器に圧送する復水供給ポンプと、
脱気器に圧送される復水を低圧側タービンから抽気された蒸気により加温する間接熱交換手段と、
脱気器で脱気処理された給水をボイラに圧送する給水ポンプと、
脱気器よりも低い位置に設置されボイラに圧送される給水を高圧側タービンから抽気された蒸気により加温する高圧熱交換手段と、
高圧側タービンから抽気された蒸気を高圧熱交換手段に送る抽気経路と
を備えた発電設備であって、
高圧熱交換手段の熱媒体とされた蒸気の戻りを抽気の圧力によって脱気器に圧送するドレン経路と、
ドレン経路から分岐して備えられ高圧熱交換手段の熱媒体とされた蒸気の戻りを間接熱交換手段に熱媒体として送るドレン配管と、
抽気の圧力が低下した際に熱回収された蒸気を脱気器に送給するための圧力を付与する圧送ポンプと、
ドレン経路を開閉する調整弁と、
調整弁が開いていることを条件に高圧熱交換手段の蒸気量が所定量を超えた場合に圧送
ポンプを駆動する制御手段と
を備えたことを特徴とする蒸気回収設備。
A turbine driven by steam from the boiler;
A condenser that condenses the steam that has finished work in the turbine,
A deaerator for degassing the condensate condensed in the condenser to supply water;
A condensate supply pump for pumping the condensate condensed in the condenser to the deaerator,
Indirect heat exchange means for heating the condensate pumped to the deaerator with steam extracted from the low-pressure turbine;
A feed water pump for pumping the feed water deaerated by the deaerator to the boiler;
High-pressure heat exchange means for heating the feed water that is installed at a position lower than the deaerator and pumped to the boiler by steam extracted from the high-pressure turbine;
A power generation facility comprising a bleed path for sending steam extracted from a high-pressure turbine to a high-pressure heat exchange means,
A drain path for pumping the return of the steam, which is the heat medium of the high-pressure heat exchange means, to the deaerator by the pressure of the extraction air;
A drain pipe that branches off from the drain path and sends the return of steam as a heat medium of the high-pressure heat exchange means to the indirect heat exchange means as a heat medium;
A pressure-feeding pump that applies pressure for supplying steam that has been heat-recovered to the deaerator when the pressure of the bleed air drops; and
An adjustment valve that opens and closes the drain path;
Steam recovery equipment comprising: control means for driving a pressure pump when the amount of steam in the high-pressure heat exchange means exceeds a predetermined amount on condition that the regulating valve is open.
JP2007014647A 2007-01-25 2007-01-25 Steam recovery equipment Expired - Fee Related JP4895835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014647A JP4895835B2 (en) 2007-01-25 2007-01-25 Steam recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014647A JP4895835B2 (en) 2007-01-25 2007-01-25 Steam recovery equipment

Publications (2)

Publication Number Publication Date
JP2008180158A JP2008180158A (en) 2008-08-07
JP4895835B2 true JP4895835B2 (en) 2012-03-14

Family

ID=39724241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014647A Expired - Fee Related JP4895835B2 (en) 2007-01-25 2007-01-25 Steam recovery equipment

Country Status (1)

Country Link
JP (1) JP4895835B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157854A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for steam generator in power generation facility
CN101846329A (en) * 2010-06-23 2010-09-29 魏熙臣 Draining system for steam air heater of utility boiler
CN101846330B (en) * 2010-06-23 2011-07-27 魏熙臣 Steam supply system for steam air heater of utility boiler
JP2017036870A (en) * 2015-08-07 2017-02-16 Mitsubishi Hitachi Power Systems Ltd Feed water heating device and steam turbine plant
CN108534126A (en) * 2018-03-23 2018-09-14 中国大唐集团科学技术研究院有限公司火力发电技术研究院 It is a kind of with pressure matcher machine stove waste heat coupling utilize system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122810B2 (en) * 1986-09-29 1995-12-25 株式会社日立製作所 Process control equipment
JPH0447103A (en) * 1990-06-15 1992-02-17 Toshiba Corp Thermal power plant
JP2003097801A (en) * 2001-09-25 2003-04-03 Babcock Hitachi Kk Water treating device and water treating method for power generating plant

Also Published As

Publication number Publication date
JP2008180158A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
EP3011146B1 (en) Steam power plant turbine and control method for operating at low load
CN104279058B (en) Combined cycle power plant and the method for operating combined cycle power plant
JP4895835B2 (en) Steam recovery equipment
EP2497561A1 (en) Thermal power plant, steam turbine and control method for a thermal power plant
JP2006242083A (en) Reheat system for power generation plant
US9322298B2 (en) Steam turbine installation and method for operating the steam turbine installation
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
GB2166197A (en) Deaerator pressure control system for a combined cycle steam generator power plant
JP4818391B2 (en) Steam turbine plant and operation method thereof
JP5783458B2 (en) Increased output operation method in steam power plant
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP5178575B2 (en) Power plant water supply apparatus and control method
KR102529628B1 (en) Method for operating a steam power plant and steam power plant for conducting said method
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
KR101690384B1 (en) Waste heat recovery apparatus for combustion furnace and method thereof
JP5424711B2 (en) Steam turbine power generation system
JP5463313B2 (en) Thermal power plant
EP2594764B1 (en) Steam turbine facility, and method for operating the same
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
JPH09303113A (en) Combined cycle generating plant
JP3122234B2 (en) Steam power plant repowering system
JP5656753B2 (en) Power generation facility for waste incinerator and control method thereof
JP2002227611A (en) Pressure fluidized bed boiler power generation plant and its controlling method
JP2012117767A (en) Boiler water feed pump installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees