JP5656754B2 - Power generation facility for waste incinerator and control method thereof - Google Patents

Power generation facility for waste incinerator and control method thereof Download PDF

Info

Publication number
JP5656754B2
JP5656754B2 JP2011135464A JP2011135464A JP5656754B2 JP 5656754 B2 JP5656754 B2 JP 5656754B2 JP 2011135464 A JP2011135464 A JP 2011135464A JP 2011135464 A JP2011135464 A JP 2011135464A JP 5656754 B2 JP5656754 B2 JP 5656754B2
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
low
pressure steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011135464A
Other languages
Japanese (ja)
Other versions
JP2013002393A (en
Inventor
英樹 竹口
英樹 竹口
智一 渋谷
智一 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2011135464A priority Critical patent/JP5656754B2/en
Publication of JP2013002393A publication Critical patent/JP2013002393A/en
Application granted granted Critical
Publication of JP5656754B2 publication Critical patent/JP5656754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、ごみ焼却炉用発電設備の制御システム及び制御方法に係り、詳しくは、余剰蒸気を有効利用するためのごみ焼却炉用発電設備及びその制御方法に関する。   The present invention relates to a control system and a control method for a power generation facility for a waste incinerator, and more particularly to a power generation facility for a waste incinerator for effectively using surplus steam and a control method therefor.

従来、ごみ焼却炉の廃熱を利用して発電するごみ焼却炉用発電設備は、一般の火力発電所と同様の機器で構成されており、蒸気を作動流体とするランキンサイクルを行うため、図3に示すように、主要機器として、焼却炉(不図示)で発生するごみの燃焼熱を吸収し圧力、温度の高い蒸気を発生するボイラー1及び過熱器2、蒸気の持つエネルギーを動力に変換する蒸気タービン3、蒸気タービン3に駆動されて電力を発生する発電機4、及び、蒸気タービン3で仕事を終えた圧力の低い蒸気を再び水に戻す低圧蒸気復水器5を備える。更に、ごみ焼却炉用発電設備は、付帯設備として、ボイラー給水ポンプ6、脱気器7、脱気器給水ポンプ8、蒸気式空気予熱器9、復水タンク10、蒸気タービン3から抽気した蒸気熱を利用する脱気器7や給湯設備や暖房設備などの余熱利用設備11、エコノマイザー12、高圧蒸気溜め13、低圧蒸気溜め14などを備える。   Conventionally, power generation facilities for waste incinerators that generate power using waste heat from waste incinerators are composed of the same equipment as general thermal power plants, and perform Rankine cycle using steam as the working fluid. As shown in Fig. 3, as the main equipment, boiler 1 and superheater 2 generate steam with high pressure and temperature by absorbing the combustion heat of waste generated in an incinerator (not shown), and convert the energy of steam into power A steam turbine 3 that generates electric power by being driven by the steam turbine 3, and a low-pressure steam condenser 5 that returns low-pressure steam that has finished work in the steam turbine 3 back to water. Furthermore, the power generation equipment for the refuse incinerator includes, as ancillary equipment, steam extracted from the boiler feed pump 6, deaerator 7, deaerator feed water pump 8, steam air preheater 9, condensate tank 10, and steam turbine 3. It includes a deaerator 7 that uses heat, a residual heat utilization facility 11 such as a hot water supply facility and a heating facility, an economizer 12, a high-pressure steam reservoir 13, a low-pressure steam reservoir 14, and the like.

ごみ焼却炉に付設される発電設備においては、一般に低質ごみから高質ごみに対応した発電設備を設置する必要がある。   In the power generation equipment attached to the waste incinerator, it is generally necessary to install power generation equipment corresponding to high-quality waste from low-quality waste.

そのため、例えば、蒸気タービン3を最も発生蒸気量の多い高質ごみに合わせて設計し、低質ごみから高質ごみ時に発生する蒸気を全て蒸気タービンに飲み込ませるようにすると、年間を通じて最も出現頻度が高いと想定される基準ごみ程度のごみを焼却した場合、蒸気タービンは低負荷運転となり、発電出力や発電効率が低下するという問題がある。   Therefore, for example, if the steam turbine 3 is designed for high-quality waste with the largest amount of generated steam and all steam generated from low-quality waste to high-quality waste is swallowed by the steam turbine, the frequency of occurrence is highest throughout the year. When incineration of standard waste that is assumed to be high is incinerated, the steam turbine has a low load operation, and there is a problem that power generation output and power generation efficiency decrease.

そこで、図4に示すように、蒸気タービン3を基準ごみ或いは基準ごみよりやや高めのごみ質に合わせて設計し、余剰蒸気が発生した場合は、バイパスライン15を通じて低圧蒸気復水器5にて全量復水する構成のごみ焼却炉用発電設備が提案されている。しかしながら、この場合、余剰蒸気の持つエネルギーは大気に放出され、有効に利用されないという問題がある。   Therefore, as shown in FIG. 4, when the steam turbine 3 is designed with reference waste or slightly higher waste quality than the reference waste, and excess steam is generated, the low-pressure steam condenser 5 passes through the bypass line 15. A power generation facility for a waste incinerator configured to condensate the entire amount has been proposed. However, in this case, there is a problem that the energy of the surplus steam is released to the atmosphere and cannot be used effectively.

そこで、図5及び図6に示されているように、蒸気タービン3に蒸気を供給する高圧蒸気供給ライン16における蒸気量が蒸気タービン3の最大飲み込み量を超えると、余剰蒸気の一部又は全部を脱気器7や余剰熱利用設備11等の熱利用設備にて有効利用し、蒸気タービン3の抽気蒸気の量を減らすことにより、発電機4の出力を増加させることを目的としたごみ焼却炉用発電設備が提案されている(特許文献1等)。   Therefore, as shown in FIG. 5 and FIG. 6, when the amount of steam in the high-pressure steam supply line 16 that supplies steam to the steam turbine 3 exceeds the maximum swallowing amount of the steam turbine 3, part or all of the surplus steam. Waste incineration for the purpose of increasing the output of the generator 4 by reducing the amount of steam extracted from the steam turbine 3 by effectively using the heat in the heat utilization facilities such as the deaerator 7 and the surplus heat utilization facility 11 A power generation facility for a furnace has been proposed (Patent Document 1, etc.).

図5のごみ焼却炉用発電設備では、余剰蒸気発生時には、抽気蒸気制御弁Vdを閉じ、余剰蒸気熱利用制御弁Vaを開き、余剰蒸気熱利用ライン17を通じて低圧蒸気溜め14へ蒸気を送る。低圧蒸気溜め14に送られた余剰蒸気は、余熱利用設備11及び脱気器7等の熱利用設備で有効に利用される。熱利用設備で利用される以上の余剰蒸気がある場合は、タービンバイパス制御弁Vbを開き、熱利用設備で利用される以上の余剰蒸気をタービンバイパスライン18を通じて低圧蒸気復水器5にて復水する。余剰蒸気を熱利用設備にて利用する分、抽気ライン19からの抽気蒸気を減らすことができ、発電機4の出力を増加することができ、場合により可能最大発電量を得ることができる。 In the waste incinerator power generation facility of FIG. 5, when surplus steam is generated, the extraction steam control valve Vd is closed, the surplus steam heat utilization control valve Va is opened, and steam is sent to the low pressure steam reservoir 14 through the surplus steam heat utilization line 17. The surplus steam sent to the low-pressure steam reservoir 14 is effectively used in heat utilization equipment such as the residual heat utilization equipment 11 and the deaerator 7. When there is surplus steam that can be used in the heat utilization equipment, the turbine bypass control valve Vb 1 is opened, and surplus steam that is used in the heat utilization equipment is passed through the turbine bypass line 18 in the low-pressure steam condenser 5. Condensate. The amount of extracted steam from the extraction line 19 can be reduced by the amount of surplus steam used in the heat utilization facility, the output of the generator 4 can be increased, and the maximum possible power generation amount can be obtained in some cases.

図6のごみ焼却炉用発電設備では、余剰蒸気発生時には、抽気蒸気制御弁を閉じ、余剰蒸気熱利用制御弁Va、Vfを開き、タービンバイパスライン20a、余剰蒸気熱利用ライン21を通じて低圧蒸気溜め14へ蒸気を送る。低圧蒸気溜め14に送られた余剰蒸気は、余熱利用設備11及び脱気器7等の熱利用設備で有効に利用される。熱利用設備で利用される以上の余剰蒸気がある場合は、タービンバイパス制御弁Vbを開き、タービンバイパスライン20bを通じて熱利用設備で利用される以上の余剰蒸気を低圧蒸気復水器5に逃がして復水する。余剰蒸気を熱利用設備にて利用する分、抽気ライン19からの抽気蒸気量を減らすことができ、蒸気タービン発電機4の出力を増加することができ、場合により可能最大発電量を得ることができる。 In the waste incinerator power generation facility of FIG. 6, when surplus steam is generated, the extraction steam control valve is closed, the surplus steam heat utilization control valves Va and Vf are opened, and the low-pressure steam reservoir through the turbine bypass line 20 a and the surplus steam heat utilization line 21. Send steam to 14. The surplus steam sent to the low-pressure steam reservoir 14 is effectively used in heat utilization equipment such as the residual heat utilization equipment 11 and the deaerator 7. When there is surplus steam that can be used in the heat utilization equipment, the turbine bypass control valve Vb 2 is opened, and surplus steam that is used in the heat utilization equipment is released to the low-pressure steam condenser 5 through the turbine bypass line 20b. And condensate. The amount of extracted steam from the extraction line 19 can be reduced by the amount of surplus steam used in the heat utilization facility, the output of the steam turbine generator 4 can be increased, and the maximum possible power generation amount can be obtained in some cases. it can.

特開2006−284018号公報JP 2006-284018 A

図5に示したごみ焼却炉用発電設備は、場合により可能最大発電量を得ることができるが、可能最大発電量を得ていない場合もあり、発電効率は必ずしも良くない。   The power generation facility for the refuse incinerator shown in FIG. 5 can obtain the maximum possible power generation amount depending on the case, but may not obtain the maximum possible power generation amount, and the power generation efficiency is not always good.

また、蒸気タービン3が稼働している状態での運転は可能であるが、蒸気タービンがトリップし急激にタービンバイパス蒸気量が増えた場合、余剰蒸気熱利用制御弁Vaを急開して余剰蒸気熱利用ライン17を通じて低圧蒸気溜め14に大量のタービンバイパス蒸気を送り、次いで、タービンバイパス制御弁Vbを急開して低圧蒸気溜め14に流れ込んだ大量の蒸気をタービンバイパスライン18を通じて低圧蒸気復水器5へ送る。この場合、余剰蒸気熱利用制御弁Vaとタービンバイパス制御弁Vbの流量特性及び動作特性が異なるため、両弁間にある低圧蒸気溜め14内の圧力が変動する。低圧蒸気溜め14内の圧力が変動すると、低圧蒸気溜め14の後段に設置されている機器の圧力も変動し、各所で安全弁(不図示)が作動したり、脱気器圧力が変動する恐れがある。 In addition, the operation with the steam turbine 3 in operation is possible. However, when the steam turbine trips and the amount of turbine bypass steam suddenly increases, the surplus steam heat utilization control valve Va is opened rapidly to surplus steam. A large amount of turbine bypass steam is sent to the low-pressure steam reservoir 14 through the heat utilization line 17, and then the large amount of steam flowing into the low-pressure steam reservoir 14 by suddenly opening the turbine bypass control valve Vb 1 is transmitted through the turbine bypass line 18. Send to water container 5. In this case, since the flow characteristics and operation characteristics of the surplus steam heat utilization control valve Va and the turbine bypass control valve Vb 1 are different, the pressure in the low-pressure steam reservoir 14 between the valves fluctuates. When the pressure in the low-pressure steam reservoir 14 fluctuates, the pressure of the equipment installed in the subsequent stage of the low-pressure steam reservoir 14 also fluctuates, and there is a risk that safety valves (not shown) will operate in various places and the deaerator pressure will fluctuate. is there.

図6に示すごみ焼却炉用発電設備でも、場合により可能最大発電量を得ることができるが、可能最大発電量を得ていない場合もあり、発電効率は必ずしも良くない。また、蒸気タービン3が稼働している状態での運転は可能であるが、タービントリップ時は余剰蒸気熱利用制御弁Va及びタービンバイパス制御弁Vbを急開し、タービンバイパスライン20a、20bを通じて大量のタービンバイパス蒸気を低圧蒸気復水器5へ送ることとなる。この場合、余剰蒸気熱利用制御弁Vaとタービンバイパス制御弁Vbの流量特性及び動作特性が異なるため、両弁間の配管内圧力が変動し、余剰蒸気熱利用制御弁Vfの入口圧力が変動する。余剰蒸気熱利用制御弁Vfの入口圧力が変動すると余剰蒸気熱利用制御弁Vf後段の低圧蒸気溜め14の圧力も変動する。低圧蒸気溜め14内の圧力が変動すると、低圧蒸気溜め14の後段に設置されている機器の圧力も変動し、各所で安全弁(不図示)が作動したり、脱気器圧力が変動する恐れがある。 Even the power generation facility for the refuse incinerator shown in FIG. 6 can obtain the maximum possible power generation amount in some cases, but the maximum possible power generation amount may not be obtained, and the power generation efficiency is not always good. In addition, the operation in a state where the steam turbine 3 is operating is possible, but when the turbine trips, the surplus steam heat utilization control valve Va and the turbine bypass control valve Vb 2 are opened rapidly and through the turbine bypass lines 20a and 20b. A large amount of turbine bypass steam is sent to the low-pressure steam condenser 5. In this case, since the flow characteristics and operation characteristics of the surplus steam heat utilization control valve Va and the turbine bypass control valve Vb 2 are different, the pressure in the piping between the two valves varies, and the inlet pressure of the surplus steam heat utilization control valve Vf varies. To do. When the inlet pressure of the surplus steam heat utilization control valve Vf varies, the pressure of the low pressure steam reservoir 14 at the rear stage of the surplus steam heat utilization control valve Vf also varies. When the pressure in the low-pressure steam reservoir 14 fluctuates, the pressure of the equipment installed in the subsequent stage of the low-pressure steam reservoir 14 also fluctuates, and there is a risk that safety valves (not shown) will operate in various places and the deaerator pressure will fluctuate. is there.

そこで、本発明は、蒸気タービンに供給される蒸気量が蒸気タービンの最大飲み込み量を超えた時にはその余剰蒸気を余熱利用設備や脱気器加熱等の熱利用設備に有効利用しつつ最大発電量を得て発電設備全体のエネルギー効率を向上させるとともに、タービントリップが発生した場合でも安全弁を作動させるような危険な状態を回避することのできる、ごみ焼却炉用発電設備及びその制御方法を提供することを主たる目的とする。   Therefore, the present invention provides the maximum power generation amount while effectively utilizing the surplus steam for heat utilization equipment such as residual heat utilization equipment and deaerator heating when the amount of steam supplied to the steam turbine exceeds the maximum swallowing amount of the steam turbine. The present invention provides a power generation facility for a waste incinerator and a control method thereof that can improve the energy efficiency of the entire power generation facility and avoid a dangerous state such as operating a safety valve even when a turbine trip occurs. The main purpose.

上記目的を達成するため、本発明に係るごみ焼却炉用発電設備は、ごみ焼却炉の廃熱を利用するボイラーと、前記ボイラーからの高圧蒸気により駆動する蒸気タービンと、前記蒸気タービンによって発電する発電機と、前記蒸気タービンを通過した低圧蒸気を復水する復水器と、前記高圧蒸気の一部及び前記蒸気タービンの抽気蒸気を供給可能に接続された低圧蒸気溜めと、該低圧蒸気溜めの蒸気の熱を利用する熱利用設備と、前記ボイラーからの高圧蒸気を前記蒸気タービンを迂回させて前記復水器に供給可能に接続するタービンバイパスラインと、蒸気量制御装置と、を備え、前記高圧蒸気の一部を前記低圧蒸気溜めに供給可能に接続する余剰蒸気熱利用ラインと前記タービンバイパスラインとが別系統とされ、前記蒸気量制御装置は、前記蒸気タービンに供給される高圧蒸気の圧力が所定値を超える場合に、該高圧蒸気の一部を前記低圧蒸気溜めへ逃がすことにより前記蒸気タービンに供給される前記高圧蒸気の圧力を前記所定値に保持しつつ、前記発電機の発電量が最大値に近づくように前記抽気蒸気の抽気量を制御するとともに、前記抽気量の制御に伴う抽気量の変動により前記低圧蒸気溜め内の圧力が変動した時に前記低圧蒸気溜め内の圧力を所定圧力範囲内に保持するように前記低圧蒸気溜めへ逃がす高圧蒸気の蒸気量を制御し、前記蒸気タービンに供給される高圧蒸気の圧力が前記所定値より高い所定上限値を超える場合に、前記タービンバイパスラインを開くとともに、前記ボイラーから前記蒸気タービンに供給される高圧蒸気の圧力が前記上限設定値以下となるように前記タービンバイパスラインの蒸気量を制御することを特徴とする。   In order to achieve the above object, a power generation facility for a waste incinerator according to the present invention generates a boiler using waste heat from a waste incinerator, a steam turbine driven by high-pressure steam from the boiler, and power generated by the steam turbine. A generator, a condenser for condensing the low-pressure steam that has passed through the steam turbine, a low-pressure steam reservoir connected to be able to supply a part of the high-pressure steam and the extracted steam of the steam turbine, and the low-pressure steam reservoir A heat utilization facility that uses the heat of the steam, a turbine bypass line that bypasses the steam turbine and supplies the high-pressure steam from the boiler to the condenser, and a steam amount control device, The surplus steam heat utilization line for connecting a part of the high-pressure steam to the low-pressure steam reservoir so as to be able to be supplied and the turbine bypass line are separate systems, and the steam amount control device, When the pressure of the high-pressure steam supplied to the steam turbine exceeds a predetermined value, the pressure of the high-pressure steam supplied to the steam turbine is released to the predetermined value by escaping a part of the high-pressure steam to the low-pressure steam reservoir. While controlling the extraction amount of the extraction steam so that the power generation amount of the generator approaches the maximum value, and the pressure in the low-pressure steam reservoir fluctuates due to the fluctuation of the extraction amount accompanying the control of the extraction amount The amount of high-pressure steam released to the low-pressure steam reservoir is controlled so that the pressure in the low-pressure steam reservoir is maintained within a predetermined pressure range, and the pressure of the high-pressure steam supplied to the steam turbine is greater than the predetermined value. When the high predetermined upper limit is exceeded, the turbine bypass line is opened, and the pressure of the high-pressure steam supplied from the boiler to the steam turbine is equal to or lower than the upper limit set value. And controlling the amount of steam of the turbine bypass line as.

また、上記目的を達成するため、本発明に係るごみ焼却炉用発電設備の制御方法は、ごみ焼却炉の廃熱を利用するボイラーと、前記ボイラーからの高圧蒸気により駆動する蒸気タービンと、前記蒸気タービンにより発電する発電機と、前記蒸気タービンを通過した低圧蒸気を復水する復水器と、前記高圧蒸気の一部及び前記蒸気タービンの抽気蒸気を供給可能に接続された低圧蒸気溜めと、該低圧蒸気溜めの蒸気の熱を利用する熱利用設備と、前記ボイラーからの高圧蒸気を前記蒸気タービンを迂回させて前記復水器に供給可能に接続するタービンバイパスラインと、を備え、前記高圧蒸気の一部を前記低圧蒸気溜めに供給可能に接続する余剰蒸気熱利用ラインと前記タービンバイパスラインとが別系統とされたごみ焼却炉用設備の制御方法であって、前記蒸気タービンに供給される高圧蒸気の圧力が所定値を超える場合に、該高圧蒸気の一部を前記低圧蒸気溜めへ逃がすことにより前記蒸気タービンに供給される高圧蒸気の圧力を前記所定値に保持しつつ、前記発電機の発電量が最大値に近づくように前記抽気蒸気の抽気量を制御するとともに、該抽気量の変動により前記低圧蒸気溜め内の圧力が変動した時に前記低圧蒸気溜め内の圧力を所定圧力範囲内に保持するように前記低圧蒸気溜めへ逃がす高圧蒸気の蒸気量を制御し、前記蒸気タービンに供給される高圧蒸気の圧力が前記所定値より高い所定上限値を超える場合に、前記タービンバイパスラインを開くとともに、前記ボイラーから前記蒸気タービンに供給される高圧蒸気の圧力が前記上限設定値以下となるように前記タービンバイパスラインの蒸気量を制御することを特徴とする。   In order to achieve the above object, a method for controlling a power generation facility for a waste incinerator according to the present invention includes a boiler that uses waste heat of a waste incinerator, a steam turbine that is driven by high-pressure steam from the boiler, A generator for generating electricity by a steam turbine; a condenser for condensing the low-pressure steam that has passed through the steam turbine; and a low-pressure steam reservoir connected to be able to supply a part of the high-pressure steam and the extracted steam of the steam turbine; A heat utilization facility that utilizes the heat of the steam in the low-pressure steam reservoir, and a turbine bypass line that connects the high-pressure steam from the boiler so as to bypass the steam turbine and be supplied to the condenser, A method for controlling a waste incinerator facility in which a surplus steam heat utilization line for connecting a part of high-pressure steam to the low-pressure steam reservoir and the turbine bypass line are separate systems When the pressure of the high-pressure steam supplied to the steam turbine exceeds a predetermined value, the pressure of the high-pressure steam supplied to the steam turbine is reduced by releasing a part of the high-pressure steam to the low-pressure steam reservoir. While maintaining the predetermined value, the extraction amount of the extraction steam is controlled so that the power generation amount of the generator approaches the maximum value, and when the pressure in the low-pressure steam reservoir fluctuates due to the fluctuation of the extraction amount, the low pressure Controlling the amount of high-pressure steam released to the low-pressure steam reservoir so as to keep the pressure in the steam reservoir within a predetermined pressure range, and a predetermined upper limit value in which the pressure of the high-pressure steam supplied to the steam turbine is higher than the predetermined value The turbine bypass line is opened, and the pressure of the high-pressure steam supplied from the boiler to the steam turbine is set to be equal to or lower than the upper limit set value. And controlling the amount of steam bottle bypass line.

本発明によれば、蒸気タービンに供給される高圧蒸気が蒸気タービンの最大飲み込み量を超えることにより、蒸気タービンに供給される圧力が所定値を超えた場合に、発電量を指標として蒸気タービンの抽気量を調整することで、蒸気タービンの抽気蒸気量を減少或いはゼロにしてその蒸気を蒸気タービン排気側へ流すことによって蒸気タービン発電機の発電量を増加させるとともに、発生する余剰蒸気の一部又は全部を低圧蒸気溜めを介して熱利用設備に供給するので、余剰蒸気を有効利用し、発電設備全体のエネルギー効率を向上させることができるとともに、タービントリップ時等においては、余剰蒸気熱利用ラインとは別系統のタービンバイパスラインを通じて高圧蒸気を逃がすので、余剰蒸気利用ラインの安全弁を作動させるような危険な状態を回避することができる。   According to the present invention, when the pressure supplied to the steam turbine exceeds a predetermined value because the high-pressure steam supplied to the steam turbine exceeds the maximum swallowing amount of the steam turbine, By adjusting the extraction amount, the generation amount of the steam turbine generator is increased by reducing or eliminating the extraction steam amount of the steam turbine and flowing the steam to the exhaust side of the steam turbine, and a part of the generated surplus steam Alternatively, the entire steam is supplied to the heat utilization equipment via the low-pressure steam reservoir, so that the surplus steam can be used effectively and the energy efficiency of the entire power generation equipment can be improved. Since high-pressure steam is released through a separate turbine bypass line, the safety valve of the surplus steam utilization line is activated. It is possible to avoid a dangerous situation.

従来では蒸気タービンの最大飲み込み蒸気量は、ごみ質等の変動に伴う蒸発量の変動を考慮し、平均的に処理されるごみ(基準ごみ)に余裕を見込んだごみ質(例えば基準ごみの10%増)をタービン設計ごみ質として設定することが多かったが、本発明によれば、余剰蒸気が発生しても蒸気タービンによる発電機の発電量を増加させることができるので、蒸気タービン最大飲み込み蒸気量を基準ごみ程度で設計することが可能となり、その結果、蒸気タービンを従来よりコンパクトに設計でき、しかも基準ごみでの発電効率を向上させる設計が可能となる。   Conventionally, the maximum swallowed steam amount of a steam turbine is considered to be a waste quality (for example 10 % Increase) was often set as the turbine design waste quality, but according to the present invention, even if surplus steam is generated, the power generation amount of the generator by the steam turbine can be increased. It is possible to design the amount of steam with the standard waste, and as a result, the steam turbine can be designed more compactly than before, and the power generation efficiency with the standard waste can be improved.

本発明に係るごみ焼却炉用発電設備の一実施形態を示すシステム図である。It is a system diagram showing one embodiment of the power generation equipment for a refuse incinerator according to the present invention. 図1のごみ焼却炉用発電設備の制御フローチャートである。It is a control flowchart of the power generation equipment for refuse incinerators of FIG. 従来のごみ焼却炉用発電設備の一形態を示すシステム図である。It is a system diagram which shows one form of the conventional power generation equipment for refuse incinerators. 従来のごみ焼却炉用発電設備の他の形態を示すシステム図である。It is a system diagram which shows the other form of the conventional power generation equipment for refuse incinerators. 従来のごみ焼却炉用発電設備の更に他の形態を示すシステム図である。It is a system diagram which shows the further another form of the conventional power generation equipment for refuse incinerators. 従来のごみ焼却炉用発電設備の更に他の形態を示すシステム図である。It is a system diagram which shows the further another form of the conventional power generation equipment for refuse incinerators.

本発明に係るごみ焼却炉用発電設備およびその制御方法について、以下に図1及び図2を参照して説明する。なお、上記従来例を通じ、同様の構成部分には同符号を付した。   A power generation facility for a waste incinerator and a control method thereof according to the present invention will be described below with reference to FIGS. 1 and 2. In addition, the same code | symbol was attached | subjected to the same component through the said prior art example.

図1に示すように、ごみ焼却炉用発電設備は、図外焼却炉の廃熱を利用するボイラー1と、ボイラー1と高圧蒸気供給ライン16で接続された蒸気タービン3と、蒸気タービン3により発電する発電機4と、発電機4の発電量を検出する発電量検出器Gと、蒸気タービン3と復水ライン22で接続された復水器5と、高圧蒸気供給ライン16に介在された高圧蒸気溜め13と、高圧蒸気溜め13と余剰蒸気熱利用ライン17で接続された低圧蒸気溜め14と、低圧蒸気溜め14と接続された脱気器7や給湯設備や暖房設備などの余熱利用設備11などの熱利用設備と、高圧蒸気供給ライン16と復水ライ22とを接続するタービンバイパスライン15と、蒸気タービン3から抽気して抽気蒸気を低圧蒸気溜め14に供給する抽気ライン19と、余剰蒸気熱利用ライン17に介在された余剰蒸気熱利用制御弁Vaと、タービンバイパスライン15に介在されたタービンバイパス制御弁Vbと、抽気ライン19に介在された抽気蒸気制御弁Vdと、高圧蒸気供給ライン16の蒸気圧を検出する第1圧力検出器PAと、低圧蒸気溜め14の蒸気圧を検出する第2圧力検出器PBと、第1圧力検出器PA、第2圧力検出器PB、及び発電量検出器Gから検出信号を受け取り、余剰蒸気熱利用制御弁Va、タービンバイパス制御弁Vb、及び抽気蒸気制御弁Vd等を制御する蒸気量制御装置23と、を備えている。余剰蒸気熱利用ライン17とタービンバイパスライン15とは、高圧蒸気溜め13から蒸気供給系統が別系統となっている。   As shown in FIG. 1, a power generation facility for a waste incinerator includes a boiler 1 that uses waste heat from an outside incinerator, a steam turbine 3 that is connected to the boiler 1 through a high-pressure steam supply line 16, and a steam turbine 3. The generator 4 that generates power, the power generation detector G that detects the power generation amount of the generator 4, the condenser 5 that is connected to the steam turbine 3 by the condensate line 22, and the high-pressure steam supply line 16 are interposed. High pressure steam reservoir 13, low pressure steam reservoir 14 connected to high pressure steam reservoir 13 and surplus steam heat utilization line 17, deaerator 7 connected to low pressure steam reservoir 14, residual heat utilization facilities such as hot water supply facilities and heating facilities 11, a turbine bypass line 15 that connects the high-pressure steam supply line 16 and the condensate lie 22, and an extraction line 19 that extracts the steam from the steam turbine 3 and supplies the extracted steam to the low-pressure steam reservoir 14. The surplus steam heat utilization control valve Va interposed in the surplus steam heat utilization line 17, the turbine bypass control valve Vb interposed in the turbine bypass line 15, the extraction steam control valve Vd interposed in the extraction line 19, and the high pressure steam A first pressure detector PA for detecting the vapor pressure in the supply line 16, a second pressure detector PB for detecting the vapor pressure in the low-pressure steam reservoir 14, a first pressure detector PA, a second pressure detector PB, and A steam amount control device 23 that receives a detection signal from the power generation amount detector G and controls the surplus steam heat utilization control valve Va, the turbine bypass control valve Vb, the extraction steam control valve Vd, and the like. The surplus steam heat utilization line 17 and the turbine bypass line 15 are separated from the high-pressure steam reservoir 13 by a steam supply system.

高圧蒸気供給ライン16のタービン入口付近には、通常、タービン入口遮断弁Veが設けられる。タービン入口遮断弁Veは、蒸気タービンの回転速度、軸振動、軸受部などに異常が生じた場合等に、図外の中央制御室或いは蒸気タービンが設置されている現場制御盤からの指令により、タービンへの蒸気の流入を遮断し、蒸気タービンを急速に停止させる。なお、蒸気タービンへの蒸気の流入を遮断し、蒸気タービンを急速に停止することを、タービントリップという。   A turbine inlet shut-off valve Ve is usually provided near the turbine inlet of the high-pressure steam supply line 16. The turbine inlet shut-off valve Ve can be used in response to a command from the central control room (not shown) or the on-site control panel where the steam turbine is installed in the event of an abnormality in the rotational speed, shaft vibration, bearing portion, etc. of the steam turbine. Shut off the inflow of steam to the turbine and stop the steam turbine rapidly. Note that shutting off the inflow of steam to the steam turbine and rapidly stopping the steam turbine is referred to as a turbine trip.

余剰蒸気熱利用制御弁Va、タービンバイパス制御弁Vb、及び抽気蒸気制御弁Vdは、開度調整が可能な制御弁、例えば比例制御弁である。   The surplus steam heat utilization control valve Va, the turbine bypass control valve Vb, and the extraction steam control valve Vd are control valves capable of adjusting the opening, for example, proportional control valves.

蒸気量制御装置23による制御手順を、以下、図2の制御フローチャートを併せて参照しつつ説明する。   The control procedure by the steam amount control device 23 will be described below with reference to the control flowchart of FIG.

スタート時、即ち蒸気タービン3が停止している初期状態では、余剰蒸気熱利用制御弁Va及びタービンバイパス制御弁Vbは開いており、タービン入口遮断弁Ve、及び、抽気蒸気制御弁Vdは閉じている。   At the start, that is, in the initial state where the steam turbine 3 is stopped, the surplus steam heat utilization control valve Va and the turbine bypass control valve Vb are open, and the turbine inlet shut-off valve Ve and the extraction steam control valve Vd are closed. Yes.

蒸気量制御装置23は、図2(a)に示すように、第1圧力検出器PAの検出圧力(Pa)が、蒸気タービン運転可能下限設定圧力(P0)以上か否かを判断する(ステップS1)。ここで、P0は例えば3.6MPaである。   As shown in FIG. 2A, the steam amount control device 23 determines whether or not the detected pressure (Pa) of the first pressure detector PA is equal to or higher than the steam turbine operable lower limit set pressure (P0) (step). S1). Here, P0 is, for example, 3.6 MPa.

蒸気量制御装置23は、ステップS1において第1圧力検出器PAの検出圧力(Pa)が、蒸気タービン運転可能下限設定圧力(P0)より小さい(即ち、Pa<P0)と判断した場合、前記初期状態を維持する。なお、初期状態では、低圧蒸気溜め14内の蒸気圧力が低圧蒸気だめ14に関連して設定された所定値(P2)となるように、第2圧力検出器PBの検出圧力(Pb)に基づいて、余剰蒸気熱利用制御弁Vaを制御する。この所定値(P2)は、例えば低圧蒸気溜め14の定格圧力であり、例えば0.5MPaである。   When the steam pressure control device 23 determines in step S1 that the detected pressure (Pa) of the first pressure detector PA is smaller than the steam turbine operable lower limit set pressure (P0) (that is, Pa <P0), Maintain state. In the initial state, based on the detected pressure (Pb) of the second pressure detector PB so that the steam pressure in the low-pressure steam reservoir 14 becomes a predetermined value (P2) set in relation to the low-pressure steam reservoir 14. Then, the surplus steam heat utilization control valve Va is controlled. This predetermined value (P2) is, for example, the rated pressure of the low-pressure steam reservoir 14, and is, for example, 0.5 MPa.

蒸気量制御装置23は、ステップS1において第1圧力検出器PAの検出圧力(Pa)が、蒸気タービン運転可能下限設定圧力(P0)以上(即ち、Pa≧P0)と判断した場合、検出圧力(Pa)が蒸気タービンに関連して設定された所定値(P1)未満か否かを判断する(ステップS2)。所定値(P1)は、例えばタービン定格圧力であり、例えば3.7MPaである。   When the steam pressure control device 23 determines that the detected pressure (Pa) of the first pressure detector PA is equal to or higher than the steam turbine operable lower limit set pressure (P0) (ie, Pa ≧ P0) in step S1, the detected pressure ( It is determined whether Pa) is less than a predetermined value (P1) set in relation to the steam turbine (step S2). The predetermined value (P1) is, for example, a turbine rated pressure, and is, for example, 3.7 MPa.

蒸気量制御装置23は、ステップS2において第1圧力検出器PAの検出圧力(Pa)が所定値(P1)未満(即ち、Pa<P1)と判断した場合、通常運転モードで制御する(ステップS3)。   When it is determined in step S2 that the detected pressure (Pa) of the first pressure detector PA is less than the predetermined value (P1) (ie, Pa <P1), the steam amount control device 23 performs control in the normal operation mode (step S3). ).

通常運転モードでは、基本操作として、余剰蒸気熱利用制御弁Va及びタービンバイパス制御弁Vbを閉じ、タービン入口遮断弁Veを開く。また、低圧蒸気溜め14内の蒸気圧力(Pb)が所定値(P2)となるように、第2圧力検出器PBの検出圧力(Pb)に基づいて、抽気蒸気制御弁Vdが制御される。   In the normal operation mode, as a basic operation, the surplus steam heat use control valve Va and the turbine bypass control valve Vb are closed, and the turbine inlet cutoff valve Ve is opened. Further, the extraction steam control valve Vd is controlled based on the detected pressure (Pb) of the second pressure detector PB so that the steam pressure (Pb) in the low-pressure steam reservoir 14 becomes a predetermined value (P2).

高圧蒸気の蒸気量が増し、ステップS2において第1圧力検出器PAの検出圧力(Pa)が所定値(P1)以上(即ち、Pa≧P1)と蒸気量制御装置23が判断した場合、蒸気量制御装置23は運転モードを通常運転モードから余剰蒸気利用運転モードに切り替える(ステップS4)。   When the steam amount of the high-pressure steam increases and the steam amount control device 23 determines in step S2 that the detected pressure (Pa) of the first pressure detector PA is equal to or higher than a predetermined value (P1) (ie, Pa ≧ P1), the steam amount The control device 23 switches the operation mode from the normal operation mode to the surplus steam utilization operation mode (step S4).

余剰蒸気利用運転モードでは、蒸気タービン3の最大飲み込み蒸気量を確保しつつ、発電量が最大となる点まで抽気量を少なくし、余剰蒸気熱利用ラインを介して余剰蒸気を熱利用設備に供給するように制御する。   In the surplus steam utilization operation mode, while ensuring the maximum swallowed steam amount of the steam turbine 3, the amount of extraction is reduced to the point where the power generation amount becomes maximum, and surplus steam is supplied to the heat utilization equipment via the surplus steam heat utilization line. Control to do.

なお、蒸気タービン3へ供給される蒸気量は、第1圧力検出器PAの検出圧力(Pa)から導出することができ、蒸気タービンの最大飲み込み蒸気量は、蒸気タービンの定格圧力に対応する蒸気量である。従って、余剰蒸気利用運転モードでは、第1圧力検出器PAの検出圧力(Pa)が、蒸気タービン3の定格圧力以上の圧力を確保しつつ、抽気量を絞り、余剰蒸気熱利用制御弁Vaの開度を増加させて余剰蒸気を低圧蒸気溜め14に供給する。   Note that the amount of steam supplied to the steam turbine 3 can be derived from the detected pressure (Pa) of the first pressure detector PA, and the maximum swallowed steam amount of the steam turbine is the steam corresponding to the rated pressure of the steam turbine. Amount. Therefore, in the surplus steam utilization operation mode, the extraction pressure (Pa) of the first pressure detector PA is ensured to be equal to or higher than the rated pressure of the steam turbine 3, and the amount of extraction is reduced, and the surplus steam heat utilization control valve Va is controlled. The opening degree is increased and surplus steam is supplied to the low-pressure steam reservoir 14.

余剰蒸気利用運転モードでは、一旦、初期状態にセットされる。余剰蒸気利用運転モードの初期状態は、通常運転モードと同じ状態、即ち、余剰蒸気熱利用制御弁Va及びタービンバイパス制御弁Vbを閉じ、タービン入口遮断弁Veを開き、低圧蒸気溜め14内の蒸気圧力(Pb)が所定値(P2)となるように抽気蒸気制御弁Vdの開度が制御される状態である。   In the surplus steam utilization operation mode, the initial state is temporarily set. The initial state of the surplus steam utilization operation mode is the same as the normal operation mode, that is, the surplus steam heat utilization control valve Va and the turbine bypass control valve Vb are closed, the turbine inlet shut-off valve Ve is opened, and the steam in the low pressure steam reservoir 14 is opened. This is a state in which the opening degree of the extraction steam control valve Vd is controlled so that the pressure (Pb) becomes a predetermined value (P2).

余剰蒸気利用運転モードにおいて、蒸気量制御装置23は、発電量が最大となるように抽気蒸気量を調整するため、先ず、抽気蒸気制御弁Vdの開度を少しだけ所定度合減少させる(ステップS5)。その結果、発電量検出器Gの発電量が増加したか否かを判定し(ステップS6)、発電量が増加した場合、さらに抽気蒸気制御弁Vdの開度を所定度合だけ減少させる。この操作を、発電量が増加しなくなる(即ち、発電量が最大となる)まで行う。
また、ステップS5において抽気蒸気制御弁Vdの開度を減少させた結果、発電量検出器Gが検出する発電量が減少した場合、抽気蒸気制御弁Vdの開度を所定度合増加させる(ステップS7)。その結果、余剰蒸気熱利用制御弁Vaが全閉になったか否かを判定し(ステップS8)、余剰蒸気熱利用制御弁Vaが全閉でなければ、発電量検出器Gの検出する発電量が増加したか否かを判定し(ステップS9)、発電量が増加した場合はステップS7に戻って更に抽気蒸気制御弁Vdの開度を所定度合だけ増加させ、発電量が増加しなかった場合は、ステップS5に戻って抽気蒸気制御弁Vdの開度を減少させる。
In the surplus steam utilization operation mode, the steam amount control device 23 first decreases the degree of opening of the extraction steam control valve Vd by a predetermined amount to adjust the extraction steam amount so as to maximize the power generation amount (step S5). ). As a result, it is determined whether the power generation amount of the power generation amount detector G has increased (step S6). If the power generation amount has increased, the opening degree of the extraction steam control valve Vd is further decreased by a predetermined degree. This operation is performed until the power generation amount does not increase (that is, the power generation amount becomes maximum).
When the power generation amount detected by the power generation amount detector G is reduced as a result of reducing the opening degree of the extraction steam control valve Vd in step S5, the opening degree of the extraction steam control valve Vd is increased by a predetermined degree (step S7). ). As a result, it is determined whether or not the surplus steam heat utilization control valve Va is fully closed (step S8). If the surplus steam heat utilization control valve Va is not fully closed, the power generation amount detected by the power generation amount detector G is detected. (Step S9), if the amount of power generation has increased, the process returns to step S7 to further increase the opening degree of the extraction steam control valve Vd by a predetermined degree, and the amount of power generation has not increased Returns to step S5 and decreases the opening degree of the extraction steam control valve Vd.

上記のように抽気蒸気制御弁Vdの開度を調整することで、発電量が最大となるポイントを探すように制御する。   By adjusting the opening degree of the extraction steam control valve Vd as described above, control is performed so as to search for a point where the power generation amount becomes maximum.

ステップS5、S7において抽気蒸気制御弁Vdの開度を増減させることにより、低圧蒸気溜め14内の圧力が増減するが、蒸気量制御装置23は、余剰蒸気熱利用制御弁Vaの開度を調整することにより、低圧蒸気溜め14の検出圧力(Pb)が設定値P2となるように制御される。
具体的には、ステップS5において、抽気蒸気を絞ることにより低圧蒸気溜めに供給される蒸気が減少し低圧蒸気溜め14内の圧力(Pb)が設定値(P2)以下となった場合は余剰蒸気熱利用制御弁Vaの開度を増加する。また、ステップS7において、抽気蒸気量が増加して低圧蒸気溜め14内の圧力(Pb)が設定値(P2)を超えた場合は余剰蒸気熱利用制御弁Vaの開度を減少させる。
In steps S5 and S7, the pressure in the low-pressure steam reservoir 14 is increased or decreased by increasing or decreasing the opening degree of the extraction steam control valve Vd, but the steam amount control device 23 adjusts the opening degree of the surplus steam heat utilization control valve Va. By doing so, the detected pressure (Pb) of the low-pressure steam reservoir 14 is controlled to be the set value P2.
Specifically, in step S5, when the steam supplied to the low-pressure steam reservoir is reduced by restricting the extraction steam and the pressure (Pb) in the low-pressure steam reservoir 14 becomes equal to or lower than the set value (P2), the surplus steam The opening degree of the heat utilization control valve Va is increased. In step S7, when the amount of extracted steam increases and the pressure (Pb) in the low-pressure steam reservoir 14 exceeds the set value (P2), the opening degree of the surplus steam heat utilization control valve Va is decreased.

ステップS7において余剰蒸気熱利用制御弁Vaの開度が減少することにより、ステップS8において余剰蒸気熱利用制御弁Vaが全閉と判定した場合、即ち余剰蒸気量がゼロになった場合は、再びスタート地点に戻り、ステップS1、S2を経て、通常運転モード(ステップS3)又は余剰蒸気利用運転モード(ステップS4)となる。   If it is determined in step S8 that the surplus steam heat utilization control valve Va is fully closed in step S8 because the opening degree of the surplus steam heat utilization control valve Va is reduced, that is, if the surplus steam amount becomes zero, again. Returning to the start point, the normal operation mode (step S3) or the surplus steam using operation mode (step S4) is entered through steps S1 and S2.

なお、通常運転モード(ステップS3)では、低圧蒸気溜め14の圧力(Pb)は、抽気蒸気制御弁Vdの開度調整により設定値P2となるように制御され、余剰蒸気熱利用制御弁Vaは全閉を基本とするが、蒸気タービン3が部分負荷運転となり、抽気ライン19から供給される抽気蒸気圧が下がると、抽気蒸気制御弁Vdを全開としても低圧蒸気溜め14内の圧力(Pb)が設定値P2より低くなる場合があるので、その場合には、余剰蒸気熱利用制御弁Vaの開度を増加させ、低圧蒸気溜め14に蒸気を供給することで低圧蒸気溜め14の蒸気圧力を設定値P2に戻すように制御する。   In the normal operation mode (step S3), the pressure (Pb) of the low-pressure steam reservoir 14 is controlled to be the set value P2 by adjusting the opening degree of the extraction steam control valve Vd, and the surplus steam heat utilization control valve Va is Although it is basically fully closed, when the steam turbine 3 is in partial load operation and the extraction steam pressure supplied from the extraction line 19 decreases, the pressure (Pb) in the low-pressure steam reservoir 14 even if the extraction steam control valve Vd is fully opened. May become lower than the set value P2, in this case, the steam pressure of the low pressure steam reservoir 14 is increased by increasing the opening of the surplus steam heat utilization control valve Va and supplying steam to the low pressure steam reservoir 14. Control is made to return to the set value P2.

蒸気量制御装置23は、図2(b)に示すように、タービン入口圧力(Pa)が余剰蒸気利用運転モードの開始条件である設定値(P1)より高い所定上限値としての設定値P3(例えば3.8MPa)以下か否かを判定し(ステップS10)、所定上限値としての設定値P3を超えるとタービンバイパス制御弁Vbの開度を増加させ(ステップS11)、設定値P3より低くなると設定値P3を超えないようにタービンバイパス制御弁Vbの開度を減少させる(ステップS12)。   As shown in FIG. 2 (b), the steam amount control device 23 sets a set value P3 (as a predetermined upper limit value) in which the turbine inlet pressure (Pa) is higher than the set value (P1) that is a start condition of the surplus steam utilization operation mode. For example, it is determined whether the pressure is less than or equal to 3.8 MPa (step S10). When the set value P3 as the predetermined upper limit value is exceeded, the opening of the turbine bypass control valve Vb is increased (step S11), and when the set value P3 becomes lower than the set value P3. The opening degree of the turbine bypass control valve Vb is decreased so as not to exceed the set value P3 (step S12).

タービントリップ時は、タービン入口遮断弁Veが遮断される。タービン入口遮断弁Veの急閉によりタービン入口圧力(Pa)が急上昇し、設定値(P3)を超えるため、蒸気量制御装置23は、タービンバイパス制御弁Vbを急速に開き(ステップS12)、タービンバイパスライン15を通じて復水器5へバイパス蒸気を逃がす。タービンバイパスライン15は、低圧蒸気溜め14を経由していないため、高圧蒸気をタービンバイパスライン15を介して復水器5に逃がしても、低圧蒸気溜め14の後段に設置されている機器の安全弁(不図示)を作動させず、また、脱気器圧力の変動も抑制し得る。   During the turbine trip, the turbine inlet shut-off valve Ve is shut off. The turbine inlet pressure (Pa) rises rapidly due to the sudden closing of the turbine inlet shut-off valve Ve and exceeds the set value (P3), so the steam control device 23 opens the turbine bypass control valve Vb rapidly (step S12), and the turbine The bypass steam is released to the condenser 5 through the bypass line 15. Since the turbine bypass line 15 does not pass through the low-pressure steam reservoir 14, even if the high-pressure steam escapes to the condenser 5 through the turbine bypass line 15, a safety valve for equipment installed at the subsequent stage of the low-pressure steam reservoir 14. (Not shown) is not operated, and fluctuations in the deaerator pressure can be suppressed.

1 ボイラー
3 蒸気タービン
5 復水器
13 高圧蒸気溜め
14 低圧蒸気溜め
15 タービンバイパスライン
23 蒸気量制御装置
1 Boiler 3 Steam Turbine 5 Condenser 13 High Pressure Steam Reservoir 14 Low Pressure Steam Reservoir 15 Turbine Bypass Line 23 Steam Volume Control Device

Claims (2)

ごみ焼却炉の廃熱を利用するボイラーと、前記ボイラーからの高圧蒸気により駆動する蒸気タービンと、前記蒸気タービンによって発電する発電機と、前記蒸気タービンを通過した低圧蒸気を復水する復水器と、前記高圧蒸気の一部及び前記蒸気タービンの抽気蒸気を供給可能に接続された低圧蒸気溜めと、該低圧蒸気溜めの蒸気の熱を利用する熱利用設備と、前記ボイラーからの高圧蒸気を前記蒸気タービンを迂回させて前記復水器に供給可能に接続するタービンバイパスラインと、蒸気量制御装置と、を備え、前記高圧蒸気の一部を前記低圧蒸気溜めに供給可能に接続する余剰蒸気熱利用ラインと前記タービンバイパスラインとが別系統とされ、
前記蒸気量制御装置は、
前記蒸気タービンに供給される高圧蒸気の圧力が所定値を超える場合に、該高圧蒸気の一部を前記低圧蒸気溜めへ逃がすことにより前記蒸気タービンに供給される前記高圧蒸気の圧力を前記所定値に保持しつつ、前記発電機の発電量が最大値に近づくように前記抽気蒸気の抽気量を制御するとともに、前記抽気量の制御に伴う抽気量の変動により前記低圧蒸気溜め内の圧力が変動した時に前記低圧蒸気溜め内の圧力を所定圧力範囲内に保持するように前記低圧蒸気溜めへ逃がす高圧蒸気の蒸気量を制御し、
前記蒸気タービンに供給される高圧蒸気の圧力が前記所定値より高い所定上限値を超える場合に、前記タービンバイパスラインを開くとともに、前記ボイラーから前記蒸気タービンに供給される高圧蒸気の圧力が前記上限設定値以下となるように前記タービンバイパスラインの蒸気量を制御することを特徴とする、ごみ焼却炉用発電設備。
A boiler that uses waste heat from a waste incinerator, a steam turbine that is driven by high-pressure steam from the boiler, a generator that generates electricity using the steam turbine, and a condenser that condenses the low-pressure steam that has passed through the steam turbine A low-pressure steam reservoir connected to be able to supply a part of the high-pressure steam and the extraction steam of the steam turbine, heat utilization equipment that uses heat of the steam of the low-pressure steam reservoir, and high-pressure steam from the boiler A surplus steam that includes a turbine bypass line that bypasses the steam turbine and is connected to the condenser so that the steam can be supplied, and a steam amount control device, and that connects a part of the high pressure steam to the low pressure steam reservoir The heat utilization line and the turbine bypass line are separate systems,
The steam amount control device includes:
When the pressure of the high-pressure steam supplied to the steam turbine exceeds a predetermined value, the pressure of the high-pressure steam supplied to the steam turbine is released to the predetermined value by escaping a part of the high-pressure steam to the low-pressure steam reservoir. While controlling the extraction amount of the extraction steam so that the power generation amount of the generator approaches the maximum value, and the pressure in the low-pressure steam reservoir fluctuates due to the fluctuation of the extraction amount accompanying the control of the extraction amount Controlling the amount of high-pressure steam released to the low-pressure steam reservoir so as to maintain the pressure in the low-pressure steam reservoir within a predetermined pressure range when
When the pressure of the high-pressure steam supplied to the steam turbine exceeds a predetermined upper limit value higher than the predetermined value, the turbine bypass line is opened, and the pressure of the high-pressure steam supplied from the boiler to the steam turbine is the upper limit. A power generation facility for a waste incinerator, wherein the amount of steam in the turbine bypass line is controlled to be equal to or less than a set value.
ごみ焼却炉の廃熱を利用するボイラーと、前記ボイラーからの高圧蒸気により駆動する蒸気タービンと、前記蒸気タービンにより発電する発電機と、前記蒸気タービンを通過した低圧蒸気を復水する復水器と、前記高圧蒸気の一部及び前記蒸気タービンの抽気蒸気を供給可能に接続された低圧蒸気溜めと、該低圧蒸気溜めの蒸気の熱を利用する熱利用設備と、前記ボイラーからの高圧蒸気を前記蒸気タービンを迂回させて前記復水器に供給可能に接続するタービンバイパスラインと、を備え、前記高圧蒸気の一部を前記低圧蒸気溜めに供給可能に接続する余剰蒸気熱利用ラインと前記タービンバイパスラインとが別系統とされたごみ焼却炉用設備の制御方法であって、
前記蒸気タービンに供給される高圧蒸気の圧力が所定値を超える場合に、該高圧蒸気の一部を前記低圧蒸気溜めへ逃がすことにより前記蒸気タービンに供給される高圧蒸気の圧力を前記所定値に保持しつつ、前記発電機の発電量が最大値に近づくように前記抽気蒸気の抽気量を制御するとともに、該抽気量の変動により前記低圧蒸気溜め内の圧力が変動した時に前記低圧蒸気溜め内の圧力を所定圧力範囲内に保持するように前記低圧蒸気溜めへ逃がす高圧蒸気の蒸気量を制御し、
前記蒸気タービンに供給される高圧蒸気の圧力が前記所定値より高い所定上限値を超える場合に、前記タービンバイパスラインを開くとともに、前記ボイラーから前記蒸気タービンに供給される高圧蒸気の圧力が前記上限設定値以下となるように前記タービンバイパスラインの蒸気量を制御することを特徴とする、ごみ焼却炉用発電設備の制御方法。

A boiler that uses waste heat from a waste incinerator, a steam turbine that is driven by high-pressure steam from the boiler, a generator that generates power using the steam turbine, and a condenser that condenses the low-pressure steam that has passed through the steam turbine A low-pressure steam reservoir connected to be able to supply a part of the high-pressure steam and the extraction steam of the steam turbine, heat utilization equipment that uses heat of the steam of the low-pressure steam reservoir, and high-pressure steam from the boiler A turbine bypass line that bypasses the steam turbine and is connected to the condenser so that the steam can be supplied, and a surplus steam heat utilization line that connects a part of the high-pressure steam to the low-pressure steam reservoir so that the turbine can be supplied. A method for controlling a waste incinerator facility in which the bypass line is a separate system,
When the pressure of the high-pressure steam supplied to the steam turbine exceeds a predetermined value, the pressure of the high-pressure steam supplied to the steam turbine is set to the predetermined value by escaping a part of the high-pressure steam to the low-pressure steam reservoir. While holding, control the extraction amount of the extraction steam so that the power generation amount of the generator approaches the maximum value, and when the pressure in the low-pressure steam reservoir fluctuates due to the fluctuation of the extraction amount, Controlling the amount of steam of the high-pressure steam released to the low-pressure steam reservoir so as to keep the pressure within a predetermined pressure range;
When the pressure of the high-pressure steam supplied to the steam turbine exceeds a predetermined upper limit value higher than the predetermined value, the turbine bypass line is opened, and the pressure of the high-pressure steam supplied from the boiler to the steam turbine is the upper limit. A method for controlling a power generation facility for a refuse incinerator, wherein the amount of steam in the turbine bypass line is controlled to be equal to or less than a set value.

JP2011135464A 2011-06-17 2011-06-17 Power generation facility for waste incinerator and control method thereof Active JP5656754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135464A JP5656754B2 (en) 2011-06-17 2011-06-17 Power generation facility for waste incinerator and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135464A JP5656754B2 (en) 2011-06-17 2011-06-17 Power generation facility for waste incinerator and control method thereof

Publications (2)

Publication Number Publication Date
JP2013002393A JP2013002393A (en) 2013-01-07
JP5656754B2 true JP5656754B2 (en) 2015-01-21

Family

ID=47671219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135464A Active JP5656754B2 (en) 2011-06-17 2011-06-17 Power generation facility for waste incinerator and control method thereof

Country Status (1)

Country Link
JP (1) JP5656754B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918810B2 (en) * 2014-07-10 2016-05-18 株式会社神鋼環境ソリューション Waste treatment facility and heat retention method for dust collector
JP6311100B2 (en) * 2015-08-18 2018-04-18 株式会社トマス技術研究所 Small-capacity power generation system for batch incinerators
JP2021182284A (en) * 2020-05-19 2021-11-25 荏原環境プラント株式会社 Method, information processor, and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029440B2 (en) * 1990-04-25 2000-04-04 日本石油化学株式会社 Steam turbine for power generation
JPH0821210A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility in incinerator
JPH0874520A (en) * 1994-09-08 1996-03-19 Kubota Corp Gabage power generating facility
JPH10110602A (en) * 1996-10-03 1998-04-28 Kubota Corp Method for controlling steam turbine and steam turbine
JP2002372206A (en) * 2001-06-18 2002-12-26 Kubota Corp Heat utilization system
JP4102179B2 (en) * 2002-12-17 2008-06-18 新日鉄エンジニアリング株式会社 Operation method of steam turbine of exhaust gas treatment system in waste treatment facility
JP2006284018A (en) * 2005-03-31 2006-10-19 Kubota Corp Power generation facility and power generating method for refuse incinerator
JP4616847B2 (en) * 2007-02-16 2011-01-19 三菱重工業株式会社 Steam system and control system and control method thereof

Also Published As

Publication number Publication date
JP2013002393A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5727951B2 (en) Steam supply system and method for controlling steam supply system
US20100229523A1 (en) Continuous combined cycle operation power plant and method
EP2351914A1 (en) Power plant and method of operating a power plant
KR102051279B1 (en) Combined cycle plant, method for controlling same, and device for controlling same
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
CN113107828B (en) Energy-saving control strategy applicable to condensate pump of thermal power plant
JP5615035B2 (en) Method for primary control of a steam turbine unit
JP5178575B2 (en) Power plant water supply apparatus and control method
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP5656753B2 (en) Power generation facility for waste incinerator and control method thereof
JP4509759B2 (en) Steam turbine overload operation apparatus and steam turbine overload operation method
JP2008101494A (en) Low-pressure steam turbine system and control method
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP4415189B2 (en) Thermal power plant
EP2729669A1 (en) Power plant and method of operating a power plant
JP5792087B2 (en) Steam supply system and control method thereof
JP2012140910A (en) Combined cycle power generation plant and gas turbine system, and gas turbine fuel gas heating system
JP4560481B2 (en) Steam turbine plant
KR20100054672A (en) Waste heat recovery device for incinerator plant
JP5137694B2 (en) Flash tank apparatus and steam control method
KR101217835B1 (en) Boiler safety apparatus of steam power plant
JP2007285220A (en) Combined cycle power generation facility
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
JPH07293809A (en) Method and device for controlling injection of water to desuperheater
JPH04278101A (en) Exhaust heat recovery boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250