JP6311100B2 - Small-capacity power generation system for batch incinerators - Google Patents

Small-capacity power generation system for batch incinerators Download PDF

Info

Publication number
JP6311100B2
JP6311100B2 JP2015175162A JP2015175162A JP6311100B2 JP 6311100 B2 JP6311100 B2 JP 6311100B2 JP 2015175162 A JP2015175162 A JP 2015175162A JP 2015175162 A JP2015175162 A JP 2015175162A JP 6311100 B2 JP6311100 B2 JP 6311100B2
Authority
JP
Japan
Prior art keywords
steam
pipe circuit
water
turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015175162A
Other languages
Japanese (ja)
Other versions
JP2017040249A (en
Inventor
健仁 福富
健仁 福富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMAS GIJUTSUKENKYUJO CORPORATION
Original Assignee
THOMAS GIJUTSUKENKYUJO CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THOMAS GIJUTSUKENKYUJO CORPORATION filed Critical THOMAS GIJUTSUKENKYUJO CORPORATION
Priority to JP2015175162A priority Critical patent/JP6311100B2/en
Publication of JP2017040249A publication Critical patent/JP2017040249A/en
Application granted granted Critical
Publication of JP6311100B2 publication Critical patent/JP6311100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、焼却炉に投入した廃棄物例えば日常生活から廃棄される一般廃棄物あるいは生産工場や修理工場や建設現場などから廃棄される木材や廃プラスチックや廃棄タイヤなどの産業廃棄物を点火し焼却が終われば消化するいわゆる廃棄物の点火と消化を必要日毎または時間毎に繰返しながら焼却処理するバッチ(間欠燃焼)型焼却炉から排出される高温度の熱を利用して蒸気を発生させ、この蒸気でタービンを稼働させ発電するバッチ型の小容量発電装置に関するものである。  The present invention ignites waste thrown into an incinerator such as general waste discarded from daily life or industrial waste such as wood, waste plastic, and discarded tires discarded from production factories, repair shops, construction sites, etc. Steam is generated using high-temperature heat discharged from a batch (intermittent combustion) type incinerator that repeats ignition and digestion of so-called waste that is digested after incineration every necessary day or hour. The present invention relates to a batch-type small-capacity power generation apparatus that generates power by operating a turbine with this steam.

往年、大都市圏を中心に廃棄物最終処分用地の確保が年々困難になりつつある中で、ごみの投入から燃焼さらには焼却灰の処理まで一連の処理作業を自動化処理操作で、大量のごみを処理する、連続式大型焼却炉が稼働している。またごみ焼却作業の低温域で生成するダイオキシンによる大気や土壌などの環境汚染問題から排ガス流路にバグフィルターや洗煙装置などの処理装置を設置した廃棄物焼却装置、また最近では無煙無臭無ダストを目的とした燃焼用空気過剰供給型の焼却装置も開発されている。  In the past, securing land for final disposal of waste was becoming difficult year by year, mainly in metropolitan areas, and a series of processing operations from waste input to combustion and incineration ash processing were automated, and a large amount of waste was collected. A large continuous incinerator is in operation. In addition, waste incinerators equipped with processing equipment such as bag filters and smoke cleaners in the exhaust gas flow path due to environmental pollution problems such as air and soil due to dioxins generated in the low temperature region of waste incineration work, and recently smokeless and odorless dust Incinerators with excessive air supply for combustion have been developed.

さらに、ごみ焼却炉から発生する排ガスが保有する高温度の熱を回収して蒸気を発生させ、この蒸気を利用して蒸気タービンを駆動させ発電する、いわゆる焼却物発電装置が多く開発されている。例えば特開平8−158816号広報は「ガスタービンと蒸気タービンの発電装置をもつゴミ焼却炉において、ガスタービンの運転停止によって蒸気タービン入口の蒸気温度が低下するため、タービン出口付近で蒸気の湿り度が大きくなってタービン羽根を腐食させ損傷する問題を解消したもので、その構造は、都市ゴミ焼却炉で発生する排ガスから廃熱を利用して蒸気を発生する蒸気発電装置を備え、さらに燃料ガスの燃焼によりガスタービンを駆動発電するガスタービン発電装置を備え、後者のガスタービンの排ガスにより前者の蒸気タービンへの蒸気を過熱する過熱機構を備えたゴミ焼却炉」、特開平9−89202号広報は「廃棄物中のプラスチックを熱分解して得られる燃料油や燃料ガスで加熱しながら発電効率の廃棄物発電装置を提供するもので、その構造は、廃棄物焼却炉の燃焼熱を回収して蒸気を発生する熱回収ボイラさらにその蒸気で蒸気タービンを駆動して発電する発電機において、廃棄物のプラスチック成分を熱分解して燃料油と燃料ガスを製造する熱分解装置を備え、さらに該燃料油と該燃料ガスで前記した熱回収ボイラへの給水を加熱する給水過熱器や熱回収ボイラから発生する蒸気の温度を上昇させる蒸気過熱器などの付帯装置を具備した廃棄物発電装置」もある。また特開平11−281030号広報は「廃棄物発電装置における発電機の変動を抑制する目的から、排ガスの熱エネルギーを電力に変換して発電する際に、投入された廃棄物が熱分解して分解ガスと共に生成し貯留した熱分解残渣物を、目標の発熱量に対する実発電量の差分値に応じて燃焼用溶融炉に投入する廃棄物発電方法またはその装置」、特開2000−240923号広報は「装置のコンパクト化と建設コストの低減化を計ると共にガスタービンおよび蒸気タービンさらには廃熱ボイラの効率向上を計った発電装置を提供するもので、その構造は(特許請求の範囲を要約して)、空気圧縮機を設けた燃焼器とガスタービンとガスタービンで駆動される発電機からなる発電装置に、廃棄物をガスと残留物に分解する熱分解炉と燃焼灰分を溶解炉と圧縮空気の加熱器と該空気加熱器の排ガスが保有する熱エネルギーを回収する廃熱ボイラを設けたごみ処理施設の廃棄物発電装置」、特開2007−309162号広報は「廃棄物焼却炉の廃熱利用効率が高くかつ廃熱ボイラで発生する蒸気による蒸気タービンの発電効率が可能な焼却炉発電装置を提供するもので、その構造は、廃棄物焼却炉と該焼却炉の廃熱を利用して蒸気を発生させる廃熱ボイラに高温排出ガスを前期焼却炉の主燃焼室へ循環する排出ガス循環ダストと該排ガスダストが1/4波長官を構成する排ガス循環ダストの一部に高温部を形成する位置に該焼却炉の燃焼域から発生する未燃焼ガスを燃料とする加熱装置を設け、該廃棄ボイラで生成される蒸気により作動して発電を行う蒸気タービン発電機を備えた廃棄物焼却炉発電装置」なども開発されている。  Furthermore, many so-called incineration power generators have been developed that generate steam by collecting the high-temperature heat held in the exhaust gas generated from the waste incinerator and driving the steam turbine using this steam to generate electricity. . For example, in Japanese Laid-Open Patent Publication No. 8-158816, “In a garbage incinerator having a gas turbine and a steam turbine power generator, the steam temperature at the inlet of the steam turbine decreases due to the shutdown of the gas turbine. The structure of the structure is equipped with a steam power generation device that generates steam using waste heat from the exhaust gas generated in a municipal waste incinerator, and the fuel gas. A garbage incinerator equipped with a gas turbine generator that drives a gas turbine by combustion of the gas turbine, and a superheater mechanism that superheats the steam to the former steam turbine by the exhaust gas of the latter gas turbine ", Japanese Patent Laid-Open No. 9-89202 "Waste power generator with power generation efficiency while heating with fuel oil or fuel gas obtained by pyrolyzing plastic in waste The structure of the heat recovery boiler that recovers the combustion heat of the waste incinerator and generates steam, and the generator that generates power by driving the steam turbine with the steam, heats the plastic component of the waste. A temperature of steam generated from a feed water superheater or a heat recovery boiler that is provided with a thermal decomposition device that decomposes to produce fuel oil and fuel gas, and further heats the feed water to the heat recovery boiler described above with the fuel oil and the fuel gas There is also a “waste power generation device equipped with an auxiliary device such as a steam superheater that raises the temperature”. In addition, Japanese Laid-Open Patent Publication No. 11-281030 states that “the waste that has been input is thermally decomposed when generating power by converting the thermal energy of the exhaust gas into electric power for the purpose of suppressing fluctuations in the generator in the waste power generation device. Waste power generation method or apparatus for charging a pyrolysis residue generated and stored together with cracked gas into a combustion melting furnace according to a difference value of an actual power generation amount with respect to a target calorific value, Japanese Patent Application Laid-Open No. 2000-240923 ”Is to provide a power generation device that is designed to reduce the size of the device and reduce construction costs, and to improve the efficiency of gas turbines, steam turbines, and waste heat boilers. And a power generator comprising a combustor provided with an air compressor, a gas turbine, and a generator driven by the gas turbine, and a pyrolysis furnace and combustion ash that decomposes waste into gas and residue. A waste power generation equipment for a waste treatment facility provided with a melting furnace, a heater for compressed air, and a waste heat boiler for recovering the thermal energy held in the exhaust gas of the air heater, Japanese Laid-Open Patent Publication No. 2007-309162 The present invention provides an incinerator power generation apparatus that has high waste heat utilization efficiency of a waste incinerator and is capable of generating power from a steam turbine using steam generated in a waste heat boiler. The structure of the waste incinerator and the incinerator An exhaust gas circulating dust that circulates high-temperature exhaust gas to the main combustion chamber of the incinerator in the previous incinerator and an exhaust gas circulating dust in which the exhaust gas dust constitutes a quarter wavelength unit in a waste heat boiler that generates steam using waste heat. A steam turbine generator that is provided with a heating device that uses unburned gas generated from the combustion zone of the incinerator as a fuel at a position where a high temperature portion is formed in the section, and that operates by steam generated by the waste boiler to generate power Prepared Wastes incinerator power generation device ", etc. have also been developed.

この様な大型の焼却炉発電装置は、大都市の様に24時間連続して大量のごみを焼却できる自動操業式の焼却炉をもつごみ焼却炉工場において実用化されている。しかしながら、人口が少ない市町村や狭地で平地が少ない離島地方においては、排ガス熱で蒸気を発生させ蒸気タービンを長時間駆動するほどの大量のごみが集められない問題があった。この様な人口が少ない市町村などにおいては、「ダイオキシン類対策特別措置法(略してダイ特法)」から都道府県に実施許可願提出の必要が無いとされる火床面積が0.5m未満の小型焼却炉、例えば特開平7−233922号広報や特開平7−280232号広報の様に「(特許請求の範囲を要約して)焼却室内に設けた火皿部の下方に空気取入開口部さらに上方にごみ投入開閉部を設けると共に、下方の開口と上方の開閉部に多数の通孔を穿設した孔開板の開閉を設けたストーブタイプの簡易型ゴミ焼却炉」の如きバッチ型焼却炉、あるいは本発明の出願人らが廃棄物処理法基準と前記の「ダイ特法」に適合させて開発した無煙無臭無ダストのバッチ型焼却炉が多く使用されている。さらに本発明者らの推測に依れば、小型バッチ焼却炉でかつ蒸気タービン前に加熱器を設けて該蒸気タービンを駆動し発電が可能であっても、発電利益が設備費や設備維持管理費以上に得られるか、甚だ疑問である。また高圧ガスによる災害を予防し公共の安全性を確保する「高圧ガス保安法」から10kgf/cmを越える高圧ガスを使用する場合は、都道府県知事の使用了承を受ける事や都道府県には保安有資格者や取扱責任者を届けなければならないなどの規則から、人口が少ない市町村や離島地方においては人件費が嵩む問題があった。
特開平8−158816号広報 特開平9−89202号広報 特開平11−281030号広報 特開2000−240923号広報 特開2007−309162号広報 特開平7−233922号広報 特開平7−280232号広報
Such a large incinerator power generation apparatus has been put to practical use in a waste incinerator factory having an automatic operation type incinerator capable of incinerating a large amount of waste continuously for 24 hours like a large city. However, in municipalities where the population is small and remote islands where there is little flat land, there is a problem that a large amount of garbage cannot be collected to generate steam by exhaust gas heat and drive the steam turbine for a long time. In such municipalities where the population is small, the firebed area is less than 0.5m 2 where it is said that there is no need to submit an application for permission from the “Dioxin Countermeasures Measures Act (Dai Special Act)” Small incinerators, for example, as disclosed in JP-A-7-233922 and JP-A-7-280232, "(summarizing the scope of claims) an air intake opening below the pan of the incineration chamber Furthermore, a batch type incinerator such as a stove-type simple garbage incinerator having a dust input opening / closing unit on the upper side and an opening / closing of a perforated plate with a large number of through holes in the lower opening and upper opening / closing unit. Alternatively, a smokeless, odorless, dustless batch type incinerator developed by the applicants of the present invention in conformity with the standard for waste treatment and the above-mentioned “die special method” is often used. Furthermore, according to the inventors' estimation, even if a small batch incinerator is installed and a heater is provided in front of the steam turbine to drive the steam turbine to generate power, the power generation profit is the equipment cost and equipment maintenance management. It is very doubtful whether you can get more than the cost. In addition, when using high-pressure gas exceeding 10 kgf / cm 2 from the “High-Pressure Gas Safety Act” to prevent disasters caused by high-pressure gas and ensure public safety, Due to regulations such as the need to deliver security qualified personnel and responsible personnel, labor costs have increased in municipalities and remote islands where the population is small.
JP-A-8-158816 JP 9-89202 A JP 11-281030 A JP 2000-240923 A JP 2007-309162 A JP-A-7-233922 JP 7-280232 A

本発明者らは、前記した特開平11−281030号広報に記載された発明の様に「目標発電量に対する実発電量の差分に応じて熱分解残渣調査弁の開度を調整する」様な廃棄物発電方法を採用する事なく、火床面積0.5m未満の小型のバッチ型焼却炉で電力10kW以下の安定した発電が可能でかつ蒸気誘導パイプ回路内を流通する蒸気が一時的に高圧化した場合でも電気制御により放出し減圧し安全性を確保するバッチ型焼却炉の発電装置を提供する事を目的に種々点検した結果、蒸気誘導パイプ回路に、蒸気タービンと発電機を接続する回転機の回転数で弁を開閉するPID制御の蒸気圧力流量調整弁さらに蒸気タービンと復水器の間の蒸気圧と蒸気滞流大径パイプ回路の蒸気圧の演算処理からシーケンス制御で弁を開閉する蒸気異常圧時解放弁を付設することによって小容量の発電が安定して得られ、しかも蒸気の圧力や温度や流量を常時監視しながら発電作業することによって危険性を防止し安全性が確保できる事も知見した。As described in the above-mentioned publication of Japanese Patent Laid-Open No. 11-281030, the present inventors “adjust the opening degree of the pyrolysis residue investigation valve according to the difference between the actual power generation amount and the target power generation amount”. Without adopting the waste power generation method, stable power generation with a power of 10 kW or less is possible in a small batch-type incinerator with a firebed area of less than 0.5 m 2 , and steam flowing through the steam induction pipe circuit is temporarily As a result of various inspections aimed at providing a power generator for a batch incinerator that ensures safety by releasing it under electrical control even when the pressure is increased, the steam induction pipe circuit is connected to the steam turbine and generator. PID control steam pressure flow adjustment valve that opens and closes the valve according to the number of rotations of the rotating machine. Further, the valve is controlled by sequence control from the calculation process of the steam pressure between the steam turbine and the condenser and the steam pressure of the steam stagnant large-diameter pipe circuit. Steam to open and close A small-capacity power generation can be obtained stably by attaching a release valve for abnormal pressure, and by performing power generation work while constantly monitoring the pressure, temperature and flow rate of steam, it is possible to prevent danger and ensure safety. Also found out.

本発明はこの知見に基づいて構成したもので、その要旨は、バッチ型焼却炉に設けた送給水昇温パイプ回路を通って高温度に熱せられた蒸気の流通方向に沿って蒸気送給パイプ回路と蒸気温度計および蒸気圧力計を付設した蒸気滞流大径パイプ回路と蒸気誘導パイプ回路を一連状に接続した蒸気流通パイプ回路において、蒸気誘導パイプ回路の蒸気出口側には回転軸を介せて発電機を駆動する蒸気タービンを接続しかつ該蒸気タービンの蒸気排出側に復水器を付設しまた蒸気誘導パイプ回路の蒸気タービン蒸気入口側には監視用タービン入口圧力計と監視用タービン入口温度計と監視用の蒸気流量計を付設し、前記した蒸気タービンと発電機と連接する回転軸にはタービン回転数検出計の検出回転数と回転数調節器で予め設定した回転数との偏差信号で弁を開閉駆動するPID制御の誘導蒸気圧力調整弁を蒸気誘導パイプ回路に付設し、さらに蒸気誘導パイプ回路の蒸気滞流大径パイプ回路側に蒸気排出パイプまたは前記した蒸気タービンと復水器の間の蒸気誘導パイプ回路から分岐する蒸気排出バイパスパイプあるいはその両者を前記した蒸気圧力計の蒸気圧と圧力調節計で予め設定した圧力値との偏差信号を入力信号にして作動するシーケンス制御の蒸気異常圧時解放弁に接続し、さらに蒸気誘導パイプ回路の蒸気滞流大径パイプ回路側に安全弁を付設すると共に、復水器と該復水器に後設する貯水槽との間には冷却水送給ポンプを介して貯槽水を循環する冷却水循環パイプ回路と復水器の下方側に設けた凝縮水槽に貯まった蒸気凝縮水を貯水槽に送給ポンプを介して送給する蒸気凝縮水送給パイプ回路を付設し、さらに貯水槽から前記したバッチ型焼却炉の送給水昇温パイプ回路に送水ポンプを介して貯槽水送給パイプ回路を接続して構成したバッチ型焼却炉の小容量発電装置である。  The present invention is configured based on this knowledge, and the gist of the present invention is that a steam feed pipe is arranged along a flow direction of steam heated to a high temperature through a feed water temperature raising pipe circuit provided in a batch type incinerator. In a steam flow pipe circuit in which a steam stagnating large-diameter pipe circuit and a steam induction pipe circuit connected with a circuit, a steam thermometer and a steam pressure gauge are connected in series, a steam is connected to the steam outlet side of the steam induction pipe circuit via a rotating shaft. A steam turbine for driving the generator and a condenser on the steam discharge side of the steam turbine, and a monitoring turbine inlet pressure gauge and a monitoring turbine on the steam inlet side of the steam induction pipe circuit An inlet thermometer and a steam flow meter for monitoring are attached, and the rotation shaft connected to the steam turbine and the generator is connected to the rotation speed detected by the turbine rotation speed detector and the rotation speed preset by the rotation speed controller. A PID-controlled induction steam pressure adjusting valve that opens and closes the valve with a difference signal is attached to the steam induction pipe circuit, and further, a steam discharge pipe or the above-described steam turbine is connected to the steam stagnant large-diameter pipe circuit side of the steam induction pipe circuit. A sequence in which a steam discharge bypass pipe branching from a steam induction pipe circuit between water tanks or both of them is operated by using an input signal as a deviation signal between the steam pressure of the steam pressure gauge and a pressure value preset by the pressure regulator. Connected to the control steam release valve at the time of abnormal steam pressure, and a safety valve is provided on the side of the steam stagnant large-diameter pipe circuit of the steam induction pipe circuit, and between the condenser and the water tank installed downstream of the condenser The steam condensate stored in the condensate tank provided below the condenser and the cooling water circulation pipe circuit that circulates the tank water through the cooling water feed pump is supplied to the water tank via the feed pump. A batch-type incinerator with a condensed water feed pipe circuit, and a storage water feed pipe circuit connected from the water tank to the feed water temperature raising pipe circuit of the batch-type incinerator described above via a feed pump Is a small-capacity power generator.

蒸気の様に構成された本発明のバッチ型焼却炉の小容量発電装置は、本発明の発明者らの実験によれば、火床面積0.45mのバッチ型焼却炉で12インチの自動車タイヤ2本を60分間焼却した時に、10kWの電力を得た。この電力は、一般家庭で言えば約20世帯分に相当する電力量である。この様にバッチ型焼却炉でも安定した電力が得られるため中小企業や病院などにおいては、廃棄物の処理と同時に企業経費の一部を賄える効果もある。According to the experiment of the inventors of the present invention, the small-capacity power generation apparatus of the batch type incinerator of the present invention configured like steam is a 12 inch automobile in a batch type incinerator having a firebed area of 0.45 m 2. When the two tires were incinerated for 60 minutes, a power of 10 kW was obtained. This electric power is equivalent to about 20 households in ordinary households. As described above, since stable electric power can be obtained even in a batch type incinerator, SMEs and hospitals have the effect of being able to cover a part of the corporate expenses simultaneously with the disposal of waste.

以下、本発明について図面を参照しながら詳細に説明する。
図1は本発明の一実施例を示したもので、1はバッチ型焼却炉である。バッチ型焼却炉1は、人口規模が小さい市町村や離島地方等において使用され易い火床面積0.5m未満の小型焼却炉で、必要日毎にまたは時間毎に点火と消化を繰返して一般廃棄物や産業廃棄物などを焼却する耐熱性の炉体構造に製作され、かつ炉体には供給された水を焼却熱や高温度の熱を保有する排ガスで熱水化しさらに蒸気化する蛇行型パイプやスパイラル型パイプなど任意な形状に加工された送給水昇温パイプ回路2を設けると共に、炉体出口側には蒸気送給パイプ回路3を接続して構成されている。すなわち、バッチ型焼却炉1は、投入された一般廃棄物などを焼却しまた供給された水が送給水昇温パイプ回路2を流通する間に焼却熱や排ガス熱で熱水さらに蒸気化し、該蒸気送給パイプ回路3に送給する構造に設けられている。またバッチ型焼却炉1には、廃棄物の焼却初期時あるいは廃棄物投入時に炉内温度の低下で送給水が昇温できない場合は過熱器(過熱機)を必要に応じて設けてもよく、また無煙無臭無ダストなどの公害防止用検知計やその制御装置などを設けて使用してもよい。4は蒸気滞流大径パイプ回路で、該パイプ回路内を流れる蒸気の温度を監視する蒸気温度計5と該蒸気の圧力を検出する蒸気圧力計6を付設し、前記した蒸気送給パイプ回路3と後述する蒸気誘導パイプ回路7の間に接続されて一連状の蒸気流通パイプ回路を構成する。すなわち蒸気滞流大径パイプ回路4は、蒸気送給パイプ回路3から高速度で送給される蒸気を滞りながら(淀ませながら)蒸気誘導パイプ回路7に流し出すため、蒸気が該蒸気誘導パイプ回路7の入口付近で乱流を起こす事なく円滑に送り出される作用効果を奏する。従って、蒸気滞流大径パイプ回路4は、蒸気誘導パイプ回路7よりもやや大きい口径のパイプを使用するとよい。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an embodiment of the present invention, where 1 is a batch type incinerator. Batch incinerator 1 is a likely grate area 0.5 m 2 less than small incinerators used in population size is smaller municipalities and islands local etc., repeated ignition and digestion every or every time necessary Dec municipal waste Servo-type pipes that are manufactured in a heat-resistant furnace structure that incinerates industrial waste, etc., and the supplied water is hydrothermalized with exhaust gas that retains incineration heat and high-temperature heat and is further vaporized A feed water heating pipe circuit 2 processed into an arbitrary shape such as a spiral pipe is provided, and a steam feed pipe circuit 3 is connected to the furnace body outlet side. That is, the batch-type incinerator 1 incinerates general wastes that have been input, and the supplied water is further vaporized with incineration heat or exhaust gas heat while the supplied water is circulating through the feed water temperature raising pipe circuit 2. It is provided in a structure for feeding to the steam feed pipe circuit 3. The batch-type incinerator 1 may be provided with a superheater (superheater) as necessary when the temperature of the feed water cannot be raised due to a decrease in the furnace temperature at the initial stage of incineration of the waste or when the waste is charged. In addition, a detector for preventing pollution such as smokeless, odorless and dust, or a control device thereof may be provided. A steam stagnant large-diameter pipe circuit 4 is provided with a steam thermometer 5 for monitoring the temperature of the steam flowing in the pipe circuit and a steam pressure gauge 6 for detecting the pressure of the steam. 3 and a steam induction pipe circuit 7 described later to form a series of steam circulation pipe circuits. That is, since the steam stagnant large-diameter pipe circuit 4 flows the steam fed at a high speed from the steam feed pipe circuit 3 to the steam induction pipe circuit 7 while stagnating (sucking), the steam is supplied to the steam guide pipe 7. There is an effect of being smoothly sent out without causing turbulence near the entrance of the circuit 7. Therefore, the steam stagnant large-diameter pipe circuit 4 may be a pipe having a slightly larger diameter than the steam induction pipe circuit 7.

蒸気誘導パイプ回路7の蒸気出口側には蒸気タービン8に回転軸9を介して発電機10を付設し、さらに該蒸気タービン8の後方側には該タービン内で膨張した蒸気を冷却して圧力と温度を下げ凝縮して温水または水に戻す復水器11を付設する。復水器11は、蒸気と冷却水を直接接触させる混合複水式あるいは蒸気と冷却水が金属面を介して熱交換する表面復水式のいずれを使用してもよい。さらに蒸気誘導パイプ回路7の蒸気タービン入口側には監視用のタービン入口圧力計12とタービン入口温度計13と蒸気流量計14を付設する。これらの計測器は、蒸気誘導用パイプ回路7を流れる蒸気タービン入口前の蒸気の圧力や温度や流量などの変化を監視しまた蒸気タービン8の回転状態を監視しながら、圧力や温度などが異常状態になればバッチ型焼却炉1を流れる蒸気化用送水量や焼却物の投入量を調整するものである。またそれぞれの監視用計測器は、互いに位置を置き換えて付設してもよい。さらに前記した回転軸9と蒸気誘導パイプ回路7との間には、回転軸9の回転数検出計15の検出回転数とで予め設定したタービン回転数との偏差に比例した出力信号を出す比例動作(P)とその偏差の積分に比例する出力信号を出す積分動作(I)とその偏差の微分に比例した出力信号を出す微分動作(D)の和を出力し目標設定値に制御するPID制御の回転数調節器16に接続された誘導蒸気圧力流量調節弁17が付設されている。すなわち、誘導蒸気圧力流量調節弁17の開閉動作で蒸気誘導パイプ回路7を流れる蒸気の圧力と流量を制御する事によって蒸気タービン8の回転数を制御し、その結果から発電機10の発電力を安定に制御する構造に設けられている。  A steam generator 8 is attached to a steam turbine 8 via a rotating shaft 9 on the steam outlet side of the steam induction pipe circuit 7, and the steam expanded in the turbine is cooled and pressurized on the rear side of the steam turbine 8. A condenser 11 is attached to lower the temperature and condense it back to warm water or water. The condenser 11 may be either a mixed double water type in which steam and cooling water are in direct contact or a surface condensate type in which steam and cooling water exchange heat through a metal surface. Further, a turbine inlet pressure gauge 12, a turbine inlet thermometer 13, and a steam flow meter 14 are attached on the steam turbine inlet side of the steam induction pipe circuit 7. These measuring instruments monitor changes in steam pressure, temperature, flow rate, etc. before the steam turbine inlet flowing through the steam induction pipe circuit 7 and monitor the rotation state of the steam turbine 8, while the pressure and temperature are abnormal. If it will be in a state, the water supply amount for vaporization which flows through the batch type incinerator 1 and the input amount of incinerated materials will be adjusted. Further, the respective monitoring measuring instruments may be attached with their positions replaced. Further, between the rotary shaft 9 and the steam induction pipe circuit 7, a proportional output signal is output that is proportional to the deviation from the turbine rotational speed set in advance by the rotational speed detected by the rotational speed detector 15 of the rotational shaft 9. PID that outputs the sum of the operation (P) and the integration operation (I) that outputs an output signal proportional to the integral of the deviation and the differential operation (D) that outputs the output signal proportional to the differential of the deviation and controls it to the target set value An induction steam pressure flow control valve 17 connected to the control rotation speed controller 16 is attached. That is, the rotational speed of the steam turbine 8 is controlled by controlling the pressure and flow rate of the steam flowing through the steam induction pipe circuit 7 by opening and closing the induction steam pressure flow control valve 17, and the power generation of the generator 10 is determined based on the result. It is provided in a structure that is stably controlled.

さらに蒸気誘導パイプ回路7の蒸気滞流大径パイプ回路4側に蒸気排出パイプ18または蒸気圧が幾分低下すると予想される蒸気タービン8と復水器11の間の蒸気誘導パイプ回路7から分岐する蒸気排出バイパスパイプ19あるいはその両者を、前記した蒸気圧力計6の蒸気圧と予め設定した圧力値を電気信号で演算処理し偏差信号を出力する圧力調節計20のシーケンス制御器21で作動する蒸気異常圧時解放弁22(図面は三方ノズル弁の例を示す)に接続する。さらにまた流通する蒸気の圧力と温度が高いとされる蒸気誘導パイプ回路7の前方側には、流通する蒸気の圧力変化に対応して蒸気圧が予め設定された圧力以上になったとき自動的に弁が開いて蒸気を排出し圧力が設定された圧力以下になったとき弁が閉まる機能を持つ、安全弁23を付設している。すなわち、蒸気異常圧時解放弁22と安全弁23は、蒸気誘導パイプ回路7を流通する蒸気が焼却物の一時的な異常燃焼や予想もしない何らかの影響を受けて異常な高圧あるいは大きな圧力差による蒸気タービン8の異常駆動を防止して発電機10の安定稼働を計ると共に、蒸気誘導パイプ回路7の保全性と人災への影響を防止した安全性の確保から付設したものである。
また蒸気誘導パイプ回路7を流通する蒸気の圧力と温度をより緻密に管理する場合は、タービン出口側の該蒸気誘導パイプ回路7に監視用のタービン出口圧力計24さらには監視用タービン出口温度計25を付設してもよい。
Further, the steam discharge pipe 18 or the steam induction pipe circuit 7 between the steam turbine 8 and the condenser 11 where the steam pressure is expected to decrease somewhat is branched to the steam stagnant large diameter pipe circuit 4 side of the steam induction pipe circuit 7. The steam discharge bypass pipe 19 or both of them is operated by the sequence controller 21 of the pressure controller 20 which calculates the steam pressure of the steam pressure gauge 6 and the preset pressure value with an electrical signal and outputs a deviation signal. It is connected to a release valve 22 at the time of abnormal vapor pressure (the drawing shows an example of a three-way nozzle valve). Further, the front side of the steam induction pipe circuit 7 where the pressure and temperature of the circulating steam is high is automatically displayed when the steam pressure becomes equal to or higher than a preset pressure corresponding to the pressure change of the circulating steam. A safety valve 23 having a function of closing the valve when the valve is opened and the steam is discharged and the pressure becomes lower than the set pressure is provided. In other words, the steam abnormal pressure release valve 22 and the safety valve 23 are steam caused by an abnormally high pressure or a large pressure difference because the steam flowing through the steam induction pipe circuit 7 is affected by temporary abnormal combustion of the incinerated material or some unexpected influence. In addition to preventing abnormal driving of the turbine 8 and measuring the stable operation of the generator 10, it is provided to ensure the safety of the steam induction pipe circuit 7 and to prevent the influence on human disasters.
When the pressure and temperature of the steam flowing through the steam induction pipe circuit 7 are more precisely managed, a monitoring turbine outlet pressure gauge 24 and a monitoring turbine outlet thermometer are connected to the steam induction pipe circuit 7 on the turbine outlet side. 25 may be provided.

26は、復水器11から排出された冷却水を貯水する貯水槽である。貯水槽26と復水器11の間には、復水器11で蒸気を冷却した冷却水を貯水槽26に排出する冷却水排出パイプ27と貯水槽26に貯められた貯槽水を冷却水送給ポンプ28を介して復水器11に送給する冷却水循環パイプ回路29を接続すると共に、蒸気が復水器11を通過する際に凝縮した高い熱をもつ温水さらに低温度に冷却するための凝縮水槽30に貯められた蒸気の凝縮水の送給ポンプ31を介して貯水槽26に送水する蒸気凝縮水送給パイプ回路32を接続している。さらに貯水槽26と前記した送給水昇温パイプ回路2の間には、該貯水槽26の貯槽水をバッチ型焼却炉1に設けた該送給水昇温パイプ回路2に送水ポンプ33を介して送給する蒸気化用の貯槽水送給パイプ回路34が接続されて構成されている。  A water storage tank 26 stores the cooling water discharged from the condenser 11. Between the water storage tank 26 and the condenser 11, a cooling water discharge pipe 27 that discharges the cooling water cooled by the condenser 11 to the water storage tank 26 and the water stored in the water storage tank 26 are supplied as cooling water. A cooling water circulation pipe circuit 29 is connected to the condenser 11 via the feed pump 28, and the hot water having high heat condensed when the steam passes through the condenser 11 is further cooled to a lower temperature. A steam condensed water feed pipe circuit 32 for feeding water to the water storage tank 26 via a feed pump 31 for condensate of steam stored in the condensate water tank 30 is connected. Further, between the water storage tank 26 and the above-described feed water temperature raising pipe circuit 2, the water stored in the water tank 26 is supplied to the feed water temperature raising pipe circuit 2 provided in the batch-type incinerator 1 via a water feed pump 33. A storage tank water supply pipe circuit 34 for vaporization to be supplied is connected.

上記の様に構成された本発明のバッチ型焼却炉の小容量発電装置は、バッチ型焼却炉1で焼却物の焼却から作業を開始した後、貯水槽26に貯められた蒸気化用の貯槽水を、貯槽水送給パイプ回路34から送給水昇温パイプ回路2に送給する。送給水昇温パイプ回路2に送給された貯槽水は、バッチ型焼却炉1を通過する間に焼却熱や排ガス熱によって過熱されて蒸気となり、蒸気送給パイプ回路3を経て蒸気滞流大径パイプ回路4に送給される。蒸気滞流大径パイプ回路4に送給された蒸気は、該パイプ内で維持的な滞流を起こしながら、蒸気誘導パイプ回路7に送出される。蒸気誘導パイプ回路7に流動した蒸気は、蒸気タービン8と発電機10を接続する回転軸9を駆動しながらかつPID制御の誘導蒸気圧力流量調節弁17によって無駄なく効果的に調節された量で蒸気タービン8を流動するため、安定した発電力が得られる。さらに蒸気タービン8から復水器11を流動した蒸気は、蒸気凝縮水になって凝縮水槽30を経て貯水槽26に送給され冷却用水に混合されて貯槽水となる。また貯槽水26に留められた貯槽水は、冷却水循環パイプ回路29を流動し復水器11の蒸気冷却用水として再利用されまた貯槽水送給パイプ回路34を経て蒸気流通パイプ回路を流動する蒸気化用水として再利用される。
さらに本発明において、送給水昇温パイプ回路2を流通する間に生成した蒸気は、蒸気送給パイプ回路3から蒸気誘導パイプ回路7を一連状に接続した蒸気流通パイプ回路を流動する間も蒸気温度計や蒸気圧力計や流量計などの各種計測器の監視によって「高圧ガス保安法」などの規制を厳守しまた蒸気タービン8を安全駆動するに最も適した条件と状態で蒸気タービン8を駆動するため、装置の保全性と安全性が確保された中で効率的でかつより安定した発電を行うことができる。
The small-capacity power generation device for a batch type incinerator of the present invention configured as described above starts a work from incineration of incinerated materials in the batch type incinerator 1, and then stores a vaporization storage tank stored in a water storage tank 26. Water is fed from the storage tank water feed pipe circuit 34 to the feed water temperature raising pipe circuit 2. The storage tank water fed to the feed water temperature raising pipe circuit 2 is superheated by incineration heat and exhaust gas heat while passing through the batch type incinerator 1 and becomes steam, and the steam stagnation flow is large through the steam feed pipe circuit 3. It is fed to the diameter pipe circuit 4. The steam fed to the steam stagnant large-diameter pipe circuit 4 is sent to the steam induction pipe circuit 7 while causing a sustained stagnant flow in the pipe. The steam flowing into the steam induction pipe circuit 7 is an amount that is effectively adjusted without waste by driving the rotating shaft 9 connecting the steam turbine 8 and the generator 10 and by the induction steam pressure flow control valve 17 of PID control. Since the steam turbine 8 flows, a stable power generation can be obtained. Further, the steam flowing through the condenser 11 from the steam turbine 8 becomes steam condensed water, is supplied to the water storage tank 26 through the condensed water tank 30, and is mixed with the cooling water to be stored water. Further, the reservoir water retained in the reservoir water 26 flows through the cooling water circulation pipe circuit 29 and is reused as steam cooling water for the condenser 11, and also flows through the steam circulation pipe circuit via the storage tank water supply pipe circuit 34. Reused as chemical water.
Further, in the present invention, the steam generated while flowing through the feed water temperature raising pipe circuit 2 is steamed while flowing through the steam circulation pipe circuit in which the steam induction pipe circuit 7 is connected in series from the steam supply pipe circuit 3. The steam turbine 8 is driven under conditions and conditions most suitable for safe driving of the steam turbine 8 while strictly complying with regulations such as the “High Pressure Gas Safety Act” by monitoring various measuring instruments such as a thermometer, steam pressure gauge, and flow meter. Therefore, efficient and more stable power generation can be performed while the maintainability and safety of the apparatus are ensured.

本発明は、廃棄物を必要日毎にまた時間毎に焼却操業可能なバッチ型焼却炉から出る熱を有効的に利用しかつ効果的に発電機が駆動する構造に設けられているため、小規模な企業や離島地方や過疎地において今後益々使用される可能性が高い。  Since the present invention is provided in a structure that effectively uses heat generated from a batch-type incinerator that can incinerate waste every necessary day and every hour, and is effectively driven by a generator. It is likely to be used more and more in the future in remote companies, remote islands and depopulated areas.

本発明の一実施例を示す。  1 shows an embodiment of the present invention.

1 バッチ型焼却炉
2 送給水昇温パイプ回路
3 蒸気送給パイプ回路
4 蒸気滞流大径パイプ回路
5 蒸気温度計
6 蒸気圧力計
7 蒸気誘導パイプ回路
8 蒸気タービン
9 回転軸
10 発電機
11 復水器
12 監視用タービン入口圧力計
13 監視用タービン入口温度計
14 蒸気流量計
15 回転数検出計
16 回転数調節器
17 誘導蒸気圧力流量調節弁
18 蒸気排出パイプ
19 蒸気排出バイパスパイプ
20 圧力調節計
21 シーケンス制御器
22 蒸気異常圧時解放弁
23 安全弁
24 監視用タービン出口圧力計
25 監視用タービン出口温度計
26 貯水槽
27 冷却水排出パイプ
28 冷却水送給ポンプ
29 冷却水循環パイプ回路
30 凝縮水槽
31 送給ポンプ
32 蒸気凝縮水送給パイプ回路
33 送水ポンプ
34 貯槽水送給パイプ回路
DESCRIPTION OF SYMBOLS 1 Batch type incinerator 2 Feed water temperature rising pipe circuit 3 Steam feed pipe circuit 4 Steam stagnant large diameter pipe circuit 5 Steam thermometer 6 Steam pressure gauge 7 Steam induction pipe circuit 8 Steam turbine 9 Rotating shaft 10 Generator 11 Recovery Water vessel 12 Monitoring turbine inlet pressure gauge 13 Monitoring turbine inlet thermometer 14 Steam flow meter 15 Speed detector 16 Speed controller 17 Induction steam pressure flow control valve 18 Steam exhaust pipe 19 Steam exhaust bypass pipe 20 Pressure controller 21 Sequence Controller 22 Steam Abnormal Pressure Release Valve 23 Safety Valve 24 Monitoring Turbine Outlet Pressure Gauge 25 Monitoring Turbine Outlet Thermometer 26 Water Tank 27 Cooling Water Discharge Pipe 28 Cooling Water Supply Pump 29 Cooling Water Circulation Pipe Circuit 30 Condensed Water Tank 31 Feed pump 32 Steam condensate feed pipe circuit 33 Feed pump 34 Storage tank feed pipe circuit

Claims (1)

バッチ型焼却炉1に設けた送給水昇温パイプ回路2を通って高温度に熱せられた蒸気の流通方向に沿って蒸気送給パイプ回路3と蒸気温度計5および蒸気圧力計6を付設した蒸気滞流大径パイプ回路4と蒸気誘導パイプ回路7を一連状に接続した蒸気流通パイプ回路において、蒸気誘導パイプ回路7の蒸気出口側には回転軸9を介して発電機10を駆動する蒸気タービン8を接続しかつ該蒸気タービン8の蒸気排出側に復水器11を付設しまた蒸気誘導パイプ回路7の蒸気タービン蒸気入口側には監視用タービン入口圧力計12と監視用タービン入口温度計13と監視用の蒸気流量計14を付設し、前記した蒸気タービン8と発電機10を連接する回転軸9には回転数検出計15の検出回転数と予め設定した回転数との偏差信号で弁を開閉駆動するPID制御の誘導蒸気圧力流量調節弁17を蒸気誘導パイプ回路7に付設し、さらに蒸気誘導パイプ回路7の蒸気滞流大径パイプ回路4側に蒸気排出パイプ18または前記した蒸気タービン8と復水器11の間の蒸気誘導パイプ回路7から分岐する蒸気排出バイパスパイプ19あるいはその両者を前記した蒸気圧力計6の蒸気圧と予め設定した圧力値との偏差信号を入力信号にして作動するシーケンス制御の蒸気異常圧時解放弁22に接続し、さらに蒸気誘導パイプ回路7の蒸気滞流大径パイプ回路4側に安全弁23を付設すると共に、復水器11と該復水器11に後設する貯水槽26との間には冷却水送給ポンプ28を介して貯槽水を循環する冷却水循環パイプ回路29と復水器11の下方側に設けた凝縮水槽30に貯まった蒸気凝縮水を貯水槽26に送給ポンプ31を介して送給する蒸気凝縮水送給パイプ回路32を付設し、さらに貯水槽26から前記したバッチ型焼却炉1の送給水昇温パイプ回路2に送水ポンプ33を介して貯槽水送給パイプ回路34を接続して構成した事を特徴とするバッチ型焼却炉の小容量発電装置。  A steam feed pipe circuit 3, a steam thermometer 5, and a steam pressure gauge 6 are attached along the flow direction of the steam heated to a high temperature through the feed water temperature raising pipe circuit 2 provided in the batch type incinerator 1. In a steam circulation pipe circuit in which a steam stagnant large-diameter pipe circuit 4 and a steam induction pipe circuit 7 are connected in series, steam that drives a generator 10 via a rotating shaft 9 is disposed on the steam outlet side of the steam induction pipe circuit 7. A turbine 8 is connected and a condenser 11 is attached to the steam discharge side of the steam turbine 8, and a monitoring turbine inlet pressure gauge 12 and a monitoring turbine inlet thermometer are connected to the steam turbine steam inlet side of the steam induction pipe circuit 7. 13 and a monitoring steam flow meter 14 are attached to the rotary shaft 9 connecting the steam turbine 8 and the generator 10 with a deviation signal between the rotational speed detected by the rotational speed detector 15 and a preset rotational speed. Open and close valve A PID-controlled induction steam pressure flow control valve 17 is attached to the steam induction pipe circuit 7, and further, the steam discharge pipe 18 or the steam turbine 8 described above is connected to the steam induction pipe circuit 7 side of the steam stagnant large-diameter pipe circuit 4. A sequence in which the steam discharge bypass pipe 19 branched from the steam induction pipe circuit 7 between the water tanks 11 or both is operated with a deviation signal between the steam pressure of the steam pressure gauge 6 and a preset pressure value as an input signal. Connected to the control valve 22 for controlling abnormal steam pressure, a safety valve 23 is additionally provided on the side of the steam stagnation large-diameter pipe circuit 4 of the steam induction pipe circuit 7, and the condenser 11 and the condenser 11 are installed later. Steam condensate stored in a condensate water tank 30 provided below the condenser 11 and a cooling water circulation pipe circuit 29 that circulates the water of the tank via a cooling water feed pump 28. A steam condensed water feed pipe circuit 32 for feeding water to the water storage tank 26 via the feed pump 31 is additionally provided, and water is further supplied from the water storage tank 26 to the feed water temperature raising pipe circuit 2 of the batch incinerator 1 described above. A small-capacity power generation device for a batch-type incinerator, characterized in that a storage tank water supply pipe circuit 34 is connected via a pump 33.
JP2015175162A 2015-08-18 2015-08-18 Small-capacity power generation system for batch incinerators Active JP6311100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175162A JP6311100B2 (en) 2015-08-18 2015-08-18 Small-capacity power generation system for batch incinerators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175162A JP6311100B2 (en) 2015-08-18 2015-08-18 Small-capacity power generation system for batch incinerators

Publications (2)

Publication Number Publication Date
JP2017040249A JP2017040249A (en) 2017-02-23
JP6311100B2 true JP6311100B2 (en) 2018-04-18

Family

ID=58206482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175162A Active JP6311100B2 (en) 2015-08-18 2015-08-18 Small-capacity power generation system for batch incinerators

Country Status (1)

Country Link
JP (1) JP6311100B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121401A (en) * 1990-09-12 1992-04-22 Hitachi Ltd Combined cycle power generating plant
JPH08135411A (en) * 1994-11-10 1996-05-28 Toshiba Corp Control device of exhaust heat using power plant
JPH11294105A (en) * 1998-04-06 1999-10-26 Takuma Co Ltd Steam turbine plant
JP2001090510A (en) * 1999-09-27 2001-04-03 Ebara Corp Power generating system having external heating type micro gas turbine
JP4102179B2 (en) * 2002-12-17 2008-06-18 新日鉄エンジニアリング株式会社 Operation method of steam turbine of exhaust gas treatment system in waste treatment facility
US20110270451A1 (en) * 2008-12-26 2011-11-03 Yusuke Sakaguchi Control device for exhaust heat recovery system
JP2011144745A (en) * 2010-01-14 2011-07-28 Tohoku Electric Power Co Inc Operation control method of geothermal power station
JP5656754B2 (en) * 2011-06-17 2015-01-21 株式会社タクマ Power generation facility for waste incinerator and control method thereof
JP2015124710A (en) * 2013-12-26 2015-07-06 株式会社東芝 Control device and activation method

Also Published As

Publication number Publication date
JP2017040249A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
KR960704011A (en) Waste waste incinerator and its operation method (THERMAL WASTE DISPOSAL PLANT AND PROCESS FOR OPERATING THE SAME)
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP5060313B2 (en) Operation method of waste treatment facility with power generation equipment
JP6311100B2 (en) Small-capacity power generation system for batch incinerators
JP4378360B2 (en) Power generation method and apparatus using waste
JP2019086271A (en) Waste heat recovery power generation system of small capacity incinerator
JP7089626B1 (en) Waste heat recovery device
JP5843391B2 (en) Waste power generation system
JP6701577B2 (en) Waste incineration system
JP6932089B2 (en) Diaper drying equipment and methods, fuel manufacturing equipment and methods
JP2000320816A (en) Oxyhydrogen direct melting furnace system
JP5142817B2 (en) Operation method of condensate system in steam power plant
KR102021489B1 (en) Waste heat water boiler with efficiency management system of superheater
JP2007205704A (en) Steam pressure control method in automatic start/stop of waste processing boiler
JPH0828804A (en) Method and apparatus for controlling exhaust gas temperature during start-up of refuse incinerator
JP2016041939A (en) Waste power generation system
TWI642877B (en) Procede et installation de valorisation energetique de dechets
JP5491550B2 (en) Pressurized flow furnace system and control method thereof
JP4823998B2 (en) Waste power generation method
CN205878180U (en) City domestic waste innocent treatment complete sets
CN116592354A (en) Urban household garbage power generation system and operation method
JP4449704B2 (en) Combustion method and apparatus
KR101865184B1 (en) Combined Heat and Power System using mixed waste
Nakajima et al. Development strategy of environmentally friendly sewage sludge incineration technologies in Bureau of Sewerage Tokyo Metropolitan Government

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6311100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250