JPH08135411A - Control device of exhaust heat using power plant - Google Patents

Control device of exhaust heat using power plant

Info

Publication number
JPH08135411A
JPH08135411A JP30016294A JP30016294A JPH08135411A JP H08135411 A JPH08135411 A JP H08135411A JP 30016294 A JP30016294 A JP 30016294A JP 30016294 A JP30016294 A JP 30016294A JP H08135411 A JPH08135411 A JP H08135411A
Authority
JP
Japan
Prior art keywords
steam
exhaust heat
water level
controlled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30016294A
Other languages
Japanese (ja)
Inventor
Akio Wakao
明男 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30016294A priority Critical patent/JPH08135411A/en
Publication of JPH08135411A publication Critical patent/JPH08135411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: To constantly provide stable generator output by controlling a flow rate of steam led to a steam turbine so that the output of a generator becomes a previously specified power setting value by separating exhaust heat steam introduced in a steam separator of an exhaust heat using power plant. CONSTITUTION: Steam is separated by a steam separator 3 generates electric power by rotating a generator 10 directly connected to a steam turbine 9 through an exhaust heat steam flow passage 5. At this time, a steam flow rate is opening-controlled by a flow rate control valve 8 in accordance with a steam flow rate detected by a flow rate detector 7, and steam pressure is opening-controlled by a pressure control valve 29 in accordance with steam turbine inlet temperature detected by a pressure detector 6. Additionally, an exhaust heat hot water level of the steam separator 3 is opening-controlled by a level control valve 30 in accordance with an exhaust heat hot water level detected by a level detector 4, and pressure in the steam separator 3 is precedently controlled in a direction not to reduce pressure in the steam separator 3 at the time when the steam flow rate is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工業用プラント等の排
熱蒸気あるいは地下の蒸気から得られる排熱を利用した
発熱利用発電所の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a heat-generating power plant which uses exhaust heat obtained from waste heat steam of an industrial plant or underground steam.

【0002】[0002]

【従来の技術】一般に、発電の方式には、火力発電、水
力発電、原子力発電等の方式のほかに、種々の特殊発電
方式がある。この特殊発電方式の一つとして、工業用プ
ラントあるいは地下から得られる排熱を利用した発電方
式がある。
2. Description of the Related Art In general, there are various special power generation systems in addition to systems such as thermal power generation, hydraulic power generation, and nuclear power generation as power generation systems. As one of the special power generation methods, there is a power generation method that uses exhaust heat obtained from an industrial plant or underground.

【0003】このような排熱利用発電方式は、火力発電
と同様に、蒸気により蒸気タービンを駆動し、蒸気ター
ビンに直結した発電機を回転させて発電を行うものであ
るが、火力発電に比べ蒸気タービンを回転させるのに要
する燃料費を大幅に節約できるため、近年、資源活用の
面から注目され始めている。
[0003] Such an exhaust heat utilization power generation system, like the thermal power generation, drives a steam turbine with steam and rotates a generator directly connected to the steam turbine to generate power, but compared with thermal power generation. Since the fuel cost required for rotating a steam turbine can be greatly saved, in recent years, attention has been paid to the utilization of resources.

【0004】この様な排熱利用発電所の制御は、排熱の
流量が常時一定に定まっているものではないので、排熱
の流量について格別の制御を行っていない。つまり、工
業用プラント等から得られる排熱のすべてを蒸気タービ
ンの駆動に用いるようして、基本的には電力最大運転を
行うようしていた。
In such control of a power plant utilizing exhaust heat, the flow rate of exhaust heat is not always fixed and therefore, no special control is performed on the flow rate of exhaust heat. That is, all the exhaust heat obtained from an industrial plant or the like is used to drive the steam turbine, and basically the maximum electric power operation is performed.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような排
熱利用発電所の制御方式では、工業用プラント等からの
排熱流量あるいは排熱温度が変化すると、ただちに発電
機出力も変動してしまい、成り行きまかせの制御となる
欠点がある。
However, in such a control system for an exhaust heat utilization power plant, when the exhaust heat flow rate or exhaust heat temperature from an industrial plant or the like changes, the generator output also immediately changes. However, there is a drawback that it is a control that leaves it to nothing.

【0006】本発明の目的は、工業用プラント等からの
排熱流量あるいは排熱温度の変化にかかわらず、常に安
定した発電機出力を得ることが可能な排熱利用発電所の
制御装置を提供するにある。
An object of the present invention is to provide a control device for an exhaust heat utilization power plant that can always obtain a stable generator output regardless of changes in exhaust heat flow rate or exhaust heat temperature from an industrial plant or the like. There is.

【0007】[0007]

【課題を解決するための手段】請求項1の排熱利用発電
所の制御装置は、発電機の出力が予め定めた電力設定値
になるように蒸気タービンに流入する蒸気流量を制御す
る蒸気流量制御系と、排熱蒸気を蒸気と熱水に分離する
蒸気分離器の熱水レベルが予め定めた設定値になるよう
に制御すると共に、蒸気タービンに流入する蒸気流量が
増加したときは蒸気分離器の熱水レベルが上昇しない方
向に先行的に制御する蒸気分離器の熱水レベル制御系
と、蒸気タービン入口の蒸気圧力が予め定めた圧力設定
値になるように蒸気分離器の器内圧力を制御すると共
に、蒸気タービンに流入する蒸気流量が増加したときは
蒸気分離器の器内圧力を減じない方向に先行的に制御
し、かつ、蒸気分離器の熱水レベルが増加したときは蒸
気分離器の器内圧力を減じない方向に先行的に制御する
蒸気圧力制御系とを備えている。
According to a first aspect of the present invention, there is provided a control device for an exhaust heat utilization power plant which controls a flow rate of steam flowing into a steam turbine so that a power output of the generator reaches a predetermined electric power set value. The control system and the steam separator that separates the exhaust heat steam into steam and hot water are controlled so that the hot water level becomes a preset value, and when the flow rate of steam flowing into the steam turbine increases, steam separation is performed. The hot water level control system of the steam separator that controls the hot water level of the steam separator in advance so that it does not rise, and the pressure inside the steam separator so that the steam pressure at the steam turbine inlet becomes a predetermined pressure set value. Of the steam turbine, and when the flow rate of steam entering the steam turbine increases, the internal pressure of the steam separator is controlled so as not to decrease, and when the hot water level of the steam separator increases, Reduce the pressure inside the separator And a steam pressure control system for proactively control the free direction.

【0008】請求項2の発明は、請求項1における排熱
利用発電所の制御装置に、蒸気分離器から排熱蒸気およ
び排熱熱水を貯蔵する排熱処理タンクの熱水レベルが予
め定めた設定値になるように制御すると共に、蒸気分離
器の熱水レベルが増加したときは排熱処理タンクの熱水
レベルが増加しない方向に先行的に制御する排熱処理タ
ンクの水位レベル制御系を追加して設けている。
According to a second aspect of the present invention, the hot water level of the waste heat treatment tank for storing the waste heat steam and the waste heat hot water from the steam separator is predetermined in the controller of the waste heat utilization power plant according to the first aspect. A water level control system for the exhaust heat treatment tank is added to control the exhaust water heat treatment tank so that the hot water level in the exhaust heat treatment tank does not increase when the steam separator hot water level increases. Are provided.

【0009】請求項3の発明は、請求項2における排熱
利用発電所の制御装置に、排熱処理タンクから復水器に
導く排熱水を冷却塔からの冷却水で熱交換する熱交換器
における排熱水出口温度が予め定めた設定値になるよう
に制御すると共に、排熱処理タンクの熱水レベルが増加
したときは冷却水を増加する方向に先行的に制御し、か
つ、排熱処理タンクの器内温度が高くなった場合には冷
却水を増加する方向に先行的に制御する熱交換器の冷却
水温度制御系を追加して設けている。
According to a third aspect of the present invention, in the control device of the waste heat utilization power plant according to the second aspect, the heat exchanger for exchanging the exhaust heat water guided from the exhaust heat treatment tank to the condenser with the cooling water from the cooling tower. The exhaust heat water outlet temperature at the exhaust heat treatment tank is controlled so as to reach a predetermined set value, and when the hot water level of the exhaust heat treatment tank is increased, the cooling water is controlled in advance so as to be increased, and the exhaust heat treatment tank is controlled. A cooling water temperature control system for the heat exchanger that controls the cooling water in the direction of increasing the cooling water in advance when the internal temperature becomes high is additionally provided.

【0010】請求項4の発明は、請求項3における排熱
利用発電所の制御装置に、復水器の水位レベルが予め定
めた設定値になるように制御すると共に、蒸気タービン
に導く蒸気流量が増加したときは復水器の水位レベルを
減じる方向に先行的に制御し、かつ、熱交換器における
排熱水出口温度が高くなったときは水位レベルを減じな
い方向に先行的に制御する復水器の水位レベル制御系を
追加して設けている。
According to a fourth aspect of the present invention, the control device of the waste heat utilization power plant according to the third aspect controls the water level of the condenser so as to reach a predetermined set value, and at the same time, the flow rate of steam introduced to the steam turbine. When the temperature rises, the water level in the condenser is controlled to decrease, and when the exhaust heat water outlet temperature in the heat exchanger rises, the water level is controlled not to decrease. An additional water level control system for the condenser is provided.

【0011】請求項5の発明は、請求項4における排熱
利用発電所の制御装置に、復水器からの復水が導かれる
とともに冷却水を熱交換器に循環させるための冷却塔の
タンク器内の水位レベルが予め定めた設定値になるよう
に制御すると共に、復水器の水位レベルが上昇したとき
は冷却塔のタンク器内の水位レベルが上昇しないように
先行的に制御する冷却塔の水位レベル制御系を追加して
設けている。
According to a fifth aspect of the present invention, the tank of the cooling tower for guiding the condensate from the condenser and circulating the cooling water to the heat exchanger is introduced into the control device of the waste heat utilization power plant according to the fourth aspect. Cooling is controlled so that the water level in the condenser reaches a preset value, and when the water level in the condenser rises, the water level in the tank of the cooling tower does not rise in advance. A water level control system for the tower is additionally provided.

【0012】請求項6の発明は、請求項5における排熱
利用発電所の制御装置に、冷却塔のタンク器内の温度が
予め定めた設定値になるように制御すると共に、復水器
の水位レベルが上昇したときは冷却塔のタンク器内の温
度が上昇しないように先行的に制御し、かつ、熱交換器
からの冷却水の温度と復水器の器内温度が高いときは温
度の高い方に基づいて冷却塔のタンク器内の温度が上昇
しないように先行的に制御する冷却塔の器内温度制御系
を追加して設けている。
According to a sixth aspect of the present invention, the controller of the waste heat utilization power plant according to the fifth aspect controls the temperature in the tank unit of the cooling tower so as to reach a predetermined set value, and also controls the condenser. When the water level rises, the temperature inside the tank unit of the cooling tower is controlled in advance so that it does not rise, and when the temperature of the cooling water from the heat exchanger and the temperature inside the condenser are high, the temperature is controlled. In order to prevent the temperature inside the tank unit of the cooling tower from rising based on the higher one, an inside temperature control system of the cooling tower is additionally provided.

【0013】[0013]

【作用】排熱利用発電所の蒸気分離器に流入した排熱蒸
気は、そこで蒸気と熱水に分離され蒸気は蒸気タービン
に導かれる。蒸気タービンに導かれる蒸気流量は、蒸気
流量制御系にて、発電機の出力が予め定めた電力設定値
になるように蒸気タービンに流入する蒸気流量を制御さ
れる。
The exhaust heat steam that has flowed into the steam separator of the waste heat utilization power plant is separated into steam and hot water, and the steam is guided to the steam turbine. The flow rate of steam introduced into the steam turbine is controlled by the steam flow rate control system so that the output of the generator reaches a preset electric power setting value.

【0014】蒸気分離器の熱水レベルは、蒸気分離器の
熱水レベル制御系にて、予め定めた設定値になるように
制御されると共に、蒸気タービンに流入する蒸気流量が
増加したときは蒸気分離器の熱水レベルが上昇しない方
向に先行的に制御される。
The hot water level of the steam separator is controlled by the hot water level control system of the steam separator to a preset value, and when the flow rate of steam flowing into the steam turbine increases. The hot water level of the steam separator is controlled in advance so that it does not rise.

【0015】また、蒸気タービン入口の蒸気圧力は、蒸
気圧力制御系にて、予め定めた圧力設定値になるように
蒸気分離器の器内圧力を制御することによって制御され
る。この場合、蒸気圧力制御系は、蒸気タービンに流入
する蒸気流量が増加したときは蒸気分離器の器内圧力を
減じない方向に先行的に制御し、かつ、蒸気分離器の熱
水レベルが増加したときは蒸気分離器の器内圧力を減じ
ない方向に先行的に制御する。
Further, the steam pressure at the inlet of the steam turbine is controlled by controlling the internal pressure of the steam separator so as to reach a predetermined pressure set value by the steam pressure control system. In this case, the steam pressure control system proactively controls the internal pressure of the steam separator when the flow rate of steam flowing into the steam turbine increases, and the hot water level of the steam separator increases. In this case, the internal pressure of the steam separator is controlled in advance so as not to decrease it.

【0016】蒸気分離器からの排熱蒸気および排熱熱水
は排熱処理タンクに導かれ、その排熱処理タンクの熱水
レベルは、排熱処理タンクの水位レベル制御系にて、予
め定めた設定値になるように制御される。この場合、排
熱処理タンクの水位レベル制御系蒸気分離器の熱水レベ
ルが増加したときは排熱処理タンクの熱水レベルが増加
しない方向に先行的に制御する。
The exhaust heat steam and the exhaust hot water from the steam separator are guided to the exhaust heat treatment tank, and the hot water level of the exhaust heat treatment tank is set to a preset value by the water level control system of the exhaust heat treatment tank. Controlled to be. In this case, when the hot water level of the water level control system vapor separator of the exhaust heat treatment tank increases, the hot water level of the exhaust heat treatment tank is controlled so as not to increase.

【0017】排熱処理タンクからの排熱水は熱交換器を
介して復水器に導かれる。この熱交換器は、排熱処理タ
ンクからの排熱水を冷却塔からの冷却水で熱交換するも
ので、この熱交換器における排熱水出口温度は、熱交換
器の冷却水温度制御系にて、予め定めた設定値になるよ
うに制御される。この場合、熱交換器の冷却水温度制御
系は、排熱処理タンクの熱水レベルが増加したときは冷
却水を増加する方向に先行的に制御し、かつ、排熱処理
タンクの器内温度が高くなった場合には冷却水を増加す
る方向に先行的に制御する。
Exhaust heat water from the exhaust heat treatment tank is guided to the condenser via the heat exchanger. This heat exchanger heats the waste heat water from the waste heat treatment tank with the cooling water from the cooling tower.The exhaust heat water outlet temperature in this heat exchanger is controlled by the cooling water temperature control system of the heat exchanger. And is controlled so as to reach a preset set value. In this case, when the hot water level of the exhaust heat treatment tank is increased, the cooling water temperature control system of the heat exchanger controls the cooling water in an increasing direction, and the internal temperature of the exhaust heat treatment tank is increased. If it does, the cooling water is controlled in advance in the direction of increasing it.

【0018】復水器の水位レベルは、復水器の水位レベ
ル制御系にて、予め定めた設定値になるように制御され
る。この場合、復水器の水位レベル制御系は、蒸気ター
ビンに導く蒸気流量が増加したときは復水器の水位レベ
ルを減じる方向に先行的に制御し、かつ、熱交換器にお
ける排熱水出口温度が高くなったときは水位レベルを減
じない方向に先行的に制御する。
The water level level of the condenser is controlled by the water level control system of the condenser so as to reach a predetermined set value. In this case, the water level control system of the condenser controls the water level of the condenser to decrease when the steam flow rate leading to the steam turbine increases, and the exhaust heat water outlet of the heat exchanger When the temperature rises, the water level is controlled so that it does not decrease.

【0019】冷却塔には、復水器からの復水が導かれる
とともに熱交換器を循環してきた冷却水が導かれる。冷
却塔のタンク器内の水位レベルは、冷却塔の水位レベル
制御系にて、予め定めた設定値になるように制御され
る。この場合、冷却塔の水位レベル制御系は、復水器の
水位レベルが上昇したときは冷却塔のタンク器内の水位
レベルが上昇しないように先行的に制御する。
Condensed water from the condenser is introduced to the cooling tower, and cooling water circulated through the heat exchanger is introduced to the cooling tower. The water level level in the tank unit of the cooling tower is controlled by the water level control system of the cooling tower so as to reach a predetermined set value. In this case, the water level control system of the cooling tower controls in advance so that the water level in the tank unit of the cooling tower does not rise when the water level of the condenser rises.

【0020】冷却塔のタンク器内の温度は、冷却塔の器
内温度制御系にて、予め定めた設定値になるように制御
される。この場合、冷却塔の器内温度制御系は、復水器
の水位レベルが上昇したときは冷却塔のタンク器内の温
度が上昇しないように先行的に制御し、かつ、熱交換器
からの冷却水の温度と復水器の器内温度が高いときは温
度の高い方に基づいて冷却塔のタンク器内の温度が上昇
しないように先行的に制御する。
The temperature inside the tank unit of the cooling tower is controlled to be a preset value by the inside temperature control system of the cooling tower. In this case, the internal temperature control system of the cooling tower controls in advance so that the temperature in the tank device of the cooling tower does not rise when the water level of the condenser rises, and When the temperature of the cooling water and the temperature inside the condenser are high, the temperature inside the tank unit of the cooling tower is controlled in advance based on the higher temperature.

【0021】[0021]

【実施例】以下、本発明の一実施例を説明する。図1は
本発明の制御装置のブロック構成図である。また、図2
は本発明が適用される排熱利用発電所の構成図である。
EXAMPLE An example of the present invention will be described below. FIG. 1 is a block diagram of the control device of the present invention. Also, FIG.
FIG. 1 is a configuration diagram of an exhaust heat utilization power plant to which the present invention is applied.

【0022】図2において、高温の排熱蒸気や排熱熱水
は排熱ポンプ1で汲み上げられ、排熱供給路2を通って
蒸気分離器3に入力される。蒸気分離器3では蒸気と熱
水に分離される。分離された蒸気は、排熱蒸気流路5を
通って流量調節弁8で流量が制御されて蒸気タービン9
に導かれる。蒸気タービン9はそれに直結された発電機
10を回転させ発電させる。
In FIG. 2, high temperature exhaust heat steam and exhaust heat hot water are pumped up by an exhaust heat pump 1 and input to a steam separator 3 through an exhaust heat supply passage 2. In the steam separator 3, steam and hot water are separated. The flow rate of the separated steam passes through the exhaust heat steam flow path 5 and is controlled by the flow rate control valve 8, and the steam turbine 9
Be led to. The steam turbine 9 rotates a generator 10 directly connected to it to generate electric power.

【0023】蒸気タービン9で仕事を終えた蒸気は、排
熱流路11を流れ復水器12に送られて冷却され復水す
る。その復水は復水ポンプ15で復水流路17を流れ冷
却塔18に送られる。冷却塔18に送られた復水は冷却
ファン19で冷却され、冷却塔18のタンクに貯められ
る。その冷却塔18のタンクに貯められた冷却水は、冷
却水補給流路25を介して冷却水ポンプ26で熱交換器
28に送られ、排熱処理タンク32の出口排熱水と熱交
換する。熱交換した冷却水は、冷却流路36を流れ冷却
塔18に送られる。
The steam that has finished its work in the steam turbine 9 flows through the exhaust heat flow passage 11 and is sent to the condenser 12 where it is cooled and condensed. The condensate flows through the condensate flow path 17 by the condensate pump 15 and is sent to the cooling tower 18. The condensate sent to the cooling tower 18 is cooled by the cooling fan 19 and stored in the tank of the cooling tower 18. The cooling water stored in the tank of the cooling tower 18 is sent to the heat exchanger 28 by the cooling water pump 26 via the cooling water replenishing flow path 25 and exchanges heat with the outlet waste heat water of the waste heat treatment tank 32. The heat-exchanged cooling water flows through the cooling flow path 36 and is sent to the cooling tower 18.

【0024】また、蒸気分離器3の熱水は、排熱処理流
路31を流れ排熱処理タンク32に送られる。その排熱
は熱交換器28に流れ、冷却水ポンプ26で供給された
冷却水と熱交換し、復水器12に送られる。一方、冷却
塔18の補給水は、補給水ポンプ24により補給水流路
22を流れ冷却塔18に供給されている。
The hot water of the steam separator 3 flows through the exhaust heat treatment flow passage 31 and is sent to the exhaust heat treatment tank 32. The exhaust heat flows to the heat exchanger 28, exchanges heat with the cooling water supplied by the cooling water pump 26, and is sent to the condenser 12. On the other hand, the makeup water of the cooling tower 18 flows through the makeup water flow path 22 by the makeup water pump 24 and is supplied to the cooling tower 18.

【0025】次に、排熱蒸気流路5の蒸気流量の制御
は、流量検出器7で検出された蒸気流量に基づいて制御
装置39にて流量調節弁8の開度を調節して行われる。
これによって、蒸気タービン9を回転させ発電機10を
駆動させ発電電力を制御している。また、蒸気タービン
9に送られる蒸気の圧力制御は、圧力検出器6により検
出した蒸気タービン入口温度に基づいて制御装置39に
て圧力調節弁29の開度を調節して行われる。すなわ
ち、蒸気分離器3の器内圧力を制御して行われ、余剰の
蒸気は排熱処理タンク32に送られる。
Next, the control of the steam flow rate in the exhaust heat steam flow path 5 is performed by adjusting the opening degree of the flow rate control valve 8 by the control device 39 based on the steam flow rate detected by the flow rate detector 7. .
Thereby, the steam turbine 9 is rotated to drive the generator 10 to control the generated power. Further, the pressure control of the steam sent to the steam turbine 9 is performed by adjusting the opening degree of the pressure control valve 29 by the control device 39 based on the steam turbine inlet temperature detected by the pressure detector 6. That is, the pressure inside the steam separator 3 is controlled, and the surplus steam is sent to the exhaust heat treatment tank 32.

【0026】蒸気分離器3の排熱熱水のレベル制御は、
レベル検出器4により検出された排熱熱水レベルに基づ
いて制御装置39に基づいてレベル調節弁30の開度を
調節して行われる。また、排熱処理タンク32の排熱熱
水のレベル制御は、レベル検出器33により検出した排
熱処理タンク32の排熱熱水レベルに基づいて制御装置
39によりレベル調節弁35の開度を調節して行われ
る。
The level control of the waste heat heat water of the steam separator 3 is as follows.
The opening degree of the level control valve 30 is adjusted based on the control device 39 based on the exhaust hot water level detected by the level detector 4. Further, the level control of the exhaust heat heat water of the exhaust heat treatment tank 32 is performed by adjusting the opening degree of the level control valve 35 by the controller 39 based on the exhaust heat heat water level of the exhaust heat treatment tank 32 detected by the level detector 33. Is done.

【0027】一方、排熱処理タンク32の排熱の温度の
制御は、熱交換器28の熱交換器出口の温度検出器38
により検出した熱交換器出口の温度に基づいて制御装置
39にて温度調節弁27の開度を調節して行われる。そ
して、復水器12のレベル制御は、レベル検出器13に
より検出した復水器の水位レベルに基づき制御装置39
によりレベル調節弁16の開度を調節して行われる。
On the other hand, the temperature of the exhaust heat of the exhaust heat treatment tank 32 is controlled by the temperature detector 38 at the outlet of the heat exchanger of the heat exchanger 28.
The control device 39 adjusts the opening degree of the temperature control valve 27 based on the temperature of the heat exchanger outlet detected by. The level control of the condenser 12 is based on the water level level of the condenser detected by the level detector 13
Is performed by adjusting the opening degree of the level control valve 16.

【0028】また、冷却塔18のレベルの制御は、レベ
ル検出器20により検出した冷却塔の推移レベルに基づ
いて制御装置39によりレベル調節弁23の開度を調節
して行われる。冷却塔18のタンクの温度の制御は、冷
却塔18のタンクの温度検出器21により検出したタン
ク温度に基づいて制御装置39にて冷却塔ファン19へ
の供給電流を制御して行われる。
The level of the cooling tower 18 is controlled by adjusting the opening degree of the level control valve 23 by the controller 39 based on the transition level of the cooling tower detected by the level detector 20. The temperature of the tank of the cooling tower 18 is controlled by the controller 39 controlling the current supplied to the cooling tower fan 19 based on the tank temperature detected by the temperature detector 21 of the tank of the cooling tower 18.

【0029】ここで、制御装置39は、図1に示すよう
に構成される。すなわち、制御装置39は、蒸気流量制
御系Aと、蒸気圧力制御系Bと、蒸気分離器の熱水レベ
ル制御系Cと、排熱処理タンクの水位レベル制御系D
と、熱交換器の冷却水温度制御系Eと、復水器の水位レ
ベル制御系Fと、冷却塔の水位レベル制御系Gと、冷却
塔の器内温度制御系Hとから構成される。
Here, the control device 39 is constructed as shown in FIG. That is, the controller 39 controls the steam flow rate control system A, the steam pressure control system B, the hot water level control system C of the steam separator, and the water level control system D of the exhaust heat treatment tank.
A cooling water temperature control system E for the heat exchanger, a water level level control system F for the condenser, a water level level control system G for the cooling tower, and an internal temperature control system H for the cooling tower.

【0030】蒸気流量制御系Aは、蒸気流量が電力設定
値になるように、蒸気タービン入口の流量調節弁8を調
節するものである。すなわち、排熱蒸気流路5を流れる
蒸気の流量検出器7の検出信号を入力し、検出した蒸気
流量を開平演算器40でリニアにする。その蒸気流量は
蒸気流量の関数で演算された電力設定値41と比較さ
れ、その偏差信号をPID調節器42で演算して制御信
号を得る。そして、電空変換器43で電流信号を空気信
号に変換して排熱蒸気タービンの入口の流量調節弁8の
開度を制御する。これによって、発電機10の電力設定
値に追従して蒸気流量を制御する。
The steam flow rate control system A adjusts the flow rate control valve 8 at the steam turbine inlet so that the steam flow rate becomes a power setting value. That is, the detection signal of the flow rate detector 7 of the steam flowing through the exhaust heat steam flow path 5 is input, and the detected steam flow rate is made linear by the square root calculator 40. The steam flow rate is compared with the power set value 41 calculated as a function of the steam flow rate, and the deviation signal is calculated by the PID controller 42 to obtain a control signal. Then, the electropneumatic converter 43 converts the current signal into an air signal to control the opening degree of the flow rate control valve 8 at the inlet of the exhaust heat steam turbine. As a result, the steam flow rate is controlled by following the power set value of the generator 10.

【0031】次に、蒸気圧力制御系Bは、蒸気タービン
入口の蒸気圧力を蒸気分離器3の出口圧力調整弁29を
調節して、蒸気分離器3の圧力がその圧力設定値になる
ように調節して制御するものである。この場合、蒸気流
量が増加したときは蒸気分離器3の圧力を減じない方向
に先行的に制御し、また、蒸気分離器3の熱水レベルが
増加したときは蒸気分離器3の圧力を減じない方向に先
行的に制御する。
Next, the steam pressure control system B adjusts the steam pressure at the steam turbine inlet by adjusting the outlet pressure adjusting valve 29 of the steam separator 3 so that the pressure of the steam separator 3 becomes the pressure set value. It regulates and controls. In this case, when the steam flow rate increases, the pressure of the steam separator 3 is controlled in advance so as not to decrease, and when the hot water level of the steam separator 3 increases, the pressure of the steam separator 3 is decreased. Control ahead in the direction that does not exist.

【0032】すなわち、排熱蒸気タービン入口の圧力検
出器6の検出信号を入力し、検出した蒸気圧力と蒸気タ
ービン入口圧力の設定器45に設定された設定値と比較
し、その偏差信号を得る。一方、その偏差信号に、電力
設定器41で比較して得られた偏差信号をバイアス器4
4でバイアス信号として得た信号と、蒸気分離器3のレ
ベル検出器4の検出信号と蒸気分離器3のレベル設定器
49で比較して得られた偏差信号をバイアス器50でバ
イアス信号として得た信号とを加味する。つまり、これ
らの信号を加減演算器46に入力して得た演算信号をP
ID調節機47で制御信号として得る。その制御信号
は、電空変換器48で電流信号を空気信号に変換して蒸
気分離器3の圧力調節弁29の開度を制御する信号とな
る。これによって、余剰の蒸気を排熱処理タンク32に
回収させ、排熱蒸気タービン9の入口圧力を設定値に追
従して制御する。
That is, the detection signal of the pressure detector 6 at the exhaust heat steam turbine inlet is input, the detected steam pressure is compared with the set value set in the steam turbine inlet pressure setter 45, and the deviation signal thereof is obtained. . On the other hand, the deviation signal obtained by comparing the deviation signal with the power setting device 41 is supplied to the bias device 4
4, the bias signal is obtained as a bias signal, and the deviation signal obtained by comparing the detection signal of the level detector 4 of the vapor separator 3 with the level setting device 49 of the vapor separator 3 is obtained as a bias signal. Signal is added. That is, the calculation signal obtained by inputting these signals to the addition / subtraction calculator 46 is P
It is obtained as a control signal by the ID controller 47. The control signal becomes a signal for controlling the opening degree of the pressure control valve 29 of the steam separator 3 by converting the current signal into an air signal by the electropneumatic converter 48. As a result, the excess steam is recovered in the exhaust heat treatment tank 32, and the inlet pressure of the exhaust heat steam turbine 9 is controlled by following the set value.

【0033】蒸気分離器の熱水レベル制御系Cは、蒸気
分離器3の熱水レベルをレベル調節弁30を調節してそ
の設定値になるように制御するものである。この場合、
蒸気分離器の熱水レベル制御系Cは蒸気流量が増加した
ときは蒸気分離器3の熱水レベルが上昇しない方向に先
行的に制御する。
The hot water level control system C of the steam separator controls the hot water level of the steam separator 3 to the set value by adjusting the level adjusting valve 30. in this case,
The hot water level control system C of the steam separator controls in advance such that the hot water level of the steam separator 3 does not rise when the steam flow rate increases.

【0034】すなわち、蒸気分離器3の熱水のレベルの
レベル検出器4の検出信号を入力し、その熱水レベルと
レベル設定器49に設定された設定値とを比較し偏差信
号を得る。そして、その偏差信号に、電力設定器41で
比較して得られた偏差信号をバイアス器44でバイアス
信号として得た信号を加味させる。つまり、それらの信
号を加減演算器51に入力して得た演算信号をPID調
節器52で制御信号として得る。その制御信号は、電空
変換器53で電流信号を空気信号に変換して蒸気分離器
3のレベル調節弁30の開度を制御する信号となる。こ
れによって、余剰の熱水を排熱処理タンク32に回収さ
せ、蒸気分離器3の熱水のレベルを設定値に追従して制
御する。
That is, the detection signal of the level detector 4 of the hot water level of the steam separator 3 is input, and the hot water level is compared with the set value set in the level setter 49 to obtain a deviation signal. Then, the deviation signal obtained by comparing with the power setting unit 41 is added to the deviation signal with the signal obtained as the bias signal by the bias unit 44. That is, the PID adjuster 52 obtains a calculation signal obtained by inputting these signals into the addition / subtraction calculator 51 as a control signal. The control signal becomes a signal for converting the current signal into an air signal by the electropneumatic converter 53 and controlling the opening degree of the level control valve 30 of the vapor separator 3. As a result, surplus hot water is recovered in the exhaust heat treatment tank 32, and the level of hot water in the steam separator 3 is controlled by following the set value.

【0035】排熱処理タンクの水位レベル制御系Dは、
排熱処理タンク32の熱水レベルをレベル調節弁35を
調節してその設定値になるように制御するものである。
この場合、排熱処理タンクの水位レベル制御系Dは、蒸
気分離器3の熱水レベルが増加したときは、排熱処理タ
ンク32の熱水レベルが増加しない方向に先行的に制御
している。
The water level control system D of the waste heat treatment tank is
The level of the hot water in the exhaust heat treatment tank 32 is controlled by adjusting the level control valve 35 so as to reach the set value.
In this case, the water level control system D of the exhaust heat treatment tank is controlled in advance so that the hot water level of the exhaust heat treatment tank 32 does not increase when the hot water level of the steam separator 3 increases.

【0036】制御装置39は、排熱処理タンク32の熱
水レベルのレベル検出器33の検出信号を入力し、排熱
処理タンク32の熱水レベルとレベル設定器55に設定
された設定値とを比較して偏差信号を得る。この偏差信
号に、加減演算器51で得た演算信号をバイアス器54
でバイアス信号として得た信号を加味させる。つまり、
これらの信号を加減演算器56に入力し、加減演算器5
6で得られた演算信号をPID調節器52で演算して制
御信号を得る。その制御信号は、電空変換器58で電流
信号を空気信号に変換して排熱処理タンク32の出口の
レベル調節弁35の開度を制御する信号となり、これに
よって、排熱処理タンク32のレベルを設定値に追従し
て制御する。
The control device 39 inputs the detection signal of the level detector 33 of the hot water level of the exhaust heat treatment tank 32 and compares the hot water level of the exhaust heat treatment tank 32 with the set value set in the level setter 55. And a deviation signal is obtained. To this deviation signal, the operation signal obtained by the addition / subtraction operation unit 51 is added to the bias unit 54.
The signal obtained as the bias signal is added. That is,
These signals are input to the addition / subtraction calculator 56, and the addition / subtraction calculator 5 is input.
The operation signal obtained in 6 is operated by the PID adjuster 52 to obtain a control signal. The control signal becomes a signal for controlling the opening of the level control valve 35 at the outlet of the exhaust heat treatment tank 32 by converting the current signal into an air signal by the electropneumatic converter 58, and thereby the level of the exhaust heat treatment tank 32 is changed. Control according to the set value.

【0037】熱交換器の冷却水温度制御系Eは、熱交換
器28の出口温度を、温度調節弁27を調節してその設
定値になるように制御するものである。この場合、熱交
換器の冷却水温度制御系Eは、排熱処理タンク32の熱
水レベルが増加したときは、冷却水を増加する方向に先
行的に制御し、また、排熱処理タンク32の器内温度が
高くなった場合には、冷却水を増加する方向に先行的に
制御する。
The cooling water temperature control system E of the heat exchanger controls the outlet temperature of the heat exchanger 28 so as to be the set value by adjusting the temperature adjusting valve 27. In this case, when the hot water level of the exhaust heat treatment tank 32 increases, the cooling water temperature control system E of the heat exchanger controls the cooling water in an increasing direction in advance, and the cooling water temperature control system E of the exhaust heat treatment tank 32 also increases. When the internal temperature becomes high, the cooling water is controlled in advance so as to be increased.

【0038】すなわち、排熱処理タンク32の排熱は、
熱交換器28で冷却水ポンプ26で供給された冷却水と
熱交換される。その熱交換した熱交換器28の出口排熱
水の温度検出器38の検出信号は制御装置39に入力さ
れ、温度変換器60で電流信号に変換され温度設定器6
1の設定値と比較される。その偏差信号には、加減算器
56で得た信号をバイアス器59でバイアス信号として
得た信号と、加減算器66で得た信号をバイアス器67
でバイアス信号として得た信号とを加味させる。ここ
で、加減算器66では、温度検出器38で検出された熱
交換器28の出口排熱水温度を温度変換器60で電流信
号に変換した信号と、排熱処理タンク32の器内の温度
検出器34の検出信号を温度変換器65で電流信号に変
換した信号との偏差信号が演算される。
That is, the exhaust heat of the exhaust heat treatment tank 32 is
The heat exchanger 28 exchanges heat with the cooling water supplied by the cooling water pump 26. The detection signal of the temperature detector 38 of the exhaust heat water of the heat exchanger 28 that has exchanged heat is input to the control device 39, converted into a current signal by the temperature converter 60, and converted into a temperature setting device 6.
The set value of 1 is compared. As the deviation signal, a signal obtained by the adder / subtractor 56 as a bias signal by the bias device 59 and a signal obtained by the adder / subtractor 66 are bias devices 67.
The signal obtained as a bias signal is added. Here, in the adder / subtractor 66, a signal obtained by converting the outlet exhaust hot water temperature of the heat exchanger 28 detected by the temperature detector 38 into a current signal by the temperature converter 60 and the temperature detection inside the exhaust heat treatment tank 32 are detected. The deviation signal from the signal obtained by converting the detection signal of the device 34 into the current signal by the temperature converter 65 is calculated.

【0039】つまり、加減算器62には、熱交換器28
の出口排熱水温度とその設定値との偏差信号と、バイア
ス器59からの信号と、バイアス器67からの信号とが
入力される。そして、加減算器62で得られた演算信号
はPID調節器64で制御信号に演算され、電空変換器
64で電流信号を空気信号に変換して熱交換器28の入
口の冷却水を制御する温度調節弁27の開度を調節する
信号となる。これにより、熱交換器28の排熱温度を設
定値に追従して制御する。
That is, the heat exchanger 28 is included in the adder / subtractor 62.
A deviation signal between the outlet exhaust hot water temperature and its set value, a signal from the bias device 59, and a signal from the bias device 67 are input. Then, the operation signal obtained by the adder / subtractor 62 is operated as a control signal by the PID adjuster 64, and the electropneumatic converter 64 converts the current signal into an air signal to control the cooling water at the inlet of the heat exchanger 28. It becomes a signal for adjusting the opening degree of the temperature control valve 27. As a result, the exhaust heat temperature of the heat exchanger 28 is controlled by following the set value.

【0040】復水器の水位レベル制御系Fは、復水器の
水位レベルをレベル調節弁16を調節してその設定値に
なるように制御するものである。この場合、復水器の水
位レベル制御系Fは、蒸気流量が増加したときは、復水
器の水位レベルを減じる方向に先行的に制御する。ま
た、熱交換器28の出口温度が高くなったときは復水器
の水位レベルを減じない方向に先行的に制御する。
The water level control system F of the condenser controls the water level of the condenser to the set value by adjusting the level control valve 16. In this case, when the steam flow rate increases, the water level control system F of the condenser controls in advance the direction of decreasing the water level of the condenser. Further, when the outlet temperature of the heat exchanger 28 becomes high, the water level of the condenser is controlled so as not to decrease.

【0041】すなわち、復水器12の復水レベルを検出
するレベル検出器13の検出信号は、復水器12のレベ
ル設定器69に設定された設定値と比較される。その偏
差信号には、加減算器70にて、加減演算器62の演算
信号をバイアス器68でバイアス信号として得た信号
と、バイアス器44のバイアス信号として得た信号とが
加味される。加減算器70からの出力信号はPID調節
器71で制御信号として演算され、電空変換器72で電
流信号を空気信号に変換して復水器12の復水レベルを
設定値に追従して制御する。
That is, the detection signal of the level detector 13 for detecting the condensate level of the condenser 12 is compared with the set value set in the level setter 69 of the condenser 12. The deviation signal is added with the signal obtained by the adder / subtractor 70 as the bias signal of the calculation signal of the addition / subtraction calculator 62 as the bias signal of the bias unit 68 and the signal obtained as the bias signal of the bias unit 44. The output signal from the adder / subtractor 70 is calculated as a control signal by the PID adjuster 71, and the electropneumatic converter 72 converts the current signal into an air signal to control the condensate level of the condenser 12 by following the set value. To do.

【0042】冷却塔の水位レベル制御系Gは、冷却塔1
8のタンク器内の水位レベルをレベル調節弁23を調節
してその設定値になるように制御するものである。この
場合、冷却塔の水位レベル制御系Gは、復水器の水位レ
ベルが上昇したときは、冷却塔18のタンク器内の水位
レベルが上昇しないように先行的に制御する。
The water level control system G of the cooling tower is the cooling tower 1
The water level in the tank of No. 8 is controlled by adjusting the level control valve 23 so as to reach the set value. In this case, the water level control system G of the cooling tower controls in advance so that the water level in the tank of the cooling tower 18 does not rise when the water level of the condenser rises.

【0043】冷却塔18のタンク器内のレベル検出器2
0の検出信号は、冷却塔18のタンク器内のレベル設定
器74の設定された設定値と比較される。その偏差信号
には、加減算器75にて、加減算器70の演算信号をバ
イアス器73でバイアス信号として得た信号が加味され
る。加減算器75からの出力信号はPID調節器76で
制御信号に演算され、電空変換器77で電流信号を空気
信号に変換して補給水ポンプ24の出口のレベル調節弁
23の開度を制御する信号となる。これによって、冷却
塔18のタンク器内のレベルを設定値に追従して制御す
る。
Level detector 2 in the tank unit of the cooling tower 18
The detection signal of 0 is compared with the set value set by the level setter 74 in the tank unit of the cooling tower 18. The deviation signal is added with the signal obtained by the adder / subtractor 75, which is the operation signal of the adder / subtractor 70, as the bias signal of the bias device 73. The output signal from the adder / subtractor 75 is calculated into a control signal by the PID controller 76, and the electropneumatic converter 77 converts the current signal into an air signal to control the opening of the level control valve 23 at the outlet of the makeup water pump 24. Signal. Thereby, the level in the tank unit of the cooling tower 18 is controlled by following the set value.

【0044】冷却塔の器内温度制御系Hは、冷却塔18
のタンクの器内の温度を、冷却塔ファン19の回転数を
制御して、その設定値になるように制御するものであ
る。この場合、冷却塔の器内温度制御系Hは、復水器の
水位レベルが上昇したときは、タンク器内の温度が上昇
しないように先行的に制御する。また、熱交換した冷却
水の温度が高いときは、冷却塔のタンク器内の温度が上
昇しないように先行的に制御する。さらに、復水器の器
内温度が高いときは、冷却塔のタンク器内の温度が上昇
しないように先行的に制御する。この場合、熱交換した
冷却水の温度と復水器の器内温度とのいずれか高いほう
の温度を選択して冷却塔のタンク器内の温度が上昇しな
いように先行的に制御する。
The internal temperature control system H of the cooling tower is the cooling tower 18
The temperature inside the tank of No. 2 is controlled to the set value by controlling the rotation speed of the cooling tower fan 19. In this case, the internal temperature control system H of the cooling tower controls in advance so that the temperature inside the tank does not rise when the water level of the condenser rises. Further, when the temperature of the cooling water that has undergone heat exchange is high, control is performed in advance so that the temperature in the tank unit of the cooling tower does not rise. Further, when the temperature inside the condenser is high, it is controlled in advance so that the temperature inside the tank unit of the cooling tower does not rise. In this case, either the temperature of the cooling water that has undergone heat exchange or the internal temperature of the condenser is selected to be the higher temperature, and the temperature inside the tank device of the cooling tower is controlled in advance so as not to rise.

【0045】冷却塔18のタンク器内の温度検出器21
の検出信号は、温度変換器78で電流信号に変換され、
冷却塔18のタンクの器内の温度設定器79の設定値と
比較される。その偏差信号とバイアス器73のバイアス
信号を加減算器80に入力している。
Temperature detector 21 in the tank unit of the cooling tower 18
The detection signal of is converted into a current signal by the temperature converter 78,
It is compared with the set value of the temperature setter 79 in the tank of the cooling tower 18. The deviation signal and the bias signal of the bias unit 73 are input to the adder / subtractor 80.

【0046】一方、冷却塔18のタンクの器内の温度検
出器21の検出信号を温度変換器78で電流信号に変換
した信号と、復水器12の器内温度検出器14の検出信
号を温度変換器86で電流信号に変換した信号とを加減
算器85に入力して、復水器の器内温度が高いか否かを
検出する。
On the other hand, a signal obtained by converting the detection signal of the temperature detector 21 inside the tank of the cooling tower 18 into a current signal by the temperature converter 78 and the detection signal of the inside temperature detector 14 of the condenser 12 are shown. The signal converted into the current signal by the temperature converter 86 is input to the adder / subtractor 85 to detect whether the temperature inside the condenser is high.

【0047】他方、冷却塔18のタンクの器内の温度検
出器21の検出信号を温度変換器78で電流信号に変換
した信号と、熱交換器28の冷却水ポンプ26により供
給され熱交換した冷却水の温度検出器37で検出された
検出信号を温度変換器84で電流信号に変換した信号と
を加減算器83に入力して、冷却塔のタンク器内の温度
が高いか否かを検出する。
On the other hand, the detection signal of the temperature detector 21 in the tank of the cooling tower 18 is converted into a current signal by the temperature converter 78, and the signal is supplied by the cooling water pump 26 of the heat exchanger 28 to exchange heat. The detection signal detected by the cooling water temperature detector 37 and the signal converted into the current signal by the temperature converter 84 are input to the adder / subtractor 83 to detect whether or not the temperature in the tank unit of the cooling tower is high. To do.

【0048】そして、加減算器85からの信号と加減算
器83からの信号とを高値優先回路87に入力し、比較
演算し高値側の信号を取り出し、バイアス器88でバイ
アス信号として加減算器80に付加して得た演算信号
を、PID調節器81で制御信号を得て、サイリスタス
イッチ82の電流を制御し、冷却塔ファン19の回転数
を制御する。これによって、冷却塔18のタンク器内の
温度を設定値に追従して制御する。
Then, the signal from the adder / subtractor 85 and the signal from the adder / subtractor 83 are input to the high value priority circuit 87, a comparison operation is performed to take out the signal on the higher value side, and the biaser 88 adds it to the adder / subtractor 80 as a bias signal. The PID controller 81 obtains a control signal from the operation signal thus obtained, controls the current of the thyristor switch 82, and controls the rotation speed of the cooling tower fan 19. As a result, the temperature inside the tank of the cooling tower 18 is controlled following the set value.

【0049】したがって、この実施例によれば、排熱利
用の蒸気タービン発電機の電力負荷設定値に追従して、
排熱蒸気流量や蒸気圧力変動、蒸気分離器、復水器、冷
却塔等のレベル変動、復水器、冷却塔等の器内温度変動
を先行的に補償し、かつ過渡的な排熱蒸気圧力変動に対
しても余剰熱水を有効に利用し安定に制御が図れる。
Therefore, according to this embodiment, following the power load set value of the steam turbine generator using the exhaust heat,
Transient exhaust heat steam that compensates for fluctuations in the exhaust heat steam flow rate and steam pressure, level fluctuations in the steam separator, condenser, cooling tower, etc., and internal temperature fluctuations in the condenser, cooling tower, etc. Even with pressure fluctuations, surplus hot water can be used effectively and stable control can be achieved.

【0050】[0050]

【発明の効果】以上説明したように本発明よれば、排熱
利用発電所の電力設定負荷に対して、排熱蒸気流路の蒸
気分離器の排熱蒸気流量や圧力変動による蒸気タービン
入口の蒸気圧力変動を防止し、さらに、蒸気分離器の器
内の圧力やレベル変動を防止することができる。また、
余剰排熱を有効利用するため余剰排熱水を排熱処理タン
クに蓄え、かつ復水器の器内温度変動防止のため先行的
にその排熱処理流路からの温度制御信号をバイアス信号
とし付加することにより復水機器内温度を安定に制御で
きる。
As described above, according to the present invention, with respect to the electric power setting load of the exhaust heat utilization power plant, the steam turbine inlet of the steam turbine inlet due to the exhaust heat steam flow rate and the pressure fluctuation of the steam separator of the exhaust heat steam flow path is It is possible to prevent fluctuations in steam pressure, and further to prevent fluctuations in pressure and level inside the steam separator. Also,
To effectively use the surplus waste heat, the surplus waste heat water is stored in the waste heat treatment tank, and the temperature control signal from the waste heat treatment passage is added as a bias signal in advance in order to prevent the temperature fluctuation inside the condenser. As a result, the temperature inside the condensing device can be controlled stably.

【0051】また冷却塔器内の温度変動を防止するた
め、先行的に復水器のレベル制御信号と冷却塔の器内温
度と冷却水と熱交換した排熱温度との偏差信号及び復水
器の器内温度と冷却塔器内温度との偏差信号を高値優先
回路で高値側の信号を得て、バイアス信号として付加す
ることにより冷却塔の器内温度を安定に制御し、復水器
真空度の変動を防止することができる。したがって、蒸
気タービン発電機の設定電力に追従して安定に制御が図
れ、かつ蒸気タービン入口圧力の変動を極力小さくなる
ように過渡的な負荷変動に対しても同様に安定に制御で
き高効率に運用ができる。
Further, in order to prevent the temperature fluctuation in the cooling tower unit, the deviation signal between the level control signal of the condenser, the temperature inside the cooling tower, and the exhaust heat temperature that has exchanged heat with the cooling water and the condensate in advance. The deviation signal between the temperature inside the cooling tower and the temperature inside the cooling tower is obtained by the high value priority circuit and the high value side signal is obtained and added as a bias signal to stably control the inside temperature of the cooling tower, and the condenser It is possible to prevent fluctuations in the degree of vacuum. Therefore, stable control can be achieved by following the set power of the steam turbine generator, and stable control can be performed even for transient load fluctuations so that fluctuations in the steam turbine inlet pressure can be minimized as well as high efficiency. Can be operated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック構成図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明が適用される排熱利用発電所の構成図FIG. 2 is a block diagram of an exhaust heat utilization power plant to which the present invention is applied.

【符号の説明】[Explanation of symbols]

A 蒸気流量制御系 B 蒸気圧力制御系 C 蒸気分離器の熱水レベル制御系 D 排熱処理タンクの水位レベル制御系 E 熱交換器の冷却水温度制御系 F 復水器の水位レベル制御系 G 冷却塔の水位レベル制御系 H 冷却塔の器内温度制御系 3 蒸気分離器 6 圧力検出器 7 流量検出器 9 蒸気タービン 10 発電機 12 復水器 18 冷却塔 19 冷却塔ファン 28 熱交換器 32 排熱処理タンク 39 制御装置 A Steam flow rate control system B Steam pressure control system C Hot water level control system for steam separator D Water level control system for waste heat treatment tank E Cooling water temperature control system for heat exchanger F Water level control system for condenser G Cooling Tower water level control system H Cooling tower internal temperature control system 3 Steam separator 6 Pressure detector 7 Flow rate detector 9 Steam turbine 10 Generator 12 Condenser 18 Cooling tower 19 Cooling tower fan 28 Heat exchanger 32 Exhaust Heat treatment tank 39 Control device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 排熱蒸気で蒸気タービンを駆動し前記蒸
気タービンに直結された発電機を回転させて発電するよ
うにした排熱利用発電所の制御装置において、前記発電
機の出力が予め定めた電力設定値になるように前記蒸気
タービンに流入する蒸気流量を制御する蒸気流量制御系
と、前記排熱蒸気を蒸気と熱水に分離する蒸気分離器の
熱水レベルが予め定めた設定値になるように制御すると
共に、前記蒸気タービンに流入する蒸気流量が増加した
ときは前記蒸気分離器の熱水レベルが上昇しない方向に
先行的に制御する蒸気分離器の熱水レベル制御系と、前
記蒸気タービン入口の蒸気圧力が予め定めた圧力設定値
になるように前記蒸気分離器の器内圧力を制御すると共
に、前記蒸気タービンに流入する蒸気流量が増加したと
きは前記蒸気分離器の器内圧力を減じない方向に先行的
に制御し、かつ、前記蒸気分離器の熱水レベルが増加し
たときは前記蒸気分離器の器内圧力を減じない方向に先
行的に制御する蒸気圧力制御系とを備えたことを特徴と
する排熱利用発電所の制御装置。
1. A control device for an exhaust heat utilization power plant, wherein a steam turbine is driven by exhaust heat steam to rotate a generator directly connected to the steam turbine to generate electric power, and the output of the generator is predetermined. Steam flow control system for controlling the flow rate of steam flowing into the steam turbine so that the electric power set value is set, and the hot water level of the steam separator for separating the exhaust heat steam into steam and hot water is a preset value. And a hot water level control system of the steam separator that controls in advance in a direction in which the hot water level of the steam separator does not rise when the flow rate of the steam flowing into the steam turbine increases, The internal pressure of the steam separator is controlled so that the steam pressure at the inlet of the steam turbine becomes a predetermined pressure set value, and the steam separator when the flow rate of steam flowing into the steam turbine increases. Steam pressure for controlling the internal pressure of the steam separator in the direction not to be reduced and for controlling the internal pressure of the steam separator to be not decreased when the hot water level of the steam separator is increased. A control device for an exhaust heat utilization power plant, comprising a control system.
【請求項2】 前記蒸気分離器から排熱蒸気および排熱
熱水を貯蔵する排熱処理タンクの熱水レベルが予め定め
た設定値になるように制御すると共に、前記蒸気分離器
の熱水レベルが増加したときは前記排熱処理タンクの熱
水レベルが増加しない方向に先行的に制御する排熱処理
タンクの水位レベル制御系を備えたことを特徴とする請
求項1に記載の排熱利用発電所の制御装置。
2. The hot water level of the exhaust heat treatment tank for storing the exhaust heat steam and the exhaust heat hot water from the steam separator is controlled to a predetermined set value, and the hot water level of the steam separator is controlled. The exhaust heat utilization power plant according to claim 1, further comprising: a water level control system for the exhaust heat treatment tank, which controls the hot water level of the exhaust heat treatment tank in a direction in which the hot water level does not increase when the exhaust heat treatment tank increases. Control device.
【請求項3】 前記排熱処理タンクから復水器に導く排
熱水を冷却塔からの冷却水で熱交換する熱交換器におけ
る前記排熱水出口温度が予め定めた設定値になるように
制御すると共に、前記排熱処理タンクの熱水レベルが増
加したときは前記冷却水を増加する方向に先行的に制御
し、かつ、前記排熱処理タンクの器内温度が高くなった
場合には前記冷却水を増加する方向に先行的に制御する
熱交換器の冷却水温度制御系を備えたことを特徴とする
請求項2に記載の排熱利用発電所の制御装置。
3. The exhaust heat water outlet temperature in a heat exchanger for exchanging heat of waste heat water guided from the waste heat treatment tank to a condenser with cooling water from a cooling tower is controlled to be a preset value. In addition, when the hot water level of the exhaust heat treatment tank is increased, the cooling water is controlled in advance so as to be increased, and when the internal temperature of the exhaust heat treatment tank is high, the cooling water is increased. The control device for an exhaust heat utilization power plant according to claim 2, further comprising: a cooling water temperature control system for the heat exchanger that controls in advance in a direction to increase the temperature.
【請求項4】 前記復水器の水位レベルが予め定めた設
定値になるように制御すると共に、前記蒸気タービンに
導く前記蒸気流量が増加したときは前記復水器の水位レ
ベルを減じる方向に先行的に制御し、かつ、前記熱交換
器における排熱水出口温度が高くなったときは水位レベ
ルを減じない方向に先行的に制御する復水器の水位レベ
ル制御系を備えたことを特徴とする請求項3に記載の排
熱利用発電所の制御装置。
4. The water level of the condenser is controlled to a predetermined set value, and when the flow rate of the steam introduced to the steam turbine is increased, the water level of the condenser is decreased. A water level control system for a condenser, which is controlled in advance and is controlled in a direction in which the water level is not reduced when the exhaust heat water outlet temperature in the heat exchanger rises, is provided. The control device of the waste heat utilization power plant according to claim 3.
【請求項5】 前記復水器からの復水が導かれるととも
に前記冷却水を前記熱交換器に循環させるための冷却塔
のタンク器内の水位レベルが予め定めた設定値になるよ
うに制御すると共に、前記復水器の水位レベルが上昇し
たときは前記冷却塔のタンク器内の水位レベルが上昇し
ないように先行的に制御する冷却塔の水位レベル制御系
を備えたことを特徴とする請求項4に記載の排熱利用発
電所の制御装置。
5. The condensate from the condenser is guided, and the water level in the tank unit of the cooling tower for circulating the cooling water to the heat exchanger is controlled to a predetermined set value. In addition, when the water level of the condenser rises, a water level control system of the cooling tower is provided so as to control in advance so that the water level in the tank of the cooling tower does not rise. The control device of the waste heat utilization power plant according to claim 4.
【請求項6】 前記冷却塔のタンク器内の温度が予め定
めた設定値になるように制御すると共に、前記復水器の
水位レベルが上昇したときは前記冷却塔のタンク器内の
温度が上昇しないように先行的に制御し、かつ、前記熱
交換器からの冷却水の温度と前記復水器の器内温度が高
いときは温度の高い方に基づいて前記冷却塔のタンク器
内の温度が上昇しないように先行的に制御する冷却塔の
器内温度制御系を備えたことを特徴とする請求項5に記
載の排熱利用発電所の制御装置。
6. The temperature in the tank unit of the cooling tower is controlled so as to reach a predetermined set value, and when the water level of the condenser rises, the temperature in the tank unit of the cooling tower is controlled. When the temperature of the cooling water from the heat exchanger and the temperature inside the condenser are high, the temperature of the cooling water from the heat exchanger is controlled so that it does not rise. The control device for an exhaust heat utilization power plant according to claim 5, further comprising an in-container temperature control system of the cooling tower, which is controlled in advance so that the temperature does not rise.
JP30016294A 1994-11-10 1994-11-10 Control device of exhaust heat using power plant Pending JPH08135411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30016294A JPH08135411A (en) 1994-11-10 1994-11-10 Control device of exhaust heat using power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30016294A JPH08135411A (en) 1994-11-10 1994-11-10 Control device of exhaust heat using power plant

Publications (1)

Publication Number Publication Date
JPH08135411A true JPH08135411A (en) 1996-05-28

Family

ID=17881500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30016294A Pending JPH08135411A (en) 1994-11-10 1994-11-10 Control device of exhaust heat using power plant

Country Status (1)

Country Link
JP (1) JPH08135411A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668681B1 (en) * 2005-01-31 2007-01-12 한국동서발전(주) System and Method for Remote-Controlling of Classifier of Pulverizer
JP2016003599A (en) * 2014-06-16 2016-01-12 トヨタ自動車株式会社 Ebullient cooling system
CN106351705A (en) * 2015-07-16 2017-01-25 株式会社神户制钢所 Thermal energy recovery device and start-up method thereof
JP2017040249A (en) * 2015-08-18 2017-02-23 株式会社トマス技術研究所 Small capacity power generator of batch type incinerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668681B1 (en) * 2005-01-31 2007-01-12 한국동서발전(주) System and Method for Remote-Controlling of Classifier of Pulverizer
JP2016003599A (en) * 2014-06-16 2016-01-12 トヨタ自動車株式会社 Ebullient cooling system
CN106351705A (en) * 2015-07-16 2017-01-25 株式会社神户制钢所 Thermal energy recovery device and start-up method thereof
CN106351705B (en) * 2015-07-16 2018-11-09 株式会社神户制钢所 Heat-energy recovering apparatus and its starting method
JP2017040249A (en) * 2015-08-18 2017-02-23 株式会社トマス技術研究所 Small capacity power generator of batch type incinerator

Similar Documents

Publication Publication Date Title
JP2021105516A (en) Cooling water system facility, control device, control method, and control program for cooling water system facility, and control device, control method, and control program for cooling tower
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPH08135411A (en) Control device of exhaust heat using power plant
JP5192736B2 (en) Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JPS58197408A (en) Starting device for combined plant
JPH0518212A (en) Waste heat utilizing power generation control device
JPH10184316A (en) Power generation control device utilizing exhaust heat
JPH1047013A (en) Control device for exhaust heat utilization generating plant
JPH07269307A (en) Control device of exhaust heat utilizing power generating plant
JPH05340205A (en) Controller for combined power generation plant
JPH07180979A (en) Power generating control device utilizing waste heat
CN114440655B (en) Circulating water flow regulating system of condenser of double back pressure turbine
JPS6112195B2 (en)
JPH05272306A (en) Exhaust heat utilizing power generation control device
KR102624688B1 (en) Cooling water bypass apparatus for maintaining the vacuum degree of the condenser and controlling method of the same
JPH06241007A (en) Waste heat utilization system controller
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
JPH0749005A (en) Exhaust heat recovery power generation control device
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JP3085886B2 (en) Movable blade opening control circuit of circulation pump
JPH05118203A (en) Power generation control device in exhaust heat utilization system
JPH1130488A (en) Hot well water level controller for condenser
JPH0146684B2 (en)
JP5890221B2 (en) Coal gasification combined power plant and its operation control method