JPS58197408A - Starting device for combined plant - Google Patents

Starting device for combined plant

Info

Publication number
JPS58197408A
JPS58197408A JP7836482A JP7836482A JPS58197408A JP S58197408 A JPS58197408 A JP S58197408A JP 7836482 A JP7836482 A JP 7836482A JP 7836482 A JP7836482 A JP 7836482A JP S58197408 A JPS58197408 A JP S58197408A
Authority
JP
Japan
Prior art keywords
steam
turbine
temperature
gas turbine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7836482A
Other languages
Japanese (ja)
Inventor
Koichiro Fukushima
福島 弘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7836482A priority Critical patent/JPS58197408A/en
Publication of JPS58197408A publication Critical patent/JPS58197408A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To aim at making a starting of a combined power plant system in a short time and as well preventing the stress deviation of a steam turbine, by determining an initial load upon the initial load control of a gas turbine in accordance with the thermal condition of the steam turbine. CONSTITUTION:Exhaust gas from a gas turbine 1 which has driven a generator 15 is led into an exhaust gas boiler 2 in which the exhaust gas heats a supply water for generating steam, thereby heat recovery is conducted. The steam is led through a pipe 100 into a steam turbine 3 for rotating a generator 4. A metal temperature TM of the steam turbine 3 is read at the step B1, a steam temperature T1ST after a first stage necessary for setting the thermal stress of the steam turbine below a limiting value is calculated at the step B2, a main steam temperature TS is calculated in consideration with the steam temperature T1ST at the step B3, an exhaust gas temperature TG of the exhaust gas boiler 2 is obtained at the step B4, and the output LG of the gas turbine can be obtained at the step B5.

Description

【発明の詳細な説明】 本発明はガスタービンと蒸気タービンを組み合−tVt
コンバインド・プラン)において、蒸気タービン起動蒸
気条件に適するガスタービン負荷量を求め最適起動する
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention combines a gas turbine and a steam turbine to
This invention relates to a device for determining a gas turbine load amount suitable for steam turbine starting steam conditions and optimally starting the steam turbine in a combined plan.

ガスタービンと蒸気タービンを組合せたコンバインドプ
ラントにおいては、ガスタービンの排ガスから熱を回収
して蒸気を得、これKより蒸気タービンを駆動する。こ
のコンバインドプラントも他の発電プラントと同様に高
速起動とすることを要求されるわけであり、この定めに
はガスタービンの負荷量を大きくとりガスタービン排ガ
スを増やせばよい。しかしCのことは蒸気タービンへ流
入する蒸気条件がエリ高温となることを意味しており、
蒸気タービンの熱応力制限逸脱防止という観点からは好
ましくない。
In a combined plant that combines a gas turbine and a steam turbine, heat is recovered from the exhaust gas of the gas turbine to obtain steam, which is used to drive the steam turbine. This combined plant, like other power plants, is required to start up at high speed, and this can be achieved by increasing the load on the gas turbine and increasing the amount of gas turbine exhaust gas. However, C means that the steam condition flowing into the steam turbine will be extremely high temperature.
This is not preferable from the viewpoint of preventing deviation from thermal stress limits of the steam turbine.

以上のことから本発明においては、蒸気タービンの起動
に適合した蒸気が得られるコンバインドプラントの起動
装置を提供することを目的とする。
In view of the above, an object of the present invention is to provide a combined plant starting device that can obtain steam suitable for starting a steam turbine.

本発明ではガスタービン初負荷制御する際の初負荷1l
t−蒸気タービンの熱状態に応じて定めることで上記目
的を連成している。
In the present invention, the initial load of 1 liter when controlling the initial load of the gas turbine is
The above objective is achieved by determining the temperature according to the thermal state of the t-steam turbine.

以下本発明の一実施例を第1図から第4図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

@1図に本発明の適用し得るコンバインドプラントの一
例として多軸システム(ガスタービンと蒸気タービンと
が夫々別個の発電機を駆動する)の全体構成を示す。発
電機15を駆動したガスタービンlの排ガスは排ガスボ
イラ2へ導かれここで給水を加熱して蒸気を発生し熱回
収を行う。この蒸気は配管100、タービン入口弁10
2を介して蒸気タービン3へ導かれ、発電機4を廻した
後、復水器5で冷却凝縮され復水になる。復水は復水ポ
ンプ6で脱気器7へ押し上げられ、脱気後給水ポンプ8
で加圧され排ガスボイラのドラム101へ送水される。
Figure @1 shows the overall configuration of a multi-shaft system (a gas turbine and a steam turbine each drive a separate generator) as an example of a combined plant to which the present invention can be applied. The exhaust gas from the gas turbine 1 that drives the generator 15 is guided to the exhaust gas boiler 2, where it heats feed water to generate steam and recover heat. This steam is transferred to the piping 100, the turbine inlet valve 10
The water is guided to a steam turbine 3 via a steam turbine 2, and after passing through a generator 4, is cooled and condensed in a condenser 5 to become condensed water. The condensate is pushed up to the deaerator 7 by the condensate pump 6, and after deaeration, the water is pumped to the water supply pump 8.
The water is pressurized and sent to the drum 101 of the exhaust gas boiler.

これが多軸型コンバインドプラントの熱サイクルである
。このプラン)4制御する制御装置IQj、閉ループ制
御装置、シーケンス制御装置、タービン制御装置等多く
あるが、これらは本発明には直接関係がないので省略し
である。本発明に関係する制御装置として、ガスタービ
ンlの燃料量を制御するガスタービン制御装置lOと最
適起動装置t t’がある。最適起動制御装置11は蒸
気タービン3のメタル塩fTi*(本温度計12は通常
蒸気タービン3の第1段後内壁温度を計測している)を
測り、タービンの起動を最適とする友めのガスタービン
0襟負荷をガスタービン制御装置lOに設定している。
This is the thermal cycle of a multi-shaft combined plant. Although there are many control devices such as a control device IQj, a closed loop control device, a sequence control device, and a turbine control device that control this plan), they are omitted because they are not directly related to the present invention. Control devices related to the present invention include a gas turbine control device lO that controls the amount of fuel in the gas turbine l, and an optimum starting device tt'. The optimum startup control device 11 measures the metal salt fTi* of the steam turbine 3 (this thermometer 12 normally measures the temperature of the inner wall after the first stage of the steam turbine 3), and determines the temperature of the metal salt fTi* of the steam turbine 3 to optimize the startup of the turbine. The gas turbine zero load is set in the gas turbine control device IO.

制御装置の内容に入る前に第2図で本コンバインドプラ
ントの起動操作の概要f第2図で説明する。まず峻初に
時点t、でガスタービンlの起動を開始しガスタービン
速!fsGt定格速度SGOまで上昇する。定格速度到
達後の時点t、でガスタービン発電機15を電力系統へ
併入し、定めらnた初負荷量LGOまで負荷LGを上昇
し、この初負荷LGOで一時保持する。この初負荷保持
状帖にかける排ガスにより排ガスボイラ2では給水の加
熱が行われ、主蒸気圧力PM及び主蒸気温度Tsが上昇
する。初期状態ではタービン人口弁102は全閉、ダン
プ弁16は全開にされており、ボイラ2で発生した蒸気
は復水器5ヘダンブされている。時点t、で主蒸気温1
fT−が蒸気タービン3へ通気するに十分な[T*oに
なるとタービン人口弁102を開きダンプ弁16を閉じ
て蒸気タービシ3を起動する。蒸気タービン3の速f8
8が時点t4で定格速tssoになると、蒸気−一ビン
発電機番を電力系統へ併入し負荷LSを上昇する。
Before going into the details of the control device, an overview of the startup operation of this combined plant will be explained with reference to FIG. 2. First, the gas turbine l starts to start up at time t, and the gas turbine speed increases! fsGt increases to rated speed SGO. At time t after reaching the rated speed, the gas turbine generator 15 is connected to the power system, the load LG is increased to a predetermined initial load amount LGO, and is temporarily held at this initial load LGO. Feed water is heated in the exhaust gas boiler 2 by the exhaust gas applied to this initial load maintenance card, and the main steam pressure PM and the main steam temperature Ts rise. In the initial state, the turbine valve 102 is fully closed, the dump valve 16 is fully open, and the steam generated in the boiler 2 is dumped to the condenser 5. At time t, the main steam temperature 1
When fT- reaches [T*o] sufficient to vent to the steam turbine 3, the turbine artificial valve 102 is opened, the dump valve 16 is closed, and the steam turbine 3 is started. Speed of steam turbine 3 f8
8 reaches the rated speed tsso at time t4, the steam-one-bin generator number is connected to the power system and the load LS is increased.

本発明は、この起動経過において蒸気タービンの起動に
最適な蒸気温度が得られるようガスタービン初負荷量を
制御するものであり、第3図に最適起動装置11の処理
内容を流れ図で示す。ガスタービンの初負荷は、その負
荷制御開始時点t。
The present invention controls the initial load amount of the gas turbine so as to obtain the optimum steam temperature for starting the steam turbine during this startup process, and FIG. 3 shows a flowchart of the processing contents of the optimum startup device 11. The initial load on the gas turbine is at the time t when the load control starts.

から蒸気タービンの負荷制御開始時点t、tでの間、一
定に保定れる。このため、第3図に示した起動装置1t
llの処理は時点t、以前に完了し、ガスタービン制御
装置lOに初負荷設定されていなければならない。
It is held constant from t to the steam turbine load control start time t, t. For this reason, the starting device 1t shown in FIG.
The process ll must be completed before time t, and the initial load must be set on the gas turbine controller IO.

まず最初にブロックBlにおいて蒸気タービン3のメタ
ル114 Wt T wを温、1fli12で読み込み
、蒸気タービン起動前の蒸気タービンの冷却状態を知る
。次にブロックB2において蒸気タービン通気時のター
ビン熱厄力をその制限籠以下とするに必要な第1没後蒸
気ff1lf T 1m tを推定計算する。
First, in block Bl, the temperature of the metal 114 Wt T w of the steam turbine 3 is read at 1fli12 to know the cooling state of the steam turbine before starting the steam turbine. Next, in block B2, the first post-destruction steam ff1lf T 1m t required to make the turbine thermal force during ventilation of the steam turbine less than the limit basket is estimated and calculated.

TIs!推定の一手法を下記する。前記入力のタービン
メタル温If T hsとして通常、タービン第tR後
ケーシング内壁温度を使用するが、これはタービン第1
段後ロータメタルs蜜に等しいと考えてよい。一方、ロ
ータの熱応力は、このロータメタル温度と@1段段後気
111jTtstの差ΔTに比例する。従って制限応力
直に応じて予め温度差ΔTを定めておき、Tlmyを、
Txat=T工+ΔTとして求めるなら、このTIat
の第1没後蒸気温度のときには応力は制限frLを逸脱
しないことを意味する。ブロックB3において、次にこ
の蒸気温度T!s〒より蒸気タービン加減弁!2での絞
り効果ケ逆算17、タービン入口の主蒸気温、饗T1を
第4図(a)の既知の特性全使用し計算する。この特性
は主蒸気圧力PM?パラメータとして予め定められてお
り、通気時の主蒸気圧力Pwを決めてからT1を求める
。陶、予め定められft P wに従って、実際の蒸気
タービンの通気時には前記PMに一致するよう圧力制御
される。タービン通気に最適な主蒸気温度T−が決まる
と、ブロックB4ではこのfilfT−を得るのに必要
な排ガスボイラ2の排ガス温If T aを排ガスボイ
ラでの熱伝達率Kを用いて求める。このガス温[Toが
求マると、ブロックB5ではToとするに必要なガスタ
ービン出力Loを第4図(b)に示すガスタービン排ガ
ス温度特性曲線より求める。ここで求め皮負荷量Loを
ガスタービン初負荷量LGOとしてガスタービン制御装
置11ヘガスタービン併入後設定する。
TIs! One estimation method is described below. Usually, the casing inner wall temperature after the turbine tR is used as the input turbine metal temperature If T hs;
You can think of it as equal to the post-stage rotor metal. On the other hand, the thermal stress of the rotor is proportional to the difference ΔT between the rotor metal temperature and the @1 stage trailing air 111jTtst. Therefore, the temperature difference ΔT is determined in advance according to the limiting stress, and Tlmy is
If you want to find it as Txat = T + ΔT, then this TIat
This means that the stress does not deviate from the limit frL at the first post-cooling steam temperature of . In block B3, this steam temperature T! Steam turbine control valve from s〒! Reverse calculation 17 of the throttling effect in step 2. Calculate the main steam temperature at the turbine inlet and the temperature T1 using all the known characteristics shown in FIG. 4(a). Is this characteristic the main steam pressure PM? It is determined in advance as a parameter, and T1 is determined after determining the main steam pressure Pw during ventilation. According to the predetermined ftPw, the pressure is controlled to match the PM during actual ventilation of the steam turbine. Once the optimum main steam temperature T- for turbine ventilation is determined, in block B4, the exhaust gas temperature If Ta of the exhaust gas boiler 2 necessary to obtain this filfT- is determined using the heat transfer coefficient K in the exhaust gas boiler. Once this gas temperature [To has been determined, block B5 determines the gas turbine output Lo required to reach To from the gas turbine exhaust gas temperature characteristic curve shown in FIG. 4(b). Here, the calculated skin load amount Lo is set as the gas turbine initial load amount LGO to the gas turbine control device 11 after the gas turbine is installed.

コンバインドプラントにおいて、ガスタービンの排ガス
流量は、ガスタービン回転数に依存し、ガスタービン併
入後はほぼ一定量に保たれ排ガス量が多いため排ガスボ
イラでの熱伝達率Kが大きくなっており、ガス温[T 
oから主蒸気温[Tsになるまでの時定数は短く、上記
のような静的な特性曲線により求めたガスタービン負荷
でも十分に実用的である。
In a combined plant, the exhaust gas flow rate of the gas turbine depends on the gas turbine rotation speed, and after the gas turbine is installed, it is kept at a nearly constant amount, and because the amount of exhaust gas is large, the heat transfer coefficient K in the exhaust gas boiler becomes large. Gas temperature [T
The time constant from o to main steam temperature [Ts is short, and it is sufficiently practical even with the gas turbine load determined from the static characteristic curve as described above.

上記の計算処理は通常は計算機により処理さ扛、この最
適起動プログラムを専用のマイコンに組み込んでもよい
し、ガスタービン及び蒸気タービンを含む全体的な大形
自動化装蓋の一部としてもよい。
The above calculation process is usually performed by a computer, and this optimal startup program may be incorporated into a dedicated microcomputer, or may be part of an overall large-scale automated system that includes a gas turbine and a steam turbine.

本発明の第2の実施例は、@lの実施例のような高級な
制御装置を使用せず簡単な従来の制御装置により、はぼ
同等の効果金量そうとするもので本実施例を第5図に示
す。
The second embodiment of the present invention is intended to achieve almost the same amount of effect and cost by using a simple conventional control device without using a high-class control device like the embodiment of @l. It is shown in FIG.

本方式ij第1の方法による初負荷量計算を机上で行い
、@1段没後タル温# T Mに対する最適な初負荷t
 L oを関数としてあらかじめ作っておき、関数発生
器z7により初負荷量Laを求めたものである。関数発
生器27出力の初負荷量Loと、手動負荷設定器32の
設定値Lmとの大きい方tA択器28で選択し変化率制
御器291通して、ガスタービンの目標負荷とする。比
較器30においてこの漣と実貢荷21との比較をし制御
′回路31全通し、ガスタービン燃料弁9を制御する。
Calculate the initial load amount using the first method on a desk, and determine the optimal initial load t for the barrel temperature after immersion in the first stage # T M
Lo is created in advance as a function, and the initial load amount La is determined by the function generator z7. The larger of the initial load amount Lo output from the function generator 27 and the set value Lm of the manual load setter 32 is selected by the tA selector 28 and passed through the rate of change controller 291 to be set as the target load of the gas turbine. The comparator 30 compares this ripple with the actual load 21, and the control circuit 31 is passed through to control the gas turbine fuel valve 9.

本回路は初負荷量計算、スイッチ34で切離され誤信号
を出さないようにする。本方式では初負荷量が固定され
元値で多少ラフになるが装置として傘純なものになり実
用向である。
This circuit calculates the initial load amount and is disconnected by the switch 34 to avoid outputting an erroneous signal. In this method, the initial load amount is fixed and the original value is somewhat rough, but the device is pure and suitable for practical use.

第3の実施例として、熱応力を制限値以内としなから峡
短時間起動を可能とする制御方式の例を’@6図に示す
。本方式は第3図の実施例における第1段後美気温度の
目標値計算に細工をほどこす。
As a third embodiment, an example of a control method that enables short-time startup while keeping thermal stress within a limit value is shown in Figure 6. In this method, the calculation of the target value of the post-first-stage beauty temperature in the embodiment shown in FIG. 3 is modified.

これは最短時間起動のモードが選択され次場合には、第
3図のブロックB2で計算されたwIJ1段後蒸没後度
T * s tの結果に熱応力上許容される温度差分α
を加算した目標@1段没後気温[T 1m tとするこ
とにより、ガスタービン初負荷量を熱応力的に許容でき
るだけ大きくしガスタービン負荷−ヒ昇時間を短縮し起
動時間の最短化をはかるものである。
This means that if the shortest time start mode is selected, the temperature difference α that is allowed due to thermal stress will be added to the result of the wIJ 1 stage steaming degree T * s t calculated in block B2 of Fig. 3.
By adding the target @1st stage post-death temperature [T 1m t, the initial load of the gas turbine is increased as much as possible in terms of thermal stress, the gas turbine load rise time is shortened, and the start-up time is minimized. It is.

温度加算分αは内m温度の関係になっており、別に実、
権する熱応力計算により算出され友咳である。本実施例
は、起動時間の最短化をはかれる特at有する。尚、ブ
ロックB I OII′i最短起動か否かの選択、BI
I#i第1段蒸気温度の修正の機能を表わしている。
The temperature addition α is related to the inner m temperature, and the actual
It is calculated by the right thermal stress calculation and is a friendly cough. This embodiment has a feature that minimizes startup time. In addition, the selection of whether or not the block BI
I#i represents the function of modifying the first stage steam temperature.

以上説明した本発明は、要するにガスタービン負荷運転
を行なう以前に蒸気タービンの熱状聾を考慮してガスタ
ービン初負荷量を決定し几ものであり、結果的には蒸気
タービンが冷却しているほど、ガスタービンの初負荷量
を小さくすることによりコンバインドプラントシステム
全体としての最短時間起動と、蒸気タービンの応力逸脱
防止を図ることができる。
In short, the present invention described above is a method in which the initial load amount of the gas turbine is determined in consideration of the thermal deafness of the steam turbine before performing gas turbine load operation, and as a result, the steam turbine is cooled. By reducing the initial load on the gas turbine, it is possible to start up the entire combined plant system in the shortest possible time and prevent stress deviation in the steam turbine.

尚、本発明Fi第1図に示した多軸型コンバインドプラ
ントの他に、ガスタービン1と蒸気タービン3と発電機
とを同軸上に配置し友−軸型のプラントであって4同様
に採用可能である。
In addition to the multi-shaft combined plant shown in Fig. 1 of the present invention, a double-shaft type plant in which a gas turbine 1, a steam turbine 3, and a generator are arranged on the same axis is also adopted as in 4. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

@1図はコンバインドプラント及び制御装置の全体構成
図、第2図はコンバインドプラントの起動曲線、第3図
は最適主蒸気温度を求める本発明の装置内における処理
70−線図、第4図は本発明の計算に使用される特性曲
線、第5図は簡易的な実施例、第6図は起動時間最短に
する処理フロー線図を示す。 !・・・ガスタービン、2・・・排ガスボイラ、3・・
・蒸気タービン、5・・・復水器、lO・・・ガスター
ビン制御装置、11・・・最適起動装置、12・・・タ
ービンメタル温度計、21・・・ガスタービン負荷、2
2・・・主蒸気圧力、23・・・主蒸気温度、27・・
・初負荷量計算関数発生器。 1:111 第1図 Y2図 穿5図
@ Figure 1 is an overall configuration diagram of the combined plant and control device, Figure 2 is the startup curve of the combined plant, Figure 3 is a process 70-diagram in the device of the present invention for determining the optimum main steam temperature, and Figure 4 is The characteristic curves used in the calculation of the present invention, FIG. 5 shows a simple embodiment, and FIG. 6 shows a processing flow diagram for minimizing the startup time. ! ...Gas turbine, 2...Exhaust gas boiler, 3...
- Steam turbine, 5... Condenser, lO... Gas turbine control device, 11... Optimum starting device, 12... Turbine metal thermometer, 21... Gas turbine load, 2
2...Main steam pressure, 23...Main steam temperature, 27...
- Initial load calculation function generator. 1:111 Figure 1 Y2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] !、ガスタービンと、その排ガスを用いて蒸気を発生す
るボイラと、ボイラからの蒸気で駆動される蒸気タービ
ンとから構成され、ガスタービンを点火しその負荷を初
負荷量に保持したのち蒸気タービンに通気するコンバイ
ンドプラントにおいて、ガスタービンの初負荷量を初負
荷量制御する以前の蒸気タービンの熱状態に応じて定め
る第1の装置と、該装置の出力に応じてガスタービンの
初負荷量を制御する第2の装置を備えることを特徴とす
るコンバインドプラントの起動装置。
! , consists of a gas turbine, a boiler that generates steam using its exhaust gas, and a steam turbine that is driven by the steam from the boiler. After igniting the gas turbine and maintaining its load at the initial load, the steam turbine In a ventilated combined plant, a first device that controls the initial load amount of the gas turbine according to the thermal state of the steam turbine before controlling the initial load amount of the gas turbine, and a first device that controls the initial load amount of the gas turbine according to the output of the device. A combined plant starting device characterized by comprising a second device for.
JP7836482A 1982-05-12 1982-05-12 Starting device for combined plant Pending JPS58197408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7836482A JPS58197408A (en) 1982-05-12 1982-05-12 Starting device for combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7836482A JPS58197408A (en) 1982-05-12 1982-05-12 Starting device for combined plant

Publications (1)

Publication Number Publication Date
JPS58197408A true JPS58197408A (en) 1983-11-17

Family

ID=13659941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7836482A Pending JPS58197408A (en) 1982-05-12 1982-05-12 Starting device for combined plant

Country Status (1)

Country Link
JP (1) JPS58197408A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685303A (en) * 1992-09-03 1994-03-25 Canon Inc Solar cell module
EP1072760A1 (en) * 1999-07-30 2001-01-31 ABB Alstom Power (Schweiz) AG Method of starting a combined power plant and combined power plant for carrying out the method
JP2015007380A (en) * 2013-06-25 2015-01-15 三菱日立パワーシステムズ株式会社 Start control device of steam turbine plant
JP2016223361A (en) * 2015-05-29 2016-12-28 三菱日立パワーシステムズ株式会社 Combined cycle plant, controlling device and start-up method for the same
JP2017072125A (en) * 2015-08-28 2017-04-13 ゼネラル・エレクトリック・カンパニイ Control system and using method for managing vapor turbine rotor stress
CN108153149A (en) * 2016-12-05 2018-06-12 斗山重工业建设有限公司 The quick startup control method and system of combined cycle power plant
US10072532B2 (en) 2013-03-06 2018-09-11 General Electric Technology Gmbh Method for starting-up and operating a combined-cycle power plant
CN110500143A (en) * 2019-08-28 2019-11-26 杭州和利时自动化有限公司 The control method and associated component of a kind of combustion gas and steam combined cycle power generating unit
WO2022070960A1 (en) 2020-09-30 2022-04-07 三菱パワー株式会社 Combined cycle plant, method for starting up same, and start-up control program for executing said method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114820A (en) * 1979-02-26 1980-09-04 Hitachi Ltd Load control system for combined-cycle generating plant
JPS56132411A (en) * 1980-03-19 1981-10-16 Hitachi Ltd Method of controlling operation of combined plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114820A (en) * 1979-02-26 1980-09-04 Hitachi Ltd Load control system for combined-cycle generating plant
JPS56132411A (en) * 1980-03-19 1981-10-16 Hitachi Ltd Method of controlling operation of combined plant

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685303A (en) * 1992-09-03 1994-03-25 Canon Inc Solar cell module
EP1072760A1 (en) * 1999-07-30 2001-01-31 ABB Alstom Power (Schweiz) AG Method of starting a combined power plant and combined power plant for carrying out the method
US10072532B2 (en) 2013-03-06 2018-09-11 General Electric Technology Gmbh Method for starting-up and operating a combined-cycle power plant
JP2015007380A (en) * 2013-06-25 2015-01-15 三菱日立パワーシステムズ株式会社 Start control device of steam turbine plant
EP2891772A1 (en) * 2013-06-25 2015-07-08 Mitsubishi Hitachi Power Systems, Ltd. Start control unit for steam turbine plant
US9422826B2 (en) 2013-06-25 2016-08-23 Mitsubishi Hitachi Power Systems, Ltd. Start control unit for steam turbine plant
US10428695B2 (en) 2015-05-29 2019-10-01 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle plant, device for controlling said plant, and method for starting up said plant
JP2016223361A (en) * 2015-05-29 2016-12-28 三菱日立パワーシステムズ株式会社 Combined cycle plant, controlling device and start-up method for the same
JP2017072125A (en) * 2015-08-28 2017-04-13 ゼネラル・エレクトリック・カンパニイ Control system and using method for managing vapor turbine rotor stress
CN108153149A (en) * 2016-12-05 2018-06-12 斗山重工业建设有限公司 The quick startup control method and system of combined cycle power plant
CN110500143A (en) * 2019-08-28 2019-11-26 杭州和利时自动化有限公司 The control method and associated component of a kind of combustion gas and steam combined cycle power generating unit
CN110500143B (en) * 2019-08-28 2022-04-01 杭州和利时自动化有限公司 Control method and related components of gas and steam combined cycle generator set
WO2022070960A1 (en) 2020-09-30 2022-04-07 三菱パワー株式会社 Combined cycle plant, method for starting up same, and start-up control program for executing said method
US11933197B2 (en) 2020-09-30 2024-03-19 Mitsubishi Heavy Industries, Ltd. Combined cycle plant, method for starting up same, and start-up control program for executing said method

Similar Documents

Publication Publication Date Title
EP3118426B1 (en) Activation control apparatus
US20150345387A1 (en) Plant control apparatus and plant starting-up method
JPS58197408A (en) Starting device for combined plant
JP3132834B2 (en) Gas turbine combustor steam cooling system
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
JP5964029B2 (en) Auxiliary feed valve control device for steam generator
JP2006200493A (en) Rankine cycle device
US8887481B2 (en) Method for starting a combined cycle power plant
US4145995A (en) Method of operating a power plant and apparatus therefor
KR20170076565A (en) Plant control apparatus, plant control method and power generating plant
JPS6239646B2 (en)
JPH10317916A (en) Thermal power plant
JP6447769B2 (en) Operation method of heat pump steam generator and heat pump steam generator
JPS59221410A (en) Starting method of combined plant
JPH08135411A (en) Control device of exhaust heat using power plant
JPS63162907A (en) Control for combined power generation plant
JPH08121117A (en) Starting method for multi-shaft type compound power generation plant
JP2549190B2 (en) Combined Cycle Power Plant Controller
JPS642762B2 (en)
JPH0231206B2 (en) FUKUGOHATSU DENPURANTO
JP2721508B2 (en) Warm-up separation heater control device
JPH0478881B2 (en)
JPS5817330B2 (en) High pressure turbine rotating shaft cooling method
JPS62196507A (en) Heated steam pressure controller of heater for steam turbine
JPH108912A (en) Turbine bypass valve control device