JPS5817330B2 - High pressure turbine rotating shaft cooling method - Google Patents
High pressure turbine rotating shaft cooling methodInfo
- Publication number
- JPS5817330B2 JPS5817330B2 JP8307278A JP8307278A JPS5817330B2 JP S5817330 B2 JPS5817330 B2 JP S5817330B2 JP 8307278 A JP8307278 A JP 8307278A JP 8307278 A JP8307278 A JP 8307278A JP S5817330 B2 JPS5817330 B2 JP S5817330B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- cooling
- rotating shaft
- temperature
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の詳細な説明】
本発明は、起動時または負荷変化重大なる場合、高圧初
段后塩度と主蒸気湿度の時間に対する変分を制御因子と
して冷却蒸気量と冷却蒸気塩度を制御することにより、
冷却室内湿度の時間に対する変分をほぼ一定にし、高圧
回転軸に力)の)る熱応力、寿命消費を減少させるよう
にした冷却方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention controls the amount of cooling steam and the salinity of the cooling steam by using the variation of the salinity of the high-pressure first stage and the main steam humidity with respect to time as control factors when starting up or when the load change is significant. According to
This invention relates to a cooling method in which the variation of humidity in a cooling chamber with respect to time is kept almost constant, thereby reducing thermal stress exerted on a high-pressure rotating shaft and life consumption.
近年発電プラントにおいては、連日起動停止運転や1日
の間でも定格負荷より最低負荷までとるようなサイクリ
ング運転の実施が増水している。In recent years, in power generation plants, there has been an increase in the number of daily start-stop operations and cycling operations in which the load is lower than the rated load to the minimum load even during one day.
このような発電プラントにおける蒸気タービンには起動
時間の短縮、負荷変化率の増大等が要求されるが、その
要求に対しては新たにタービン回転軸の熱応力、寿命消
費についての問題が生じること力)ら、蒸気タービンを
要求通りに運転することは困難となっている。The steam turbines used in such power plants are required to shorten the startup time and increase the rate of load change, but in response to these demands new problems arise regarding thermal stress and life consumption of the turbine rotating shaft. It has become difficult to operate steam turbines as required.
第1図は、蒸気タービンの起動時または負荷変化時での
主蒸気湿度Ts、初段層温度Ti、1次スーパヒーク入
口淵度Tbの変化状態を示したものである。FIG. 1 shows changes in the main steam humidity Ts, the first stage layer temperature Ti, and the primary superheat inlet depth Tb when the steam turbine is started or when the load changes.
これによると、主蒸気湿度Tsと初段層温度Tiは急激
に変化することから、サイクリング運転を行なっている
場合は高圧回転軸にかかる熱応力や熱疲労は犬となり、
高圧回転軸の寿命が短縮されるこ吉が理解される。According to this, since the main steam humidity Ts and the initial layer temperature Ti change rapidly, the thermal stress and thermal fatigue applied to the high-pressure rotating shaft will be reduced during cycling operation.
It is understood that the life of the high-pressure rotating shaft is shortened.
この寿命を長くするには急激な温度変化を緩や力)にす
る必要があるが、そのためには起動時間または負荷変化
時間に多くの時間が費やされることになり、前述の要求
に合致しないばかりかそれに伴う燃料消費等も無視でき
なく経済的損失も大きくなる。In order to extend this lifespan, it is necessary to reduce the sudden temperature change to a gentler force, but this requires a lot of time to start up or change the load, which simply does not meet the above requirements. However, the fuel consumption associated with this cannot be ignored and the economic loss will also be large.
したがって、起動時間や負荷変化率の時間の短縮が要求
された場合には、それにより高圧回転軸に発生する熱応
力、熱疲労、寿命消費率の増大傾向に対してそれを抑制
する考慮が必要である。Therefore, if it is required to shorten the start-up time or load change rate time, consideration must be given to suppressing the thermal stress, thermal fatigue, and increasing life consumption rate that occur in the high-pressure rotating shaft. It is.
従来高圧回転軸に対する熱応力、寿命消費率の管理は初
段層温度に依っているが、寿命消費を小さくするために
は負荷を一定にして運転する方法が採られている。Conventionally, management of thermal stress and life consumption rate for high-pressure rotating shafts has depended on the temperature of the first stage layer, but in order to reduce life consumption, a method of operation with a constant load has been adopted.
しかし、負荷を一定とした運転は望ましくはあるが実状
に合致しなく、シたがって、寿命消費を小さくしながら
もサイクリング運転が可能な蒸気タービンが要求されて
いるのである。However, although operation with a constant load is desirable, it does not meet actual conditions, and there is therefore a need for a steam turbine that is capable of cycling operation while reducing lifetime consumption.
本発明の目的は、サイクリング運転が可能な蒸気タービ
ンにおける高圧回転軸の寿命消費を小さくすることにあ
る。An object of the present invention is to reduce the life consumption of a high-pressure rotating shaft in a steam turbine capable of cycling operation.
この目的のため、本発明は、起動時または負荷変化重大
の場合に、高圧初段層温度、主蒸気温度者々が時間に対
して変(化)分が大きくなるので、その変分が一定値以
上であるときには、その変分にもとづいて高圧時間軸の
冷却室にその塩度と量とが制御された冷却蒸気を与え、
高圧回転軸にかかる熱応力、寿命消費を小さくすること
を特徴としている。For this purpose, the present invention is designed to reduce the amount of change in the high pressure first stage layer temperature and main steam temperature to a constant value, since the temperature of the high pressure first stage and the main steam temperature increase over time at startup or when the load change is significant. or more, supply cooling steam whose salinity and amount are controlled to the cooling chamber of the high pressure time axis based on the variation,
It is characterized by reducing thermal stress and life consumption on the high-pressure rotating shaft.
以下、本発明を第2図から第5図により説明する。The present invention will be explained below with reference to FIGS. 2 to 5.
先ず第2図より説明すると、これは本発明の詳細な説明
するためのものである。First, FIG. 2 will be explained in order to explain the present invention in detail.
既に述べたように、起動時または負荷変化率が大きいと
きには、主蒸気温度Ts、高圧初段層温度Tiの時間に
対する変化ΔT/Δtの大きさが犬であることから、こ
の大きさが一定値以上である場合には高圧回転軸の冷却
室にその温度さ量とが制御された冷却蒸気を与えて冷却
室内温度の時間に対する変化をほぼ一定にし、高圧回転
軸を急激な温度変化より保護するものである。As already mentioned, at startup or when the load change rate is large, the magnitude of the change ΔT/Δt of the main steam temperature Ts and the high-pressure first stage temperature Ti with respect to time is small, so this magnitude is greater than a certain value. In this case, cooling steam whose temperature and amount are controlled is applied to the cooling chamber of the high-pressure rotating shaft to keep the temperature change in the cooling chamber almost constant over time and protect the high-pressure rotating shaft from sudden temperature changes. It is.
第3図は、本発明に係る蒸気タービンシステムのブロッ
ク図を示したものである。FIG. 3 shows a block diagram of a steam turbine system according to the present invention.
図示のように1次、2次それぞれのスーパヒータ2.1
を介する主蒸気は高圧タービン17に与えられた後リヒ
ータ3を介し、中圧タービン18に与えられるようにな
っているが、本発明はその高圧タービン17における高
圧回転軸を冷却対象とするものである。As shown in the diagram, the primary and secondary super heaters 2.1
Main steam is supplied to the high-pressure turbine 17 and then to the intermediate-pressure turbine 18 via the reheater 3. However, in the present invention, the high-pressure rotating shaft of the high-pressure turbine 17 is to be cooled. be.
本発明によれば、蒸気混合ヘッダ10より冷却蒸気開閉
弁16を介して高圧タービン17の高圧回転軸に与えら
れる冷却蒸気は主蒸気系統と1次スーパヒータ2の入口
系統あるいは主蒸気に比して高圧低温の蒸気源より取り
出される。According to the present invention, the cooling steam supplied from the steam mixing header 10 to the high-pressure rotating shaft of the high-pressure turbine 17 via the cooling steam on-off valve 16 is compared to the main steam system and the inlet system of the primary superheater 2 or the main steam. It is extracted from a high-pressure, low-temperature steam source.
主蒸気系統からの主蒸気は流量調整弁9を介して、また
、1次スーパヒータ2人口系統からの蒸気は弁5、湿分
分離器6、弁7を介するか、または弁4を介した後流量
調整弁8を介して蒸気混合ヘッダ10に取り込まれるよ
うにするが、湿分分離器6はボイラがドラム型の場合湿
りを含むのでそれを除去するために設けられたものであ
る。The main steam from the main steam system passes through the flow control valve 9, and the steam from the primary superheater 2 population system passes through the valve 5, moisture separator 6, valve 7, or after passing through the valve 4. The steam is taken into the steam mixing header 10 via the flow rate regulating valve 8, but the moisture separator 6 is provided to remove moisture if the boiler is a drum type because it contains moisture.
このようにして冷却蒸気を流量調整弁8,9を介して蒸
気混合ヘッダ10に取り込むさすれば、少なくとも冷却
蒸気の塩度は主蒸気よりも低くなり、流量調整弁8,9
、弁16を開閉制御すれば、制御された量と温度の冷却
蒸気が高圧回転軸に与えられることになるものである。By taking the cooling steam into the steam mixing header 10 through the flow rate regulating valves 8 and 9 in this manner, at least the salinity of the cooling steam becomes lower than that of the main steam, and the flow rate regulating valves 8 and 9
By controlling the opening and closing of the valve 16, cooling steam of a controlled amount and temperature is applied to the high-pressure rotating shaft.
流量調整弁8,9の開閉制御は、蒸気混合ヘッダ10内
温度を測定する熱電対12、高圧初段后冷却室温度を測
定する熱電対11、高圧初段后蒸気温度を計測する熱電
対19などからの出力にもとづいて行なわれる。The opening/closing control of the flow rate regulating valves 8 and 9 is controlled by a thermocouple 12 that measures the temperature inside the steam mixing header 10, a thermocouple 11 that measures the temperature of the cooling chamber after the high-pressure first stage, a thermocouple 19 that measures the steam temperature after the high-pressure first stage, etc. This is done based on the output of
演算回路13はそのためのものである。The arithmetic circuit 13 is for that purpose.
また、弁16の開閉制御は、主蒸気温度、初段后蒸気温
度をそれぞれ測定する熱電対14.19の出力を入力と
する演算回路15によって行なわれる。Further, the opening/closing control of the valve 16 is performed by an arithmetic circuit 15 which receives as input the outputs of thermocouples 14 and 19 that measure the main steam temperature and the first-stage post-stage steam temperature, respectively.
このようにして制御された冷却蒸気は第4図に示すよう
に、冷却管20を介して冷却室22に導かれた後初段の
バランスホール21より中間パツキン方向へ流れ、これ
により初段近傍の回転軸の表面が冷却されるようになる
ものである。As shown in Fig. 4, the cooling steam controlled in this way is led to the cooling chamber 22 through the cooling pipe 20, and then flows from the balance hole 21 of the first stage toward the intermediate packing, thereby causing the rotation near the first stage. This allows the surface of the shaft to be cooled.
さて、弁16に対する制御を詳細に説明すると、これは
第5図aに示すように、塩度検出手段としての熱電対1
4.19により各々求められた主蒸気温度Ts、初段后
蒸気温度Tiは演算器23゜24で時間に対する変分Δ
Ts/Δt、ΔTi/Δtに変換された後比較器25で
基準値(ΔT/Δt)Dと比較される。Now, to explain in detail the control over the valve 16, as shown in FIG.
4.19, the main steam temperature Ts and the first stage steam temperature Ti are calculated by calculating the variation Δ with respect to time in the computing units 23 and 24.
After being converted into Ts/Δt and ΔTi/Δt, the comparator 25 compares it with a reference value (ΔT/Δt)D.
それらの変分の何れ力)大きい方と蒸気タービン回転軸
の熱応力、寿命消費率力)ら定められた基準値と比較し
、何れ力)の変分が基準値よりも犬である場合には弁1
6を開き、何れも基準値以下である場合には弁16を閉
じるようにするものである。Compare the larger one of these variations with a standard value determined from the thermal stress of the steam turbine rotating shaft, the life consumption rate (force), and if the variation of (force) is greater than the reference value. ha valve 1
6 is opened, and if both are below the reference value, the valve 16 is closed.
ま1こ、流量調整弁8,9に対する開閉制御は、制御さ
れた量、!:、湿度の冷却蒸気を得るうえで重要である
。First, the opening/closing control for the flow rate regulating valves 8 and 9 is controlled by a controlled amount! : Humidity is important in obtaining cooling steam.
この制御は第5図すに示すように、先ず熱電対19から
の初段后蒸気温度Tiと圧力検出器26からの初段圧力
Piとにもとづいて演算器27でエンタルピHを算出し
、更に演算で初段后の蒸気通路より冷却室への漏洩蒸気
qが算出される。In this control, as shown in FIG. The leakage steam q from the steam passage after the first stage to the cooling chamber is calculated.
この後漏洩蒸気q、熱電対11からの冷却室温度Tc、
回転検出器25力)らの蒸気タービン回転軸の回転数N
より回転軸の表面熱伝達率が求められ、必要冷却熱量Q
cが演算器29により算出される。After this, leaked steam q, cooling chamber temperature Tc from thermocouple 11,
Rotation detector 25) Rotation speed N of the steam turbine rotating shaft
From this, the surface heat transfer coefficient of the rotating shaft can be determined, and the required cooling heat amount Q
c is calculated by the calculator 29.
一方、弁8,9の開度11./2より蒸気流量G1.G
2が演算器32.31で求められ、更に加算器33を介
する蒸気流量G0.G2の和は熱電対12からの蒸気混
合ヘッダ10内温度Tm、比熱αとともに演算器34に
入力され、蒸気混合ヘッダ10に流入する蒸気熱量Q’
Cが求められる。On the other hand, the opening degree of valves 8 and 9 is 11. /2, the steam flow rate G1. G
2 is calculated by the calculator 32.31, and the steam flow rate G0. The sum of G2 is inputted to the calculator 34 along with the temperature Tm inside the steam mixing header 10 and the specific heat α from the thermocouple 12, and is calculated as the amount of steam heat Q' flowing into the steam mixing header 10.
C is required.
この蒸気熱量Q’Cと前述の必要冷却熱量が一致するよ
うに演算器30が流量調整弁8゜9の開度11,12を
制御するものである。The computing unit 30 controls the opening degrees 11 and 12 of the flow rate regulating valve 8.9 so that the steam heat quantity Q'C matches the above-mentioned required cooling heat quantity.
その際弁8,9の開度制御は主蒸気系統の弁9を最小開
度に押え、1次スーパヒータ入口系統の弁8を開くよう
にして冷却蒸気熱量Q′cを調整するが、弁8で調整が
できなくなったときには弁9をある定められ1こ開度中
で開き、弁8で冷却蒸気熱量Q’Cを調整する。At this time, the opening degree of the valves 8 and 9 is controlled by holding the valve 9 in the main steam system to the minimum opening degree and opening the valve 8 in the primary superheater inlet system to adjust the cooling steam heat quantity Q'c. When the adjustment becomes impossible, the valve 9 is opened within a certain predetermined opening degree, and the cooling steam heat amount Q'C is adjusted by the valve 8.
この制御を繰り返すことにより必要冷却熱量Qcと冷却
蒸気熱量Q’Cとが一致するようにされる。By repeating this control, the required amount of cooling heat Qc and the amount of cooling steam heat Q'C are made to match.
主蒸気系統からの蒸気を最小限に押え、プラント効率の
減少は防止されるような状態で制御が行なわれるもので
ある。Control is performed in such a way that steam from the main steam system is kept to a minimum and a reduction in plant efficiency is prevented.
冷却蒸気温度、即ち蒸気混合ヘッダ内温度Tmを以上の
ようにして制御すれば、第1図に示すように冷却室温度
Tcはほぼ一定となることから、高圧回転軸の表面温度
も起動時、負荷変化時に関係なくほぼ一定となり高圧回
転軸の寿命消費を小さくすることができる。If the cooling steam temperature, that is, the temperature inside the steam mixing header Tm is controlled as described above, the cooling chamber temperature Tc will be approximately constant as shown in FIG. It remains almost constant regardless of load changes, and the life consumption of the high-pressure rotating shaft can be reduced.
以上詳細に説明し1こように、本発明によれば、起動時
、負荷変化率大将にその温度さ量とが制御され1こ冷却
蒸気を冷却室に与え、冷却室内温度を一定にすることに
より回転軸の寿命消費を小さくできる。As explained in detail above, according to the present invention, at the time of startup, the load change rate and the temperature are controlled, and cooling steam is supplied to the cooling chamber to keep the temperature in the cooling chamber constant. This makes it possible to reduce the life consumption of the rotating shaft.
即ち、本発明によれは、起動時間の短縮、負荷変化率の
増大を図れるものである。That is, according to the present invention, the startup time can be shortened and the load change rate can be increased.
第1図は、起動時ま1こは負荷変化時での各温度の特性
図、第2図は、主蒸気温度または高圧初段層温度の時間
に対する変分の大きさについての説明図、第3図は、本
発明に係る蒸気タービンシステムのフ宅ツク図、第4図
は、冷却方法を説明するための冷却室を中心とした高圧
タービンの概略構成図、第5図a、bは、第3図におけ
る冷却蒸気開閉弁、流量調整弁それぞれについての制御
方式図である。
2・・・・・・1次スーパヒータ、6・・・・・・湿分
分離器、8.9・・・・・・流量調整弁、10・・・・
・・蒸気混合ヘッダ、11.12,14.19・・・・
・・熱電対、13.15・・・・・・演算器、16・・
・・・・冷却蒸気開閉弁、17・・・・・・高圧タービ
ン。Figure 1 is a characteristic diagram of each temperature at startup and during load changes, Figure 2 is an explanatory diagram of the magnitude of variation in main steam temperature or high-pressure first stage temperature with respect to time, and Figure 3 4 is a schematic configuration diagram of a high-pressure turbine centered on a cooling chamber to explain the cooling method, and FIGS. 5a and 5b are FIG. 4 is a control system diagram for each of the cooling steam opening/closing valve and the flow rate adjustment valve in FIG. 3; 2...Primary super heater, 6...Moisture separator, 8.9...Flow rate adjustment valve, 10...
・・Steam mixing header, 11.12, 14.19・・・・
...Thermocouple, 13.15... Arithmetic unit, 16...
...Cooling steam on-off valve, 17...High pressure turbine.
Claims (1)
いは初段層温度の時間に対する変化割合が基準値よりも
犬のとき、蒸気タービンの高圧回転軸冷却室に与え、該
冷却室の温度の時間に対する変化割合をほぼ一定にする
ことを特徴とする高圧タービン回転軸冷却方法。 2 冷却蒸気は、主蒸気と1次スーパヒータ入口あるい
は上記主蒸気に比して高圧低温の蒸気源力1らの蒸気と
を、流量制御の下に蒸気混合ヘッダにて混合することに
よって得られる特許請求の範囲第1項記載の高圧タービ
ン回転軸冷却方法。 3 基準値は、高圧回転軸の寿命消費率より定められる
特許請求の範囲第1項記載の高圧タービン回転軸冷却方
法。 4 主蒸気と1次スーパヒータ入口あるいは上記主蒸気
に比して高圧低温の蒸気源からの蒸気との流量制御は、
高下回転軸の表面熱伝達率、冷却室湿度および回転数、
初段後蒸気温度、初段後圧力より求められた必要冷却熱
量と、蒸気混合ヘッダの内部温度、該ヘッダ内に流量制
御手段を介して流れ込む蒸気流量より求められた該ヘッ
ダへの流入蒸気熱量とを比較し、該熱量が等しくなるよ
うに該比較の結果をして上記流量制御手段の開度を制御
するこ吉により行なわれる特許請求の範囲第2項記載の
高圧タービン回転軸冷却方法。[Claims] 1. Applying cooled and heated steam whose temperature and quantity are controlled to a high-pressure rotating shaft cooling chamber of a steam turbine when the rate of change in main steam humidity or initial stage temperature with respect to time is more than a reference value, A method for cooling a high-pressure turbine rotating shaft, characterized in that the rate of change in the temperature of the cooling chamber over time is made substantially constant. 2. Cooling steam is obtained by mixing main steam and steam from the primary superheater inlet or steam source 1 at a higher pressure and lower temperature than the main steam in a steam mixing header under flow control. A method for cooling a high-pressure turbine rotating shaft according to claim 1. 3. The high-pressure turbine rotating shaft cooling method according to claim 1, wherein the reference value is determined based on the lifetime consumption rate of the high-pressure rotating shaft. 4 The flow rate control of the main steam and the steam from the primary superheater inlet or the steam source at a higher pressure and lower temperature than the main steam is as follows:
Surface heat transfer coefficient of vertical rotating shaft, cooling room humidity and rotation speed,
The required amount of cooling heat determined from the steam temperature after the first stage and the pressure after the first stage, the internal temperature of the steam mixing header, and the amount of steam heat flowing into the header determined from the flow rate of steam flowing into the header via the flow rate control means. 3. The high-pressure turbine rotary shaft cooling method according to claim 2, wherein the cooling method is performed by comparing the amounts of heat and controlling the opening degree of the flow rate control means based on the result of the comparison so that the amounts of heat are equal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8307278A JPS5817330B2 (en) | 1978-07-10 | 1978-07-10 | High pressure turbine rotating shaft cooling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8307278A JPS5817330B2 (en) | 1978-07-10 | 1978-07-10 | High pressure turbine rotating shaft cooling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5510058A JPS5510058A (en) | 1980-01-24 |
JPS5817330B2 true JPS5817330B2 (en) | 1983-04-06 |
Family
ID=13791965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8307278A Expired JPS5817330B2 (en) | 1978-07-10 | 1978-07-10 | High pressure turbine rotating shaft cooling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5817330B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0263681U (en) * | 1988-11-01 | 1990-05-14 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1154123A1 (en) * | 2000-05-10 | 2001-11-14 | Siemens Aktiengesellschaft | Method of cooling the shaft of a high pressure steam turbine |
EP1674669A1 (en) * | 2004-12-21 | 2006-06-28 | Siemens Aktiengesellschaft | Method of cooling a steam turbine |
-
1978
- 1978-07-10 JP JP8307278A patent/JPS5817330B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0263681U (en) * | 1988-11-01 | 1990-05-14 |
Also Published As
Publication number | Publication date |
---|---|
JPS5510058A (en) | 1980-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7937928B2 (en) | Systems and methods for channeling steam into turbines | |
US5042246A (en) | Control system for single shaft combined cycle gas and steam turbine unit | |
US4228359A (en) | Rotor-stress preestimating turbine control system | |
US4437313A (en) | HRSG Damper control | |
JP2009511809A (en) | Steam turbine warm-up method | |
EP0908603B1 (en) | Single shaft combined cycle plant | |
JPS6239648B2 (en) | ||
US5388411A (en) | Method of controlling seal steam source in a combined steam and gas turbine system | |
US5018356A (en) | Temperature control of a steam turbine steam to minimize thermal stresses | |
JP6684453B2 (en) | Extraction control method and control device for steam turbine generator | |
JPS5817330B2 (en) | High pressure turbine rotating shaft cooling method | |
US8887481B2 (en) | Method for starting a combined cycle power plant | |
JP4208397B2 (en) | Start-up control device for combined cycle power plant | |
Radin | Improving the flexibility and reliability of steam power units at thermal power plants | |
JPS58197408A (en) | Starting device for combined plant | |
JPS59221410A (en) | Starting method of combined plant | |
JPS61187503A (en) | Temperature decreasing controller of turbine gland sealing steam | |
JP2953794B2 (en) | Steam control valve chest warming method | |
JPS5934405A (en) | Warming device of steam turbine | |
JPS63162907A (en) | Control for combined power generation plant | |
JPS6239658B2 (en) | ||
JPH11210407A (en) | Method and device for warming up bypass valve in steam plant | |
JPS62237014A (en) | Operation of steam reducing valve for steam turbine | |
Kuehn | Discussion:“Importance of Matching Steam Temperatures With Metal Temperatures During Starting of Large Steam Turbines”(Jackson, RL, Coulter, SB, and Sheppard, R., 1957, Trans. ASME, 79, pp. 1669–1675) | |
JPH0742843B2 (en) | Start-up control device for mixed pressure turbine |