JPH05222906A - Controller for power plant utilizing exhaust heat - Google Patents

Controller for power plant utilizing exhaust heat

Info

Publication number
JPH05222906A
JPH05222906A JP5722792A JP5722792A JPH05222906A JP H05222906 A JPH05222906 A JP H05222906A JP 5722792 A JP5722792 A JP 5722792A JP 5722792 A JP5722792 A JP 5722792A JP H05222906 A JPH05222906 A JP H05222906A
Authority
JP
Japan
Prior art keywords
medium
temperature
hot water
evaporator
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5722792A
Other languages
Japanese (ja)
Inventor
Akio Wakao
明男 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5722792A priority Critical patent/JPH05222906A/en
Publication of JPH05222906A publication Critical patent/JPH05222906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out a stable control in relation to a load change by controlling a hot water flow rate, a medium flow rate, a medium by-pass flow rate and a cooling water flow rate based on a temperature deviation between the inlet and the exit of the evaporator of a hot water, a temperature deviation between the inlet and the exit of the preheater of a medium, the temperature deviation of a medium exhaust gas and the temperature deviation of a cooling water and the like. CONSTITUTION:A hot water is pumped up by a hot water pump 1 so as to pass in an evaporator 5 and preheaters 7, 8. A medium is circulated in the preheaters 7, 8, the evaporator 5, a medium turbine 20, a condenser 23, and a hot well tank 11. A hot water temperature is detected by a hot water temperature detector 3 and temperature detectors 6, 9 and a medium temperature is detected by temperature detectors 14, 22, 24. A cooling water temperature is detected by temperature detectors 27, 30. Further, a medium pressure is detected by pressure detectors 15, 19. A stable control is carried out in relation to an electric power load by controlling a hot water flow rate, a medium flow rate, a medium by-pass flow rate and a cooling water flow rate after inputting these detected signals into the controller of a power plant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温熱水と低沸点媒体
とを利用した排熱利用発電プラントの制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an exhaust heat utilization power plant using high temperature hot water and a low boiling point medium.

【0002】[0002]

【従来の技術】一般に、排熱利用発電プラントは、地下
の熱水層の熱水を利用し、媒体と熱交換させ、その低沸
点の媒体を蒸発器で蒸発させ、その蒸気圧力を媒体ター
ビンに導き発電するものである。この場合の制御として
は、発電機の負荷設定に対して発電出力を制御してい
る。すなわち、熱水温度変動に対しては、媒体流量を制
御しており、媒体タービンの入口圧力は、媒体タービン
バイパス配管系統の圧力調整弁で制御している。
2. Description of the Related Art Generally, a waste heat power generation plant uses hot water in a subterranean hot water layer to exchange heat with a medium, evaporate the low boiling point medium in an evaporator, and reduce the vapor pressure of the medium turbine. To generate electricity. As the control in this case, the power generation output is controlled according to the load setting of the generator. That is, the medium flow rate is controlled with respect to the hot water temperature fluctuation, and the inlet pressure of the medium turbine is controlled by the pressure adjusting valve of the medium turbine bypass piping system.

【0003】次に、媒体タービン発電機を駆動すること
に費やした排ガスは、復水器で規定値になるように冷却
水流量を制御している。又、排熱利用発電プラントの電
力負荷制御は、基本的に電力最大運転である。そして、
熱水流量や熱水温度の変動、あるいは蒸発器の媒体の蒸
発圧力変動により媒体タービン発電機の出力は変動して
いる。
Next, the flow rate of the cooling water is controlled by the condenser so that the exhaust gas spent for driving the medium turbine generator is controlled by the condenser. Further, the power load control of the waste heat utilization power plant is basically the maximum power operation. And
The output of the medium turbine generator fluctuates due to fluctuations in the hot water flow rate and hot water temperature, or fluctuations in the evaporation pressure of the medium in the evaporator.

【0004】[0004]

【発明が解決しようとする課題】ところが、この様な従
来の排熱利用発電プラントの制御装置では、電力負荷制
御時、一次系の熱水流量や温度変動により、発電機の出
力が変動する。この変動は、予熱器の熱交換性能及び蒸
発器の性能に大きく左右される。過渡的な熱水流量や温
度変動に対して、蒸発器の媒体蒸発量のレベルは変動す
るので、それに伴って媒体の蒸発ガス圧力も大幅に変動
する。その為媒体タービンの入口流量や圧力変動が生
じ、媒体タービン発電機の出力も大幅に変動する。
However, in such a conventional control device for an exhaust heat utilization power generation plant, the output of the generator fluctuates due to the hot water flow rate and temperature fluctuations of the primary system during power load control. This fluctuation largely depends on the heat exchange performance of the preheater and the performance of the evaporator. The level of the evaporation amount of the medium in the evaporator fluctuates with respect to the transient hot water flow rate and temperature fluctuations, and the evaporative gas pressure of the medium also fluctuates significantly accordingly. Therefore, the inlet flow rate and pressure of the medium turbine fluctuate, and the output of the medium turbine generator fluctuates significantly.

【0005】更に、媒体タービン発電機の負荷変動に伴
って、媒体タービンの駆動に費やした排ガス流量も変動
し、凝縮器への冷却水量も過渡的な排ガス流量や温度変
動及び凝縮器の2次遅れ原因により媒体の冷却温度も変
動する。
Further, as the load of the medium turbine generator fluctuates, the flow rate of exhaust gas spent for driving the medium turbine also fluctuates, and the amount of cooling water to the condenser also transiently fluctuates in the flow rate and temperature of the condenser and the secondary of the condenser. The cooling temperature of the medium also changes due to the delay.

【0006】この様に、蒸発器、予熱器の熱水、媒体系
統での熱交換に際し媒体を予熱する時あるいは蒸発させ
る時の熱交換量が電力負荷設定電力によって制御される
が、過渡的な熱水温度の変動に伴い熱交換への媒体流量
の流量変動が生じ、予熱器、蒸発器の熱交換器の2次遅
れ原因となって発電機の出力が変動し制御系が安定しな
いという問題点がある。
As described above, the amount of heat exchange when preheating or evaporating the medium during the heat exchange in the evaporator, the preheater, and the medium system is controlled by the power load set power, but it is transient. There is a problem that the flow rate of the medium flow rate to the heat exchange fluctuates with the fluctuation of the hot water temperature, which causes the secondary delay of the heat exchanger of the preheater and the evaporator, and the output of the generator fluctuates and the control system becomes unstable. There is a point.

【0007】そこで、本発明の目的は、タービン発電機
の電力負荷設定に対して、熱水系統の熱水温度や流量の
変動、媒体系統の媒体温度や流量の変動による熱交換器
の2次遅れの低減と、媒体タービンの排熱と凝縮器に供
給される冷却水と熱交換するときの凝縮器の2次遅れの
低減により媒体タービン発電機の出力変動の防止とを図
ることが出来る排熱利用発電プラントの制御装置を提供
することにある。
Therefore, an object of the present invention is to set the power load of the turbine generator, and to change the secondary temperature of the heat exchanger due to the fluctuations of the hot water temperature and flow rate of the hot water system and the medium temperature and flow rate of the medium system. By reducing the delay and reducing the secondary heat of the condenser when exchanging heat with the exhaust heat of the medium turbine and the cooling water supplied to the condenser, it is possible to prevent fluctuations in the output of the medium turbine generator. It is to provide a control device for a heat utilization power plant.

【0008】[0008]

【課題を解決するための手段】本発明の排熱利用発電プ
ラントの制御装置は、高温熱水を地下の熱水層から汲み
上げ低沸点の媒体を蒸発させる蒸発器および媒体を予熱
する予熱器に供給し媒体と熱交換させ還元井に戻す熱水
系統と、媒体を媒体タンクから予熱器および蒸発器に供
給し高温熱水と熱交換させそこで発生した媒体の蒸発ガ
スを媒体タービンに供給して発電し発電し終えた排ガス
は凝縮器に導き冷却水で低温にした媒体を媒体タンクに
回収する媒体系統と、凝縮器で媒体タービンの排ガスと
熱交換する冷却水を冷却塔から供給する冷却系統とから
なる排熱利用発電プラントの制御装置において、蒸発器
の入口熱水温度と出口熱水温度との偏差および予熱器の
入口媒体温度と出口媒体温度との偏差を先行的に加味し
て発電出力が予め定めた電力設定値になるように熱水流
量を制御する電力負荷制御手段と、蒸発器の入口熱水温
度と出口熱水温度との偏差および予熱器の入口媒体温度
と出口媒体温度との偏差を先行的に加味して蒸発器の出
口圧力が予め定めた出口圧力設定値になるように媒体流
量を制御する蒸発器出口圧力制御手段と、蒸発器の入口
熱水温度と出口熱水温度との偏差を先行的に加味して媒
体タービンの入口圧力が予め定めた入口圧力設定値にな
るように媒体バイパス流量を制御するタービン入口圧力
制御手段と、媒体タービン出口の排ガス温度と凝縮器側
の媒体タンク内温度との偏差および冷却系統の冷却塔内
温度と凝縮器の出口冷却水温度との偏差を加味し冷却水
温度がその設定値になるように冷却水流量を制御する冷
却水温度制御手段とを備えたことを特徴とする。
The control device for an exhaust heat utilization power plant of the present invention is an evaporator for pumping high-temperature hot water from an underground hot water layer to evaporate a medium having a low boiling point and a preheater for preheating the medium. A hot water system that supplies heat to the medium and returns it to the reduction well, and supplies the medium from the medium tank to the preheater and the evaporator to exchange heat with the high-temperature hot water to supply the evaporated gas of the medium generated to the medium turbine. The exhaust gas that has generated power and has finished generating electricity is guided to a condenser, and a medium system that collects the medium that has been cooled to a low temperature with cooling water in a medium tank, and a cooling system that supplies cooling water that exchanges heat with the exhaust gas of the medium turbine from the cooling tower from the cooling tower. In a control device for an exhaust heat utilization power plant consisting of and, power generation is performed in consideration of the deviation between the inlet hot water temperature of the evaporator and the outlet hot water temperature and the deviation between the inlet medium temperature and the outlet medium temperature of the preheater. Output in advance The difference between the hot water temperature at the inlet of the evaporator and the hot water temperature at the outlet of the evaporator, and the difference between the inlet medium temperature of the preheater and the outlet medium temperature Evaporator outlet pressure control means for controlling the medium flow rate so that the outlet pressure of the evaporator becomes a predetermined outlet pressure set value, and the inlet hot water temperature and the outlet hot water temperature of the evaporator , The turbine inlet pressure control means for controlling the medium bypass flow rate so that the inlet pressure of the medium turbine becomes a predetermined inlet pressure set value, and the exhaust gas temperature at the medium turbine outlet and the condenser side Cooling water temperature control that controls the cooling water flow rate so that the cooling water temperature reaches its set value, taking into account the deviation from the medium tank temperature and the deviation between the cooling system cooling tower internal temperature and the condenser outlet cooling water temperature Having means and And butterflies.

【0009】[0009]

【作用】これにより、媒体タービン発電機の電力負荷追
従制御に対する高温熱水流量の温度変動、媒体の蒸発器
の蒸発ガスの圧力変動、複数の予熱器の熱交換による2
次遅れの補償、媒体タービン発電機駆動による排ガスを
凝縮器で冷却水と熱交換させたときの2次遅れ補償と、
冷却水の温度変化に追従して媒体タービン発電機の負荷
変動防止と、蒸発器の蒸発ガスの圧力変動の防止と、予
熱器および凝縮器の熱交換による2次遅れの解消と、凝
縮器の冷却水温度変動による凝縮器の2次遅れの解消が
図れる。
As a result, the temperature variation of the hot water flow rate for the power load follow-up control of the medium turbine generator, the pressure variation of the evaporative gas of the medium evaporator, and the heat exchange of a plurality of preheaters are used.
Second-order lag compensation, second-order lag compensation when exhaust gas driven by a medium turbine generator is heat-exchanged with cooling water in a condenser,
Following the temperature change of the cooling water, the load fluctuation of the medium turbine generator is prevented, the pressure fluctuation of the evaporative gas of the evaporator is prevented, the secondary delay is eliminated by the heat exchange of the preheater and the condenser, and the condenser The secondary delay of the condenser due to the fluctuation of the cooling water temperature can be eliminated.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1および図2に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0011】図1は、本発明の適用される排熱利用発電
プラントの構成を示す系統図である。熱水は、地下の熱
水層から熱水ポンプ1で汲み上げられ、熱水系統2を通
って蒸発器5に導かれる。蒸発器5では媒体と熱交換さ
れ、さらに、第1の予熱器7および第2の予熱器8で媒
体と熱交換された後、地下に戻される。
FIG. 1 is a system diagram showing the construction of an exhaust heat utilization power plant to which the present invention is applied. The hot water is pumped up from the underground hot water layer by the hot water pump 1 and guided to the evaporator 5 through the hot water system 2. The evaporator 5 exchanges heat with the medium, and the first preheater 7 and the second preheater 8 exchange heat with the medium, and then return to the underground.

【0012】蒸発器5の入口における熱水流量の調整
は、流量調整弁4により行われる。すなわち、媒体ター
ビン20の発電機21の電力設定値と、第2の予熱器8
の出口における熱水流量を検出する熱水出口流量検出器
10の検出値に基づいて、蒸発器5の入口熱水の流量調
整弁4の開度は、制御される。ここで、熱水ポンプ1か
らの熱水温度は熱水温度検出器3で検出され、熱水系統
2の蒸発器5の出口熱水温度は温度検出器6で、また第
2の予熱器8の出口熱水温度は温度検出器9によりそれ
ぞれ検出される。
The flow rate adjusting valve 4 adjusts the flow rate of hot water at the inlet of the evaporator 5. That is, the power set value of the generator 21 of the medium turbine 20 and the second preheater 8
The opening degree of the inlet hot water flow rate adjusting valve 4 of the evaporator 5 is controlled based on the detection value of the hot water outlet flow rate detector 10 that detects the hot water flow rate at the outlet of the. Here, the hot water temperature from the hot water pump 1 is detected by the hot water temperature detector 3, the outlet hot water temperature of the evaporator 5 of the hot water system 2 is the temperature detector 6, and the second preheater 8 The outlet hot water temperatures of are detected by the temperature detectors 9, respectively.

【0013】次に、媒体は、媒体ポンプ12により第2
の予熱器8に供給され、さらに第1の予熱器7を通っ
て、それぞれ熱水と熱交換される。そして、蒸発器5に
て熱水と熱交換され、飽和蒸気となって媒体蒸発系統に
流れ規定圧力下で媒体タービン20に供給し発電機21
を駆動し発電する。又媒体タービン20に供給される媒
体蒸発圧力はバイパス圧力調整弁18で調整される。す
なわち、媒体タービン20の入口圧力検出器19の検出
値に基づき、バイパス系統17のバイパス圧力調整弁1
8を調整し、媒体タービン20の入口圧力を制御する。
媒体タービン20の排ガスは、凝縮器23に流れ冷却水
と熱交換される。そして、ホットウェルタンク11に回
収され循環するようになっている。蒸発器5の出口媒体
圧力は、媒体流量調整弁13により制御される。すなわ
ち、圧力検出器15により検出された蒸発器5の出口媒
体圧力が、規定値になるように媒体ポンプ12の吐出側
の媒体流量調整弁13を調整する。
Next, the medium is transferred to the second position by the medium pump 12.
Is supplied to the preheater 8 and further passes through the first preheater 7 to exchange heat with hot water. Then, it is heat-exchanged with hot water in the evaporator 5, becomes saturated steam, flows into the medium evaporation system, and is supplied to the medium turbine 20 under a specified pressure to generate electric power.
Drive to generate electricity. Further, the medium evaporation pressure supplied to the medium turbine 20 is adjusted by the bypass pressure adjusting valve 18. That is, based on the detection value of the inlet pressure detector 19 of the medium turbine 20, the bypass pressure control valve 1 of the bypass system 17
8 to control the inlet pressure of the media turbine 20.
The exhaust gas of the medium turbine 20 flows into the condenser 23 and exchanges heat with the cooling water. Then, it is collected in the hot well tank 11 and circulated. The outlet medium pressure of the evaporator 5 is controlled by the medium flow rate adjusting valve 13. That is, the medium flow rate adjusting valve 13 on the discharge side of the medium pump 12 is adjusted so that the outlet medium pressure of the evaporator 5 detected by the pressure detector 15 becomes a specified value.

【0014】ここで、蒸発器5の媒体入口の温度は温度
検出器14で、媒体タービン20の排ガスの温度は温度
検出器22で、またホットウェルタンク11器内の媒体
温度は温度検出器24でそれぞれ検出される。
Here, the temperature of the medium inlet of the evaporator 5 is the temperature detector 14, the temperature of the exhaust gas of the medium turbine 20 is the temperature detector 22, and the medium temperature in the hot well tank 11 is the temperature detector 24. Are detected respectively.

【0015】次に、凝縮器23で媒体を冷却させる冷却
水の調整は、冷却水流量調整弁26で行われる。すなわ
ち、凝縮器23の出口の温度検出器27で検出された冷
却水の温度に基づき、流量調整弁26の開度は制御され
る。冷却塔タンク29の冷却水は、冷却水ポンプ25で
凝縮器23に供給され熱交換される。つまり、冷却水は
冷却系統28を通り、冷却塔29の冷却ファンで冷却さ
れ循環している。冷却塔29のタンク器内の温度は、温
度検出器30により検出される。
Next, the cooling water for cooling the medium in the condenser 23 is adjusted by the cooling water flow rate adjusting valve 26. That is, the opening degree of the flow rate adjusting valve 26 is controlled based on the temperature of the cooling water detected by the temperature detector 27 at the outlet of the condenser 23. The cooling water in the cooling tower tank 29 is supplied to the condenser 23 by the cooling water pump 25 and is heat-exchanged. That is, the cooling water passes through the cooling system 28, is cooled by the cooling fan of the cooling tower 29, and is circulated. The temperature inside the tank unit of the cooling tower 29 is detected by the temperature detector 30.

【0016】次に、このような排熱利用発電プラントの
本発明の制御装置31を図1に示す。熱水出口流量検出
器10の検出信号は制御装置31の開平演算器32でリ
ニアにされ、電力設定器33で電力設定値と比較され
る。その偏差信号は加減演算器34に加えられる。一
方、加減演算器34にはバイアス器39,43の信号も
入力される。バイアス器39の信号は、熱水温度検出器
3の検出信号を温度変換器37で電流信号に変換した信
号と、蒸発器5の出口熱水温度検出器6の検出信号を温
度変換器40で電流信号に変換した信号とを加減演算器
38に加え、加減演算した信号をバイアス器39でバイ
アス信号としたものである。一方、バイアス器43の信
号は、蒸発器5の入口媒体温度検出器14の検出信号を
温度変換器41で電流信号に変換した信号と、ホットウ
ェルタンク11の媒体温度検出器24の検出信号を温度
変換器44で電流信号に変換した信号とを加減演算器4
2で加減演算した信号を、バイアス器43でバイアス信
号とした信号である。加減演算器34では、各々付加し
て得た演算信号をPID調節計35で制御信号を得、電
空変換器36で電流信号を空気信号に変換して熱水入口
の流量調整弁4の開度を制御する。これにより、熱水流
量は媒体タービン20の発電機21の電力設定値に追従
して制御される。
Next, FIG. 1 shows a control device 31 of the present invention for such a waste heat power generation plant. The detection signal of the hot water outlet flow rate detector 10 is linearized by the square root calculator 32 of the control device 31, and compared with the power set value by the power setter 33. The deviation signal is added to the addition / subtraction calculator 34. On the other hand, the signals of the bias units 39 and 43 are also input to the addition / subtraction calculator 34. As the signal of the bias device 39, a signal obtained by converting the detection signal of the hot water temperature detector 3 into a current signal by the temperature converter 37 and the detection signal of the outlet hot water temperature detector 6 of the evaporator 5 by the temperature converter 40. The signal converted into the current signal is added to the addition / subtraction calculator 38, and the signal subjected to the addition / subtraction calculation is used as a bias signal by the bias device 39. On the other hand, the signal of the bias device 43 is the signal obtained by converting the detection signal of the inlet medium temperature detector 14 of the evaporator 5 into the current signal by the temperature converter 41 and the detection signal of the medium temperature detector 24 of the hot well tank 11. The signal converted into the current signal by the temperature converter 44 and the addition / subtraction calculator 4
The signal obtained by the addition / subtraction calculation in 2 is used as a bias signal in the bias device 43. In the adding / subtracting calculator 34, the PID controller 35 obtains a control signal from the arithmetic signal obtained by adding each, and the electropneumatic converter 36 converts the current signal into an air signal to open the flow rate adjusting valve 4 at the hot water inlet. Control the degree. As a result, the hot water flow rate is controlled by following the power set value of the generator 21 of the medium turbine 20.

【0017】次に、媒体系統の蒸発器5の出口圧力検出
器15の検出信号を圧力設定器45で圧力設定値と比較
し、その偏差信号を加減演算器46に加える。一方、加
減演算器46には、バイアス器39,43の信号も入力
される。バイアス器39の信号は、熱水温度検出器3の
検出信号を温度変換器37で電流信号に変換した信号
と、蒸発器5の出口熱水温度検出器6の検出信号を温度
変換器40で電流信号に変換した信号とを加減演算器3
8に加え、加減演算した信号をバイアス器39でバイア
ス信号としたものである。一方、バイアス器43の信号
は、蒸発器5の入口媒体温度検出器14の検出信号を温
度変換器41で電流信号に変換した信号と、ホットウェ
ルタンク11の媒体温度検出器24の検出信号を温度変
換器44で電流信号に変換した信号とを加減演算器42
で加減演算した信号を、バイアス器43でバイアス信号
としたものである。加減演算器46では、各々付加して
得た演算信号をPID調節計47で制御信号を得、電空
変換器48で電流信号を空気信号に変換して、蒸発器5
の出口媒体蒸発圧力を圧力設定値に追従して媒体流量調
整弁13の開度を制御している。
Next, the detection signal of the outlet pressure detector 15 of the evaporator 5 of the medium system is compared with the pressure set value by the pressure setter 45, and the deviation signal is added to the addition / subtraction calculator 46. On the other hand, the signals of the bias devices 39 and 43 are also input to the addition / subtraction calculator 46. As the signal of the bias device 39, a signal obtained by converting the detection signal of the hot water temperature detector 3 into a current signal by the temperature converter 37 and the detection signal of the outlet hot water temperature detector 6 of the evaporator 5 by the temperature converter 40. The signal converted into the current signal and the addition / subtraction calculator 3
In addition to 8, the bias signal is used as a bias signal by the bias device 39. On the other hand, the signal of the bias device 43 is the signal obtained by converting the detection signal of the inlet medium temperature detector 14 of the evaporator 5 into the current signal by the temperature converter 41 and the detection signal of the medium temperature detector 24 of the hot well tank 11. The signal converted into the current signal by the temperature converter 44 and the addition / subtraction calculator 42
The signal which has been subjected to the addition / subtraction calculation in step 4 is used as a bias signal in the bias device 43. In the adder / subtractor calculator 46, a calculation signal obtained by adding each is obtained by a PID controller 47 to obtain a control signal, and an electropneumatic converter 48 converts a current signal into an air signal, and the evaporator 5
The outlet medium evaporating pressure is controlled according to the pressure set value to control the opening degree of the medium flow rate adjusting valve 13.

【0018】次に、媒体タービン20の入口圧力検出器
19の検出信号を圧力設定器49で媒体タービン圧力設
定値と比較し、その偏差信号を加減演算器50に付加す
る。一方、加減演算器50には、バイアス器39の信号
も入力される。バイアス器39の信号は、熱水温度検出
器3の検出信号を温度変換器37で電流信号に変換した
信号と、蒸発器5の出口熱水温度検出器6の検出信号を
温度変換器40で電流信号に変換した信号とを加減演算
器38に加え、加減演算した信号をバイアス器39でバ
イアス信号としたものである。加減演算器50では、こ
れら加えられた演算信号をPID調節計51で制御信号
を得、電空変換器52で電流信号を空気信号に変換し
て、媒体タービン20の入口圧力を圧力設定値に追従し
て媒体タービンバイパス圧力調整弁18開度を制御して
いる。
Next, the detection signal of the inlet pressure detector 19 of the medium turbine 20 is compared with the medium turbine pressure set value by the pressure setter 49, and the deviation signal is added to the addition / subtraction calculator 50. On the other hand, the signal of the bias unit 39 is also input to the addition / subtraction calculator 50. As the signal of the bias device 39, a signal obtained by converting the detection signal of the hot water temperature detector 3 into a current signal by the temperature converter 37 and the detection signal of the outlet hot water temperature detector 6 of the evaporator 5 by the temperature converter 40. The signal converted into the current signal is added to the addition / subtraction calculator 38, and the signal subjected to the addition / subtraction calculation is used as a bias signal by the bias device 39. In the addition / subtraction calculator 50, a control signal is obtained by the PID controller 51 from these added calculation signals, and a current signal is converted into an air signal by the electropneumatic converter 52, so that the inlet pressure of the medium turbine 20 becomes a pressure set value. Following this, the opening degree of the medium turbine bypass pressure adjusting valve 18 is controlled.

【0019】次に、凝縮器23の媒体冷却温度を一定に
するために、凝縮器23の出口冷却水温度検出器27の
検出信号を温度変換器56で電流信号に変換した信号を
温度設定器57で温度設定値と比較する。そして、その
偏差信号を加減演算器58に加える。更に凝縮器23の
出口冷却水温度検出器27の検出信号を温度変換器56
で電流信号に変換した信号と、冷却器29のタンク器内
温度検出器30の検出信号を温度変換器61で電流信号
に変換した信号とを加減演算器62で加減演算し、バイ
アス器64を介して加減演算器58に加える。さらにバ
イアス器54のバイアス信号を加減演算器58に加え
る。そして、これら演算信号をPID調節計59で制御
信号を得、電空変換器60で電流信号を空気信号に変換
して、凝縮器23の冷却水温度を温度設定値に追従して
凝縮器23の入口流量調整弁26の開度を制御してい
る。
Next, in order to make the medium cooling temperature of the condenser 23 constant, a signal obtained by converting the detection signal of the outlet cooling water temperature detector 27 of the condenser 23 into a current signal by the temperature converter 56 is set as a temperature setter. At 57, the temperature setting value is compared. Then, the deviation signal is added to the adjustment calculator 58. Further, the detection signal of the outlet cooling water temperature detector 27 of the condenser 23 is converted into the temperature converter 56.
The signal converted into the current signal by the controller 29 and the signal converted from the detection signal of the temperature detector 30 inside the tank of the cooler 29 into the current signal by the temperature converter 61 are subjected to the addition and subtraction operation by the addition and subtraction calculator 62, and the bias device 64 is It is added to the addition / subtraction calculator 58 via Further, the bias signal of the bias unit 54 is added to the addition / subtraction calculator 58. Then, the PID controller 59 obtains the control signals from these arithmetic signals, the electro-pneumatic converter 60 converts the current signal into an air signal, and the cooling water temperature of the condenser 23 follows the temperature set value and the condenser 23 The opening degree of the inlet flow rate adjusting valve 26 is controlled.

【0020】従って、媒体タービンの電力負荷設定に追
従して、熱水系統の熱水流量および温度、媒体流量およ
び温度、冷却水流量および温度の変動に対して蒸発器、
予熱器、凝縮器の熱交換による2次遅れ防止、熱交換効
率の向上が図れる。
Therefore, by following the electric power load setting of the medium turbine, the evaporator can respond to fluctuations in the hot water flow rate and temperature, the medium flow rate and temperature, the cooling water flow rate and temperature in the hot water system.
It is possible to prevent secondary delay due to heat exchange between the preheater and the condenser and improve heat exchange efficiency.

【0021】すなわち、本発明においては、媒体タービ
ン発電機21の電力負荷設定に対して、熱水系統の熱水
流量を制御する第1の流量調整弁4の開度制御信号に、
蒸発器5の入口/出口の熱水温度偏差と媒体系統の予熱
器7,8の入口/出口の媒体温度偏差を先行的に各々バ
イアス信号として付加し、媒体タービン発電機21の出
力が電力設定に対して安定に連続制御をはかれるよう
に、蒸発器5、予熱器7,8の過渡的な変動による熱交
換での2次遅れを補償している。
That is, according to the present invention, the opening control signal of the first flow rate adjusting valve 4 for controlling the flow rate of hot water in the hot water system is set for the power load setting of the medium turbine generator 21.
The hot water temperature deviation at the inlet / outlet of the evaporator 5 and the medium temperature deviation at the inlet / outlet of the preheaters 7, 8 of the medium system are added in advance as bias signals, and the output of the medium turbine generator 21 sets the power. The second-order lag in heat exchange due to transient fluctuations of the evaporator 5 and the preheaters 7 and 8 is compensated so that continuous control can be stably performed.

【0022】また、蒸発器5の媒体の蒸発ガス圧力設定
に対して、媒体系統の媒体流量を制御する流量調整弁1
3の開度制御信号に、蒸発器5の入口/出口の熱水温度
偏差と媒体系統の予熱器7,8の入口/出口の媒体温度
偏差を先行的に各々バイアス信号として付加し、蒸発器
5の出口蒸発ガス圧力を蒸発ガス圧力設定に対して安定
に連続制御を図れる様に蒸発器5、予熱器7,8の過渡
的な変動による熱交換での2次遅れを補償している。
Further, the flow rate adjusting valve 1 for controlling the medium flow rate of the medium system with respect to the vapor gas pressure setting of the medium of the evaporator 5
To the opening control signal of 3, the hot water temperature deviation at the inlet / outlet of the evaporator 5 and the medium temperature deviation at the inlet / outlet of the preheaters 7 and 8 of the medium system are added in advance as bias signals. A secondary delay in heat exchange due to transient fluctuations of the evaporator 5 and preheaters 7 and 8 is compensated so that the outlet evaporative gas pressure of 5 can be stably controlled continuously with respect to the evaporative gas pressure setting.

【0023】次に、媒体タービン20の入口ガス圧力の
圧力設定に対して、媒体タービン20のバイパス系統の
圧力を制御する圧力調整弁18の開度信号に、蒸発器5
の入口/出口の熱水温度偏差信号を先行的にバイアス信
号として付加し、媒体タービンの入口圧力を安定に制御
し、媒体タービン発電機21の電力負荷設定に対して過
渡的な媒体流量の変動による蒸発ガス圧力の変動を低減
し媒体タービン発電機21の出力を安定に連続制御する
為に媒体バイパス圧力調整弁18の開度を制御してい
る。
Next, with respect to the pressure setting of the inlet gas pressure of the medium turbine 20, the evaporator 5 is sent to the opening signal of the pressure adjusting valve 18 for controlling the pressure of the bypass system of the medium turbine 20.
The inlet / outlet hot water temperature deviation signal is added as a bias signal in advance to stably control the inlet pressure of the medium turbine, and the transition of the medium flow rate with respect to the power load setting of the medium turbine generator 21 is transient. The opening of the medium bypass pressure adjusting valve 18 is controlled in order to reduce the fluctuation of the evaporative gas pressure due to the above and to stably and continuously control the output of the medium turbine generator 21.

【0024】また、媒体タービン20の排ガスの温度を
一定に冷却するために凝縮器23の出口の冷却水温度設
定に対して、冷却水系統の冷却水量を制御する流量調整
弁26の開度信号に媒体タービン20の出口の排ガス温
度と凝縮器23の出口のホットウェル器内温度との偏差
信号と、冷却水系統の冷却塔タンク器内温度と凝縮器2
3の出口の冷却温度との偏差信号を、バイアス信号とし
て各々付加し、凝縮器23の出口の媒体温度を安定に連
続制御を図れる様に媒体タービン20の排ガス量の過渡
的な変動に対応して冷却水流量を冷却水温度設定値にな
るように制御している。よって、排熱利用発電プラント
の熱水系統、媒体系統、冷却水系統の過渡的な外乱に及
び媒体タービン発電機の電力設定負荷に対して、蒸発器
5、予熱器7,8、凝縮器23での熱交換時の2次遅れ
の補償して熱効率の向上を図り、負荷変動に追従して制
御できる。
Further, in order to cool the temperature of the exhaust gas of the medium turbine 20 constant, the opening signal of the flow rate adjusting valve 26 for controlling the cooling water amount of the cooling water system with respect to the cooling water temperature setting at the outlet of the condenser 23. In addition, the deviation signal between the exhaust gas temperature at the outlet of the medium turbine 20 and the hot well internal temperature at the outlet of the condenser 23, the cooling tower tank internal temperature of the cooling water system, and the condenser 2
A deviation signal from the cooling temperature at the outlet of No. 3 is added as a bias signal to cope with a transient fluctuation of the exhaust gas amount of the medium turbine 20 so that the medium temperature at the outlet of the condenser 23 can be stably and continuously controlled. The cooling water flow rate is controlled so as to reach the cooling water temperature set value. Therefore, with respect to the transient disturbance of the hot water system, the medium system, and the cooling water system of the waste heat utilization power plant and the power setting load of the medium turbine generator, the evaporator 5, the preheaters 7 and 8, and the condenser 23 It is possible to compensate for the secondary delay at the time of heat exchange in order to improve the thermal efficiency and to control by following the load fluctuation.

【0025】したがって、所定の電力負荷を設定した場
合、熱水系統の熱水流量は電力負荷設定の関数となり、
予熱器入口側の熱水流量は、流量調整弁4の開度を設定
値に制御されることになる。更に熱水系統の蒸発器入口
の温度検出器3と予熱器出口の温度検出器9との偏差信
号と、媒体系統のホットウェルタンク器内の温度検出器
24と蒸発器5の入口の温度検出器14の偏差信号を、
先行的にバイアス信号として、各々付加し、蒸発器5、
予熱器7,8で熱交換時の2次遅れ分の補償により媒体
タービン発電機21の設定電力に追従して蒸発器5の入
口の熱水流量調整弁4の開度を設定値になるよう制御す
る。
Therefore, when a predetermined power load is set, the hot water flow rate of the hot water system becomes a function of the power load setting,
The hot water flow rate on the inlet side of the preheater is controlled by setting the opening of the flow rate adjusting valve 4 to a set value. Further, the deviation signal between the temperature detector 3 at the evaporator inlet of the hot water system and the temperature detector 9 at the outlet of the preheater, and the temperature detector 24 in the hot well tank device of the medium system and the temperature detection at the inlet of the evaporator 5 are detected. The deviation signal of the instrument 14
A bias signal is added in advance to each of the evaporators 5,
The preheaters 7 and 8 follow the set power of the medium turbine generator 21 by compensating for the secondary delay at the time of heat exchange so that the opening degree of the hot water flow rate adjusting valve 4 at the inlet of the evaporator 5 becomes a set value. Control.

【0026】また、蒸発器5の出口の媒体の蒸発ガス圧
力を所定値に設定した場合、媒体系統の媒体圧力は、圧
力調整弁18の開度を設定値になるよう制御されること
で調節される。更に、熱水系統の蒸発器5の入口の温度
検出器3と予熱器7,8出口の温度検出器14との偏差
信号と、媒体系統のホットウェルタンク器内の温度検出
器24と蒸発器5の入口の温度検出器14との偏差信号
を先行的にバイアス信号として、各々付加し蒸発器5、
予熱器7,8で熱交換時の2次遅れ分の補償により媒体
蒸発器5の出口蒸発ガス圧力が設定値に追従して、圧力
調整弁18の開度を設定値になるよう制御する。
When the evaporative gas pressure of the medium at the outlet of the evaporator 5 is set to a predetermined value, the medium pressure of the medium system is adjusted by controlling the opening of the pressure regulating valve 18 to the set value. To be done. Further, the deviation signal between the temperature detector 3 at the inlet of the evaporator 5 of the hot water system and the temperature detector 14 at the outlet of the preheaters 7, 8 and the temperature detector 24 and the evaporator in the hot well tank device of the medium system The deviation signal from the temperature detector 14 at the inlet of 5 is added as a bias signal in advance and added to the evaporator 5,
The preheaters 7 and 8 control the outlet evaporation gas pressure of the medium evaporator 5 so as to follow the set value by compensating for the secondary delay at the time of heat exchange so that the opening of the pressure regulating valve 18 becomes the set value.

【0027】次に、媒体タービン20の入口圧力を所定
値に設定した場合、媒体蒸発系統の媒体タービン20の
入口圧力は、媒体タービン20の入口の圧力検出器19
により媒体タービンバイパスラインの圧力調整弁18の
開度を設定値になるよう制御されることにより調節され
る。更に、熱水系統の蒸発器5の入口の温度検出器3と
予熱器7,8の出口の温度検出器9との偏差信号を先行
的バイアス信号として付加し補償することにより、媒体
タービン20の入口圧力が設定値に追従して媒体タービ
ンバイパスラインの圧力調整弁18の開度を設定値にな
るよう制御する。
Next, when the inlet pressure of the medium turbine 20 is set to a predetermined value, the inlet pressure of the medium turbine 20 of the medium evaporation system is the pressure detector 19 at the inlet of the medium turbine 20.
Is adjusted by controlling the opening degree of the pressure adjusting valve 18 of the medium turbine bypass line to a set value. Further, the deviation signal between the temperature detector 3 at the inlet of the evaporator 5 of the hot water system and the temperature detector 9 at the outlet of the preheaters 7 and 8 is added as a preceding bias signal for compensation, thereby compensating for the medium turbine 20. The inlet pressure follows the set value, and the opening of the pressure adjusting valve 18 of the medium turbine bypass line is controlled to reach the set value.

【0028】また、冷却水系統の冷却水温度を所定値に
設定した場合、冷却水系統の凝縮器23の出口温度は、
凝縮器23の入口の冷却水量は、冷却水流量調整弁26
の開度を設定値になるように制御されることにより制御
される。
When the cooling water temperature of the cooling water system is set to a predetermined value, the outlet temperature of the condenser 23 of the cooling water system is
The amount of cooling water at the inlet of the condenser 23 is the cooling water flow rate adjusting valve 26.
It is controlled by controlling the opening degree of the control valve to a set value.

【0029】更に、媒体系統の媒体タービン20の排ガ
ス温度を検出する温度検出器22と、媒体を冷却し貯蔵
するホットウェルタンク11の器内温度を検出する温度
検出器24との偏差信号と、冷却水系統の凝縮器出口温
度を検出する温度検出器27と冷却塔29で冷却された
冷却塔タンクの器内温度を検出する温度検出器30の偏
差信号を先行的にバイアス信号として付加し補償するこ
とにより、媒体冷却温度を規定値に制御し、かつ凝縮器
出口の冷却水温度を凝縮器入口の冷却水流量調整弁26
の開度を設定値になるよう制御する。よって媒体タービ
ン20の電力負荷設定に追従して蒸発器5、予熱器7,
8、凝縮器23の熱交換時の2次遅れ分を先行的に補償
し、かつ過渡的な熱水、低沸点媒体、冷却水温度・流量
の変動に対して制御が図れる。
Further, a deviation signal between a temperature detector 22 for detecting the exhaust gas temperature of the medium turbine 20 of the medium system and a temperature detector 24 for detecting the internal temperature of the hot well tank 11 for cooling and storing the medium, The deviation signal of the temperature detector 27 for detecting the condenser outlet temperature of the cooling water system and the temperature detector 30 for detecting the inside temperature of the cooling tower tank cooled by the cooling tower 29 is added in advance as a bias signal for compensation. By controlling the cooling medium temperature to a specified value, the cooling water temperature at the condenser outlet is adjusted to the cooling water flow rate adjusting valve 26 at the condenser inlet.
The opening degree of is controlled to the set value. Therefore, the evaporator 5, the preheater 7, and the power load setting of the medium turbine 20 are tracked.
8. The secondary delay in heat exchange of the condenser 23 can be compensated for in advance, and transient hot water, low boiling point medium, cooling water temperature / flow rate fluctuations can be controlled.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、排
熱利用システム発電プラントの電力設定負荷に対して、
熱水系統の蒸発器の熱水流量および温度変動による蒸発
器の媒体蒸発圧力変動を防止することができる。更に予
熱器での熱水と媒体との熱交換時の2次遅れによる変動
防止と、過渡的な負荷変動を防止する為に、先行的に熱
水系統の蒸発器入口/出口の温度変化率と媒体系統の媒
体回収したホットウェルタンクの器内温度と蒸発器入口
の温度変化率とを各々バイアス信号として付加し、熱水
流量調整弁の開度を制御するので、媒体タービン発電機
の設定電力に追従した制御が図れる。また、媒体タービ
ン入口圧力の変動を極力小さくなるように熱水系統、媒
体系統、冷却水系統の凝縮器の各熱交換率を向上させる
ことにより、過渡的な負荷変動に対して安定に制御でき
かつ高効率に運用ができる。
As described above, according to the present invention, for the power setting load of the waste heat utilization system power plant,
It is possible to prevent the medium evaporation pressure fluctuation of the evaporator due to the hot water flow rate and temperature fluctuation of the hot water evaporator. Furthermore, in order to prevent fluctuations due to secondary delays during heat exchange between the hot water and the medium in the preheater and to prevent transient load fluctuations, the rate of temperature change at the evaporator inlet / outlet of the hot water system is set in advance. And the temperature change rate at the evaporator inlet and the temperature change rate at the evaporator inlet of the collected hot well tank of the medium system are added as bias signals to control the opening of the hot water flow rate adjusting valve. Control that follows power can be achieved. In addition, by improving the heat exchange rates of the condensers of the hot water system, medium system, and cooling water system so that fluctuations in the medium turbine inlet pressure are minimized, stable control of transient load fluctuations is possible. And it can operate with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の制御装置が適用される排熱利用発電プ
ラントの構成図
FIG. 1 is a configuration diagram of an exhaust heat utilization power plant to which a control device of the present invention is applied.

【図2】本発明の一実施例を示すブロック構成図FIG. 2 is a block diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 熱水ポンプ 2 熱水系統 3,6,9,14,22,24,27,30 温度検
出器 4,13,26 流量調整弁 18 圧力調整弁 5 蒸発器 7,8 予熱器 10 流量検出器 11 ホットウェルタンク 12 媒体ポンプ 15,19 圧力検出器 16 媒体系統 17 バイパス系統 20 媒体タービン 21 発電機 23 凝縮器 25 冷却水ポンプ 28 冷却水系統 29 冷却器 31 制御装置
1 Hot water pump 2 Hot water system 3,6,9,14,22,24,27,30 Temperature detector 4,13,26 Flow rate adjustment valve 18 Pressure adjustment valve 5 Evaporator 7,8 Preheater 10 Flow rate detector 11 hot well tank 12 medium pump 15, 19 pressure detector 16 medium system 17 bypass system 20 medium turbine 21 generator 23 condenser 25 cooling water pump 28 cooling water system 29 cooler 31 controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温熱水を地下の熱水層から汲み上げ低
沸点の媒体を蒸発させる蒸発器および前記媒体を予熱す
る予熱器に供給し前記媒体と熱交換させ還元井に戻す熱
水系統と、前記媒体を媒体タンクから前記予熱器および
前記蒸発器に供給し前記高温熱水と熱交換させそこで発
生した媒体の蒸発ガスを媒体タービンに供給して発電し
発電し終えた排ガスは凝縮器に導き冷却水で低温にした
媒体を前記媒体タンクに回収する媒体系統と、前記凝縮
器で前記媒体タービンの排ガスと熱交換する冷却水を冷
却塔から供給する冷却系統とからなる排熱利用発電プラ
ントの制御装置において、前記蒸発器の入口熱水温度と
出口熱水温度との偏差および前記予熱器の入口媒体温度
と出口媒体温度との偏差を先行的に加味して発電出力が
予め定めた電力設定値になるように熱水流量を制御する
電力負荷制御手段と、前記蒸発器の入口熱水温度と出口
熱水温度との偏差および前記予熱器の入口媒体温度と出
口媒体温度との偏差を先行的に加味して前記蒸発器の出
口圧力が予め定めた出口圧力設定値になるように媒体流
量を制御する蒸発器出口圧力制御手段と、前記蒸発器の
入口熱水温度と出口熱水温度との偏差を先行的に加味し
て前記媒体タービンの入口圧力が予め定めた入口圧力設
定値になるように媒体バイパス流量を制御するタービン
入口圧力制御手段と、前記媒体タービン出口の排ガス温
度と前記凝縮器側の前記媒体タンク内温度との偏差およ
び前記冷却系統の前記冷却塔内温度と前記凝縮器の出口
冷却水温度との偏差を加味し冷却水温度がその設定値に
なるように冷却水流量を制御する冷却水温度制御手段と
を備えたことを特徴とする排熱利用発電プラントの制御
装置。
1. A hot water system that pumps high-temperature hot water from an underground hot water layer to an evaporator that evaporates a medium having a low boiling point and a preheater that preheats the medium, exchanges heat with the medium, and returns to a reduction well. , The medium is supplied from the medium tank to the preheater and the evaporator to exchange heat with the high-temperature hot water, the evaporative gas of the medium generated there is supplied to the medium turbine to generate power, and the exhaust gas that has finished power generation is transferred to the condenser. A waste heat power generation plant comprising a medium system for collecting a medium whose temperature has been lowered by cooling water into the medium tank, and a cooling system for supplying cooling water that exchanges heat with exhaust gas of the medium turbine in the condenser from a cooling tower. In the control device, the electric power whose power generation output is predetermined in consideration of the deviation between the inlet hot water temperature and the outlet hot water temperature of the evaporator and the deviation between the inlet medium temperature and the outlet medium temperature of the preheater in advance. Configuration Power load control means for controlling the flow rate of hot water so that the value becomes a value, the deviation between the inlet hot water temperature and the outlet hot water temperature of the evaporator, and the deviation between the inlet medium temperature and the outlet medium temperature of the preheater are preceded. In addition, the evaporator outlet pressure control means for controlling the medium flow rate so that the outlet pressure of the evaporator becomes a predetermined outlet pressure set value, and the inlet hot water temperature and the outlet hot water temperature of the evaporator Of the medium turbine outlet pressure control means for controlling the medium bypass flow rate so that the inlet pressure of the medium turbine reaches a predetermined inlet pressure set value by taking into account the deviation of Cooling water flow rate so that the cooling water temperature becomes its set value, taking into consideration the deviation between the temperature inside the medium tank on the condenser side and the deviation between the temperature inside the cooling tower of the cooling system and the outlet cooling water temperature of the condenser. Control the cooling Control device for waste heat utilization power plant, characterized in that a temperature control means.
JP5722792A 1992-02-12 1992-02-12 Controller for power plant utilizing exhaust heat Pending JPH05222906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5722792A JPH05222906A (en) 1992-02-12 1992-02-12 Controller for power plant utilizing exhaust heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5722792A JPH05222906A (en) 1992-02-12 1992-02-12 Controller for power plant utilizing exhaust heat

Publications (1)

Publication Number Publication Date
JPH05222906A true JPH05222906A (en) 1993-08-31

Family

ID=13049648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5722792A Pending JPH05222906A (en) 1992-02-12 1992-02-12 Controller for power plant utilizing exhaust heat

Country Status (1)

Country Link
JP (1) JPH05222906A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167241A (en) * 2012-01-20 2013-08-29 Hitachi Zosen Corp Waste heat recovery device and prime mover system
KR101325350B1 (en) * 2011-09-07 2013-11-08 가부시키가이샤 고베 세이코쇼 Power generating apparatus
KR101370451B1 (en) * 2011-03-30 2014-03-06 한국에너지기술연구원 Power generation system of organic rankine cycle using waste heat
KR101375536B1 (en) * 2011-03-30 2014-03-17 한국에너지기술연구원 Power generation system of organic rankine cycle using seawater heat
JP2014092040A (en) * 2012-11-01 2014-05-19 Toshiba Corp Power generation system
JP2014194210A (en) * 2013-02-26 2014-10-09 Kobe Steel Ltd Binary power generator operation method and binary power generator
CN105089716A (en) * 2014-05-09 2015-11-25 株式会社神户制钢所 Thermal energy recovery device and start-up method of thermal energy recovery device
KR20150136908A (en) * 2014-05-28 2015-12-08 한국전력공사 Integrated Control System for Supercritical Brayton Cycle Power plant using Variable Heat Source
JP2019011710A (en) * 2017-06-30 2019-01-24 株式会社神戸製鋼所 Internal combustion engine mounted with engine with supercharger
KR20190065442A (en) * 2016-10-24 2019-06-11 가부시키가이샤 고베 세이코쇼 Heat energy recovery device and its operation method
JP2019214988A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Device for processing exhaust steam from steam turbine in geothermal power generation equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370451B1 (en) * 2011-03-30 2014-03-06 한국에너지기술연구원 Power generation system of organic rankine cycle using waste heat
KR101375536B1 (en) * 2011-03-30 2014-03-17 한국에너지기술연구원 Power generation system of organic rankine cycle using seawater heat
KR101325350B1 (en) * 2011-09-07 2013-11-08 가부시키가이샤 고베 세이코쇼 Power generating apparatus
JP2013167241A (en) * 2012-01-20 2013-08-29 Hitachi Zosen Corp Waste heat recovery device and prime mover system
JP2014092040A (en) * 2012-11-01 2014-05-19 Toshiba Corp Power generation system
JP2014194210A (en) * 2013-02-26 2014-10-09 Kobe Steel Ltd Binary power generator operation method and binary power generator
CN105089716A (en) * 2014-05-09 2015-11-25 株式会社神户制钢所 Thermal energy recovery device and start-up method of thermal energy recovery device
KR20150136908A (en) * 2014-05-28 2015-12-08 한국전력공사 Integrated Control System for Supercritical Brayton Cycle Power plant using Variable Heat Source
KR20190065442A (en) * 2016-10-24 2019-06-11 가부시키가이샤 고베 세이코쇼 Heat energy recovery device and its operation method
JP2019011710A (en) * 2017-06-30 2019-01-24 株式会社神戸製鋼所 Internal combustion engine mounted with engine with supercharger
JP2019214988A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Device for processing exhaust steam from steam turbine in geothermal power generation equipment

Similar Documents

Publication Publication Date Title
AU2012214955B2 (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2021105516A (en) Cooling water system facility, control device, control method, and control program for cooling water system facility, and control device, control method, and control program for cooling tower
US5916251A (en) Steam flow regulation in an absorption chiller
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JPS628606B2 (en)
JPH06241007A (en) Waste heat utilization system controller
JPH07180979A (en) Power generating control device utilizing waste heat
JPH0518212A (en) Waste heat utilizing power generation control device
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPS61152916A (en) Binary cycle power generation plant
JPH08135411A (en) Control device of exhaust heat using power plant
JPH05118203A (en) Power generation control device in exhaust heat utilization system
JPH0749005A (en) Exhaust heat recovery power generation control device
JPH10227203A (en) Cogeneration system
JPH0529013A (en) Fuel cell power generation system
JP3095575B2 (en) Cycle plant
CN111794820B (en) Organic Rankine cycle system
JPH05340205A (en) Controller for combined power generation plant
JPH01273936A (en) Heating and cooling system using hot water in heat and power generating plant
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JP2960607B2 (en) Cogeneration system
JP2645128B2 (en) Coal gasification power plant control unit
JPH10184316A (en) Power generation control device utilizing exhaust heat
JPS6112195B2 (en)