JPS61152916A - Binary cycle power generation plant - Google Patents
Binary cycle power generation plantInfo
- Publication number
- JPS61152916A JPS61152916A JP27360584A JP27360584A JPS61152916A JP S61152916 A JPS61152916 A JP S61152916A JP 27360584 A JP27360584 A JP 27360584A JP 27360584 A JP27360584 A JP 27360584A JP S61152916 A JPS61152916 A JP S61152916A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heater
- evaporator
- heat source
- intermediate medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/16—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野〕
本発明は低沸点の有機媒体を作動媒体として用いたバイ
ナリ−サイクル発電プラントに関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a binary-cycle power plant using a low-boiling organic medium as the working medium.
従来のバイナリ−サイクル発電プラントは、一般に第6
図に示すように導管1にて高温熱源(地熱あるいは工場
廃熱等)流体を蒸発器2に導びき、2次側の低沸点作動
媒体を加熱・沸騰させて後、予熱器4に供給し凝縮器を
出た作動媒体を飽和温度近辺まで予熱して、系外(還元
井、大気、ピッ)#)K排出される。一方、蒸発器2で
沸騰した作動媒体は止め弁、加減弁を経由してタービン
5に供給され、膨脹した後凝縮器6で冷却・液化され、
作動媒体循環ポンプ7によって、予熱器41C送り込ま
れて2次側閉ループを形成している。Conventional binary-cycle power plants typically
As shown in the figure, a high-temperature heat source (such as geothermal heat or factory waste heat) fluid is led to an evaporator 2 through a conduit 1, and after heating and boiling a low boiling point working medium on the secondary side, it is supplied to a preheater 4. The working medium exiting the condenser is preheated to near saturation temperature and is discharged outside the system (reduction well, atmosphere, pipe). On the other hand, the working medium boiled in the evaporator 2 is supplied to the turbine 5 via a stop valve and a control valve, and after being expanded, it is cooled and liquefied in a condenser 6.
The working medium circulation pump 7 sends the preheater 41C to form a secondary closed loop.
このようなバイナリ−サイクル発電プラントでは、ある
温度の高温熱源に対して、最大出力が得られる作動媒体
最適蒸発温度が存在し、エネルギーの有効利用と経済性
の観点から、一般的には、この最大出力点近辺の蒸発温
度が、設計点として選択される。In such a binary cycle power plant, there is an optimum evaporation temperature of the working medium at which the maximum output can be obtained for a high-temperature heat source at a certain temperature, and from the viewpoint of effective energy use and economic efficiency, this temperature is generally determined. The evaporation temperature near the maximum power point is selected as the design point.
この最適蒸発温度は、高温熱源の温度が上昇するにつれ
て上昇する。しかし、熱特性が良好で安全性が高く安価
な低沸点有機媒体は7般的に熱安定限界温度が低く、こ
の温度を越えると媒体が劣化・分解し始め不凝縮ガスが
発生してプラント性能の低下を来たしたり、分解生成物
が他の分子と反応して腐食性物質となり、プラント構成
機器を腐食する可能性が急増する。This optimum evaporation temperature increases as the temperature of the high temperature heat source increases. However, low-boiling point organic media that have good thermal properties, are highly safe, and are inexpensive generally have a low thermal stability limit temperature, and once this temperature is exceeded, the media begins to deteriorate and decompose, producing noncondensable gases and improving plant performance. decomposition products may react with other molecules to become corrosive substances, rapidly increasing the possibility of corroding plant components.
一方、熱安定限界温度の高い媒体は、一般的に上記の熱
特性も悪く、入手も容易でないため高価なものとなって
いる。このような高価な媒体を使用することは、バイナ
リ−サイクル発電プラントの運転費、メンテナンス費の
増大を招き、熱特性が悪い場合は熱交換機器の大形化あ
るいは特殊形状の伝熱管使用等、建設コストの増大につ
ながシ経済的に不利となる0
従って前に述べたような比較的熱安定限界温度の低い、
一般に良く使用されている媒体、例えばR−114(D
ichlorotetrafluoroethane)
、R−113(Trichlorotrifluoro
ethane ) 、R−11(Trichlorof
luoromethane )等の安価で入手しやすく
、安全性の高い媒体を使用するのが望ましい。On the other hand, media with a high thermal stability limit temperature generally have poor thermal properties and are not easily available, making them expensive. The use of such expensive media increases the operating and maintenance costs of the binary cycle power plant, and if the thermal characteristics are poor, it may be necessary to increase the size of heat exchange equipment or use specially shaped heat exchanger tubes. Therefore, as mentioned earlier, the thermal stability limit temperature is relatively low.
Commonly used media, such as R-114 (D
ichlorotetrafluoroethane)
, R-113 (Trichlorotrifluoro
ethane), R-11 (Trichlorof
It is desirable to use a medium that is inexpensive, easily available, and highly safe, such as luoromethane.
このため高温熱源の温度が上昇し九場合、多少の熱サイ
クル上のメリットを犠牲にしても、すなわち前述した最
適蒸発温度を外れても、蒸発温度を使用媒体の熱安定限
界温度以下におさえる必要がある。For this reason, when the temperature of the high-temperature heat source increases, it is necessary to keep the evaporation temperature below the thermal stability limit temperature of the medium used, even if it sacrifices some benefits in terms of thermal cycles, that is, even if it deviates from the optimum evaporation temperature mentioned above. There is.
その場合、高温熱源側の温度と作動媒体蒸発温度との差
が開くにつれて、蒸発器伝熱管表面と作動媒体の飽和温
度との差が大きくなって第7図に示すような極大熱負荷
点aを越えると、遷移沸騰領域に入ると沸騰熱伝達の安
定性が損われ熱負荷が急速に低下し蒸発器の伝熱特性も
低下する。とこで熱負荷とは伝熱管を通して熱源流体か
ら作動媒体に流れる熱量に゛相当する。この対策として
は、高温熱源温度を排出側と混ぜて下げるか、劣化した
媒体の回収サイクルを追加することが考えられるが、前
者は熱源エネルギーの無駄が多くなり、後者はプラント
構成機器、補機動力の増大と共に交換媒体の費用も増し
、運転管理が複雑で手間のかかるものとなる。In that case, as the difference between the temperature on the high-temperature heat source side and the working medium evaporation temperature increases, the difference between the evaporator heat exchanger tube surface and the saturation temperature of the working medium increases, and the maximum heat load point a as shown in Fig. 7 increases. When the temperature exceeds 100% and enters the transition boiling region, the stability of boiling heat transfer is impaired, the heat load rapidly decreases, and the heat transfer characteristics of the evaporator also deteriorate. Here, the heat load corresponds to the amount of heat flowing from the heat source fluid to the working medium through the heat transfer tube. Possible countermeasures to this problem include lowering the temperature of the high-temperature heat source by mixing it with the discharge side, or adding a recovery cycle for degraded media, but the former results in a lot of wasted heat source energy, while the latter As the power increases, so does the cost of the exchange medium, making operational management complex and time-consuming.
本発明の目的は、バイナリ−サイクル発電プラントにお
いて熱源温度が高い場合であっても、高価で熱特性の悪
い媒体を使用したり、無駄に熱を捨てて熱源温度を下げ
九りしないで、安1fffiで入手容易な媒体を使用し
て十分な信頼性と性能を得ることのできる熱交換装置を
提供することにある。An object of the present invention is to reduce the temperature of the heat source in a binary cycle power plant even when the temperature of the heat source is high, without using an expensive medium with poor thermal characteristics or wastefully discarding heat to lower the heat source temperature. It is an object of the present invention to provide a heat exchange device that can obtain sufficient reliability and performance using a medium that is easily available at 1fffi.
上記目的を達成するために本発明のバイナリ−サイクル
発電プラントは、蒸発器に供給される高温熱源温度が高
い場合に、熱源と作動媒体の間に中間媒体を介在させ、
これを経由して熱交換を行うことにより、媒体の蒸発温
度を熱安定限界内におさえて、熱源エネルギーの有効利
用をはかろうとするものである。In order to achieve the above object, the binary-cycle power plant of the present invention interposes an intermediate medium between the heat source and the working medium when the temperature of the high-temperature heat source supplied to the evaporator is high,
By performing heat exchange through this, the evaporation temperature of the medium is kept within the thermal stability limit, thereby making effective use of the heat source energy.
〔発明の実施例〕
以下に本発明の一実施例を第1図によって説明する。第
1図において第6図と同一部分には同一符号を付しその
説明は省略する0図において蒸発系統は加熱器2aと蒸
発器2b K分かれており、両者は並列に予熱系統に連
絡している。[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. In Fig. 1, the same parts as in Fig. 6 are given the same reference numerals, and their explanations are omitted. There is.
導管1から供給された熱源流、体(熱水、排ガスetc
)は、先ず加熱器ZaK入り、中間媒体に熱を与えた
後、予熱器4に供給される。加熱器2aによって熱を与
えられた中間媒体は、導管13を介して蒸発器2bに供
給されて作動媒体を加熱・沸騰させ、中間媒体循環ポン
プ9によって加熱器2aにもどる。Heat source stream, body (hot water, exhaust gas, etc.) supplied from conduit 1
) first enters the heater ZaK, gives heat to the intermediate medium, and then is supplied to the preheater 4. The intermediate medium given heat by the heater 2a is supplied to the evaporator 2b via the conduit 13 to heat and boil the working medium, and is returned to the heater 2a by the intermediate medium circulation pump 9.
なおこの循環ポンプ9は加熱器2aと蒸発器2bの配置
によっては、落差(蒸発器2bを加熱器2aより高くす
る)を利用することにより無くすことも可能である。中
間媒体は加熱器コスト、循環ポンプ動力低減のため伝熱
特性が良く、比熱が大きく、密度の小さいものが望まし
いが、経済性及び取扱いの点では水、あるいは空気等が
良い。中間媒体の循環量は、作動媒体の蒸発温度と高温
熱源−作動媒体間の熱交換量から、極大熱負荷点以下と
なる中間媒体温度を求め高温熱源−中間媒体の交換熱量
(高温熱源−作動媒体間と同じ)から求める0作勧媒体
蒸発温度は熱安定限界温度と前に述べた最適蒸発温度の
うち低いほうで決定される。極大熱負荷となる被加熱、
加熱側媒体の温度差は実験あるいは近似計算で求めるこ
とができる。Note that depending on the arrangement of the heater 2a and the evaporator 2b, the circulation pump 9 can be eliminated by using a head difference (the evaporator 2b is made higher than the heater 2a). The intermediate medium preferably has good heat transfer characteristics, large specific heat, and low density in order to reduce heater cost and circulation pump power, but from the viewpoint of economy and handling, water, air, etc. are preferable. The circulating amount of the intermediate medium is determined by determining the intermediate medium temperature that is below the maximum heat load point from the evaporation temperature of the working medium and the amount of heat exchange between the high temperature heat source and the working medium. The 0 operation recommended medium evaporation temperature determined from the above (same as for the medium) is determined by the lower of the thermal stability limit temperature and the optimum evaporation temperature mentioned above. Heated objects with maximum heat load,
The temperature difference in the heating medium can be determined by experiment or approximate calculation.
第2図に本発明の作用をあられす成熱線図、熱源、中間
媒体共に水の場合について示す。縦軸は流体温度であり
、横軸は各作動流体の熱量授受をあられす収熱量である
。また矢印はこのサイクルプロセスの進行方向を示す。FIG. 2 shows a heat distribution diagram showing the effect of the present invention in the case where both the heat source and the intermediate medium are water. The vertical axis is the fluid temperature, and the horizontal axis is the amount of heat absorbed by each working fluid. The arrows also indicate the direction of progress of this cyclic process.
太い実線が本発明によるプロセスを、太い破線が従来方
法によるプロセスを示す。The thick solid line shows the process according to the present invention, and the thick broken line shows the process according to the conventional method.
第2図には第1図での各状態を示す系統上の位置を同一
番号で示しである。第2図左側の2本の実線は、加熱器
2aKおける熱源流体と中間媒体8との熱の授受を示す
0加熱2aに入った熱源流体は10から11に温度降下
し、その熱量で中間媒体を12から13に温度上昇させ
る。同図その右側は蒸発器2b 、予熱器4における各
流体の熱の授受を示す。蒸発器2bでは中間媒体が13
から12(熱的には12とほぼ同じ)に温度降下しその
熱量で作動媒体を飽和液近辺15から飽和蒸気14に加
熱・沸騰させる。沸騰した作動媒体はタービン5に入り
、膨脹して軸動力を発生する0第2図のQが有効に動力
に変換された熱量をあられしている。一方、加熱器2a
を出た熱源流体は予熱器4に入って凝縮器6から出た作
動媒体を17から15に予熱する。In FIG. 2, the positions on the system showing each state in FIG. 1 are shown with the same numbers. The two solid lines on the left side of Fig. 2 indicate the exchange of heat between the heat source fluid and the intermediate medium 8 in the heater 2aK. The temperature is increased from 12 to 13. The right side of the figure shows the exchange of heat between each fluid in the evaporator 2b and preheater 4. In the evaporator 2b, the intermediate medium is 13
The temperature drops from 15 to 12 (thermally the same as 12), and the working medium is heated and boiled from near saturated liquid 15 to saturated steam 14 using the amount of heat. The boiled working medium enters the turbine 5 and expands to generate shaft power.Q in FIG. 2 indicates the amount of heat that is effectively converted into power. On the other hand, the heater 2a
The heat source fluid exiting the condenser 6 enters the preheater 4 and preheats the working medium exiting the condenser 6 from 17 to 15.
ところが従来のサイクルプロセスでは熱源流体1の温度
を13の近くまで下げなければならず、蒸発器ピンチポ
イントの制約から蒸発温度も下げ丞ことになり、第2図
、第3図の破線で示すように有効熱落差バが紅′に、動
力変換エネルギーもQがQに減少する。また他の実施例
として高温熱源の温度が大きく変動するような産業プロ
セス廃熱回収プラント等において、第4図に破線で示す
ような連絡管18.19及び弁20〜25を追加して設
け、高温熱源の温度が低い場合は、弁20.22.23
.25を閉じ、弁21.24を開いて従来と同じサイク
ルプロセスを行わせ、熱源の温度が高くなると、弁21
.24を閉じ、弁20.22.23.25を開いて中間
媒体を利用したサイクルプロセスに切り換えるようにす
れば、効率的に運転できる範囲が増大する。However, in the conventional cycle process, the temperature of the heat source fluid 1 must be lowered to near 13, and the evaporation temperature also has to be lowered due to the constraints of the evaporator pinch point, as shown by the broken line in Figures 2 and 3. When the effective heat drop becomes red, the power conversion energy also decreases from Q to Q. As another example, in an industrial process waste heat recovery plant where the temperature of a high-temperature heat source fluctuates greatly, connecting pipes 18, 19 and valves 20 to 25 as shown by broken lines in FIG. 4 are additionally provided, If the temperature of the high temperature heat source is low, valve 20.22.23
.. 25 is closed and valve 21.24 is opened to perform the same cycle process as before, and when the temperature of the heat source increases, valve 21.
.. By closing valve 24 and opening valves 20, 22, 23, and 25 to switch to a cyclic process using an intermediate medium, the range of efficient operation is increased.
第4図は従来サイクルプロセスを行っている場合を示し
黒塗りの弁は閉じている状態を示す。この場合熱源流体
と中間媒体は同糧の流体であることが望ましいが、異種
でも可能である。FIG. 4 shows a case in which a conventional cycle process is performed, and the black valves are shown in a closed state. In this case, it is desirable that the heat source fluid and the intermediate medium be of the same type, but they may be of different types.
さらに他の実施例として、上記2つの実施例の熱交装置
で運転中にさらに熱源の温度上昇が続く場合に備えて、
第5図に示すように中間媒体の蒸発器2bへの入口温度
(加熱器2aかもの出口温度と同じ第1図13点)の温
度Tmeaを温度検出器26で検出し、これを比較器2
7 K入れて設定値Tsetとの偏差を求め、この偏差
を零とするために必要な中間媒体循環ポンプ9の回転数
変化量を演算器28で演算して、コントローラ29に指
令を出して、同コントローラがポンプ90回転数を制御
することKよって、中間媒体循環量を変化させて中間媒
体8の蒸発器2&の入口温度を設定値以内となるよう調
整すれば、与えられたプラントシステムを作動媒体の熱
安定限界を越えないで、最適に近い状態で効率運用する
ことができ、運転員の負担も大いに軽減される。中間媒
体循環量は、ポンプ回転数の代りに調整弁を用け、その
開度を変化させて調整することもできる。この場合のコ
ントローラ29は調整弁開度の変化量を演算し、その指
令に基づいて図示しない調整弁の開度を操作することK
なる。本発明は、シングルボイリングシステム(蒸発器
が1種類のみ)だけではなく、デュアルボイリングシス
テム(蒸発器が高圧、低圧2種類)、デュアルランキン
サイクル、2流体サイクルに対しても適用可能である。As yet another embodiment, in case the temperature of the heat source continues to rise during operation of the heat exchanger of the above two embodiments,
As shown in FIG. 5, the temperature Tmea of the inlet temperature of the intermediate medium to the evaporator 2b (point 13 in FIG. 1, which is the same as the outlet temperature of the heater 2a) is detected by the temperature detector 26,
7 K, calculate the deviation from the set value Tset, calculate the amount of rotational speed change of the intermediate medium circulation pump 9 necessary to make this deviation zero using the calculator 28, and issue a command to the controller 29. The same controller controls the rotation speed of the pump 90. Therefore, by changing the circulation rate of the intermediate medium and adjusting the inlet temperature of the evaporator 2 & of the intermediate medium 8 to be within the set value, a given plant system can be operated. It is possible to operate efficiently in near-optimal conditions without exceeding the thermal stability limit of the medium, and the burden on the operator is greatly reduced. The intermediate medium circulation amount can also be adjusted by using a regulating valve instead of the pump rotation speed and changing its opening degree. In this case, the controller 29 calculates the amount of change in the opening degree of the regulating valve, and operates the opening degree of the regulating valve (not shown) based on the command.
Become. The present invention is applicable not only to single boiling systems (with only one type of evaporator), but also to dual boiling systems (with two types of evaporators, high pressure and low pressure), dual Rankine cycles, and two-fluid cycles.
以上のように本発明によれば、高熱源の温度が高い場合
でも、安価が入手が容易な、且つ特性の良く知られた安
全性の高い有機媒体を用いて広い温度領域に亘って効率
の高いバイナリ−サイクル発電プラントを提供できる。As described above, according to the present invention, even when the temperature of the high heat source is high, efficiency can be improved over a wide temperature range by using a highly safe organic medium that is inexpensive, easily available, and has well-known characteristics. A high binary cycle power plant can be provided.
第1図は本発明の一実施例を示すバイナリ−サイクル発
電プラントの構成図、第2図は第1図に示した熱サイク
ルプロセスを示す欣然状態を説明するためのグラフ、第
3図は本発明における作動媒体のタービン内膨脹を示す
i−8線を表わすグラフ、第4図は本発明の他の実施例
を示すバイナリ−サイクル発電プラントの構成図−第5
図は第1図および第4図に示した本発明に適用する制御
回路を示すブロック図、第6図は従来技術によるバイナ
リ−サイクル発電プラントを示す図、第7図は伝熱管表
面温度と液の飽和温度との差に対する熱負荷(熱交換量
)の変化を示す沸騰曲線を表わすグラフである。
2・・・蒸発器、2a・・・加熱器、2b・・・蒸発器
、4・・・予熱器、5・・・タービン、6・・・凝縮器
、7・・・作動媒体循環ポンプ、9・・・中間媒体循環
ポンプ10・・・高温熱源流体の加熱器入口点、11・
・・高温熱源流体の加熱器出口点、11・・・高温熱源
流体の蒸発器入口点、12・・・中間媒体の加熱器入口
点、
12′・・・中間媒体の蒸発器出口点、13・・・中間
媒体の加熱器出口点(蒸発器入口点)、14・・・作動
媒体の蒸発器出口点、
14′・・・作動媒体のタービン入口点、15・・・作
動媒体の蒸発器入口点、
16・・・作動媒体のタービン出口点(凝縮器入口点)
、17・・・作動媒体の予熱器入口点、
18.19・・・高温熱源流体用連絡管、20.21.
22.23.24.25・・・止め弁、26・・・温度
検出器、27・・・比較器、28・・・演算器、29・
・・コントローラ、代理人 弁理士 則 近 憲 佑
(ほか1名)第1m
第21!1
収熟量
第3図
エントロピー(s)−一
第5図Fig. 1 is a block diagram of a binary-cycle power generation plant showing an embodiment of the present invention, Fig. 2 is a graph for explaining the normal state of the thermal cycle process shown in Fig. 1, and Fig. 3 is a diagram of the present invention. A graph showing the i-8 line showing the expansion of the working medium in the turbine in the invention, FIG. 4 is a block diagram of a binary cycle power plant showing another embodiment of the invention - FIG.
The figure is a block diagram showing the control circuit applied to the present invention shown in Figs. 1 and 4, Fig. 6 is a diagram showing a conventional binary-cycle power generation plant, and Fig. 7 is a diagram showing the heat exchanger tube surface temperature and liquid 2 is a graph showing a boiling curve showing a change in heat load (heat exchange amount) with respect to a difference from a saturation temperature. 2... Evaporator, 2a... Heater, 2b... Evaporator, 4... Preheater, 5... Turbine, 6... Condenser, 7... Working medium circulation pump, 9... Intermediate medium circulation pump 10... Heater inlet point of high temperature heat source fluid, 11.
...Heater exit point of high temperature heat source fluid, 11...Evaporator inlet point of high temperature heat source fluid, 12...Heater inlet point of intermediate medium, 12'...Evaporator exit point of intermediate medium, 13 ...Heater exit point of intermediate medium (evaporator inlet point), 14... Evaporator exit point of working medium, 14'... Turbine inlet point of working medium, 15... Evaporator of working medium Inlet point, 16...Turbine outlet point of working medium (condenser inlet point)
, 17... Preheater inlet point of working medium, 18.19... Communication pipe for high temperature heat source fluid, 20.21.
22.23.24.25... Stop valve, 26... Temperature detector, 27... Comparator, 28... Arithmetic unit, 29.
・・Controller, agent Patent attorney Noriyuki Chika
(1 other person) 1st m 21! 1 Yield Figure 3 Entropy (s)-1 Figure 5
Claims (1)
温熱源からの熱を与えて蒸発器で蒸発せしめ、それをタ
ービンに供給して膨脹させ動力を得るバイナリーサイク
ル発電プラントにおいて、作動媒体を加熱・沸騰させる
熱源側の温度を下げるため、別の中間媒体を用いて、蒸
発器と並例に加熱器を設け、この加熱器で高温熱源の熱
を中間媒体に与え、中間媒体が蒸発器に供給されて作動
媒体を加熱、沸騰させることを特徴とするバイナリーサ
イクル発電プラント。 2 高温熱源の加熱器入口管と中間媒体の蒸発器入口管
とを弁を介して連絡管で継ぎ、高温熱源の加熱器出口管
と中間媒体の蒸発器出口管とを弁を介して連絡管で継ぎ
、前者の連絡管と加熱器入口管との結合点から加熱器入
口迄の間及び前者の連絡管と蒸発器入口管との結合点か
ら加熱器出口迄の間及び後者の連絡管と加熱器出口管と
の結合点から加熱出口迄の間及び後者の連絡管と蒸発器
出口管との結合点から加熱器入口迄の間にそれぞれ弁を
設け、高温熱源の温度が低い場合は蒸発器のみの系統を
、高い場合は、加熱器と蒸発器の両系統に切り換えて運
転することを特徴とする特許請求の範囲第1項記載のバ
イナリーサイクル発電プラント。 3 加熱器、蒸発器の両系統が運転されている場合にお
いて、中間媒体の加熱器出口または蒸発器入口の温度を
計測する手段と、計測された濃度と設定温度と比較し、
その偏差を無くすための中間媒体循環量を演算する演算
手段と、上記循環量となるよう中間媒体の流量を制御す
る制御手段とを備えたことを特徴とする特許請求の範囲
第2項記載のバイナリーサイクル発電プラント。[Claims] 1. A binary cycle power generation plant that uses a low boiling point organic medium as a working medium, applies heat from a high-temperature heat source to it, evaporates it in an evaporator, supplies it to a turbine, expands it, and generates power. In order to lower the temperature on the heat source side that heats and boils the working medium, a heater is provided in parallel to the evaporator using another intermediate medium, and this heater applies heat from the high-temperature heat source to the intermediate medium, A binary cycle power generation plant characterized in that an intermediate medium is supplied to an evaporator to heat and boil a working medium. 2 The heater inlet pipe for the high-temperature heat source and the evaporator inlet pipe for the intermediate medium are connected via a valve, and the heater outlet pipe for the high-temperature heat source and the intermediate medium evaporator outlet pipe are connected via a valve. between the connection point of the former communication pipe and the heater inlet pipe to the heater inlet, between the connection point of the former communication pipe and the evaporator inlet pipe to the heater outlet, and with the latter communication pipe. Valves are provided between the connection point with the heater outlet pipe and the heating outlet, and between the connection point with the latter communication pipe and the evaporator outlet pipe and the heater inlet, and when the temperature of the high-temperature heat source is low, the evaporation 2. The binary cycle power generation plant according to claim 1, characterized in that the system for only a heater is switched to a system for both a heater and an evaporator for operation when the temperature is high. 3. When both the heater and evaporator systems are in operation, a means for measuring the temperature of the intermediate medium at the heater outlet or evaporator inlet, and comparing the measured concentration with the set temperature,
Claim 2, characterized in that it is equipped with calculation means for calculating the intermediate medium circulation amount to eliminate the deviation, and control means for controlling the flow rate of the intermediate medium so that the circulation amount becomes the above-mentioned circulation amount. Binary cycle power plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27360584A JPS61152916A (en) | 1984-12-27 | 1984-12-27 | Binary cycle power generation plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27360584A JPS61152916A (en) | 1984-12-27 | 1984-12-27 | Binary cycle power generation plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61152916A true JPS61152916A (en) | 1986-07-11 |
Family
ID=17530084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27360584A Pending JPS61152916A (en) | 1984-12-27 | 1984-12-27 | Binary cycle power generation plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61152916A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63123988A (en) * | 1986-11-08 | 1988-05-27 | Kawasaki Heavy Ind Ltd | Plant for cooling corrosive high-temperature fluid |
JP2013124568A (en) * | 2011-12-14 | 2013-06-24 | Takuma Co Ltd | Waste power generation system |
KR20160066540A (en) * | 2016-05-27 | 2016-06-10 | 현대중공업 주식회사 | Supercritical Carbon Dioxide Power Generation System and Ship having the same |
JP2017129059A (en) * | 2016-01-20 | 2017-07-27 | 東芝三菱電機産業システム株式会社 | Heat recovery system and control device |
JP2019094843A (en) * | 2017-11-22 | 2019-06-20 | 株式会社神戸製鋼所 | Thermal energy recovery system |
JP2019124188A (en) * | 2018-01-18 | 2019-07-25 | 株式会社神戸製鋼所 | Thermal energy recovery device |
JP2021515138A (en) * | 2018-02-27 | 2021-06-17 | オルカン エネルギー アーゲー | Drive unit with integrated ORC |
-
1984
- 1984-12-27 JP JP27360584A patent/JPS61152916A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63123988A (en) * | 1986-11-08 | 1988-05-27 | Kawasaki Heavy Ind Ltd | Plant for cooling corrosive high-temperature fluid |
JP2013124568A (en) * | 2011-12-14 | 2013-06-24 | Takuma Co Ltd | Waste power generation system |
JP2017129059A (en) * | 2016-01-20 | 2017-07-27 | 東芝三菱電機産業システム株式会社 | Heat recovery system and control device |
KR20160066540A (en) * | 2016-05-27 | 2016-06-10 | 현대중공업 주식회사 | Supercritical Carbon Dioxide Power Generation System and Ship having the same |
JP2019094843A (en) * | 2017-11-22 | 2019-06-20 | 株式会社神戸製鋼所 | Thermal energy recovery system |
JP2019124188A (en) * | 2018-01-18 | 2019-07-25 | 株式会社神戸製鋼所 | Thermal energy recovery device |
JP2021515138A (en) * | 2018-02-27 | 2021-06-17 | オルカン エネルギー アーゲー | Drive unit with integrated ORC |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3006146A (en) | Closed-cycle power plant | |
JPS60147577A (en) | Power device | |
JP2013148438A (en) | Emergency cooling system, and nuclear reactor facility | |
JPS61152916A (en) | Binary cycle power generation plant | |
KR100612177B1 (en) | Feedforward control for absorption chiller | |
US5916251A (en) | Steam flow regulation in an absorption chiller | |
JP2003161164A (en) | Combined-cycle power generation plant | |
RU2276813C1 (en) | Nuclear power plant and steam turbine | |
JPH05222906A (en) | Controller for power plant utilizing exhaust heat | |
KR102155840B1 (en) | Steam cycle-based system and method for condensate water recovery from flue gas | |
CN206753663U (en) | A kind of hot water converts mechanical dynamic system | |
CN108343480B (en) | Condensing back-pumping heat supply system based on double steam extraction of two units and adjusting method | |
CN112855297A (en) | Heat source shunting type waste heat power generation system and optimization control method thereof | |
JPS6157446B2 (en) | ||
CN110220177A (en) | The water side system and operation method of solar light-heat power-generation fused salt steam generating system | |
JP2002156493A (en) | Site heat supply equipment of nuclear power station | |
CN113550800B (en) | Marine organic Rankine cycle non-azeotropic working medium component adjusting system | |
JPH11337214A (en) | Absorption cold/hot water device and operation thereof | |
CN216346223U (en) | Cooling system applied to dust at inlet of waste heat boiler | |
JP3095575B2 (en) | Cycle plant | |
JPH08135411A (en) | Control device of exhaust heat using power plant | |
JPH06241007A (en) | Waste heat utilization system controller | |
JP2901430B2 (en) | Control method of absorption heat pump | |
JP3659659B2 (en) | Exhaust gas boiler | |
JPH05272306A (en) | Exhaust heat utilizing power generation control device |