JP3095575B2 - Cycle plant - Google Patents

Cycle plant

Info

Publication number
JP3095575B2
JP3095575B2 JP05110908A JP11090893A JP3095575B2 JP 3095575 B2 JP3095575 B2 JP 3095575B2 JP 05110908 A JP05110908 A JP 05110908A JP 11090893 A JP11090893 A JP 11090893A JP 3095575 B2 JP3095575 B2 JP 3095575B2
Authority
JP
Japan
Prior art keywords
pressure condenser
working fluid
heat exchanger
liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05110908A
Other languages
Japanese (ja)
Other versions
JPH06299806A (en
Inventor
真人 滝
康 森
勇 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP05110908A priority Critical patent/JP3095575B2/en
Publication of JPH06299806A publication Critical patent/JPH06299806A/en
Application granted granted Critical
Publication of JP3095575B2 publication Critical patent/JP3095575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、一方の成分が他方の成
分に吸収凝縮する混合媒体を作動流体とするクローズド
ループのサイクルプラント、特にそのようなプラントに
おけるサイクルの運転制御の改良に関し、廃熱回収、海
洋温度差、地熱などの低温熱源利用発電プラント、吸収
式冷凍機、吸収式ヒートポンプなどにも適用することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a closed-loop cycle plant in which a working fluid is a mixed medium in which one component absorbs and condenses into the other component, and more particularly to an improvement in cycle operation control in such a plant. The present invention can also be applied to power plants utilizing low-temperature heat sources such as heat recovery, ocean temperature difference, and geothermal energy, absorption refrigerators, absorption heat pumps, and the like.

【0002】[0002]

【従来の技術】従来のサイクルプラントの構成を図3を
参照して説明する。図3において、符号1がタービンで
あり、このタービン1のタービン出口には配管2を介し
て第1熱交換器3が設けられ、更に、配管4を介して低
圧復液器5に接続されている。低圧復液器5からは、配
管6、復液ポンプ7を通って、一方は配管8、第1流量
制御装置9を通って第1熱交換器3へ、他方は配管1
0、第1液レベル制御装置11を通って高圧復液器12
へそれぞれ接続される。そして、第1熱交換器3からは
配管13によりセパレータ14に接続され、セパレータ
14からは、一方は配管15、第2熱交換器16、第2
液レベル制御装置17を通って低圧復液器5に接続さ
れ、他方は配管18により高圧復液器12に接続され
る。高圧復液器12からは、配管19、給液ポンプ20
によりボイラ21に接続され、ボイラ21からはタービ
ン1へ接続される。ボイラ21には又、熱ガス配管22
を通って煙突23に接続される。なお、符号24は低圧
復液器冷却水配管、25は高圧復液器冷却水配管、26
は第2熱交換器冷却水配管である。
2. Description of the Related Art The structure of a conventional cycle plant will be described with reference to FIG. In FIG. 3, reference numeral 1 denotes a turbine, and a first heat exchanger 3 is provided at a turbine outlet of the turbine 1 via a pipe 2, and further connected to a low-pressure condenser 5 via a pipe 4. I have. From the low-pressure condenser 5, the pipe 6 and the condensate pump 7 pass, one passes through the pipe 8 and the first flow control device 9 to the first heat exchanger 3, and the other passes through the pipe 1.
0, high-pressure condenser 12 through first liquid level controller 11
Respectively. The first heat exchanger 3 is connected to a separator 14 by a pipe 13. One of the separators 14 is a pipe 15, a second heat exchanger 16,
The liquid level controller 17 is connected to the low-pressure condenser 5, and the other is connected to the high-pressure condenser 12 by a pipe 18. From the high pressure condenser 12, a pipe 19, a liquid supply pump 20
Is connected to the boiler 21 and from the boiler 21 to the turbine 1. The boiler 21 also has a hot gas pipe 22
To the chimney 23. Reference numeral 24 denotes a low-pressure condenser cooling water pipe, 25 denotes a high-pressure condenser cooling water pipe, 26
Denotes a second heat exchanger cooling water pipe.

【0003】液体サイクルについて説明すると、低圧復
液器5で凝縮された液体は復液ポンプ7を経て配管8を
流れるものと配管10を流れるものとに分けられ、一方
は第1流量制御装置9によって所定の流量に制御された
後、第1熱交換器3を通ってセパレータ14に送られ
る。もう一方の液体は第1液レベル制御装置11によっ
て所定の流量に制御されて高圧復液器12に流入する。
[0003] The liquid cycle will be described. The liquid condensed by the low-pressure condensate 5 is divided into a liquid flowing through a pipe 8 via a liquid condensing pump 7 and a liquid flowing through a pipe 10. After being controlled to a predetermined flow rate by the first heat exchanger 3, it is sent to the separator 14 through the first heat exchanger 3. The other liquid is controlled to a predetermined flow rate by the first liquid level controller 11 and flows into the high-pressure condenser 12.

【0004】セパレータ14に流入した流体は蒸気と液
とに分離され、蒸気は配管18を通って高圧復液器12
に送られる。また、液は第2熱交換器16を通り、第2
液レベル制御装置17によって流量制御されて低圧復液
器5に送られる。
[0004] The fluid flowing into the separator 14 is separated into vapor and liquid, and the vapor passes through a pipe 18 and is supplied to the high-pressure condenser 12.
Sent to The liquid passes through the second heat exchanger 16 and passes through the second heat exchanger 16.
The flow rate is controlled by the liquid level controller 17 and sent to the low-pressure condenser 5.

【0005】高圧復液器12では配管10より流入する
液体と配管18より流入する分離蒸気とが冷却水配管2
5を流れるたとえば海水によって冷却され、復液する。
In the high-pressure condenser 12, the liquid flowing from the pipe 10 and the separated steam flowing from the pipe 18 are separated by the cooling water pipe 2.
5 is cooled by, for example, seawater, and is returned.

【0006】高圧復液器12で復液された流体は配管1
9に送られ、給液ポンプ20を経てボイラ21に送られ
る。ボイラ21では、配管22を流れるたとえば熱ガス
により加熱されて蒸気となり、タービン1に送られる。
The fluid condensed by the high-pressure condensate condenser 12
9 and sent to the boiler 21 via the liquid supply pump 20. In the boiler 21, the steam is heated by, for example, a hot gas flowing through the pipe 22 to form steam, which is sent to the turbine 1.

【0007】タービン1に流入した流体蒸気は仕事をし
た後、配管2を通って第1熱交換器3に送られ、ここで
配管8を通って流入する液体と熱交換する。第1熱交換
器3を出て配管4を流れる流体は配管15を流れる液体
と混合した後、低圧復液器5に流入し、配管24を流れ
るたとえば海水によって冷却され、復液する。以上が液
体サイクルの1サイクルである。
After the fluid vapor flowing into the turbine 1 performs work, it is sent to the first heat exchanger 3 through the pipe 2, where it exchanges heat with the liquid flowing through the pipe 8. The fluid flowing out of the first heat exchanger 3 and flowing through the pipe 4 mixes with the liquid flowing through the pipe 15, flows into the low-pressure condenser 5, is cooled by, for example, seawater flowing through the pipe 24, and returns. The above is one cycle of the liquid cycle.

【0008】[0008]

【発明が解決しようとする課題】従来のサイクルプラン
トでは、作動流体のたとえばタービン1から外部へのリ
ークがある場合、配管2を流れる流量がリーク分だけ減
少する。そのため、第1熱交換器3で熱交換を行なう際
に、配管13からセパレータ14に流れる流体の温度が
計画値より低下してしまい、結果として、セパレータ1
4から高圧復液器12に至る配管18を流れる蒸気量が
減少する。従って、第1熱交換器3での熱交換量がリー
クを考慮していない当初計画よりも減少するため、ルー
プ全体のヒート/マスバランスが当初計画と異なってく
る。しかしながら、高圧復液器12内の復液の液レベル
は、リークの有無に関係なく第1液レベル制御装置11
によって一定に制御されているため、高圧復液器12の
入口における配管18を流れる蒸気と配管10を流れる
液との混合比は、リークの有無又はリーク量の変化に伴
って変化してしまい、すなわち、配管18を流れる蒸気
量が減少する分、混合比が変化してしまい、ループの効
率良い運転がリークの発生により達成できないという不
具合があった。ここで発生するリーク量の予測は現状技
術では不可能であり、リーク量を変数とする混合比一定
の制御も不可能である。
In the conventional cycle plant, when there is a leakage of the working fluid, for example, from the turbine 1 to the outside, the flow rate flowing through the pipe 2 is reduced by the amount of the leakage.
Less. Therefore, when performing heat exchange in the first heat exchanger 3
The temperature of the fluid flowing from the pipe 13 to the separator 14
As a result, the separator 1
The amount of steam flowing through the pipe 18 from 4 to the high-pressure condenser 12 is
Decrease. Therefore, since the heat exchange amount in the first heat exchanger 3 is smaller than the initial plan in which the leak is not considered, the heat / mass balance of the entire loop differs from the initial plan. However, the liquid level of the condensate in the high-pressure condensate condenser 12 can be controlled by the first liquid level controller 11 regardless of the presence or absence of a leak.
Because it is controlled constant by the mixing ratio of the liquid flowing through the steam and the pipe 10 through the pipe 18 at the inlet of the high pressure medium condenser 12, it will vary with changes in the presence or absence or amount of leak leak, That is, the steam flowing through the pipe 18
As the amount decreases, the mixing ratio changes, and there is a problem that efficient operation of the loop cannot be achieved due to occurrence of leak. Prediction of the amount of leak occurring here is impossible with the current technology, and it is also impossible to control the mixing ratio constant using the amount of leak as a variable.

【0009】本発明は上記事情にかんがみてなされたも
ので、作動流体の分離・混合のあるループの内部と外部
との間で作動流体又は大気のリークがあるクローズドサ
イクルループにあって、そのようなリークの有無に拘ら
ず、当初計画の効率良い運転を維持できるサイクルプラ
ントを提供することを目的とする。
The present invention has been made in view of the above circumstances, and is directed to a closed cycle loop in which a working fluid or air leaks between the inside and the outside of a loop in which a working fluid is separated and mixed. It is an object of the present invention to provide a cycle plant that can maintain the initially planned efficient operation regardless of the presence or absence of a large leak.

【0010】[0010]

【課題を解決するための手段】上記目的に対し、本発明
によれば、タービンからのタービン排気を第1熱交換器
で作動流体と熱交換させ、前記第1熱交換器で加熱され
た作動流体をセパレータにて蒸気と液とに分離し、前記
セパレータで分離された液を第2熱交換器で冷却媒体と
熱交換させ、前記第1熱交換器を出たタービン排気に前
記第2熱交換器で冷却された液を混合させ、この混合さ
れた作動流体を低圧復液器にて凝縮し、凝縮した液の一
部を作動流体として前記第1熱交換器へ供給し、凝縮し
た液の残りを前記セパレータにて分離された蒸気と混合
し、この混合された作動流体を高圧復液器で凝縮し、こ
の高圧復液器で凝縮した作動流体をボイラで蒸発させて
前記タービンへ供給するというクローズドループの構成
を備えたサイクルプラントにおいて、前記低圧復液器か
ら前記高圧復液器へ流入する作動流体の流量あるいは前
記セパレータから前記高圧復液器へ流入する作動流体の
流量を計測し、計測された作動流体の流量に応じて、前
記低圧復液器から前記高圧復液器へ流入する作動流体の
流量を制御する流量制御装置を設けることを特徴とする
サイクルプラントが提供される。
According to the present invention, there is provided, in accordance with the present invention, heat exchange of turbine exhaust from a turbine with a working fluid in a first heat exchanger and operation of the turbine exhaust heated in the first heat exchanger. The fluid is separated into vapor and liquid by a separator, the liquid separated by the separator is subjected to heat exchange with a cooling medium by a second heat exchanger, and the second heat is supplied to the turbine exhaust exiting the first heat exchanger. The liquid cooled in the exchanger is mixed, the mixed working fluid is condensed in a low-pressure condenser, and a part of the condensed liquid is supplied to the first heat exchanger as a working fluid, and the condensed liquid is supplied. Is mixed with the steam separated by the separator, the mixed working fluid is condensed by a high-pressure condenser, and the working fluid condensed by the high-pressure condenser is evaporated by a boiler and supplied to the turbine. Cycle with closed loop configuration In Holland, flow rate, or before the working fluid flowing from said low pressure medium condenser to the pressure medium condenser
Of the working fluid flowing from the separator to the high-pressure condenser.
Measure the flow rate, and according to the measured working fluid flow rate,
Of the working fluid flowing from the low-pressure condenser to the high-pressure condenser.
There is provided a cycle plant including a flow control device that controls a flow rate .

【0011】[0011]

【作用】上述の手段によれば、高圧復液器に流入する液
体流量又は蒸気流量を計測し、この量に基づいて高圧復
液器へ流入する液体の流量を計画通りのヒート/マスバ
ランスに基づいた流量に制御できる
According to the above-mentioned means, the flow rate of the liquid or vapor flowing into the high-pressure condenser is measured , and based on this amount , the flow rate of the liquid flowing into the high-pressure condenser is adjusted to a heat / mass balance as planned. It can be controlled based on the flow rate.

【0012】[0012]

【実施例】図1は本発明によるサイクルプラントの一例
を示したもので、図中、図3に示したものと同一の部分
については同一の符号を付してその詳細な説明は省略す
る。
FIG. 1 shows an example of a cycle plant according to the present invention. In FIG. 1, the same parts as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0013】図1において、サイクルプラントのクロー
ズドサイクルループは図3の従来例とまったく同じであ
る。本発明によれば、低圧復液器5から高圧復液器12
への配管10に、この配管10を流れる流体の流量を計
測してその流体流量を調節する第2流量制御装置27が
設置されている。第2流量制御装置27は配管10を通
って高圧復液器12に流入する流体流量を計測し、その
流体流量をたとえばタービン1から外部への流体リーク
がない場合のヒート/マスバランスに基づいた流量に制
御する。これにより、流体リークがあっても低圧復液器
5から配管10を通って高圧復液器12に流入する流体
流量をそのリーク量に応じて制御されるので、高圧復液
器12の入口における配管18を流れる蒸気と配管10
を流れる液体との混合比は一定に保たれ、ループの効率
良い運転がなされることになる。
In FIG. 1, the closed cycle loop of the cycle plant is exactly the same as the conventional example of FIG. According to the present invention, the low pressure condenser 5 to the high pressure condenser 12
A second flow control device 27 that measures the flow rate of the fluid flowing through the pipe 10 and adjusts the fluid flow rate is installed in the pipe 10 to the pipe 10. The second flow control device 27 measures the flow rate of the fluid flowing into the high-pressure condenser 12 through the pipe 10 and based on the heat / mass balance when there is no fluid leak from the turbine 1 to the outside, for example. Control the flow rate. Accordingly, even if there is a fluid leak, the flow rate of the fluid flowing from the low-pressure condenser 5 through the pipe 10 to the high-pressure condenser 12 is controlled according to the amount of the leak. Steam flowing through pipe 18 and pipe 10
The mixing ratio with the liquid flowing through the loop is kept constant, and efficient operation of the loop is achieved.

【0014】図2は本発明によるサイクルプラントの別
の実施例を示したもので、図中、図1に示したものと同
一の部分については同一の符号を付してその詳細な説明
は省略する。この図2の実施例によれば、第2流量制御
装置27は流体リークを間接的に検出するための流体流
量の計測をセパレータ14から配管18を通って高圧復
液器12に流入する蒸気とした点で図1の実施例と相違
する。第2流量制御装置27は配管18を通って高圧復
液器12に流入する蒸気流量を計測し、配管10を通っ
て高圧復液器12に流入する液体流量を調節して蒸気と
液体との混合比を一定にしている。
FIG. 2 shows another embodiment of the cycle plant according to the present invention. In the drawing, the same parts as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. I do. According to the embodiment of FIG. 2, the second flow control device 27 measures the fluid flow rate for indirectly detecting a fluid leak with the steam flowing from the separator 14 through the pipe 18 into the high-pressure condenser 12. This is different from the embodiment of FIG. The second flow control device 27 measures the flow rate of the steam flowing into the high-pressure condenser 12 through the pipe 18, adjusts the flow rate of the liquid flowing into the high-pressure condenser 12 through the pipe 10, and The mixing ratio is kept constant.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、た
とえばクローズドサイクルループ内から外部への作動流
体のリークの有無に拘らず、高圧復液器に流入する蒸気
と液体との混合比が一定に保たれ、常に当初計画に近い
効率でプラントを運転することが可能となる。
As described above, according to the present invention, the mixing ratio of the steam and the liquid flowing into the high-pressure condensate, regardless of, for example, whether or not the working fluid leaks from the inside of the closed cycle loop to the outside. Is kept constant, and the plant can always be operated with efficiency close to the initial plan.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるサイクルプラントの一実施例を示
す系統図である。
FIG. 1 is a system diagram showing one embodiment of a cycle plant according to the present invention.

【図2】本発明によるサイクルプラントの別の実施例を
示す系統図である。
FIG. 2 is a system diagram showing another embodiment of the cycle plant according to the present invention.

【図3】従来のサイクルプラントの一例を示す系統図で
ある。
FIG. 3 is a system diagram showing an example of a conventional cycle plant.

【符号の説明】[Explanation of symbols]

1 タービン 3 第1熱交換器 5 低圧復液器 7 復液ポンプ 9 第1流量制御装置 11 第1液レベル制御装置 12 高圧復液器 14 セパレータ 16 第2熱交換器 20 給液ポンプ 21 ボイラ DESCRIPTION OF SYMBOLS 1 Turbine 3 1st heat exchanger 5 Low pressure condenser 7 Recondenser pump 9 1st flow control device 11 1st liquid level controller 12 High pressure condenser 14 Separator 16 2nd heat exchanger 20 Feed pump 21 Boiler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長田 勇 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社内 (56)参考文献 特開 平2−241909(JP,A) 特開 平3−9005(JP,A) 実開 平4−8706(JP,U) (58)調査した分野(Int.Cl.7,DB名) F01K 25/06 F01K 25/00 F01K 25/10 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Isamu Nagata 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Heavy Industries, Ltd. (56) References JP-A-2-241909 (JP, A) JP-A-3 −9005 (JP, A) Japanese Utility Model 4-8706 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F01K 25/06 F01K 25/00 F01K 25/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タービンからのタービン排気を第1熱交
換器で作動流体と熱交換させ、前記第1熱交換器で加熱
された作動流体をセパレータにて蒸気と液とに分離し、
前記セパレータで分離された液を第2熱交換器で冷却媒
体と熱交換させ、前記第1熱交換器を出たタービン排気
に前記第2熱交換器で冷却された液を混合させ、この混
合された作動流体を低圧復液器にて凝縮し、凝縮した液
の一部を作動流体として前記第1熱交換器へ供給し、凝
縮した液の残りを前記セパレータにて分離された蒸気と
混合し、この混合された作動流体を高圧復液器で凝縮
し、この高圧復液器で凝縮した作動流体をボイラで蒸発
させて前記タービンへ供給するというクローズドループ
の構成を備えたサイクルプラントにおいて、前記低圧復
液器から前記高圧復液器へ流入する作動流体の流量ある
いは前記セパレータから前記高圧復液器へ流入する作動
流体の流量を計測し、計測された作動流体の流量に応じ
て、前記低圧復液器から前記高圧復液器へ流入する作動
流体の流量を制御する流量制御装置を設けることを特徴
とするサイクルプラント。
1. A turbine exhaust gas from a turbine is subjected to heat exchange with a working fluid in a first heat exchanger, and the working fluid heated in the first heat exchanger is separated into steam and liquid by a separator.
The liquid separated by the separator is heat-exchanged with a cooling medium in a second heat exchanger, and the liquid cooled in the second heat exchanger is mixed with the turbine exhaust flowing out of the first heat exchanger. The condensed working fluid is condensed in a low-pressure condenser, a part of the condensed liquid is supplied to the first heat exchanger as a working fluid, and the remainder of the condensed liquid is mixed with the steam separated by the separator. Then, in a cycle plant having a closed loop configuration in which the mixed working fluid is condensed in a high-pressure condenser and the working fluid condensed in the high-pressure condenser is evaporated by a boiler and supplied to the turbine, There is a flow rate of the working fluid flowing from the low-pressure condenser to the high-pressure condenser.
Or operation to flow from the separator to the high-pressure condenser
Measures the flow rate of the fluid, and according to the measured working fluid flow rate
Operating from the low-pressure condenser to the high-pressure condenser.
A cycle plant comprising a flow control device for controlling a flow rate of a fluid .
JP05110908A 1993-04-14 1993-04-14 Cycle plant Expired - Fee Related JP3095575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05110908A JP3095575B2 (en) 1993-04-14 1993-04-14 Cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05110908A JP3095575B2 (en) 1993-04-14 1993-04-14 Cycle plant

Publications (2)

Publication Number Publication Date
JPH06299806A JPH06299806A (en) 1994-10-25
JP3095575B2 true JP3095575B2 (en) 2000-10-03

Family

ID=14547706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05110908A Expired - Fee Related JP3095575B2 (en) 1993-04-14 1993-04-14 Cycle plant

Country Status (1)

Country Link
JP (1) JP3095575B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566300B (en) * 2019-09-12 2022-04-29 天津大学 Component-adjustable organic Rankine cycle system based on hydrate separation characteristic

Also Published As

Publication number Publication date
JPH06299806A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
US5799481A (en) Method of operating a gas-turbine group combined with a waste-heat steam generator and a steam consumer
RU2124672C1 (en) Waste-heat boiler and method of its operation
CN105423772A (en) Power station air cooling system adopting combined refrigeration with shaft seal steam leakage of steam turbine and continuous blow-down waste heat of boiler as well as method for predicting heat-transfer coefficient of air-cooling condenser
JP2003161164A (en) Combined-cycle power generation plant
US6128901A (en) Pressure control system to improve power plant efficiency
CN108758584A (en) A kind of cold and hot storage alliance coal fired power plant air cooling system and its operation regulation and control method of waste heat combination driving
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
JP3095575B2 (en) Cycle plant
CN115405983A (en) Heat pump system, heat pump control system and control method and heat supply network system
KR102155840B1 (en) Steam cycle-based system and method for condensate water recovery from flue gas
KR20190032841A (en) Rankine cycle-based heat engine using ejector for waste heat recovery and method for operating the same heat engine
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JP3527867B2 (en) Heat recovery power generation system and operation method thereof
JPS61152916A (en) Binary cycle power generation plant
RU2144994C1 (en) Combined-cycle plant
JP2002156493A (en) Site heat supply equipment of nuclear power station
CN205297667U (en) Low -quality waste heat power generation system that gas -liquid mixture retrieved
CN220015403U (en) Ammonia vapor turbine power generation system suitable for geothermal utilization of ultra-long gravity heat pipe
JP2001214758A (en) Gas turbine combined power generation plant facility
KR100446991B1 (en) The Back-Pressure Control Equipment of Steam Turbine in the Combined Heat Power Plant of District heating
CN202734338U (en) High-temperature heat pump
JPH05159792A (en) Fuel cell generating system
JPH05272306A (en) Exhaust heat utilizing power generation control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees