JPS6157446B2 - - Google Patents

Info

Publication number
JPS6157446B2
JPS6157446B2 JP10117980A JP10117980A JPS6157446B2 JP S6157446 B2 JPS6157446 B2 JP S6157446B2 JP 10117980 A JP10117980 A JP 10117980A JP 10117980 A JP10117980 A JP 10117980A JP S6157446 B2 JPS6157446 B2 JP S6157446B2
Authority
JP
Japan
Prior art keywords
boiling point
low
point medium
pressure
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10117980A
Other languages
Japanese (ja)
Other versions
JPS5726215A (en
Inventor
Haruichiro Sakaguchi
Yasuaki Akatsu
Haruyuki Yamazaki
Shunichi Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10117980A priority Critical patent/JPS5726215A/en
Publication of JPS5726215A publication Critical patent/JPS5726215A/en
Publication of JPS6157446B2 publication Critical patent/JPS6157446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は発電プラント、特に、熱源からの熱を
作動媒体に移し、該作動媒体によりタービンを駆
動して発電をなすプラントであつて、熱源の温度
レベルが比較的低いエネルギ源、例えば、地熱、
工場廃熱からの利用に好適に使用しうる低沸点媒
体タービンプラントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation plant, particularly a plant that generates electricity by transferring heat from a heat source to a working medium and driving a turbine with the working medium, wherein the temperature level of the heat source is relatively low. energy sources, e.g. geothermal,
The present invention relates to a low boiling point medium turbine plant that can be suitably used to utilize factory waste heat.

従来この種の低質エネルギ利用発電プラントに
は、作動媒体として水より沸点の低い物質を用い
て熱の回収率を上げるように工夫されたプラント
がある。第1図において従来技術を説明する。高
温熱源1とタービン作動媒体4とを、予熱器6と
蒸発器7で熱回収し、発生した作動媒体の蒸気と
液と気液分離器8で分離し、蒸気によつてタービ
ン10を回転させて発電機11によつて電気に変
換する。タービンで仕事をした蒸気は凝縮器12
にはいり、冷却水13によつて液化されて、ポン
プ5により昇圧され再び予熱器6にはいる。この
サイクルを温度−エンタルピ、及び温度−エンタ
ロピ線図上に表わすと第2図、第3図のようにな
る。図において、51は高熱源温度、52は作動
媒体飽和液線、53は作動媒体湿り蒸気域、54
は作動媒体飽和蒸気線、55は等圧力線、56は
等エンタロピ線である。第2図では、高温熱源に
地熱水のような顕熱性の熱源を例としてとり、作
動媒体のサイクルCDEFGと同一グラフ上に高熱
源の温度・エンタルピの状態変化を線51で示し
た。ただし、一般には水と作動媒体の流量が異る
ので、その比を補正したエンタルピを横軸にとつ
ている。
Conventionally, this type of power generation plant using low-quality energy includes a plant devised to increase the heat recovery rate by using a substance with a boiling point lower than water as a working medium. The prior art will be explained with reference to FIG. Heat is recovered from the high-temperature heat source 1 and the turbine working medium 4 by a preheater 6 and an evaporator 7, and the generated working medium steam and liquid are separated by a gas-liquid separator 8, and the turbine 10 is rotated by the steam. and is converted into electricity by a generator 11. The steam that has worked in the turbine is sent to the condenser 12
The liquid enters the water, is liquefied by the cooling water 13, is pressurized by the pump 5, and then enters the preheater 6 again. This cycle is represented on a temperature-enthalpy and temperature-enthalpy diagram as shown in FIGS. 2 and 3. In the figure, 51 is a high heat source temperature, 52 is a working medium saturated liquid line, 53 is a working medium wet vapor region, and 54
is a working medium saturated vapor line, 55 is an isopressure line, and 56 is an isenthalopic line. In FIG. 2, a sensible heat source such as geothermal water is taken as an example of a high-temperature heat source, and a line 51 shows changes in the state of temperature and enthalpy of the high-temperature heat source on the same graph as the cycle CDEFG of the working medium. However, since the flow rates of water and working medium are generally different, the horizontal axis is the enthalpy corrected for the ratio.

高熱源の温度T1が比較的低い場合には、第2
図のように、高熱源の温度変化線ABと作動媒体
の加熱時の状態線CDEとが中央部で絞られる形
になり、この時の温度軸での距離、すなわちピン
チポイント温度差が熱交換器の大きさ、ひいては
プラントの建設費に影響することになる。経済性
の要求からピンチポイント温度差は、ある程度の
大きさが必要であり、このため、作動媒体の蒸気
温度を上昇させると高熱源温度の出口温度(点B
のの温度)は上昇し、回収効率が低下してくる。
If the temperature T 1 of the high heat source is relatively low, the second
As shown in the figure, the temperature change line AB of the high heat source and the state line CDE during heating of the working medium are converged at the center, and the distance on the temperature axis at this time, that is, the pinch point temperature difference, is the heat exchange This will affect the size of the vessel and, by extension, the construction cost of the plant. For economic reasons, the pinch point temperature difference needs to be large to a certain extent. Therefore, when the steam temperature of the working medium is increased, the outlet temperature of the high heat source temperature (point B
temperature) increases, and the recovery efficiency decreases.

他方、タービンで有効にとりだせるエネルギ量
は、回収されたエネルギ量の一部であり、第3図
のCDEFGで囲まれた面積がタービン内部損失、
発電機損失等の機械的損失を無視したときの有効
エネルギを示している。凝縮器で冷却水に捨てら
れる無効エネルギはCGFHIJの面積で表わされ、
凝縮液温Tcを一定にして、蒸気温度を増加させ
るを有効エネルギの割合が増加、すなわち、サイ
クル効率が増加することがわかる。
On the other hand, the amount of energy that can be effectively extracted by the turbine is a part of the amount of recovered energy, and the area surrounded by CDEFG in Figure 3 is the turbine internal loss,
It shows the effective energy when mechanical losses such as generator losses are ignored. The reactive energy discarded into the cooling water in the condenser is expressed by the area of CGFHIJ,
It can be seen that when the condensate temperature Tc is held constant and the steam temperature is increased, the effective energy ratio increases, that is, the cycle efficiency increases.

上述のことを図で示すと第4図のようになり、
発電端出力は、ほぼ回収率η、とサイクル効率η
+hの積に比例するので、図の破線のような変化
をし、出力を極大にするような蒸気温度が存在す
る。このとき、回収率、サイクル効率ともに、そ
の最大値よりも小さい。すなわち、従来技術で
は、主としてピンチポイント温度差を正の有限の
大きさりせざるをえないために、回収率、サイク
ル効率ともに最大値より低い値でシステムを作動
させねばならず、このため極大点における出力を
十分に高くできないという欠点があつた。
The above is illustrated in Figure 4,
The generating end output is approximately equal to the recovery rate η and the cycle efficiency η
Since it is proportional to the product of +h, there is a steam temperature that changes as shown by the broken line in the figure and maximizes the output. At this time, both the recovery rate and cycle efficiency are smaller than their maximum values. In other words, in the conventional technology, the system must be operated at values lower than the maximum values for both the recovery rate and the cycle efficiency, mainly because the pinch point temperature difference has to be a positive finite size. The disadvantage was that the output could not be made sufficiently high.

本発明の目的は、作動媒体の蒸気の発生を超臨
界圧領域で行なえば回収率、サイクル効率ともに
上昇する性質があることを利用し、超臨界圧まで
加圧できるシステムにして蒸気を発生させ、最大
出力を得られる低沸点媒体タービンプラントを提
供するにある。
The purpose of the present invention is to utilize the fact that if the steam of the working medium is generated in a supercritical pressure region, both the recovery rate and the cycle efficiency increase, and to create a system that can be pressurized to supercritical pressure to generate steam. , to provide a low boiling point medium turbine plant that can obtain maximum output.

本発明の特徴は、超臨界圧領域で圧力の増加と
共に温度−エンタルピ線図上の等圧線が右上がり
の直線に近づいてくる性質を利用し、タービン作
動媒体の蒸気を超臨界圧にすることによつて高熱
源からの熱回収率が向上することをねらつた低沸
点媒体のタービンプラントにある。
The feature of the present invention is to take advantage of the property that as the pressure increases in the supercritical pressure region, the isobar line on the temperature-enthalpy diagram approaches a straight line sloping upward to the right, to bring the steam of the turbine working medium to supercritical pressure. Therefore, there is a turbine plant using a low boiling point medium that aims to improve the heat recovery rate from a high heat source.

本発明の一実施例について、図面を参照して説
明する。この例は、高温熱源として、温度140℃
の地熱水、作動媒体として冷媒R−12を用いて
いる。第5図において、地熱水は入口1から取り
込まれ、貫流ボイラ22で作動媒体の冷媒R−1
2(フロン)に熱交換された後、ボイラ出口2か
ら外界に出ていく。低圧のフロンはポンプ5によ
つて加圧され、貫流ボイラ22内で熱水1によつ
て加熱されるが、膨張させても湿り領域に入らな
い所まで減圧弁18によつて圧力を下げて膨張さ
れ、次に再熱器23に導かれて再び地熱水によつ
て加熱され超臨界圧流体となつた後に高圧タービ
ン10で膨張する際に仕事として低圧フロン蒸気
となり、フロン凝縮器12内で冷却水13によつ
て液化されるという閉サイクルシステムを構成す
る。
An embodiment of the present invention will be described with reference to the drawings. In this example, as a high temperature heat source, the temperature is 140℃
geothermal water, using refrigerant R-12 as the working medium. In FIG. 5, geothermal water is taken in from inlet 1, and cooled by refrigerant R-1 as a working medium in once-through boiler 22.
2 (fluorocarbon), then exits to the outside world from boiler outlet 2. The low-pressure Freon is pressurized by the pump 5 and heated by the hot water 1 in the once-through boiler 22, but the pressure is lowered by the pressure reducing valve 18 to a point where it does not enter the wet region even if expanded. The fluid is expanded and then led to the reheater 23 where it is heated again by geothermal water to become a supercritical pressure fluid.When it is expanded in the high pressure turbine 10, it becomes low pressure fluorocarbon vapor as work, and is released into the fluorocarbon condenser 12. A closed cycle system is constructed in which the liquid is liquefied by the cooling water 13.

本発明の上記実施例によると、次のような効果
を発揮する。第6図は、冷媒R−12の温度−エ
ンタルピ線図を表わしたものである。高熱源温度
T1を一定にして、圧力を超臨界圧まで上昇させ
たとき、熱源口温度が圧力の上昇とともに下降す
る様がわかる。すなわち、図中、右上がりの線6
1は等圧線で P1<Perit<P3<P4 とすると、熱源温度T1と作動媒体R−12の温
度との差の最小値がピンチポイント温度差Δθp
となるような高熱源の入口、出口温度は各圧力に
対して、P=PeritのときはT1″,T2″,P=P3
ときはT1′,T2′,P=P4のときは、T1,T2とな
り、出口温度が降下していく、すなわち、熱回収
率が向上していく。つまり、62はP4(超臨界圧
力)線にΔθp分上乗せした線、63はPerit
(臨界圧力)線にΔθp分上乗せした線である。
According to the above embodiments of the present invention, the following effects are achieved. FIG. 6 shows a temperature-enthalpy diagram of refrigerant R-12. High heat source temperature
When T 1 is kept constant and the pressure is increased to supercritical pressure, it can be seen that the temperature at the heat source port decreases as the pressure increases. In other words, in the figure, the line 6 rising to the right
1 is an isobar line, and if P 1 < Perit < P 3 < P 4 , the minimum value of the difference between the heat source temperature T 1 and the temperature of the working medium R-12 is the pinch point temperature difference Δθp
The inlet and outlet temperatures of a high heat source are T 1 '', T 2 '' when P=Perit, T 1 ′, T 2 ′, and P=P when P=P 3 for each pressure. 4 , T 1 and T 2 and the outlet temperature decreases, that is, the heat recovery rate improves. In other words, 62 is a line obtained by adding Δθp to the P 4 (supercritical pressure) line, and 63 is a line obtained by adding Δθp to the P 4 (supercritical pressure) line.
This is a line obtained by adding Δθp to the (critical pressure) line.

他方、上記サイクルを温度−エンタロピ線図上
に表示すると第7図のようになり、圧力を増加さ
せるにつれて有効エネルギ(P=P3のときは7
6,74″,73,77,78で囲まれる面積)
に対する無効エネルギ(凝縮液温Tcの飽和圧力
P=P0と絶対零度間の76,78,77,7
7′,78′,76′で囲まれる面積)の比が次第
に大きくなり、サイクル効率として表示すると第
8図のようになる。
On the other hand, if the above cycle is plotted on a temperature-entropy diagram, it becomes as shown in Figure 7, and as the pressure increases, the effective energy (7 when P = P 3 )
(area surrounded by 6, 74″, 73, 77, 78)
Reactive energy for (76, 78, 77, 7 between saturation pressure P of condensate temperature Tc = P 0 and absolute zero
The ratio of the area surrounded by 7', 78', and 76' gradually increases, and when expressed as cycle efficiency, it becomes as shown in FIG.

温度−エンタルピ線図(第6図)からわかるよ
うに貫流ボイラ出口の超臨界流体は、同一流体温
度で比べると圧力を上げれば上げるほど状態点が
図の左側(低エンタルピ側)に移動するためピン
チポイント温度差を一定に保つた条件のもとでは
熱源出口温度を低下させうる。換言すれば回収率
を向上させることができるが、反面、第7図の温
度−エンタルピ線図において、圧力を上げるほど
断熱膨張線(図の垂直線)が湿り域にはいる度合
が大きくなるという性質をもつている。一般に、
タービン内の膨張過程(近似的に断熱膨張線とみ
なす)において湿り域にはいれば液滴によるター
ビン翼のエロージヨン、蒸気流量減少による効率
低下等の不都合が発生するので、この実施例では
湿り域にはいる以前74″まで膨張させ、そこか
ら、再熱して状態73まで加熱することをねらつ
ている。温度レベルの低い低質エネルギを利用し
た場合には、74→74″の膨張による仕事量は
ランキンサイクル全体の有効エネルギ量に比べて
小さい場合が多いので、絞り弁18を設けて回収
率の増大のみを企つたものである。膨張の熱落差
が大きい場合には、絞り弁に代えて、高圧タービ
ンを設け、発電する方法も考えられる。
As can be seen from the temperature-enthalpy diagram (Figure 6), the state point of the supercritical fluid at the outlet of a once-through boiler moves to the left side of the diagram (lower enthalpy side) as the pressure is increased when comparing at the same fluid temperature. Under conditions where the pinch point temperature difference is kept constant, the heat source outlet temperature can be lowered. In other words, the recovery rate can be improved, but on the other hand, in the temperature-enthalpy diagram in Figure 7, the higher the pressure, the more the adiabatic expansion line (vertical line in the diagram) enters the moist region. It has properties. in general,
During the expansion process in the turbine (approximately regarded as an adiabatic expansion line), if the turbine enters a humid region, problems such as erosion of the turbine blades due to droplets and a decrease in efficiency due to a reduction in steam flow rate will occur. The aim is to expand it to 74" before entering it, and then reheat it to state 73. If low-quality energy with a low temperature level is used, the amount of work due to expansion from 74 to 74" is Since the amount of effective energy is often small compared to the amount of effective energy of the entire Rankine cycle, the throttle valve 18 is provided to only increase the recovery rate. If the thermal drop due to expansion is large, it may be possible to replace the throttle valve with a high-pressure turbine to generate electricity.

従がつて、従来例で述べたような超界圧以下の
領域(亜臨界圧)で出力に極大点が表われる性質
と合わせて、亜臨界圧、超臨界圧全域にわたつて
回収率と発電端出力を求めると、第9図のように
なる。回収率は亜臨界域では圧力の上昇と共に減
少するが、超臨界域では逆に増加し、サイクル効
率が圧力増加ともに増加する傾向があるので、発
電端出力は図のように、亜臨界圧領域で極大値を
もち、超臨界圧領域では単調増加するような傾向
を示す。この際、圧力が十分に高くなると回収
率、効率ともに頭打ちになる傾向があるので、発
電端出力も増加率が小さくなる。図には、同時に
作動媒体を循環させるに必要なポンプ動力、およ
び、冷却水ポンプ動力を求め、その合計を所内動
力として、また、発電端出力から所内動力をさし
ひいた値を送電端出力として記した。
Therefore, in addition to the property that the maximum point appears in the output in the region below supercritical pressure (subcritical pressure) as described in the conventional example, the recovery rate and power generation across the entire subcritical and supercritical pressure ranges. When the terminal output is determined, it is as shown in Fig. 9. The recovery rate decreases as the pressure increases in the subcritical region, but increases in the supercritical region, and the cycle efficiency tends to increase as the pressure increases. It has a maximum value at , and shows a monotonous increasing tendency in the supercritical pressure region. At this time, when the pressure becomes sufficiently high, both the recovery rate and the efficiency tend to reach a plateau, so the rate of increase in the power generation output also decreases. In the figure, the pump power and cooling water pump power required to circulate the working medium at the same time are determined, and the sum is used as the station power, and the value obtained by subtracting the station power from the generating end output is the sending end output. It was written as.

発電プラントとしては、送電端出力最大の点で
評価すべきであるが、第9図からわかるように、
同一熱源温度に対して、作動媒体の圧力を変える
と亜臨界域と超臨界域に各々、送電端出力の極大
値が表われる。従がつて、熱源温度に応じて最大
送電端出力の得られる圧力になるように作動媒体
圧力を設定して運転することにより、出力性能の
よいプラントを提供することができる。これを実
現するために本実施例では、第5図に併記したよ
うな制御方式を採用する。つまり、熱源入口温度
を温度計19で検出し、糸の圧力があらかじめ解
析プログラムで求められた最適圧力Pm(熱源温
度Tの関数)になるように熱源入口温度Tに応じ
て制御装置17によつてポンプ5の回転数を制御
して、常に最大の送電端出力を得るように運転制
御するものである。このポンプ5の回転数並びに
吐出圧はそれぞれ回転計20及び圧力計16にて
検出して、前記制御装置17にフイードバツクさ
れるようになつている。これら制御装置17は第
10図に示すように温度計19で検知された熱源
入口温度Tから低沸点媒体の蒸気が超臨界圧力と
なる最適圧力Pmを算出する演算装置17aと、
該最適圧力Pmに応じた貫通ボイラ22に供給さ
れる低沸点媒体の圧力P0を設定する演算装置17
bと、圧力計16で検出されたポンプ5の吐出圧
力Pと該圧力P0とを比較する比較装置17cと、
該圧力比較値pに基づいてポンプ5への制御信号
cを演算する制御器17dとから構成されている
ものである。
As a power generation plant, it should be evaluated based on the maximum output at the sending end, but as shown in Figure 9,
When the pressure of the working medium is changed for the same heat source temperature, the maximum value of the power transmission end output appears in the subcritical region and the supercritical region, respectively. Therefore, a plant with good output performance can be provided by setting and operating the working medium pressure so that the pressure at which the maximum transmission end output is obtained according to the heat source temperature is achieved. In order to achieve this, this embodiment employs a control method as shown in FIG. That is, the heat source inlet temperature is detected by the thermometer 19, and the control device 17 is controlled according to the heat source inlet temperature T so that the thread pressure becomes the optimum pressure Pm (a function of the heat source temperature T) determined in advance by the analysis program. The number of revolutions of the pump 5 is controlled so as to always obtain the maximum output at the power transmission end. The rotational speed and discharge pressure of the pump 5 are detected by a tachometer 20 and a pressure gauge 16, respectively, and fed back to the control device 17. These control devices 17 include, as shown in FIG. 10, an arithmetic device 17a that calculates an optimum pressure Pm at which the vapor of the low boiling point medium reaches a supercritical pressure from the heat source inlet temperature T detected by the thermometer 19;
A calculation device 17 that sets the pressure P 0 of the low boiling point medium supplied to the through boiler 22 according to the optimum pressure Pm.
b, a comparison device 17c that compares the discharge pressure P of the pump 5 detected by the pressure gauge 16 and the pressure P 0 ;
and a controller 17d that calculates a control signal c to the pump 5 based on the pressure comparison value p.

第11図に本発明の他の実施例を示す。タービ
ンの入口でのエンタルピをタービン内、膨張過程
で湿り域にはいらない領域まで高めるために、膨
張と再熱過程を入れる必要があることを前の実施
例のところで説明した。前の実施例では高圧側の
膨張による熱落差が小さい場合が多いので、絞り
弁で膨張させる方式にしてそこでのエネルギ回収
(発電)を省略したけれども、本実施例ではこれ
に代えて高圧タービン10a及び発電機10bで
利用しようとしたものである。また、再熱器23
を経て超臨界圧力に昇圧された低沸点媒体蒸気は
発電機11bを有する低圧タービン10bで仕事
をするようになつており、その他の構成は前の実
施例のものと同じであるので説明を省略する。こ
の系統によれば、高圧側の熱落差の大きかいかん
によつては、高圧タービンの設備費とそこから生
ずる利益とのかねあいにより、本実施例が有利な
場合もある。尚、本実施例にも第11図に示した
制御装置が適用可能であることは云うまでもな
い。本発明によれば、タービン作動媒体の蒸気の
発生を超臨界圧領域で行なえるようにしたことか
ら、プラントの熱回収率を向上させ、プラントの
最大出力が得られるようにした低沸点媒体タービ
ンプラントを実現できるという効果が達成され
る。
FIG. 11 shows another embodiment of the present invention. It was explained in the previous embodiment that in order to increase the enthalpy at the inlet of the turbine to a region within the turbine that does not enter the wet region during the expansion process, it is necessary to include the expansion and reheating processes. In the previous embodiment, the heat drop due to expansion on the high pressure side was often small, so the expansion was performed using a throttle valve and the energy recovery (power generation) there was omitted, but in this embodiment, instead of this, the high pressure turbine 10a is used. and was intended to be used in the generator 10b. In addition, the reheater 23
The low-boiling point medium steam that has been pressurized to supercritical pressure through the process is used to perform work in a low-pressure turbine 10b having a generator 11b, and the other configurations are the same as those of the previous embodiment, so explanations are omitted. do. According to this system, depending on whether the heat drop on the high pressure side is large or not, this embodiment may be advantageous depending on the balance between the equipment cost of the high pressure turbine and the profit generated therefrom. It goes without saying that the control device shown in FIG. 11 can also be applied to this embodiment. According to the present invention, since the steam of the turbine working medium can be generated in a supercritical pressure region, the heat recovery rate of the plant can be improved and the low boiling point medium turbine can obtain the maximum output of the plant. The effect of realizing a plant is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の低沸点媒体タービンプラント
のシステムを示す略線図、第2図、第3図は従来
のシステムのサイクルを説明するための熱力学的
線図、第4図は従来サイクルの亜臨界圧域での出
力性能を示した説明図、第5図は本発明の一実施
例を示した低沸点媒体タービンプラントのシステ
ムを示す略線図、第6図は本発明の低沸点媒体タ
ービンプラントにおける熱回収率の向上する理由
を示した熱力学的線図、第7図は同じく有効エネ
ルギの圧力による変化様相を示した説明図、第8
図は同じくサイクル効率の圧力依存性を示した説
明図、第9図は同じく本発明の一実施例による出
力への効果を定量的に示した説明図、第10図は
第5図の制御装置を示す概略図、第11図は本発
明の他の実施例である低沸点媒体のタービンプラ
ントのシステムを示した略線図である。 1……高温熱源、5……ポンプ、10……ター
ビン、10a……高圧タービン、10b……低圧
タービン、11……発電機、11a,11b……
発電機、12……凝縮器、23……再熱器、11
6……圧力計、17……制御装置、19……温度
計。
Figure 1 is a schematic diagram showing a conventional low boiling point medium turbine plant system, Figures 2 and 3 are thermodynamic diagrams to explain the cycle of the conventional system, and Figure 4 is a conventional cycle diagram. 5 is a schematic diagram showing a system of a low boiling point medium turbine plant showing an embodiment of the present invention, and FIG. 6 is an explanatory diagram showing the output performance in the subcritical pressure region of the present invention. Figure 7 is a thermodynamic diagram showing the reason why the heat recovery rate improves in a medium turbine plant.
The figure is an explanatory diagram similarly showing the pressure dependence of cycle efficiency, Fig. 9 is an explanatory diagram quantitatively showing the effect on output according to an embodiment of the present invention, and Fig. 10 is an explanatory diagram showing the control device of Fig. 5. FIG. 11 is a schematic diagram showing a system of a turbine plant using a low boiling point medium, which is another embodiment of the present invention. 1... High temperature heat source, 5... Pump, 10... Turbine, 10a... High pressure turbine, 10b... Low pressure turbine, 11... Generator, 11a, 11b...
Generator, 12... Condenser, 23... Reheater, 11
6...Pressure gauge, 17...Control device, 19...Thermometer.

Claims (1)

【特許請求の範囲】 1 高温熱源から熱を低沸点媒体に回収させる熱
交換装置と、該熱交換装置を経た低沸点媒体の蒸
気により駆動されるタービンと、該タービンを経
た低沸点媒体を凝縮させる凝縮器と、該凝縮器で
凝縮した低沸点媒体を該熱交換装置に送給するポ
ンプとを備えた低沸点媒体タービンプラントにお
いて、前記熱交換装置を経た低沸点媒体を膨張さ
せる膨張手段を設け、更に前記膨帳手段により膨
張した低沸点媒体を加熱してこの低沸点媒体の蒸
気発生を臨界圧力以上の圧力範囲で行なわせる他
の熱交換器を設け、該熱交換器にて加圧された低
沸点媒体蒸気を前記タービンに導入するようにし
たことを特徴とする低沸点媒体タービンプラン
ト。 2 前記他の熱交換器を前記熱交換装置に組み込
んで同じ高温熱源にて加熱するようにしたことを
特徴とする特許請求の範囲第1項記載の低沸点媒
体タービンプラント。 3 前記膨張手段は減圧弁であることを特徴とす
る特許請求の範囲第1項又は第2項記載の低沸点
媒体タービンプラント。 4 前記膨張手段が他のタービン装置であること
を特徴とする特許請求の範囲第1項又は第2項記
載の低沸点媒体タービンプラント。 5 前記低沸点媒体として高温熱源の入口温度よ
り低い臨界圧力を有する物質を使用することを特
徴とする特許請求の範囲第1項又は第2項記載の
低沸点媒体タービンプラント。 6 前記他の熱交換器にて発生する低沸点媒体の
蒸気圧力を高温熱源の入口温度に応じて調節でき
るよう前記ポンプの吐出圧力を制御する制御装置
を設けたことを特徴とする特許請求の範囲第1項
又は第2項又は第3項又は第4項記載の低沸点媒
体タービンプラント。
[Scope of Claims] 1. A heat exchange device that recovers heat from a high-temperature heat source into a low-boiling point medium, a turbine driven by the steam of the low-boiling point medium that has passed through the heat exchange device, and a condensation device that condenses the low-boiling point medium that has passed through the turbine. A low-boiling point medium turbine plant comprising a condenser that allows the condensation to be carried out, and a pump that feeds the low-boiling point medium condensed in the condenser to the heat exchange device, further comprising an expansion means for expanding the low-boiling point medium that has passed through the heat exchange device. Further, another heat exchanger is provided for heating the low boiling point medium expanded by the expansion book means to generate steam from the low boiling point medium in a pressure range above the critical pressure, and pressurizing with the heat exchanger. A low-boiling point medium turbine plant, characterized in that the low-boiling point medium vapor produced by the boiling point is introduced into the turbine. 2. The low boiling point medium turbine plant according to claim 1, wherein the other heat exchanger is incorporated into the heat exchange device and heated by the same high-temperature heat source. 3. The low boiling point medium turbine plant according to claim 1 or 2, wherein the expansion means is a pressure reducing valve. 4. The low boiling point medium turbine plant according to claim 1 or 2, wherein the expansion means is another turbine device. 5. The low boiling point medium turbine plant according to claim 1 or 2, wherein a substance having a critical pressure lower than the inlet temperature of the high temperature heat source is used as the low boiling point medium. 6. A control device for controlling the discharge pressure of the pump so that the vapor pressure of the low-boiling medium generated in the other heat exchanger can be adjusted according to the inlet temperature of the high-temperature heat source. A low boiling point medium turbine plant according to range 1 or 2 or 3 or 4.
JP10117980A 1980-07-25 1980-07-25 Low boiling point medium turbine plant Granted JPS5726215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10117980A JPS5726215A (en) 1980-07-25 1980-07-25 Low boiling point medium turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117980A JPS5726215A (en) 1980-07-25 1980-07-25 Low boiling point medium turbine plant

Publications (2)

Publication Number Publication Date
JPS5726215A JPS5726215A (en) 1982-02-12
JPS6157446B2 true JPS6157446B2 (en) 1986-12-06

Family

ID=14293761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117980A Granted JPS5726215A (en) 1980-07-25 1980-07-25 Low boiling point medium turbine plant

Country Status (1)

Country Link
JP (1) JPS5726215A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122820U (en) * 1985-01-21 1986-08-02
MX2008014558A (en) * 2006-05-15 2009-01-27 Newcastle Innovation Ltd A method and system for generating power from a heat source.
JP2013177838A (en) * 2012-02-28 2013-09-09 Kobe Steel Ltd Method of controlling binary generator, and binary generator
JP6029533B2 (en) * 2013-02-26 2016-11-24 株式会社神戸製鋼所 Binary power generator operating method and binary power generator
ITBS20130184A1 (en) * 2013-12-19 2015-06-20 Turboden Srl METHOD OF CONTROL OF AN ORGANIC RANKINE CYCLE
CH709010A1 (en) * 2013-12-20 2015-06-30 Josef Mächler Thermal power plant with heat recovery.

Also Published As

Publication number Publication date
JPS5726215A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
US11066960B2 (en) Double-reheat power generator with an ultra high pressure cylinder and a high-intermediate pressure cylinder each having additional heat recovery turbine stages
US4557112A (en) Method and apparatus for converting thermal energy
US4009575A (en) Multi-use absorption/regeneration power cycle
EP0756069B1 (en) Thermodynamic power generation system employing a three component working fluid
Kapooria et al. An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation
EP0168494B1 (en) Utilization of thermal energy
MX2008014558A (en) A method and system for generating power from a heat source.
JPH10169414A (en) Combined power plant with forced once-through steam generating device serving as gas turbine cooling air cooler
US3006146A (en) Closed-cycle power plant
JPH03906A (en) Feed water preheating method and device in steam generating plant
CN110593973A (en) System for improving power generation capacity through organic Rankine cycle combined with flash evaporation and control method
US6052997A (en) Reheat cycle for a sub-ambient turbine system
CN113623032A (en) Coal-fired boiler flue gas heat storage and power generation integrated system and operation method
CN110593977A (en) Dual-working-medium Rankine cycle waste heat power generation method and system and generator
CN104727867A (en) Medium-and-low-temperature waste heat utilization method and pressure-reducing heat-absorbing type steam power circulating system thereof
JPS6157446B2 (en)
US4393657A (en) Method for recovering waste heat as motive power
JPH11173109A (en) Power generation and hot water supply system
CN110541737A (en) medium-low temperature waste heat power generation system utilizing LNG cold energy and working method thereof
GB2114671A (en) Converting thermal energy into another energy form
KR101184715B1 (en) Rankine cycle system and method of controlling the same
RU97122121A (en) METHOD FOR OPERATION OF STEAM POWER ENGINEERING INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
CN211287812U (en) System for organic Rankine cycle of combination flash distillation improves power generation ability
KR101197191B1 (en) Cycle controlling method for considering pressure drop of condenser of organic rankine cycle
Sahu et al. Comparison between Regenerative, Reheat & Cogeneration Steam Plant on the basis of Turbine inlet Temperature