JP6029533B2 - Binary power generator operating method and binary power generator - Google Patents

Binary power generator operating method and binary power generator Download PDF

Info

Publication number
JP6029533B2
JP6029533B2 JP2013109984A JP2013109984A JP6029533B2 JP 6029533 B2 JP6029533 B2 JP 6029533B2 JP 2013109984 A JP2013109984 A JP 2013109984A JP 2013109984 A JP2013109984 A JP 2013109984A JP 6029533 B2 JP6029533 B2 JP 6029533B2
Authority
JP
Japan
Prior art keywords
steam
pressure
working medium
evaporator
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013109984A
Other languages
Japanese (ja)
Other versions
JP2014194210A (en
Inventor
高橋 和雄
和雄 高橋
松村 昌義
昌義 松村
足立 成人
成人 足立
裕 成川
成川  裕
藤澤 亮
亮 藤澤
治幸 松田
治幸 松田
西村 真
真 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013109984A priority Critical patent/JP6029533B2/en
Publication of JP2014194210A publication Critical patent/JP2014194210A/en
Application granted granted Critical
Publication of JP6029533B2 publication Critical patent/JP6029533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、バイナリー発電装置の運転方法及びバイナリー発電装置に関するものである。   The present invention relates to a method for operating a binary power generator and a binary power generator.

従来、工場などから排出される排温水や温泉からの温水のような低温の熱源から熱を回収して発電を行うものとして、バイナリー発電装置が存在する。このバイナリー発電装置は、作動媒体として水でなく低沸点の有機化合物などを用いており、通常の蒸気タービンを用いた発電装置に比べて低温の熱源であっても発電が可能なものとなっている。
上述したバイナリー発電装置で発電を行う際には、次に示す特許文献1〜特許文献3に開示される方法で作動媒体の循環量を調整しつつ発電を行うのが一般的である。
2. Description of the Related Art Conventionally, binary power generators exist that generate power by collecting heat from a low-temperature heat source such as waste water discharged from a factory or hot water discharged from a hot spring. This binary power generator uses an organic compound having a low boiling point instead of water as a working medium, and can generate power even with a low-temperature heat source compared to a power generator using a normal steam turbine. Yes.
When generating power with the binary power generation apparatus described above, it is common to generate power while adjusting the circulation amount of the working medium by the method disclosed in Patent Documents 1 to 3 shown below.

例えば、特許文献1には、自動車などの車両に搭載された熱機関からの廃熱を利用して発電を行う廃熱利用装置が開示されている。この廃熱利用装置は、ランキンサイクルの加熱器で回収された回収熱量、凝縮器から放熱された放熱量、膨張機の出入口でのエンタルピ差などに基づいて、熱機関からの廃熱を最も効率的に回収できる作動流体の流量を決定している。   For example, Patent Document 1 discloses a waste heat utilization device that generates power using waste heat from a heat engine mounted on a vehicle such as an automobile. This waste heat utilization device is the most efficient waste heat from the heat engine based on the amount of heat recovered by the Rankine cycle heater, the amount of heat released from the condenser, the enthalpy difference at the inlet and outlet of the expander, etc. The flow rate of the working fluid that can be recovered is determined.

また、特許文献2にも、特許文献1同様に内燃機関の廃熱を利用して発電を行う廃熱利用装置が開示されている。特許文献2の廃熱利用装置は、エンジン内の廃熱を用いて作動流体を気化させる蒸発器の他に、作動流体を加熱させる排ガス熱交換器を設けており、2つの熱交換器を用いて作動流体を加熱状態として発電に用いている。この特許文献2の廃熱利用装置では、内燃機関の廃熱が大きくなった場合は作動流体の流量を大きくし、廃熱が小さくなった場合は作動流体の流量を小さくして、例えば作動流体が過熱されて潤滑油などが分解されることを防止している。   Patent Document 2 also discloses a waste heat utilization device that generates power using waste heat of an internal combustion engine, as in Patent Document 1. The waste heat utilization device of Patent Document 2 is provided with an exhaust gas heat exchanger that heats the working fluid in addition to an evaporator that vaporizes the working fluid using the waste heat in the engine, and uses two heat exchangers. Thus, the working fluid is used for power generation in a heated state. In the waste heat utilization device of Patent Document 2, when the waste heat of the internal combustion engine increases, the flow rate of the working fluid is increased, and when the waste heat decreases, the flow rate of the working fluid is decreased. Prevents the oil from being decomposed due to overheating.

さらに、特許文献3には、エンジンなどの熱源から排出される熱を用いて熱伝達媒体を膨張・凝縮させることにより発電を行うランキンサイクルの熱発電装置が開示されている。この特許文献3の熱発電装置は、熱源であるエンジンの温度、エンジンを冷却する冷却水の水温、冷却水の流量などに基づいて、ランキンサイクルに供給される熱量とランキンサイクルから放熱される熱量とを計算し、計算された供給熱量と放熱熱量との収支に基づいて作動流体の流量を調整することにより、熱源であるエンジンの燃費を向上させる構成となっている。   Furthermore, Patent Document 3 discloses a Rankine cycle thermoelectric generator that generates power by expanding and condensing a heat transfer medium using heat discharged from a heat source such as an engine. The thermoelectric generator of Patent Document 3 is based on the temperature of the engine that is the heat source, the temperature of the cooling water that cools the engine, the flow rate of the cooling water, etc., and the amount of heat that is radiated from the Rankine cycle. And the flow rate of the working fluid is adjusted based on the calculated balance between the supplied heat quantity and the radiated heat quantity, thereby improving the fuel efficiency of the engine as the heat source.

特許第4543920号公報Japanese Patent No. 4543920 国際公開第2009/101977号International Publication No. 2009/101977 特許第4715458号公報Japanese Patent No. 4715458

ところで、一般に発電などに用いられる蒸気には0.2〜0.8MPaG程度の高圧の蒸気が用いられる。工場などから排出される排蒸気の中には、0.2MPaG以下の低圧の蒸気もあるが、こういった低圧の蒸気は再利用されることなく破棄されることが多い。しかし、蒸気は作動媒体の中でも潜熱が大きく、低圧の蒸気にも発電に利用可能な潜熱が十分に残されている。つまり、低圧の蒸気であっても、再利用して発電に用いることは十分に可能である。   Incidentally, high-pressure steam of about 0.2 to 0.8 MPaG is generally used for steam used for power generation and the like. Among exhaust steam discharged from factories and the like, there is low-pressure steam of 0.2 MPaG or less, but such low-pressure steam is often discarded without being reused. However, the steam has a large latent heat in the working medium, and the latent heat that can be used for power generation remains in the low-pressure steam. That is, even low-pressure steam can be reused and used for power generation.

ただ、低圧の蒸気は、十分な潜熱を有しているとはいえ、飽和状態の蒸気に対して圧力や温度を若干高くした程度のものに過ぎない。この飽和状態から若干高い程度の圧力や温度では、圧力や温度が少しでも変動すれば蒸気の熱エネルギも大きく変動する。それゆえ、上述した低温の蒸気を用いた場合には圧力や温度が少しでも低下すると、作動媒体側に十分な熱エネルギが熱交換されなくなって、蒸発器の出側で作動媒体が2相流状態となり、発電量が不安定になる。そのため、低圧の蒸気を用いて発電を安定して行う為には、蒸気の圧力や温度の変動に合わせて、作動媒体の循環量を迅速且つ精確に調整することが必要不可欠となる。   However, although the low-pressure steam has a sufficient latent heat, it is only a slightly higher pressure and temperature than the saturated steam. If the pressure and temperature are slightly higher than this saturation state, the thermal energy of the steam will greatly fluctuate if the pressure or temperature fluctuates even a little. Therefore, when the low-temperature steam described above is used, if the pressure or temperature decreases even a little, sufficient heat energy is not exchanged on the working medium side, and the working medium flows on the outlet side of the evaporator. The power generation amount becomes unstable. Therefore, in order to stably generate power using low-pressure steam, it is indispensable to adjust the circulating amount of the working medium quickly and accurately in accordance with fluctuations in steam pressure and temperature.

ところが、特許文献1〜3の発電装置は、いずれも熱源として低圧の蒸気を用いたものではないので、蒸気の圧力や温度の変動に付随して作動媒体の循環量を精確に調整できるものでもないし、迅速に調整できるものともなっていない。
また、特許文献1〜3の発電装置は、例えば熱源の温度や冷却水の水温といった温度を実際に計測して制御を行う構成となっている。しかし、制御に用いる物理量の中でも温度は最も応答性が悪い物理量であり、蒸気の圧力などに比べれば温度の応答は相当悪い。それゆえ、応答性の悪い温度などの物理量を制御に用いると、例えば蒸気の圧力が変動しても作動媒体の循環量を迅速に調整することができなくなり、ハンチングなどによって制御が不可能になったり十分な発電量を確保できなくなったりする可能性もある。
However, since none of the power generation devices of Patent Documents 1 to 3 use low-pressure steam as a heat source, even the one that can accurately adjust the circulation amount of the working medium accompanying fluctuations in the pressure or temperature of the steam. Nor can it be adjusted quickly.
Moreover, the electric power generating apparatus of patent documents 1-3 is the structure which actually measures and controls temperature, such as the temperature of a heat source, and the water temperature of a cooling water, for example. However, among the physical quantities used for control, the temperature is the physical quantity with the lowest responsiveness, and the temperature response is considerably worse than the steam pressure and the like. Therefore, if a physical quantity such as a temperature with poor responsiveness is used for the control, for example, even if the steam pressure fluctuates, it becomes impossible to quickly adjust the circulating amount of the working medium, and the control becomes impossible by hunting or the like. There is also a possibility that sufficient power generation cannot be secured.

本発明は、上述の問題に鑑みてなされたものであり、蒸発器に供給される蒸気の圧力や温度の変動に応じて作動媒体の循環量を迅速に且つ精度良く調整することで、低圧の蒸気を再利用しても安定した発電を行うことができるバイナリー発電装置の運転方法及びバイナリー発電装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and by adjusting the circulation amount of the working medium quickly and accurately in accordance with fluctuations in the pressure and temperature of the steam supplied to the evaporator, An object of the present invention is to provide a binary power generation apparatus operating method and a binary power generation apparatus that can perform stable power generation even when steam is reused.

上記課題を解決するため、本発明のバイナリー発電装置の運転方法は以下の技術的手段を講じている。
即ち、本発明のバイナリー発電装置の運転方法は、蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置において、前記循環ポンプによる作動媒体の循環量を制御するに際しては、前記蒸発器に供給される蒸気の入側の飽和温度Tと、前記蒸発器から排出される作動媒体の出側の飽和温度Tとを算出し、算出された蒸気の入側の飽和温度Tから作動媒体の出側の飽和温度Tを差し引いた温度差ΔTが、予め定められた閾値以上となるように、前記循環ポンプによる作動媒体の循環量と圧力を制御することを特徴とする。
In order to solve the above problems, the operation method of the binary power generation apparatus of the present invention employs the following technical means.
That is, the operation method of the binary power generation apparatus of the present invention includes an evaporator that evaporates a working medium using steam as a heat source, an expander that generates a rotational driving force by expanding a gaseous working medium evaporated by the evaporator, A binary power generation apparatus comprising: a condenser that condenses a gaseous working medium expanded by the expander into a liquid; and a circulation pump that circulates the working medium from the condenser toward an evaporator. in controlling the circulating amount is calculated to the saturation temperature T 1 of the inlet side of the steam supplied to the evaporator, and a saturation temperature T 2 of the outlet side of the working medium discharged from the evaporator, calculate Amount of working medium circulated by the circulation pump so that a temperature difference ΔT obtained by subtracting the saturation temperature T 2 on the outlet side of the working medium from the saturated temperature T 1 on the inlet side of the generated steam is equal to or greater than a predetermined threshold value. And pressure And controlling the.

なお、好ましくは、前記蒸発器の入側において蒸気の圧力を計測する入側蒸気圧力計を設けると共に、蒸発器の出側において作動媒体の圧力を計測する出側媒体圧力計を設けておき、前記入側蒸気圧力計で計測された蒸気の圧力に基づいて、蒸気の入側の飽和温度Tを算出すると共に、前記出側媒体圧力計で計測された作動媒体の圧力に基づいて、作動媒体の出側の飽和温度Tを算出するとよい。 Preferably, an inlet-side steam pressure gauge for measuring the pressure of the steam is provided on the inlet side of the evaporator, and an outlet-side medium pressure gauge for measuring the pressure of the working medium is provided on the outlet side of the evaporator, based on the pressure of the steam which is measured by the entering-side steam pressure gauge, to calculate the saturation temperature T 1 of the inlet side of the steam, based on the pressure of the outlet-side medium pressure meter measured working medium, working it is preferable to calculate the saturation temperature T 2 of the output side of the medium.

なお、好ましくは、前記蒸発器の入側に、この蒸発器に供給される蒸気の圧力を減圧可能な減圧弁と、この減圧弁に供給される蒸気の圧力を計測する減圧弁入側圧力計と、を設けておき、前記減圧弁入側圧力計で計測された蒸気の圧力が、予め定められた圧力以下となるように、前記減圧弁を開閉するとよい。
なお、好ましくは、前記温度差ΔTが前記閾値以上の場合には、前記循環ポンプによる作動媒体の循環量を大きくし、前記温度差ΔTが閾値未満の場合には、前記循環ポンプによる作動媒体の循環量を小さくするとよい。
Preferably, on the inlet side of the evaporator, a pressure reducing valve capable of reducing the pressure of the steam supplied to the evaporator, and a pressure reducing valve inlet side pressure gauge for measuring the pressure of the steam supplied to the pressure reducing valve And the pressure reducing valve may be opened and closed so that the vapor pressure measured by the pressure reducing valve inlet side pressure gauge is equal to or lower than a predetermined pressure.
Preferably, when the temperature difference ΔT is greater than or equal to the threshold, the amount of circulation of the working medium by the circulation pump is increased, and when the temperature difference ΔT is less than the threshold, the working medium by the circulation pump is increased. It is better to reduce the circulation rate.

一方、本発明のバイナリー発電装置は、蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置であって、上述した運転方法に従って、前記循環ポンプによる作動媒体の循環量と圧力を制御する制御部を有することを特徴とする。   On the other hand, the binary power generation device of the present invention includes an evaporator that evaporates a working medium using steam as a heat source, an expander that expands a gaseous working medium evaporated by the evaporator and generates a rotational driving force, and the expander A binary power generation device comprising a condenser that condenses the gaseous working medium expanded in step 1 into a liquid and a circulation pump that circulates the working medium from the condenser toward the evaporator, according to the operation method described above. It has a control part which controls the amount and pressure of circulation of the working medium by a circulation pump.

また、本発明のバイナリー発電装置の運転方法は、前記蒸発器において作動媒体を蒸発させる元蒸気を供給する蒸気供給源と、前記蒸気供給源で発生した元蒸気を外部に排出する蒸気排出主配管とがバイナリー発電装置とは別に設けられており、前記蒸気排出主配管を流れる元蒸気の一部を分岐して前記蒸発器に導入する蒸気分岐配管を設け、前記蒸気供給源で発生する元蒸気の圧力Pを計測し、計測された元蒸気の圧力Pに基づいて、前記蒸気分岐配管を流れる元蒸気の流量を調整することを特徴とする。 The operation method of the binary power generation apparatus of the present invention includes a steam supply source that supplies original steam for evaporating a working medium in the evaporator, and a steam discharge main pipe that discharges the original steam generated by the steam supply source to the outside. Is provided separately from the binary power generation device, and provided with a steam branch pipe for branching a part of the original steam flowing through the steam discharge main pipe and introducing it into the evaporator, and the original steam generated at the steam supply source the pressure P S is measured for, based on the pressure P S in the original steam measured, and adjusting the flow rate of the original steam flowing through the steam branch pipes.

なお、好ましくは、前記蒸気分岐配管の分岐点より下流側の蒸気排出主配管に、この蒸気排出主配管を流れる元蒸気の圧力を調整する圧力調整弁を設けておき、前記元蒸気の圧力Pが予め定められた圧力PS1より小さい場合には前記圧力調整弁を締め、前記元蒸気の圧力Pが予め定められた圧力PS2(>PS1)より大きい場合には前記圧力調整弁を開放するとよい。 Preferably, the steam discharge main pipe downstream from the branch point of the steam branch pipe is provided with a pressure adjusting valve for adjusting the pressure of the original steam flowing through the steam discharge main pipe, and the pressure P of the original steam is set. When S is smaller than a predetermined pressure P S1, the pressure regulating valve is closed, and when the pressure P S of the original steam is larger than a predetermined pressure P S2 (> P S1 ), the pressure regulating valve is closed. Should be opened.

さらに、本発明のバイナリー発電装置は、蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置であって、前記蒸発器で作動媒体を蒸発させる元蒸気を発生させる蒸気供給源と、前記蒸気供給源で発生した元蒸気をこの蒸気供給源の外部に排出する蒸気排出主配管と、前記蒸気排出主配管を流れる元蒸気の一部を分岐して前記蒸発器に導入する蒸気分岐配管と、前記蒸気供給源で発生する元蒸気の圧力Pを計測する圧力計と、前記圧力計で計測された元蒸気の圧力Pに基づいて、前記蒸気分岐配管を流れる元蒸気の流量を調整する圧力調整弁と備えていて、上述した運転方法に従って、前記蒸気分岐配管内を流通する作動媒体の循環量を制御する制御部を有するとよい。 また、本発明に係るバイナリー発電装置の運転方法の最も好ましい形態は、蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置において、前記循環ポンプによる作動媒体の循環量を制御するに際しては、前記蒸発器に供給される蒸気の入側の飽和温度T と、前記蒸発器から排出される作動媒体の出側の飽和温度T とを算出し、算出された蒸気の入側の飽和温度T から作動媒体の出側の飽和温度T を差し引いた温度差ΔTが、予め定められた閾値以上となるように、前記循環ポンプによる作動媒体の循環量と圧力を制御することとし、前記蒸発器の入側に、この蒸発器に供給される蒸気の圧力を減圧可能な減圧弁と、この減圧弁に供給される蒸気の圧力を計測する減圧弁入側圧力計と、を設けておき、前記減圧弁入側圧力計で計測された蒸気の圧力が、予め定められた圧力以下となるように、前記減圧弁を開閉することを特徴とする。
また、本発明に係るバイナリー発電装置の運転方法の最も好ましい形態は、蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置において、前記循環ポンプによる作動媒体の循環量を制御するに際しては、前記蒸発器に供給される蒸気の入側の飽和温度T と、前記蒸発器から排出される作動媒体の出側の飽和温度T とを算出し、算出された蒸気の入側の飽和温度T から作動媒体の出側の飽和温度T を差し引いた温度差ΔTが、予め定められた閾値以上となるように、前記循環ポンプによる作動媒体の循環量と圧力を制御することとし、前記蒸発器において作動媒体を蒸発させる元蒸気を供給する蒸気供給源と、前記蒸気供給源で発生した元蒸気を外部に排出する蒸気排出主配管とがバイナリー発電装置とは別に設けられており、 前記蒸気排出主配管を流れる元蒸気の一部を分岐して前記蒸発器に導入する蒸気分岐配管を設け、 前記蒸気供給源で発生する元蒸気の圧力PSを計測し、計測された元蒸気の圧力PSに基づいて、前記蒸気分岐配管を流れる元蒸気の流量を調整することを特徴とする。
Furthermore, the binary power generation device of the present invention includes an evaporator that evaporates a working medium using steam as a heat source, an expander that expands a gaseous working medium evaporated by the evaporator and generates a rotational driving force, and the expander A binary power generator comprising: a condenser that condenses the gaseous working medium expanded in step 1 into a liquid; and a circulation pump that circulates the working medium from the condenser toward the evaporator. A steam supply source that generates the original steam to be evaporated, a steam discharge main pipe that discharges the original steam generated by the steam supply source to the outside of the steam supply source, and a part of the original steam that flows through the steam discharge main pipe a steam branch pipe for introducing into the evaporator branches, a pressure gauge for measuring the pressure P S in the original steam generated in the steam supply source, based on the pressure P S in the original steam measured by the pressure gauge The steam content Equipped with a pressure regulating valve for adjusting the flow rate of the original steam flowing through the pipe, in accordance with the operating method described above, it may have a control unit for controlling the circulation amount of the working medium flowing through the steam branch in the pipe. Further, the most preferable mode of the operation method of the binary power generation apparatus according to the present invention is to generate an evaporator that evaporates the working medium using steam as a heat source, and generates a rotational driving force by expanding the gaseous working medium evaporated by the evaporator. A binary power generation apparatus comprising: an expander that expands; a condenser that condenses the gas working medium expanded in the expander into a liquid; and a circulation pump that circulates the working medium from the condenser toward the evaporator. in controlling the circulation amount of the working medium by the circulation pump, the saturation temperature T 1 of the inlet side of the steam supplied to the evaporator, the saturation temperature T 2 of the outlet side of the working medium discharged from said evaporator calculating a temperature difference ΔT obtained by subtracting the saturation temperature T 2 of the output side of the calculated steam inlet side of the saturation temperature T 1 of the working medium, so that the above predetermined threshold value, the circulation pump Yo A circulation amount and a pressure of the working medium are controlled, and a pressure reducing valve capable of reducing the pressure of the steam supplied to the evaporator and a pressure of the steam supplied to the pressure reducing valve are provided on the inlet side of the evaporator. A pressure reducing valve inlet side pressure gauge to be measured, and opening and closing the pressure reducing valve so that the vapor pressure measured by the pressure reducing valve inlet side pressure gauge is equal to or lower than a predetermined pressure. Features.
Further, the most preferable mode of the operation method of the binary power generation apparatus according to the present invention is to generate an evaporator that evaporates the working medium using steam as a heat source, and generates a rotational driving force by expanding the gaseous working medium evaporated by the evaporator. A binary power generation apparatus comprising: an expander that expands; a condenser that condenses the gas working medium expanded in the expander into a liquid; and a circulation pump that circulates the working medium from the condenser toward the evaporator. in controlling the circulation amount of the working medium by the circulation pump, the saturation temperature T 1 of the inlet side of the steam supplied to the evaporator, the saturation temperature T 2 of the outlet side of the working medium discharged from said evaporator calculating a temperature difference ΔT obtained by subtracting the saturation temperature T 2 of the output side of the calculated steam inlet side of the saturation temperature T 1 of the working medium, so that the above predetermined threshold value, the circulation pump Yo A steam supply source for supplying the original steam for evaporating the working medium in the evaporator, and a steam discharge main pipe for discharging the original steam generated by the steam supply source to the outside by controlling the circulation amount and pressure of the working medium Is provided separately from the binary power generation device, provided with a steam branch pipe for branching a part of the original steam flowing through the steam discharge main pipe and introducing it into the evaporator, and the original steam generated at the steam supply source And the flow rate of the original steam flowing through the steam branch pipe is adjusted based on the measured pressure PS of the original steam.

本発明のバイナリー発電装置の運転方法及びバイナリー発電装置によれば、蒸発器に供給される蒸気の圧力や温度の急激な変動に応じて作動媒体の循環量を迅速に且つ精度良く調整することができ、低圧の蒸気を再利用しても安定した発電を行うことができる。   According to the operation method of the binary power generation device and the binary power generation device of the present invention, it is possible to quickly and accurately adjust the circulation amount of the working medium according to a rapid change in the pressure or temperature of the steam supplied to the evaporator. Even if low-pressure steam is reused, stable power generation can be performed.

第1実施形態のバイナリー発電装置を示している。1 shows a binary power generation apparatus according to a first embodiment. 第2実施形態のバイナリー発電装置を示している。The binary power generator of 2nd Embodiment is shown.

「第1実施形態」
以下、本発明のバイナリー発電装置1及びこのバイナリー発電装置1の運転方法の実施形態を、図面に基づき詳しく説明する。
図1は、第1実施形態のバイナリー発電装置1を模式的に示したものである。
図1に示すように、バイナリー発電装置1は、蒸気を熱源として液体の作動媒体を蒸発させる蒸発器2と、蒸発器2で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機3と、膨張機3で膨張した気体の作動媒体を液体に凝縮する凝縮器4と、凝縮器4から蒸発器2に向って作動媒体を循環させる循環ポンプ5とを備えている。これら蒸発器2、膨張機3、凝縮器4及び循環ポンプ5は作動媒体を循環させる閉ループ状の循環配管6により接続されていて、作動媒体を循環配管6の一方向(蒸発器2→膨張機3→凝縮器4→循環ポンプ5の順番に循環して蒸発器に帰還する方向)に沿って流通できるようになっている。
“First Embodiment”
Hereinafter, an embodiment of a binary power generator 1 and an operation method of the binary power generator 1 of the present invention will be described in detail with reference to the drawings.
FIG. 1 schematically shows a binary power generator 1 according to a first embodiment.
As shown in FIG. 1, the binary power generation apparatus 1 includes an evaporator 2 that evaporates a liquid working medium using vapor as a heat source, and an expansion that generates a rotational driving force by expanding a gaseous working medium evaporated by the evaporator 2. And a condenser 4 that condenses the gaseous working medium expanded in the expander 3 into a liquid, and a circulation pump 5 that circulates the working medium from the condenser 4 toward the evaporator 2. The evaporator 2, the expander 3, the condenser 4, and the circulation pump 5 are connected by a closed loop circulation pipe 6 that circulates the working medium, and the working medium passes through the circulation pipe 6 in one direction (evaporator 2 → expander). 3 → condenser 4 → circulation pump 5 in the order of circulation and return to the evaporator).

上述した蒸発器2には、この蒸発器2内に蒸気を供給する蒸気配管7が設けられており、この蒸気配管7を介して外部のボイラや温泉などで発生した蒸気を蒸発器2の内部(蒸発器2の一次側)に供給すると共に、供給した蒸気を蒸発器2の外部に排出できるようになっている。また、蒸発器2の入側の蒸気配管7には、蒸発器2に供給される蒸気圧力を減圧可能な後述する減圧弁8と、蒸発器2に溜まったドレイン(凝縮水)を取り除くスチームトラップ9(強制ドレイン排出手段)が設けられている。なお、蒸発器2の二次側には、作動媒体が供給され、一次側の蒸気との間で熱交換がなされる。   The evaporator 2 described above is provided with a steam pipe 7 for supplying steam into the evaporator 2, and steam generated in an external boiler or hot spring through the steam pipe 7 is supplied to the inside of the evaporator 2. While being supplied to (primary side of the evaporator 2), the supplied steam can be discharged to the outside of the evaporator 2. Further, a steam pipe 7 on the inlet side of the evaporator 2 includes a pressure reducing valve 8 that can reduce the pressure of the steam supplied to the evaporator 2, and a steam trap that removes drain (condensed water) accumulated in the evaporator 2. 9 (forced drain discharge means) is provided. In addition, a working medium is supplied to the secondary side of the evaporator 2 and heat exchange is performed with the steam on the primary side.

一方、凝縮器4には、この凝縮器4の一次側に冷却塔10(チラ−)で冷却された冷却水を供給する冷却水配管11と、冷却水配管11に沿って冷却水を流通させる冷却水ポンプ12とが設けられている。凝縮器4の二次側の入側には、蒸発器2の二次側の出側から延びて膨張機3を経由した循環配管6が連結されており、凝縮器4の二次側の出側から延びる循環配管6は、循環ポンプ5を経由して蒸発器2の二次側の入側へとつながっている。   On the other hand, in the condenser 4, the cooling water pipe 11 that supplies the cooling water cooled by the cooling tower 10 (chiller) to the primary side of the condenser 4 and the cooling water is circulated along the cooling water pipe 11. A cooling water pump 12 is provided. The inlet side of the secondary side of the condenser 4 is connected to a circulation pipe 6 extending from the outlet side of the secondary side of the evaporator 2 and passing through the expander 3, and the outlet side of the secondary side of the condenser 4 is connected. The circulation pipe 6 extending from the side is connected to the inlet side of the secondary side of the evaporator 2 via the circulation pump 5.

上述したバイナリー発電装置1には、膨張機3に連結された発電機13が設けられており、膨張機3で得られた回転駆動力を用いて発電機13で発電を行うことができるようになっている。また、膨張機3には、膨張機3に用いられるタービンなどに潤滑油を供給する潤滑手段14が設けられている。この潤滑手段14は、蒸発器2の二次側の出側から膨張機3に向かう循環配管6上に設けられて作動媒体から潤滑油を分離する油分離器15と、油分離器15で分離された潤滑油を膨張機3に供給する潤滑油供給配管16とを備えている。さらに、循環ポンプ5から蒸発器2に向かう循環配管6上には、蒸発器2の負荷を下げるために液体の作動媒体を予熱する予熱器17が設けられている。この予熱器17には、温水が供給されていて、温水との間に熱交換を行うことで液体の作動媒体を予熱できる構成となっている。   The binary power generator 1 described above is provided with a generator 13 connected to the expander 3 so that the generator 13 can generate power using the rotational driving force obtained by the expander 3. It has become. Further, the expander 3 is provided with a lubrication means 14 for supplying lubricating oil to a turbine or the like used in the expander 3. The lubrication means 14 is provided on a circulation pipe 6 that extends from the outlet side of the secondary side of the evaporator 2 to the expander 3 and separates the lubricating oil from the working medium by the oil separator 15. And a lubricant supply pipe 16 for supplying the lubricant to the expander 3. Further, a preheater 17 for preheating the liquid working medium is provided on the circulation pipe 6 from the circulation pump 5 toward the evaporator 2 in order to reduce the load on the evaporator 2. Warm water is supplied to the preheater 17 and the liquid working medium can be preheated by exchanging heat with the warm water.

バイナリー発電装置1に用いられる作動媒体には、代替フロンやペンタンなどのような水より低沸点の有機化合物が用いられており、熱源である蒸気から供給される熱を用いて発電を行うことが可能となっている。
また、蒸発器2に供給される蒸気には、圧力が0.2MPaG以下の蒸気が含まれる。この蒸気は、通常発電に用いられる0.2MPaG〜0.8MPaGの蒸気に比べて低圧とされており、0.2MPaG以下の低圧の蒸気を用いても発電を行えることが、本発明のバイナリー発電装置1の特徴の1つとなっている。
The working medium used in the binary power generation apparatus 1 uses an organic compound having a lower boiling point than water, such as alternative chlorofluorocarbon or pentane, and can generate power using heat supplied from steam as a heat source. It is possible.
The steam supplied to the evaporator 2 includes steam having a pressure of 0.2 MPaG or less. This steam has a lower pressure than steam of 0.2 MPaG to 0.8 MPaG normally used for power generation, and the binary power generation according to the present invention can generate power even by using steam having a low pressure of 0.2 MPaG or less. This is one of the features of the device 1.

図1に示すバイナリー発電装置1で発電を行う際には、まず蒸発器2の1次側に蒸気を供給すると共に蒸発器2の2次側に液体の作動媒体を導いて、蒸発器2内で両者の間に熱交換を行って、液体の作動媒体を気体の作動媒体に気化させる。そして、蒸発器2から送られてきた気体の作動媒体から油分離器15で潤滑油を分離し、油分離器15で分離された潤滑油を潤滑油供給配管16を介して膨張機3に送り、潤滑油が供給された状態で膨張機3を駆動させる。   When power is generated by the binary power generator 1 shown in FIG. 1, first, steam is supplied to the primary side of the evaporator 2 and a liquid working medium is led to the secondary side of the evaporator 2, Then, heat exchange is performed between the two to vaporize the liquid working medium into a gaseous working medium. Then, the lubricating oil is separated from the gaseous working medium sent from the evaporator 2 by the oil separator 15, and the lubricating oil separated by the oil separator 15 is sent to the expander 3 through the lubricating oil supply pipe 16. The expander 3 is driven in a state where the lubricating oil is supplied.

膨張機3を駆動させて回転駆動力が発生すると、発生した回転駆動力は駆動軸18を経由して発電機13に送られ、発電機13で発電が行われる。一方、膨張機3の駆動に用いられた気体の作動媒体は凝縮器4に送られ、凝縮器4において冷却水との間に熱交換が行われて、作動媒体は気体から液体に戻る(凝縮される)。凝縮器4で凝縮された液体の作動媒体は循環ポンプ5で圧送され、予熱器17を経由して蒸発器2に帰還する。予熱器17では、外部から供給された温水の作用で液体の作動媒体が再び蒸発器2で加熱されて気化される。このようにしてバイナリー発電装置1では、作動媒体を循環させつつランキンサイクルを利用して発電が行われるのである。   When the expander 3 is driven to generate a rotational driving force, the generated rotational driving force is sent to the generator 13 via the drive shaft 18, and the generator 13 generates power. On the other hand, the gaseous working medium used to drive the expander 3 is sent to the condenser 4, where heat exchange is performed with the cooling water in the condenser 4, and the working medium returns from the gas to the liquid (condensation). ) The liquid working medium condensed in the condenser 4 is pumped by the circulation pump 5 and returns to the evaporator 2 via the preheater 17. In the preheater 17, the liquid working medium is heated again by the evaporator 2 and vaporized by the action of hot water supplied from the outside. In this way, the binary power generation apparatus 1 generates power using the Rankine cycle while circulating the working medium.

ところで、本発明のバイナリー発電装置1の場合、通常あれば発電に用いられない低圧の蒸気、言い換えれば再利用されずに破棄される蒸気が利用される。この低圧の蒸気は、一般に発電に供される0.2〜0.8MPaGよりも低い圧力の蒸気であり、概ね0.2MPaG以下の圧力とされている。なお、以降の明細書では、この低圧の蒸気を「低圧蒸気」と呼び、0.2〜0.8MPaGの蒸気(高圧蒸気)と区別して表現する。   By the way, in the case of the binary power generation apparatus 1 of the present invention, low-pressure steam that is not normally used for power generation, in other words, steam that is discarded without being reused is used. This low-pressure steam is steam having a pressure lower than 0.2 to 0.8 MPaG generally used for power generation, and is generally set to a pressure of 0.2 MPaG or less. In the following specification, this low-pressure steam is called “low-pressure steam” and is distinguished from 0.2-0.8 MPaG steam (high-pressure steam).

しかし、ランキンサイクルに用いられる作動媒体の中でも、蒸気は潜熱が非常に大きく、「低圧」であっても蒸気であれば多くの熱エネルギを内包している。ただ、低圧蒸気は、蒸発器に供給される際の圧力が少しでも変動すると、有する熱エネルギ(潜熱)が急激に変動し、作動媒体が2相流になったり、作動媒体の循環量、過熱度、発電量が急激に変動したりして、発電を安定させるのが困難になる。   However, among the working medium used in the Rankine cycle, steam has a very large latent heat, and even if it is “low pressure”, steam contains a lot of heat energy. However, if the pressure when the low-pressure steam is supplied to the evaporator fluctuates even a little, the thermal energy (latent heat) that it has changes abruptly, the working medium becomes a two-phase flow, the amount of circulation of the working medium, the overheating The power generation amount fluctuates rapidly and it becomes difficult to stabilize the power generation.

そこで、本発明のバイナリー発電装置1の運転方法では、蒸発器2に供給される蒸気の入側の飽和温度Tと、蒸発器2から排出される作動媒体の出側の飽和温度Tとを算出し、算出された蒸気の入側の飽和温度Tから作動媒体の出側の飽和温度Tを差し引いた温度差ΔTが、予め定められた閾値A以上となるように、循環ポンプ5による作動媒体の循環量を制御している。 Therefore, in the operation method of the binary power generation device 1 of the present invention, the saturation temperature T 1 on the inlet side of the steam supplied to the evaporator 2, and the saturation temperature T 2 on the outlet side of the working medium discharged from the evaporator 2 , And the circulating pump 5 is set so that a temperature difference ΔT obtained by subtracting the calculated saturation temperature T 1 on the steam inlet side from the calculated saturation temperature T 2 on the outlet side of the working medium is equal to or greater than a predetermined threshold A. Controls the circulating amount of working medium.

具体的には、上述したバイナリー発電装置1では、蒸発器2の入側の蒸気配管7に、蒸発器2の入側の蒸気圧力(入側蒸気圧力P)を計測する入側蒸気圧力計19が配備されており、また蒸発器2の出側の循環配管6には、蒸発器2の出側の作動媒体圧力(出側媒体圧力P)を計測する出側媒体圧力計20が配備されている。
上述した入側蒸気圧力計19で計測された圧力は入側蒸気圧力Pとして制御部22に送られ、出側媒体圧力計20で計測された圧力は出側媒体圧力Pとして制御部22に送られる。
Specifically, in the binary power generation device 1 described above, an inlet-side steam pressure gauge that measures the inlet-side steam pressure (entrance-side steam pressure P 1 ) of the evaporator 2 in the inlet-side steam pipe 7 of the evaporator 2. 19 is provided, and an outlet side medium pressure gauge 20 for measuring the outlet side working medium pressure (outlet side medium pressure P 2 ) of the evaporator 2 is provided in the outlet side circulation pipe 6 of the evaporator 2. Has been.
Pressure measured at the entry side steam pressure gauge 19 described above is sent to the controller 22 as the inlet side steam pressure P 1, the pressure measured by the exit-side medium pressure meter 20 the control unit 22 as the outlet side medium pressure P 2 Sent to.

制御部22は、パソコンやシーケンサであり、内部に記憶されたプログラムに従って、蒸発器2に供給される蒸気の入側の飽和温度Tと、蒸発器2から排出される作動媒体の出側の飽和温度Tとを算出し、算出された蒸気の入側の飽和温度Tから作動媒体の出側の飽和温度Tを差し引いた温度差ΔTを計算する。そして、温度差ΔTの計算結果に基づいて、インバータ23を介して循環ポンプ5へ制御信号を送っている。その結果、循環ポンプ5では、循環ポンプ5の回転数、電圧、あるいは電流が制御部22により制御可能となっている
なお、上述したように、蒸発器2の入側の蒸気配管7には、この蒸発器2に供給される蒸気圧力を減圧可能な減圧弁8が設けられている。この減圧弁8は、入側蒸気圧力計19の更に上流側に配備されており、蒸気配管7や蒸発器2の破損を防止するために、蒸発器2に供給される低圧蒸気の圧力が所定圧力以上となった際に圧力を減圧(調整)可能とされている。具体的には、減圧弁8の上流側の蒸気配管7には、減圧弁8に送られる低圧蒸気の圧力Pを計測する減圧弁入側圧力計21が設けられていて、減圧弁8は減圧弁入側圧力計21で計測された低圧蒸気の圧力Pが所定の圧力を超えた場合に作動する構成とされている。
The control unit 22 is a personal computer or a sequencer, and in accordance with a program stored therein, the saturation temperature T 1 on the inlet side of the steam supplied to the evaporator 2 and the outlet side of the working medium discharged from the evaporator 2. A saturation temperature T 2 is calculated, and a temperature difference ΔT is calculated by subtracting the saturation temperature T 2 on the outlet side of the working medium from the calculated saturation temperature T 1 on the inlet side of the steam. Then, a control signal is sent to the circulation pump 5 via the inverter 23 based on the calculation result of the temperature difference ΔT. As a result, in the circulation pump 5, the rotational speed, voltage, or current of the circulation pump 5 can be controlled by the control unit 22. As described above, the steam pipe 7 on the inlet side of the evaporator 2 includes A pressure reducing valve 8 capable of reducing the pressure of the vapor supplied to the evaporator 2 is provided. The pressure reducing valve 8 is disposed further upstream of the inlet side steam pressure gauge 19, and the pressure of the low pressure steam supplied to the evaporator 2 is predetermined in order to prevent the steam pipe 7 and the evaporator 2 from being damaged. When the pressure becomes higher than the pressure, the pressure can be reduced (adjusted). Specifically, the pressure pipe 21 on the upstream side of the pressure reducing valve 8 is provided with a pressure reducing valve inlet side pressure gauge 21 for measuring the pressure P 0 of the low pressure steam sent to the pressure reducing valve 8. The low pressure steam pressure P 0 measured by the pressure reducing valve inlet side pressure gauge 21 is configured to operate when it exceeds a predetermined pressure.

なお、図例のバイナリー発電装置1では、減圧弁8により蒸気配管7内の圧力が0.000〜0.169MPaGの範囲の圧力に調整されている。
次に、制御部22内で行われる制御、言い換えれば本発明のバイナリー発電装置1の運転方法について説明する。
制御部22内では、入側蒸気圧力計19から送られてきた入側蒸気圧力Pを、以下の式(1)に従って計算することにより、蒸気の入側の飽和温度Tが求められている。また、制御部22では、出側媒体圧力計20から送られてきた出側媒体圧力Pを、以下の式(2)に従って計算することにより、作動媒体の出側の飽和温度Tが求められている。
In the binary power generator 1 shown in the figure, the pressure in the steam pipe 7 is adjusted to a pressure in the range of 0.000 to 0.169 MPaG by the pressure reducing valve 8.
Next, the control performed in the control unit 22, in other words, the operation method of the binary power generator 1 of the present invention will be described.
In the control unit 22, the inlet side steam pressure P 1 sent from the inlet side steam pressure gauge 19 is calculated according to the following equation (1) to obtain the steam inlet side saturation temperature T 1. Yes. Further, the control unit 22 calculates the outlet side medium pressure P 2 sent from the outlet side medium pressure gauge 20 according to the following equation (2), thereby obtaining the saturation temperature T 2 on the outlet side of the working medium. It has been.

Figure 0006029533
Figure 0006029533

なお、式(1)に用いられるf及び式(2)に用いられるfは、圧力と飽和温度との関係を示したものであり、蒸気(水)と作動媒体とのそれぞれに対して規定されている。具体的には、これらの関数f及びfは、「モリエル線図(p−h線図)」などを予め求めておき、求められたモリエル線図の飽和蒸気曲線上で圧力P、Pに対応する飽和温度を求めている。
こうして制御部22では、蒸気と作動媒体とのそれぞれの圧力P、Pを求めることで、蒸気と作動媒体との飽和温度T、Tを一義的に決定できる構成となっている。
Incidentally, f 2 used in the f 1 and formula (2) used in the equation (1) is shows the relationship between the pressure and the saturation temperature, for each of the working medium vapor (water) It is prescribed. Specifically, these functions f 1 and f 2 are obtained in advance by obtaining a “Mollier diagram (ph diagram)” and the like, and the pressure P 1 on the saturated vapor curve of the obtained Mollier diagram, seeking saturation temperature corresponding to P 2.
In this way, the control unit 22 is configured so that the saturation temperatures T 1 and T 2 between the steam and the working medium can be uniquely determined by obtaining the respective pressures P 1 and P 2 of the steam and the working medium.

制御部22では、上述のようにして得られた入側蒸気の飽和温度Tから出側媒体の飽和温度Tを差し引くことで温度差ΔTを求めている。そして、求められた温度差ΔTを算出し、温度差ΔTを予め入力してある閾値Aと比較することで、循環ポンプ5の回転数を増加させたり、減少させたりするようになっている。
つまり、制御部22では、温度差ΔTが閾値A以上の場合は、蒸気の入側の飽和温度Tが作動媒体の出側の飽和温度Tより十分に高い、言い換えれば蒸気から作動媒体への熱エネルギの供給が可能であると判断する。それゆえ、制御部22では、作動媒体の循環量と圧力を大きくする為に、インバータ23を介して循環ポンプ5に指令を送って循環ポンプ5の回転数を高くする。このようにすれば、循環ポンプ5の回転数が高くなった分だけ作動媒体の循環量と圧力が大きくなり、蒸気の入側の飽和温度Tと作動媒体の出側の飽和温度Tとの温度差ΔTが閾値Aに近づくことになる。
The controller 22 obtains the temperature difference ΔT by subtracting the saturation temperature T 2 of the outlet medium from the saturation temperature T 1 of the inlet steam obtained as described above. Then, the calculated temperature difference ΔT is calculated, and the temperature difference ΔT is compared with a threshold value A inputted in advance, thereby increasing or decreasing the rotational speed of the circulation pump 5.
That is, in the control unit 22, when the temperature difference ΔT is equal to or greater than the threshold value A, the saturation temperature T 1 on the steam entrance side is sufficiently higher than the saturation temperature T 2 on the exit side of the working medium, in other words, from the steam to the working medium. It is determined that the heat energy can be supplied. Therefore, in order to increase the circulation amount and pressure of the working medium, the control unit 22 sends a command to the circulation pump 5 via the inverter 23 to increase the rotation speed of the circulation pump 5. Thus, the circulation rate and pressure of only working medium amount that speed becomes higher the circulating pump 5 is increased, the saturation temperature T 2 of the outlet side of the saturation temperature T 1 of the working medium inlet side of the steam Temperature difference ΔT approaches the threshold value A.

一方、温度差ΔTが閾値A未満の場合には、蒸気から作動媒体への熱エネルギの供給が難しくなる。
それゆえ、制御部22では、作動媒体の循環量と圧力をさらに小さくするために、循環ポンプ5に指令を送って循環ポンプ5の回転数を低くする。
このようにすれば、循環ポンプ5の回転数が低くなった分だけ作動媒体の循環量と圧力が小さくなり、蒸気の入側の飽和温度Tと作動媒体の出側の飽和温度Tとの温度差ΔTが閾値Aに近づくことになる。
On the other hand, when the temperature difference ΔT is less than the threshold value A, it is difficult to supply heat energy from the steam to the working medium.
Therefore, the control unit 22 sends a command to the circulation pump 5 to lower the rotation speed of the circulation pump 5 in order to further reduce the circulation amount and pressure of the working medium.
Thus, the circulation rate and pressure of the amount corresponding to the working medium speed becomes low the circulating pump 5 is reduced, the saturation temperature T 2 of the outlet side of the saturation temperature T 1 of the working medium inlet side of the steam Temperature difference ΔT approaches the threshold value A.

また、上述したように、蒸気の入側の飽和温度Tを求めるに際しては入側蒸気圧力計19で計測された蒸気の圧力(入側蒸気圧力P)を用い、作動媒体の出側の飽和温度Tを求めるに際しては出側媒体圧力計20で計測された作動媒体の圧力(出側媒体圧力P)を用いているため、蒸気の入側の飽和温度T、作動媒体の出側の飽和温度Tに代えて、入側蒸気圧力P、出側媒体圧力Pを制御の指標に利用することができる。 Further, as described above, when the saturation temperature T 1 on the steam inlet side is obtained, the steam pressure (entrance steam pressure P 1 ) measured by the inlet steam pressure gauge 19 is used, and the outlet side of the working medium is measured. due to the use of pressure of the working medium which is measured by the exit-side medium pressure gauge 20 when determining the saturation temperature T 2 (outlet-side medium pressure P 2), the saturation temperature T 1 of the inlet side of the steam, exits the working medium Instead of the saturation temperature T 2 on the side, the inlet side steam pressure P 1 and the outlet side medium pressure P 2 can be used as control indices.

すなわち、入側蒸気圧力Pと出側媒体圧力Pとの差を求め、この差が所定の閾値A’より大きい場合は、循環ポンプ5の回転数を高くし、この差が所定の閾値A’より小さい場合は、循環ポンプ5の回転数を低くする制御を行ってもよい。このようにすると、応答性に優れた物理量である圧力に基づいて作動媒体の循環量と圧力を制御できるので、循環量の制御の応答性が大きく向上する。 That is, obtains the difference between the inlet side steam pressure P 1 and the exit-side medium pressure P 2, when the difference is greater than a predetermined threshold A 'is to increase the rotational speed of the circulation pump 5, the threshold value the difference is a predetermined If it is smaller than A ′, control for reducing the rotational speed of the circulation pump 5 may be performed. In this way, since the circulation amount and pressure of the working medium can be controlled based on the pressure, which is a physical quantity with excellent responsiveness, the responsiveness in controlling the circulation amount is greatly improved.

以上述べたように、本実施形態のバイナリー発電装置1の運転方法を用いて作動媒体の循環量と圧力を制御することで、蒸気の入側の飽和温度Tと作動媒体の出側の飽和温度Tとの温度差ΔTを閾値A以上の値に維持することができる。つまり、蒸発器2の1次側では、作動媒体の飽和温度Tより十分に高い飽和温度とされた蒸気(入側の飽和温度Tの蒸気)が熱源から供給されるので、作動媒体を余さず気化させることができる。その結果、一部の作動媒体の気化ができなくなって作動媒体が蒸発器2の出側で2相流となるといった不具合や発電が不安定になるといった不具合を解消することも可能となる。
「第2実施形態」
次に、第2実施形態のバイナリー発電装置1について説明する。
As described above, by controlling the circulating amount and pressure of the working medium using the operation method of the binary power generation device 1 of the present embodiment, the saturation temperature T 1 on the steam inlet side and the saturation on the outlet side of the working medium. it is possible to maintain the temperature difference ΔT between the temperature T 2 to a value equal to or more than the threshold a. That is, on the primary side of the evaporator 2, steam having a saturation temperature sufficiently higher than the saturation temperature T 2 of the working medium (steam at the saturation temperature T 1 on the inlet side) is supplied from the heat source. It can be vaporized. As a result, it is possible to eliminate the problem that some of the working medium cannot be vaporized and the working medium becomes a two-phase flow on the outlet side of the evaporator 2 and the power generation becomes unstable.
“Second Embodiment”
Next, the binary power generator 1 of the second embodiment will be described.

第2実施形態のバイナリー発電装置1は、第1実施形態のバイナリー発電装置1が備えている構成及び機能(作動媒体の循環量と圧力を制御することで、熱源となる蒸気の熱エネルギーが低い場合であっても発電が不安定になるといった不具合を解消する)を同様に備えるものとなっている。
係る構成、機能に加えて、第2実施形態のバイナリー発電装置1は、熱源となる蒸気の熱エネルギーが極端に高い場合であっても、バイナリー発電装置1自体に悪影響を及ぼさず且つ効率よく発電を行うために機能を有するものとなっている。
The binary power generation apparatus 1 according to the second embodiment has the configuration and function (the control of the working medium circulation amount and pressure is low, so that the heat energy of the steam serving as the heat source is low. In this case, the problem that power generation becomes unstable even in the case is solved).
In addition to the configuration and function, the binary power generation apparatus 1 according to the second embodiment efficiently generates power without adversely affecting the binary power generation apparatus 1 itself even when the heat energy of the steam as a heat source is extremely high. It has a function to perform.

例えば、バイナリー発電装置で消費できる熱量(処理可能な熱量)に対して、それ以上の熱量を蒸気供給源23が排出しなければならない場合、図1に示す第1実施形態のようなバイナリ発電装置1では吸収できる熱量の上限が決まっているので、蒸気供給源23から排出される蒸気(元蒸気)を配管7に流すことができない。
一方、第2実施形態のバイナリー発電装置1が用いられるような環境においては、蒸気供給源23からの蒸気はタービンなど供給先の設備を回すために使われ使用後に外部に排出される。ところが、供給先の設備の受け入れる熱量に制限があるような場合、その制限以上の熱量の蒸気を蒸気供給源23が排出すると、供給先の設備の運転に影響が生じる。
For example, when the steam supply source 23 has to discharge more heat than the amount of heat that can be consumed by the binary power generation device (the amount of heat that can be processed), the binary power generation device as in the first embodiment shown in FIG. 1, since the upper limit of the amount of heat that can be absorbed is determined, the steam (original steam) discharged from the steam supply source 23 cannot flow through the pipe 7.
On the other hand, in an environment where the binary power generation apparatus 1 of the second embodiment is used, the steam from the steam supply source 23 is used to turn the equipment of the supply destination such as a turbine and is discharged outside after use. However, when there is a limit to the amount of heat received by the facility at the supply destination, if the steam supply source 23 discharges steam having a heat amount that exceeds the limit, the operation of the facility at the supply destination is affected.

そのような、供給先の設備への影響を抑えるために、第2実施形態のバイナリー発電装置1では、供給先の設備が受け入れ可能とする熱量の上限を超えるような熱量が供給される時に、分岐管(主配管24)を介して、その超える分(供給先の設備の熱量の上限を超える分)だけを、第2実施形態のバイナリー発電装置1へ排出し、供給先の設備に悪影響が及ばないようにしている。   In order to suppress such an influence on the facility of the supply destination, in the binary power generation device 1 of the second embodiment, when the amount of heat exceeding the upper limit of the amount of heat that can be accepted by the facility of the supply destination is supplied, Only the excess (the amount exceeding the upper limit of the heat amount of the supply facility) is discharged to the binary power generator 1 of the second embodiment via the branch pipe (main pipe 24), and the supply facility is adversely affected. I try not to reach.

具体的には、第2実施形態のバイナリー発電装置1が設置される環境、言い換えればバイナリー発電装置1の蒸発器2の上流側には、製造設備に備えられたボイラーなどの蒸気供給源23が配備されている。この蒸気供給源23で発生した元蒸気は当該蒸気供給源23に接続された蒸気排出主配管24を介して上述した設備(供給先の設備)供給され使用後に外部に排出されるものとなっている。   Specifically, a steam supply source 23 such as a boiler provided in the manufacturing facility is provided in the upstream side of the evaporator 2 of the binary power generator 1 in an environment where the binary power generator 1 of the second embodiment is installed. Has been deployed. The original steam generated from the steam supply source 23 is supplied through the steam discharge main pipe 24 connected to the steam supply source 23 as described above (supply destination equipment) and discharged to the outside after use. Yes.

上述した環境に対して設置される第2実施形態のバイナリー発電装置1は、蒸気排出主配管24を流れる元蒸気の一部を分岐して蒸発器2に導入する蒸気分岐配管25と、蒸気供給源23で発生する元蒸気の圧力Pを計測する圧力計26と、圧力計26で計測された元蒸気の圧力Pに基づいて、蒸気分岐配管25を流れる元蒸気の流量を調整する圧力調整弁27とを有するものとなっている。そして、この圧力調整弁27は制御部28からの指令に基づいてに弁開度を調整できるようになっており、制御部28は圧力計26で計測された元蒸気の圧力Pが所望の圧力となるように圧力調整弁27に制御信号を出力する構成とされている。 The binary power generator 1 of the second embodiment installed for the environment described above includes a steam branch pipe 25 that branches a part of the original steam flowing through the steam discharge main pipe 24 and introduces it into the evaporator 2, and a steam supply. a pressure gauge 26 for measuring the pressure P S in the original steam generated by source 23, the pressure based on the pressure P S in the original steam measured by the pressure gauge 26, to adjust the flow rate of the original steam flowing through the steam branch pipe 25 It has a regulating valve 27. Then, the pressure regulating valve 27 is adapted to adjust the valve opening degree based on a command from the control unit 28, the control unit 28 of the original steam measured by the pressure gauge 26 pressure P S is desired A control signal is output to the pressure regulating valve 27 so that the pressure is reached.

以下、各構成について詳細に述べる。
蒸気供給源23は、バイナリー発電装置1で十分に発電が可能な熱量を備えた蒸気(元蒸気)を発生させるものであり、例えば発電や製造に利用済みの蒸気、言い換えれば1次蒸気の排蒸気(2次蒸気)を供給するものである。このような蒸気供給源23としては発電設備や製造設備などのボイラーを例として挙げることができ、その場合は設備などでタービンなどを回した後の排蒸気などが「元蒸気」として用いられる。
Hereinafter, each configuration will be described in detail.
The steam supply source 23 generates steam (original steam) having a calorific value that can be sufficiently generated by the binary power generation apparatus 1. For example, steam that has been used for power generation or production, in other words, discharge of primary steam. Steam (secondary steam) is supplied. As such a steam supply source 23, a boiler such as a power generation facility or a manufacturing facility can be cited as an example. In this case, exhaust steam after turning a turbine or the like in the facility is used as “original steam”.

蒸気排出主配管24は、蒸気供給源23で発生した元蒸気を蒸気供給源23の外部に排出する配管である。蒸気排出主配管24の入口は蒸気供給源23に接続されており、蒸気排出主配管24の出口には余分な元蒸気を排出する排出口が設けられている。この入口から排出口までの間の蒸気排出主配管24には、入口から排出口に向かって順番に、圧力計26、蒸気分岐配管25、圧力調整弁27が設けられている。   The steam discharge main pipe 24 is a pipe that discharges the original steam generated by the steam supply source 23 to the outside of the steam supply source 23. The inlet of the steam discharge main pipe 24 is connected to the steam supply source 23, and the outlet of the steam discharge main pipe 24 is provided with a discharge port for discharging excess original steam. In the steam discharge main pipe 24 between the inlet and the outlet, a pressure gauge 26, a steam branch pipe 25, and a pressure adjusting valve 27 are provided in order from the inlet to the outlet.

圧力計26は、蒸気排出主配管24を流通する元蒸気の圧力を計測するものであり、第1実施形態の入側蒸気圧力計19や出側蒸気圧力計20と同じものが用いられている。蒸気排出主配管24における圧力計26の取り付け位置は、後述する蒸気分岐配管25の接続位置よりも上流側とされており、蒸気分岐配管25に分岐される前の蒸気排出主配管24の蒸気の圧力Pを計測可能とされている。圧力計26で計測された圧力の計測値Pは、制御部28に信号として入力されている。 The pressure gauge 26 measures the pressure of the original steam flowing through the steam discharge main pipe 24, and the same one as the inlet side steam pressure gauge 19 and the outlet side steam pressure gauge 20 of the first embodiment is used. . The attachment position of the pressure gauge 26 in the steam discharge main pipe 24 is upstream from the connection position of the steam branch pipe 25 described later, and the steam in the steam discharge main pipe 24 before branching to the steam branch pipe 25 is disposed. and it is capable of measuring the pressure P S. Measured value P S of the pressure measured by the pressure gauge 26 is input as a signal to the control unit 28.

蒸気分岐配管25は、蒸気排出主配管24を流通する元蒸気の一部をバイナリー発電装置1の蒸発器2に導入するものである。蒸気分岐配管25の入口は、圧力計26より下流側(排出口側)であって、後述する圧力調整弁27より上流側の位置で蒸気排出主配管24に接続されており、蒸気排出主配管24を流通する元蒸気の一部を分岐して導入できるようになっている。   The steam branch pipe 25 introduces a part of the original steam flowing through the steam discharge main pipe 24 into the evaporator 2 of the binary power generator 1. The inlet of the steam branch pipe 25 is connected to the steam discharge main pipe 24 at a position downstream of the pressure gauge 26 (exhaust port side) and upstream of a pressure regulating valve 27 described later. A part of the original steam flowing through 24 can be branched and introduced.

また、蒸気分岐配管25の出口は蒸発器2の入側(一次側の入口)に接続されており、蒸気分岐配管25に引き込んだ元蒸気を蒸発器2に供給できるようになっている。さらに、蒸気分岐配管25の中途側には、蒸気分岐配管25を流通する蒸気の流通を遮断可能な遮断弁29が設けられている。
蒸気排出主配管24に設けられた圧力調整弁27は、蒸気排出主配管24を流通する元蒸気の圧力を調整することで、蒸気分岐配管25を流通する蒸気の流量を調整するものである。蒸気排出主配管24における圧力調整弁27の取り付け位置は蒸気分岐配管25の接続位置よりも排出口側(下流側)とされている。つまり、圧力調整弁27は、蒸気分岐配管25側と排出口側とに分かれて流れる元蒸気のうち、排出口側に流れる元蒸気の流量を調整することで、蒸気分岐配管25側に流れ込む元蒸気の流量を調整可能となっている。この圧力調整弁27には制御部28から制御信号が入力されており、圧力調整弁27は制御部28によって弁開度を調整可能となっている。
Further, the outlet of the steam branch pipe 25 is connected to the inlet side (primary side inlet) of the evaporator 2, so that the original steam drawn into the steam branch pipe 25 can be supplied to the evaporator 2. Furthermore, a shut-off valve 29 that can block the flow of steam flowing through the steam branch pipe 25 is provided in the middle of the steam branch pipe 25.
The pressure adjustment valve 27 provided in the steam discharge main pipe 24 adjusts the flow rate of the steam flowing through the steam branch pipe 25 by adjusting the pressure of the original steam flowing through the steam discharge main pipe 24. The attachment position of the pressure adjustment valve 27 in the steam discharge main pipe 24 is set to the discharge port side (downstream side) from the connection position of the steam branch pipe 25. That is, the pressure regulating valve 27 adjusts the flow rate of the original steam that flows to the outlet side among the original steam that flows separately on the steam branch pipe 25 side and the outlet side, thereby flowing into the steam branch pipe 25 side. The flow rate of steam can be adjusted. A control signal is input to the pressure adjustment valve 27 from the control unit 28, and the valve opening degree of the pressure adjustment valve 27 can be adjusted by the control unit 28.

制御部28は、圧力計26で計測された元蒸気の圧力計測値P(言い換えれば、元蒸気が有する熱エネルギー量)に基づいて、圧力調整弁27の弁開度を調整している。
具体的には、制御部28には、予め第1目標圧力PS1と第2目標圧力PS2(>PS1)とが入力されて(定められて)いる。この第1目標圧力PS1は圧力調整弁27を締める(絞る)ための圧力目標値であり、第2目標圧力PS2は圧力調整弁27を緩める(開放する)ための圧力目標値である。この第1目標圧力PS1は第2目標圧力PS2よりも大きな値とされており、第2目標圧力PS2は第1目標圧力PS1より高い値に設定されている。
The control unit 28 adjusts the valve opening degree of the pressure regulating valve 27 based on the pressure measurement value P S of the original steam measured by the pressure gauge 26 (in other words, the amount of heat energy of the original steam).
Specifically, the first target pressure P S1 and the second target pressure P S2 (> P S1 ) are input (determined) to the control unit 28 in advance. The first target pressure PS1 is a pressure target value for tightening (squeezing) the pressure adjustment valve 27, and the second target pressure PS2 is a pressure target value for loosening (opening) the pressure adjustment valve 27. The first target pressure PS1 is set to a value larger than the second target pressure PS2 , and the second target pressure PS2 is set to a value higher than the first target pressure PS1 .

つまり、制御部28では、元蒸気の圧力計測値Pが予め定められた第1目標圧力PS1より小さい場合には圧力調整弁27を絞り、元蒸気の圧力計測値Pが予め定められた第1目標圧力PS1と第2目標圧力PS2との間にある場合には弁開度を維持し、圧力計測値Pが予め定められた第2目標圧力PS2より大きい場合には圧力調整弁27を開放する制御が行われており、圧力計測値Pの計測結果に合わせて3段階の弁開度調整が可能となっている。 That is, the control unit 28, when the first target pressure P S1 is smaller than the pressure measured value P S of the original vapor predetermined the diaphragm pressure regulating valve 27, pressure measurements P S of the original vapor predetermined and the first target pressure P S1 maintains the valve opening when located between the second target pressure P S2, is greater than the second target pressure P S2 of the pressure measurements P S has been determined in advance and control is performed to open the pressure regulating valve 27, which enables three stages of valve opening adjusted to the measurement results of the pressure measurements P S.

次に、制御部28で行われる信号処理、言い換えれば本発明の運転方法について説明する。
例えば、蒸気供給源23で発生した元蒸気の圧力が、供給先の設備が受け入れ可能とする熱量の上限を超えるような熱量に対応した圧力である場合(言い換えれば、元蒸気が有する熱量が過大である場合)、このような過大な圧力の元蒸気を蒸気排出主配管24を通じて供給先の設備にそのまま導入することはできない。
Next, the signal processing performed in the control unit 28, in other words, the operation method of the present invention will be described.
For example, when the pressure of the original steam generated by the steam supply source 23 is a pressure corresponding to the amount of heat exceeding the upper limit of the amount of heat that can be accepted by the supply destination facility (in other words, the amount of heat of the original steam is excessive) In this case, the original steam having such an excessive pressure cannot be directly introduced into the supply destination facility through the steam discharge main pipe 24.

そこで、このような場合は、まず圧力計26で元蒸気の圧力値Pを計測し、計測した圧力計測値Pが第1目標圧力PS1及び第2目標圧力PS2(第2目標圧力PS2>第1目標圧力PS1)に比べて大きいか小さいかを制御部28で判断する。
計測した圧力計測値Pが第1目標圧力PS1より小さいと判断された場合は、バイナリー発電装置1での許容範囲に比して蒸気分岐配管25に流れ込む元蒸気の蒸気量の方が小さく、さらに蒸発器2に供給する元蒸気の蒸気量を増やすことが可能であると考えることができる。この場合は、圧力調整弁27を閉鎖する(絞る)べく弁開度をさらに小さくする制御信号が圧力調整弁27に送られる。
Therefore, in such a case, first, the pressure value P S of the original steam is measured with the pressure gauge 26, and the measured pressure value P S is used as the first target pressure P S1 and the second target pressure P S2 (second target pressure). The control unit 28 determines whether it is larger or smaller than P S2 > first target pressure P S1 ).
If the measured pressure measured value P S is determined to be smaller than the first target pressure P S1 is towards the amount of steam based on the steam flowing into the steam branch pipe 25 than the allowable range in the binary power generation apparatus 1 is small Further, it can be considered that the amount of the original steam supplied to the evaporator 2 can be increased. In this case, a control signal for further reducing the valve opening degree is sent to the pressure regulating valve 27 in order to close (throttle) the pressure regulating valve 27.

このようにすれば、排出口側に元蒸気を送る蒸気排出主配管24に設けられた圧力調整弁27の弁開度がさらに小さくなり、蒸気排出主配管24を介して排出される元蒸気の蒸気量が少なくなった分だけ蒸気分岐配管25に流れ込む元蒸気の蒸気量が増加する。その結果、蒸発器2に供給される元蒸気の蒸気量を増加方向に調整することが可能となる。
一方、計測した圧力計測値Pが第1目標圧力PS1よりは大きいが、第2目標圧力PS2よりは小さいと判断された場合は、バイナリー発電装置1での許容範囲に比して蒸気分岐配管25に流れ込む元蒸気の蒸気量は適正な流量であると考えることができる。そのため、圧力調整弁27の弁開度を維持する制御信号、言い換えれば圧力調整弁27を閉鎖も開放もしない指令が圧力調整弁27に送られる。
In this way, the valve opening degree of the pressure regulating valve 27 provided in the steam discharge main pipe 24 that sends the original steam to the discharge port side is further reduced, and the amount of the original steam discharged through the steam discharge main pipe 24 is reduced. The amount of steam of the original steam that flows into the steam branch pipe 25 is increased by the amount of steam that has decreased. As a result, it is possible to adjust the amount of the original steam supplied to the evaporator 2 in the increasing direction.
On the other hand, the pressure measured value P S measured is but larger than the first target pressure P S1, if it is determined to be smaller than the second target pressure P S2, as compared with the allowable range in the binary power generation apparatus 1 steam It can be considered that the amount of the original steam flowing into the branch pipe 25 is an appropriate flow rate. Therefore, a control signal for maintaining the valve opening degree of the pressure regulating valve 27, in other words, a command for not closing or opening the pressure regulating valve 27 is sent to the pressure regulating valve 27.

さらに、計測した圧力計測値Pが第2目標圧力PS2よりも大きいと判断された場合は、バイナリー発電装置1での許容範囲に比して蒸気分岐配管25に流れ込む元蒸気の蒸気量の方が大きく、蒸発器2に供給される元蒸気の蒸気量を減らす必要があると考えることができる。この場合は、圧力調整弁27を開放する(開く)べく弁開度をさらに大きくする制御信号が圧力調整弁27に送られる。 Further, the pressure measurement P S measured is when it is determined to be larger than the second target pressure P S2, the original steam flowing into the steam branch pipe 25 than the allowable range in the binary power generation apparatus 1 of the steam amount Therefore, it can be considered that the amount of the original steam supplied to the evaporator 2 needs to be reduced. In this case, a control signal for further increasing the valve opening degree is sent to the pressure regulating valve 27 in order to open (open) the pressure regulating valve 27.

このようにすれば、排出口側に元蒸気を送る蒸気排出主配管24に設けられた圧力調整弁27の弁開度がさらに大きくなり、蒸気排出主配管24を介して排出される元蒸気の蒸気量が大きくなった分だけ蒸気分岐配管25に流れ込む元蒸気の蒸気量が減少する。その結果、蒸発器2に供給される元蒸気の蒸気量を減少方向に調整することが可能となる。
上述した第2実施形態のバイナリー発電装置1を用いれば、蒸気供給源23で発生した超過分の元蒸気は蒸気分岐配管25を介して蒸発器2に送られ、供給先の設備には受け入れ可能とする熱量の上限を超えるような熱量は供給されなくなる。そのため、蒸気供給源23で発生した過大な元蒸気がバイナリー発電装置1に供給されることがなくなり、供給先の設備に悪影響を及ぼす虞もない。
In this way, the valve opening degree of the pressure regulating valve 27 provided in the steam discharge main pipe 24 that sends the original steam to the discharge port side is further increased, and the amount of the original steam discharged through the steam discharge main pipe 24 is increased. The amount of steam of the original steam that flows into the steam branch pipe 25 is reduced by the amount of steam that has increased. As a result, the amount of original steam supplied to the evaporator 2 can be adjusted in a decreasing direction.
If the binary power generation apparatus 1 of the second embodiment described above is used, the excess original steam generated in the steam supply source 23 is sent to the evaporator 2 via the steam branch pipe 25 and can be received by the supply destination equipment. The amount of heat exceeding the upper limit of the amount of heat is not supplied. Therefore, excessive source steam generated in the steam supply source 23 is not supplied to the binary power generation apparatus 1, and there is no possibility of adversely affecting the supply destination equipment.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

1 バイナリー発電装置
2 蒸発器
3 膨張機
4 凝縮器
5 循環ポンプ
6 循環配管
7 蒸気配管
8 減圧弁
9 スチームトラップ
10 冷却塔
11 冷却水配管
12 冷却水ポンプ
13 発電機
14 潤滑手段
15 油分離器
16 潤滑油供給配管
17 予熱器
18 駆動軸
19 入側蒸気圧力計
20 出側媒体圧力計
21 減圧弁入側圧力計
22 制御部
23 蒸気供給源
24 蒸気排出主配管
25 蒸気分岐配管
26 圧力計
27 圧力調整弁
28 制御部
29 遮断弁
蒸気の入側の飽和温度
作動媒体の出側の飽和温度
入側蒸気圧力
出側媒体圧力
ΔT 温度差
圧力計で計測された元蒸気の圧力
S1 第1目標圧力
S2 第2目標圧力
DESCRIPTION OF SYMBOLS 1 Binary power generation device 2 Evaporator 3 Expander 4 Condenser 5 Circulation pump 6 Circulation piping 7 Steam piping 8 Pressure reducing valve 9 Steam trap 10 Cooling tower 11 Cooling water piping 12 Cooling water pump 13 Generator 14 Lubrication means 15 Oil separator 16 Lubricating oil supply pipe 17 Preheater 18 Drive shaft 19 Inlet side steam pressure gauge 20 Outlet side medium pressure gauge 21 Pressure reducing valve inlet side pressure gauge 22 Control unit 23 Steam supply source 24 Steam discharge main pipe 25 Steam branch pipe 26 Pressure gauge 27 Pressure Control valve 28 Control unit 29 Shut-off valve T 1 Saturation temperature on the inlet side of the steam T 2 Saturation temperature on the outlet side of the working medium P 1 Steam pressure on the inlet side P 2 Outlet side medium pressure ΔT Temperature difference PS Measured with a PS pressure gauge Original steam pressure P S1 First target pressure P S2 Second target pressure

Claims (7)

蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置において、前記循環ポンプによる作動媒体の循環量を制御するに際しては、
前記蒸発器に供給される蒸気の入側の飽和温度Tと、前記蒸発器から排出される作動媒体の出側の飽和温度Tとを算出し、
算出された蒸気の入側の飽和温度Tから作動媒体の出側の飽和温度Tを差し引いた温度差ΔTが、予め定められた閾値以上となるように、前記循環ポンプによる作動媒体の循環量と圧力を制御することとし、
前記蒸発器の入側に、この蒸発器に供給される蒸気の圧力を減圧可能な減圧弁と、この減圧弁に供給される蒸気の圧力を計測する減圧弁入側圧力計と、を設けておき、
前記減圧弁入側圧力計で計測された蒸気の圧力が、予め定められた圧力以下となるように、前記減圧弁を開閉することを特徴とするバイナリー発電装置の運転方法。
An evaporator that evaporates the working medium using steam as a heat source, an expander that expands the gas working medium evaporated by the evaporator to generate a rotational driving force, and a gas working medium expanded by the expander into a liquid In a binary power generation apparatus including a condenser that condenses and a circulation pump that circulates the working medium from the condenser toward the evaporator, when controlling the circulation amount of the working medium by the circulation pump,
Wherein the saturation temperature T 1 of the inlet side of the steam supplied to the evaporator, and calculates the saturation temperature T 2 of the outlet side of the working medium discharged from said evaporator,
The temperature difference ΔT obtained by subtracting the outlet side of the saturation temperature T 2 of the calculated steam inlet side of the saturation temperature T 1 of the working medium, so that the predetermined threshold value or more, the circulation of the working medium by the circulation pump To control the amount and pressure,
Provided on the inlet side of the evaporator is a pressure reducing valve capable of reducing the pressure of the steam supplied to the evaporator, and a pressure reducing valve inlet side pressure gauge for measuring the pressure of the steam supplied to the pressure reducing valve. Every
A method for operating a binary power generator, wherein the pressure reducing valve is opened and closed so that a vapor pressure measured by the pressure reducing valve inlet side pressure gauge is equal to or lower than a predetermined pressure.
前記蒸発器の入側において蒸気の圧力を計測する入側蒸気圧力計を設けると共に、蒸発器の出側において作動媒体の圧力を計測する出側媒体圧力計を設けておき、
前記入側蒸気圧力計で計測された蒸気の圧力に基づいて、蒸気の入側の飽和温度T1を算出すると共に、前記出側媒体圧力計で計測された作動媒体の圧力に基づいて、作動媒体の出側の飽和温度T2を算出することを特徴とする請求項1に記載のバイナリー発電装置の運転方法。
In addition to providing an inlet-side steam pressure gauge that measures the pressure of the steam on the inlet side of the evaporator, an outlet-side medium pressure gauge that measures the pressure of the working medium is provided on the outlet side of the evaporator,
Based on the pressure of the steam measured by the inlet-side steam pressure gauge, the saturation temperature T1 on the inlet side of the steam is calculated, and the working medium is calculated based on the pressure of the working medium measured by the outlet-side medium pressure gauge. 2. The operation method of the binary power generator according to claim 1, wherein a saturation temperature T2 on the outlet side of the generator is calculated.
前記温度差ΔTが前記閾値以上の場合には、前記循環ポンプによる作動媒体の循環量を大きくし、
前記温度差ΔTが閾値未満の場合には、前記循環ポンプによる作動媒体の循環量を小さくすることを特徴とする請求項1または2に記載されたバイナリー発電装置の運転方法。
If the temperature difference ΔT is greater than or equal to the threshold, increase the amount of working medium circulated by the circulation pump,
3. The method of operating a binary power generator according to claim 1 , wherein, when the temperature difference ΔT is less than a threshold value, a circulation amount of the working medium by the circulation pump is reduced.
蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置であって、
請求項1〜3のいずれかに記載された運転方法に従って、前記循環ポンプによる作動媒体の循環量と圧力を制御する制御部を有することを特徴とするバイナリー発電装置。
An evaporator that evaporates the working medium using steam as a heat source, an expander that expands the gas working medium evaporated by the evaporator to generate a rotational driving force, and a gas working medium expanded by the expander into a liquid A binary power generator comprising a condenser for condensing and a circulation pump for circulating a working medium from the condenser toward the evaporator,
A binary power generation device comprising a control unit that controls a circulation amount and a pressure of the working medium by the circulation pump according to the operation method according to claim 1.
蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置において、前記循環ポンプによる作動媒体の循環量を制御するに際しては、
前記蒸発器に供給される蒸気の入側の飽和温度Tと、前記蒸発器から排出される作動媒体の出側の飽和温度Tとを算出し、
算出された蒸気の入側の飽和温度Tから作動媒体の出側の飽和温度Tを差し引いた温度差ΔTが、予め定められた閾値以上となるように、前記循環ポンプによる作動媒体の循環量と圧力を制御することとし、
前記蒸発器において作動媒体を蒸発させる元蒸気を供給する蒸気供給源と、前記蒸気供給源で発生した元蒸気を外部に排出する蒸気排出主配管とがバイナリー発電装置とは別に設けられており、
前記蒸気排出主配管を流れる元蒸気の一部を分岐して前記蒸発器に導入する蒸気分岐配管を設け、
前記蒸気供給源で発生する元蒸気の圧力PSを計測し、計測された元蒸気の圧力PSに基づいて、前記蒸気分岐配管を流れる元蒸気の流量を調整することを特徴とするバイナリー発電装置の運転方法。
An evaporator that evaporates the working medium using steam as a heat source, an expander that expands the gas working medium evaporated by the evaporator to generate a rotational driving force, and a gas working medium expanded by the expander into a liquid In a binary power generation apparatus including a condenser that condenses and a circulation pump that circulates the working medium from the condenser toward the evaporator, when controlling the circulation amount of the working medium by the circulation pump,
Wherein the saturation temperature T 1 of the inlet side of the steam supplied to the evaporator, and calculates the saturation temperature T 2 of the outlet side of the working medium discharged from said evaporator,
The temperature difference ΔT obtained by subtracting the outlet side of the saturation temperature T 2 of the calculated steam inlet side of the saturation temperature T 1 of the working medium, so that the predetermined threshold value or more, the circulation of the working medium by the circulation pump To control the amount and pressure,
A steam supply source for supplying original steam for evaporating the working medium in the evaporator and a steam discharge main pipe for discharging the original steam generated by the steam supply source to the outside are provided separately from the binary power generation device,
Providing a steam branch pipe for branching a part of the original steam flowing through the steam discharge main pipe and introducing it into the evaporator;
A binary power generation apparatus characterized by measuring a pressure PS of an original steam generated in the steam supply source and adjusting a flow rate of the original steam flowing through the steam branch pipe based on the measured pressure PS of the original steam. how to drive.
前記蒸気分岐配管の分岐点より下流側の蒸気排出主配管に、この蒸気排出主配管を流れる元蒸気の圧力を調整する圧力調整弁を設けておき、 前記元蒸気の圧力Pが予め定められた圧力PS1より小さい場合には前記圧力調整弁を締め、
前記元蒸気の圧力Pが予め定められた圧力PS2(>PS1)より大きい場合には前記圧力調整弁を開放する
ことを特徴とする請求項5に記載のバイナリー発電装置の運転方法。
A pressure regulating valve for adjusting the pressure of the original steam flowing through the steam discharge main pipe is provided in the steam discharge main pipe downstream from the branch point of the steam branch pipe, and the pressure P S of the original steam is determined in advance. If the pressure is lower than PS1, the pressure regulating valve is closed,
The method of operating a binary power generator according to claim 5, wherein the pressure regulating valve is opened when the pressure P S of the original steam is higher than a predetermined pressure P S2 (> P S1 ).
蒸気を熱源として作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した気体の作動媒体を膨張させて回転駆動力を発生する膨張機と、前記膨張機で膨張した気体の作動媒体を液体に凝縮する凝縮器と、前記凝縮器から蒸発器に向って作動媒体を循環させる循環ポンプとを備えたバイナリー発電装置であって、
前記蒸発器で作動媒体を蒸発させる元蒸気を発生させる蒸気供給源と、
前記蒸気供給源で発生した元蒸気をこの蒸気供給源の外部に排出する蒸気排出主配管と、
前記蒸気排出主配管を流れる元蒸気の一部を分岐して前記蒸発器に導入する蒸気分岐配管と、
前記蒸気供給源で発生する元蒸気の圧力Pを計測する圧力計と、
前記圧力計で計測された元蒸気の圧力Pに基づいて、前記蒸気分岐配管を流れる元蒸気の流量を調整する圧力調整弁と備えていて、
請求項5または6に記載された運転方法に従って、前記蒸気分岐配管内を流通する作動媒体の循環量を制御する制御部を有することを特徴とするバイナリー発電装置。
An evaporator that evaporates the working medium using steam as a heat source, an expander that expands the gas working medium evaporated by the evaporator to generate a rotational driving force, and a gas working medium expanded by the expander into a liquid A binary power generator comprising a condenser for condensing and a circulation pump for circulating a working medium from the condenser toward the evaporator,
A steam source for generating original steam for evaporating the working medium in the evaporator;
A steam discharge main pipe for discharging the original steam generated in the steam supply source to the outside of the steam supply source;
A steam branch pipe for branching a part of the original steam flowing through the steam discharge main pipe and introducing it into the evaporator;
A pressure gauge for measuring the pressure P S in the original steam generated in the steam supply source,
Based on the pressure P S in the original steam measured by the pressure gauge, equipped with a pressure regulating valve for adjusting the flow rate of the original steam flowing through the steam branch pipe,
7. A binary power generation apparatus comprising a control unit that controls a circulation amount of a working medium flowing through the steam branch pipe according to the operation method according to claim 5.
JP2013109984A 2013-02-26 2013-05-24 Binary power generator operating method and binary power generator Expired - Fee Related JP6029533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109984A JP6029533B2 (en) 2013-02-26 2013-05-24 Binary power generator operating method and binary power generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013035903 2013-02-26
JP2013035903 2013-02-26
JP2013109984A JP6029533B2 (en) 2013-02-26 2013-05-24 Binary power generator operating method and binary power generator

Publications (2)

Publication Number Publication Date
JP2014194210A JP2014194210A (en) 2014-10-09
JP6029533B2 true JP6029533B2 (en) 2016-11-24

Family

ID=51839594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109984A Expired - Fee Related JP6029533B2 (en) 2013-02-26 2013-05-24 Binary power generator operating method and binary power generator

Country Status (1)

Country Link
JP (1) JP6029533B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108578A1 (en) * 2014-12-30 2016-07-07 이만숙 High-efficiency and low-temperature generation system using evaporation equipment
JP6592418B2 (en) 2016-10-24 2019-10-16 株式会社神戸製鋼所 Thermal energy recovery device and operation method thereof
JP2018127948A (en) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 Energy recovery device
JP2019011723A (en) * 2017-06-30 2019-01-24 株式会社Ihi Combined heat and power system
JP2019078185A (en) * 2017-10-20 2019-05-23 松尾 栄人 Thermal storage type solar thermal power generation system
JP2019078476A (en) * 2017-10-25 2019-05-23 株式会社Ihi Cogeneration system
EP4407255A1 (en) * 2021-09-24 2024-07-31 Toshiba Carrier Corporation Refrigeration cycle device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564107A (en) * 1978-11-10 1980-05-14 Hitachi Ltd Method of and apparatus for operating combined plant
JPS5726215A (en) * 1980-07-25 1982-02-12 Hitachi Ltd Low boiling point medium turbine plant
JPH0633766B2 (en) * 1984-01-13 1994-05-02 株式会社東芝 Power plant
JPH0518212A (en) * 1991-07-11 1993-01-26 Toshiba Corp Waste heat utilizing power generation control device
JPH05222906A (en) * 1992-02-12 1993-08-31 Toshiba Corp Controller for power plant utilizing exhaust heat
JP4277608B2 (en) * 2003-07-10 2009-06-10 株式会社日本自動車部品総合研究所 Rankine cycle
JP2009204204A (en) * 2008-02-27 2009-09-10 Calsonic Kansei Corp Waste heat regeneration system
JP5515591B2 (en) * 2009-10-07 2014-06-11 三菱電機株式会社 Waste heat regeneration system

Also Published As

Publication number Publication date
JP2014194210A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP6029533B2 (en) Binary power generator operating method and binary power generator
EP2998524B1 (en) Energy recovery device and compression device, and energy recovery method
JP5462979B2 (en) Control of thermal cycle process
JP6179736B2 (en) Rankine cycle equipment
US9874114B2 (en) Cogenerating system
JP6188629B2 (en) Binary power generator operation method
JP5871661B2 (en) Binary power generator control method
US9995244B2 (en) Heat energy recovery system
KR101790915B1 (en) Generator device
JP6173235B2 (en) Binary power generator operation method
CN107849943B (en) Controlling ORC process by injecting unevaporated fluid
US10472992B2 (en) On-demand steam generator and control system
JP2013177838A (en) Method of controlling binary generator, and binary generator
EP2918794B1 (en) Rankine cycle device
JP2018013046A (en) Rankine cycle system and control method for rankine cycle system
JP2014163608A (en) Binary power generation device and operation method of binary power generation device
TW201508237A (en) Heat exchanger, heat engine system and control method using the same
US20190024538A1 (en) Combined heat and power system and operating method of combined heat and power system
US10060298B2 (en) Thermal energy recovery device and start-up method thereof
Desideri et al. Experimental study and dynamic modeling of a WHR ORC power system with screw expander
US20220034240A1 (en) Method and controller for preventing formation of droplets in a heat exchanger
KR101942155B1 (en) Thermal energy recovery device and start-up method thereof
KR102042316B1 (en) Apparatus and Method for Supplying Working Fluid of Waste Heat Power Generation
EP3521576A1 (en) Thermal energy recovery device
RU2684689C1 (en) Control method for organic rankine cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6029533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees