JPH0518212A - Waste heat utilizing power generation control device - Google Patents

Waste heat utilizing power generation control device

Info

Publication number
JPH0518212A
JPH0518212A JP17114891A JP17114891A JPH0518212A JP H0518212 A JPH0518212 A JP H0518212A JP 17114891 A JP17114891 A JP 17114891A JP 17114891 A JP17114891 A JP 17114891A JP H0518212 A JPH0518212 A JP H0518212A
Authority
JP
Japan
Prior art keywords
medium
hot water
signal
temperature
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17114891A
Other languages
Japanese (ja)
Inventor
Akio Wakao
尾 明 男 若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17114891A priority Critical patent/JPH0518212A/en
Publication of JPH0518212A publication Critical patent/JPH0518212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To obtain stabilized output of a power generator at all times regardless of any change in a hot water flow amount or a hot water temperature. CONSTITUTION:Hot water discharged from a hot water pump 1 flows on the primary side of preheaters 8 to 12 after passing a hot water system. A medium system 15 passes on the second any side of the preheaters 8 to 12, and a medium heated by heat by heat exchange with hot water is supplied to a medium turbine 21 so as to rotate the medium turbine 21. After that, the medium is condensated through condensers 25, 27, and circulated to a medium pump 39 through a medium tank. Cooling water in a cooling system passes through the condensers 25, 27. The opening degree of each of adjusting valves 5, 6, 19, 3, 38, 40, 41 is controlled by an adjusting valve controller 42 on the basis of detection of a flow amount, a temperature, and pressure in each system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工業用プラント等の熱
水あるいは地下の熱水から得られる排熱を利用した発電
制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation control device utilizing exhaust heat obtained from hot water of industrial plants or underground hot water.

【0002】[0002]

【従来の技術】発電の方式には、火力発電、水力発電、
原子力発電等の方式の他に、種々の特殊発電方式があ
る。この特殊発電方式の一つとして、工業用プラントあ
るいは地下から得られる排熱を利用した発電方式があ
る。
2. Description of the Related Art Power generation methods include thermal power generation, hydroelectric power generation,
In addition to the nuclear power generation system, there are various special power generation systems. As one of the special power generation methods, there is a power generation method that uses exhaust heat obtained from an industrial plant or underground.

【0003】このような発電方式は、火力発電と同様
に、蒸気によりタービンを回転させようとするものであ
るが、火力発電に比べてタービンを回転させるのに要す
る燃料費を大幅に節約できるため、近時は資源活用の面
から注目され始めている。
This type of power generation system, like thermal power generation, attempts to rotate the turbine with steam, but the fuel cost required to rotate the turbine can be greatly reduced compared to thermal power generation. Recently, attention has been paid to the utilization of resources.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の排熱
利用発電制御装置では、熱水の流量について格別の制御
を行なっておらず、工業用プラント等から得られる排熱
の全てをタービン駆動に用いるようにし、基本的には電
力最大運転を行うようにしている。
By the way, in the conventional exhaust heat utilization power generation control device, no special control is performed on the flow rate of the hot water, and all of the exhaust heat obtained from the industrial plant is driven by the turbine. It is used and basically the maximum power operation is performed.

【0005】しかし、このような発電制御では、工業用
プラント等からの熱水流量あるいは熱水温度が変化する
と、直ちに発電機出力も変動してしまい、成り行きまか
せの制御となる欠点がある。
However, in such power generation control, when the flow rate of hot water or the temperature of hot water from an industrial plant or the like changes, the output of the generator also fluctuates immediately, and there is a drawback that the control is left to completion.

【0006】本発明は上記事情に鑑みてなされたもので
あり、工業用プラント等からの熱水流量あるいは熱水温
度の変化にかかわらず、常に安定した発電機出力を得る
ことが可能な排熱利用発電制御装置を提供することを目
的としている。
The present invention has been made in view of the above circumstances, and exhaust heat that can always obtain a stable generator output regardless of changes in the hot water flow rate or the hot water temperature from an industrial plant or the like. It is intended to provide a utilization power generation control device.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するための手段として、媒体循環流路途中に設けられ、
加熱媒体によって得られる回転力により発電機を駆動す
る媒体タービンと、前記媒体循環流路の前記媒体タービ
ン上流側に設けられ、熱水源から熱水供給路を通って送
られてくる熱水により媒体の予熱を行う予熱器と、前記
媒体循環流路の前記媒体タービン下流側に設けられ、冷
却水循環流路を循環する冷却水により前記媒体の凝縮を
行う凝縮器と、前記熱水供給路の前記予熱器上流側に設
けられた熱水流量調節弁と、前記媒体循環流路の前記予
熱器上流側、及び前記媒体タービンのバイパス路に設け
られた媒体循環量調節弁と、前記冷却水循環流路に設け
られた冷却水量調節弁と、前記熱水供給路、媒体循環流
路、及び冷却水循環流路の所定個所での流量検出、温度
検出、及び圧力検出に基いて、前記各調節弁の制御を行
う調節弁制御器と、を備えた構成としたものである。
As a means for solving the above-mentioned problems, the present invention is provided in the middle of a medium circulation channel,
A medium turbine that drives a generator by the rotational force obtained by a heating medium, and a medium that is provided on the upstream side of the medium turbine in the medium circulation flow path and that uses hot water sent from a hot water source through a hot water supply path. A preheater that performs preheating, a condenser that is provided on the medium turbine downstream side of the medium circulation flow path, and that condenses the medium by the cooling water that circulates in the cooling water circulation flow path, and the hot water supply path A hot water flow rate control valve provided on the upstream side of a preheater, a medium circulation amount control valve provided on the preheater upstream side of the medium circulation flow path and a bypass path of the medium turbine, and the cooling water circulation flow path. And a control of each of the control valves based on the flow rate detection, temperature detection, and pressure detection at predetermined locations of the hot water supply passage, the medium circulation passage, and the cooling water circulation passage provided in the With the control valve controller It is obtained by a configuration with a.

【0008】[0008]

【作用】上記構成において、熱水源からの熱水は熱水供
給路を介して予熱器に送られる。この予熱器内で熱交換
が行なわれ、媒体循環流路内の媒体が加熱されて媒体タ
ービンに送り込まれる。
In the above structure, the hot water from the hot water source is sent to the preheater via the hot water supply passage. Heat exchange is performed in the preheater, and the medium in the medium circulation flow path is heated and sent to the medium turbine.

【0009】媒体タービンを通過した後の媒体は、冷却
水循環流路を通ってくる冷却水と凝縮器内で熱交換を行
ない、ここで凝縮される。
After passing through the medium turbine, the medium exchanges heat with the cooling water passing through the cooling water circulation passage in the condenser and is condensed there.

【0010】熱水供給路、媒体循環流路、及び冷却水循
環流路の所定個所での流量、温度、及び圧力が検出さ
れ、その検出信号が調節弁制御器へ送られる。調節便制
御器は、これの検出信号に基き、各流路に設けらてれい
る調節弁の開度制御を行う。
The flow rate, temperature, and pressure at predetermined locations of the hot water supply passage, the medium circulation passage, and the cooling water circulation passage are detected, and the detection signals are sent to the control valve controller. The controlled flight controller controls the opening degree of the control valve provided in each flow path based on the detection signal.

【0011】すなわち、タービンは熱水源からの熱水に
よって直接に駆動されるのではなく、媒体が介在するこ
とにより間接的に駆動されるようになっている。そし
て、制御弁調節器は、熱水供給路からの流量検出信号及
び温度検出信号に変化が生じた場合に、媒体タービンの
回転数が常に一定レベルとなるように、各流路の調節弁
の制御を行う。
That is, the turbine is not directly driven by the hot water from the hot water source, but is indirectly driven by the interposition of the medium. The control valve controller controls the flow rate of the control valve of each flow path so that the rotation speed of the medium turbine is always at a constant level when the flow rate detection signal and the temperature detection signal from the hot water supply path change. Take control.

【0012】[0012]

【実施例】以下、本発明の実施例を図1および図2に基
づいて説明する。図1は、本発明の一実施例の全体構成
を示す系統図である。この図において、熱水は地下の熱
水槽から熱水ポンプ1により熱水系統4に流れ、予熱器
(A)8及び予熱器(B)9に送られる。この熱水流量
の調整は熱水流量を調節する流量調節弁5の開度により
制御され、その流量は熱水流量検出器2により検出され
る。また、予熱器(C)11及び予熱器(D)12の熱
水流量は熱水流量調節弁6の開度により制御される。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a system diagram showing the overall configuration of an embodiment of the present invention. In this figure, hot water flows from the underground hot water tank to the hot water system 4 by the hot water pump 1, and is sent to the preheater (A) 8 and the preheater (B) 9. The adjustment of the hot water flow rate is controlled by the opening degree of the flow rate control valve 5 that adjusts the hot water flow rate, and the flow rate is detected by the hot water flow rate detector 2. The hot water flow rates of the preheater (C) 11 and the preheater (D) 12 are controlled by the opening degree of the hot water flow rate control valve 6.

【0013】予熱器(A)8及び予熱器(C)11の熱
水の入口温度は熱水温度検出器3により検出され、予熱
器(B)9及び予熱器(D)12の出口温度は温度検出
器10,13によ検出される。予熱器8,9,11,1
2で熱交換を終えた熱水は地下に戻される。
The inlet temperature of the hot water of the preheater (A) 8 and the preheater (C) 11 is detected by the hot water temperature detector 3, and the outlet temperature of the preheater (B) 9 and the preheater (D) 12 is It is detected by the temperature detectors 10 and 13. Preheater 8, 9, 11, 1
The hot water that has finished heat exchange in 2 is returned to the underground.

【0014】予熱器9及び予熱器12の二次側の媒体は
媒体ポンプ39により供給され、その流量は熱媒調節弁
41,40の開度により制御される。予熱器9及び予熱
器12で熱水と媒体との熱交換が行なわれ、媒体タービ
ン21の入口に設けられた温度検出器14の検出値が規
定値になる様、予熱器9及び予熱器12の熱媒は、熱媒
調節弁41,40により流量が制御される。そして、媒
体系統15に流れた媒体は媒体タービン21を回転さ
せ、発電機22を駆動して発電させる。
The medium on the secondary side of the preheater 9 and the preheater 12 is supplied by a medium pump 39, and the flow rate thereof is controlled by the openings of the heat medium control valves 41, 40. The preheater 9 and the preheater 12 exchange heat with the medium in the preheater 9 and the preheater 12 so that the detection value of the temperature detector 14 provided at the inlet of the medium turbine 21 becomes a specified value. The flow rate of the heat medium is controlled by the heat medium control valves 41 and 40. Then, the medium flowing into the medium system 15 rotates the medium turbine 21 and drives the generator 22 to generate electricity.

【0015】このとき、媒体系統15を流れる媒体ター
ビン21の入口圧力は媒体タービン入口圧力検出器18
の検出信号が規定値になる様、媒体タービンバイパス路
20に設けられた調整弁19により制御される。
At this time, the inlet pressure of the medium turbine 21 flowing through the medium system 15 is the inlet pressure detector 18 of the medium turbine.
The adjustment valve 19 provided in the medium turbine bypass passage 20 controls so that the detection signal of 1 becomes a specified value.

【0016】媒体タービン21で駆動に費やされた排熱
は凝縮器25,27に供給され、冷却水供給ポンプ35
により、供給された冷却水と熱交換された後、媒体タン
ク28に貯蔵される。媒体タンク28の媒体の冷却温度
は、温度検出器30の検出信号が規定値になる様、調節
弁33,38の開度が制御される。そして、凝縮器2
5,27の媒体と熱交換された二次側の冷却水温度は冷
却塔34に流れ、冷却塔ファンで冷却され、循環され
る。
Exhaust heat spent for driving the medium turbine 21 is supplied to the condensers 25 and 27, and the cooling water supply pump 35
Thus, the heat is exchanged with the supplied cooling water, and then the medium is stored in the medium tank 28. Regarding the cooling temperature of the medium in the medium tank 28, the openings of the control valves 33 and 38 are controlled so that the detection signal of the temperature detector 30 becomes a specified value. And condenser 2
The temperature of the cooling water on the secondary side, which has undergone heat exchange with the mediums 5, 27, flows to the cooling tower 34, is cooled by the cooling tower fan, and is circulated.

【0017】制御装置42は、温度検出信号3,10,
13,14,17,24,26,30,31,32,3
6と、流量検出信号2と、圧力検出器信号18とを入力
し、流量調節弁5,6,19,33,38,40,41
に制御信号を出力して弁開度を調整し、その流量制御を
行うようになっている。
The controller 42 controls the temperature detection signals 3, 10,
13, 14, 17, 24, 26, 30, 31, 32, 3
6, the flow rate detection signal 2 and the pressure detector signal 18 are input, and the flow rate control valves 5, 6, 19, 33, 38, 40, 41 are input.
A control signal is output to control the valve opening and control the flow rate.

【0018】上記のように構成される図1の装置を機能
的に詳述すると次のようになる。まず、熱水の流量を制
御する調節弁5の制御信号と、発電機22の電力設定値
について考えてみる。
The functional details of the apparatus of FIG. 1 constructed as described above are as follows. First, consider the control signal of the control valve 5 that controls the flow rate of hot water and the power set value of the generator 22.

【0019】調節弁5の制御信号の偏差が規定値以上の
場合、予熱器8〜12の熱交換量を増大させるよう電力
負荷に対応して熱水系統4を制御し、かつ熱水系統4の
電力負荷の増大に対し媒体タービン発電機22の入口の
温度検出器14と媒体ポンプ39出口の温度検出器17
の偏差信号を先行的にバイアス信号として付加し、熱水
流量を増大させることにより、流量調節弁5の開度を制
御する。また、電力設値との制御偏差が大きい場合も、
流量調節弁5と併行して予熱器11,12入口の流量調
節弁40の開度を先行的に制御することにより熱水流量
を増大させ、電力負荷変動に追従させている。
When the deviation of the control signal of the regulating valve 5 is equal to or larger than the specified value, the hot water system 4 is controlled in accordance with the electric power load so as to increase the heat exchange amount of the preheaters 8 to 12, and the hot water system 4 is also controlled. The temperature detector 14 at the inlet of the medium turbine generator 22 and the temperature detector 17 at the outlet of the medium pump 39 against the increase in the power load of
The deviation signal is added as a bias signal in advance to increase the flow rate of hot water, thereby controlling the opening degree of the flow rate control valve 5. Also, when the control deviation from the power setting is large,
The hot water flow rate is increased by following the flow rate control valve 5 in advance to control the opening degree of the flow rate control valve 40 at the inlets of the preheaters 11 and 12 to follow the power load fluctuation.

【0020】一方、媒体タービン21への媒体流量につ
いても、熱水系統4の流量増大に伴なって、予熱器8,
9で熱交換させる媒体流量を、熱水温度検出器3の信号
と温度検出器2の信号との偏差信号を先行的にバイアス
信号として付加し、媒体流量調節弁41の開度を制御す
ることにより熱水の温度変化に追従し、制御している。
On the other hand, the medium flow rate to the medium turbine 21 is also increased as the flow rate of the hot water system 4 increases.
The deviation of the signal of the hot water temperature detector 3 and the signal of the temperature detector 2 is added in advance as a bias signal to the medium flow rate for heat exchange in 9 to control the opening degree of the medium flow rate control valve 41. It controls by following the temperature change of hot water.

【0021】そして、電力負荷が過渡的に増大した場
合、予熱器8の入口の流量調節弁5の開度制御と同様
に、温度検出器3の信号と温度検出器13の信号との偏
差信号をバイアス信号として先行的に付加し、媒体ター
ビン21入口の温度設定信号に追従させ、流量調節弁4
0の開度を制御する。これにより、媒体タービン21入
口の温度が一定となるよう、負荷に追従して予熱器8〜
12の媒体流量を制御している。
When the electric power load transiently increases, the deviation signal between the signal of the temperature detector 3 and the signal of the temperature detector 13 is controlled similarly to the opening control of the flow rate control valve 5 at the inlet of the preheater 8. Is added in advance as a bias signal to make the temperature setting signal at the inlet of the medium turbine 21 follow, and the flow control valve 4
The opening degree of 0 is controlled. Accordingly, the preheater 8 to follow the load so that the temperature at the inlet of the medium turbine 21 becomes constant.
12 medium flow rates are controlled.

【0022】更に、電力設定値に対する予熱器18〜1
2の熱水流量、媒体流量の変動に伴なって、媒体タービ
ン21の媒体流量が増大し、媒体タービン21の排気量
もそれに伴なって増大する。そのため、冷却系統の冷却
水量についても、凝縮器25の入口の媒体温度を検出す
る温度検出器24の信号と、媒体タンク28の温度を検
出する温度検出器30の信号との偏差信号をバイアス信
号として媒体タンク温度の制御信号に付加し、媒体タン
ク28の温度が規定値になる様、凝縮器25の流量調節
弁33の開度を制御している。
Further, the preheaters 18 to 1 for the set power value
The medium flow rate of the medium turbine 21 increases with the changes in the hot water flow rate and the medium flow rate of 2, and the exhaust amount of the medium turbine 21 also increases accordingly. Therefore, as for the amount of cooling water in the cooling system, a bias signal is used as a deviation signal between the signal from the temperature detector 24 that detects the medium temperature at the inlet of the condenser 25 and the signal from the temperature detector 30 that detects the temperature of the medium tank 28. Is added to the control signal of the medium tank temperature to control the opening degree of the flow rate control valve 33 of the condenser 25 so that the temperature of the medium tank 28 reaches a specified value.

【0023】更に、媒体タービン21の排気温度すなわ
ち凝縮器27の入口温度を検出する温度検出器24の信
号と媒体タンク28の温度を検出する温度検出器30の
信号との偏差信号を、先行的にバイアス信号として付加
し、凝縮器27の流量調節弁38の開度を制御する。こ
のように、媒体タンク28の温度が規定値となる様、電
力負荷変動に伴なう熱水系統4及び媒体系統15の流量
変動に対する、温度変化分を、各々バイアス信号として
先行的に付加し、流量調節弁5,6,41,40,3
3,38の開度を制御する。
Further, the deviation signal between the signal of the temperature detector 24 for detecting the exhaust temperature of the medium turbine 21, that is, the temperature of the inlet of the condenser 27 and the signal of the temperature detector 30 for detecting the temperature of the medium tank 28 is set in advance. As a bias signal to control the opening degree of the flow control valve 38 of the condenser 27. In this way, the temperature change amount with respect to the flow rate fluctuations of the hot water system 4 and the medium system 15 accompanying the power load fluctuation is added in advance as bias signals so that the temperature of the medium tank 28 becomes a specified value. , Flow control valves 5, 6, 41, 40, 3
The opening degree of 3, 38 is controlled.

【0024】そして、媒体タービン21の入口に設けら
れた圧力検出器18の圧力検出に基く制御信号に対し、
予熱器9,12の入口の温度を検出する温度検出器17
の信号と媒体タービン21入口の温度を検出する温度検
出器14の信号との偏差分をバイアス信号として先行的
に付加し、媒体タービン21入口の圧力が規定値になる
様、媒体タービンバイパス弁19の開度を制御する。
Then, with respect to the control signal based on the pressure detection of the pressure detector 18 provided at the inlet of the medium turbine 21,
Temperature detector 17 for detecting the temperature of the inlets of the preheaters 9 and 12
Deviation signal from the signal from the temperature detector 14 that detects the temperature of the inlet of the medium turbine 21 is added in advance as a bias signal so that the pressure at the inlet of the medium turbine 21 reaches a specified value. Control the opening.

【0025】このような制御により、熱水,媒体,冷却
水の外乱、及び電力負荷の過渡的な変動に対しても良好
な追従性を得ることができる。なお、このように、熱水
系統4と媒体系統15の二つの系統を用いてタービン2
1を駆動する制御方式をバイナリサイクル発電制御方式
と呼ぶことがある。
By such control, it is possible to obtain a good followability even against the disturbance of hot water, the medium, the cooling water, and the transient fluctuation of the electric power load. As described above, the turbine 2 is constructed by using the two systems of the hot water system 4 and the medium system 15.
The control method for driving 1 may be referred to as a binary cycle power generation control method.

【0026】次に、図1の動作を概略的に説明する。ま
ず、電力負荷を設定した場合、媒体タービン21の媒体
温度が設定値になる様、熱水系統4の熱水流量を制御す
る。つまり、予熱器8,9で熱交換に必要な熱水量が得
られるように、流量調節弁5の開度を電力負荷設定の関
数で制御する。次いで、予熱器8,9で熱交換に必要な
媒体流量が得られるように、流量調節弁41で媒体ター
ビン21入口の温度を規定値になる様弁開度を制御す
る。
Next, the operation of FIG. 1 will be schematically described. First, when the electric power load is set, the hot water flow rate of the hot water system 4 is controlled so that the medium temperature of the medium turbine 21 becomes a set value. That is, the opening degree of the flow rate control valve 5 is controlled by a function of power load setting so that the preheaters 8 and 9 can obtain the amount of hot water required for heat exchange. Next, the valve opening is controlled by the flow rate control valve 41 so that the temperature at the inlet of the medium turbine 21 becomes a specified value so that the medium flow rate required for heat exchange can be obtained in the preheaters 8 and 9.

【0027】そして、媒体タービン21の媒体圧力が規
定値になるよう圧力調節弁19の開度が制御される。媒
体タービン発電機22の駆動に費やした排熱は、凝縮器
25で冷却水と熱交換され、媒体タンク28の温度が規
定値になる様、冷却水量調整用の流量調節弁6の開度が
制御される。
Then, the opening of the pressure control valve 19 is controlled so that the medium pressure of the medium turbine 21 becomes a specified value. The exhaust heat spent for driving the medium turbine generator 22 is heat-exchanged with the cooling water in the condenser 25, and the opening degree of the flow control valve 6 for adjusting the cooling water amount is adjusted so that the temperature of the medium tank 28 becomes a specified value. Controlled.

【0028】また、電力負荷設定が増大した場合、ある
いは過渡的に熱水温度が変動した場合は、予熱器8,9
の熱水量の増大に伴なって媒体の蒸発量が過渡的に増大
する。そのため、予熱器11,12に熱水量を制御偏差
分だけ供給するよう、熱水流量調節弁6の開度を制御す
る。
When the power load setting is increased, or when the hot water temperature fluctuates transiently, the preheaters 8 and 9 are used.
The amount of evaporation of the medium transiently increases with an increase in the amount of hot water. Therefore, the opening degree of the hot water flow rate control valve 6 is controlled so that the hot water amounts are supplied to the preheaters 11 and 12 by the control deviation.

【0029】このとき、媒体タービン21の入口温度が
規定値になる様、熱水変動分と、媒体の流量増大とによ
る熱交換量の二次遅れ分の補償が行なわれる。つまり、
媒体タービン21入口の温度と予熱器8〜12入口温度
との間の変動分を、バイアス信号として先行的に熱水流
量調節弁5,6に付加し、その開度を制御する。これに
より、媒体タービン21の発電機22の出力が設定値に
対して安定になるよう制御される。
At this time, the second-order lag of the heat exchange amount due to the fluctuation of the hot water and the increase of the flow rate of the medium is compensated so that the inlet temperature of the medium turbine 21 becomes a specified value. That is,
The variation between the inlet temperature of the medium turbine 21 and the inlet temperatures of the preheaters 8 to 12 is added in advance to the hot water flow rate control valves 5 and 6 as a bias signal to control the opening thereof. As a result, the output of the generator 22 of the medium turbine 21 is controlled to be stable with respect to the set value.

【0030】媒体タービン21の駆動に費やされた排熱
は、媒体タービン発電機22の負荷変動に伴なって増減
するため、媒体タンク28の温度も変動する。したがっ
て、凝縮器25の排熱と冷却水量との熱交換に対して二
次遅れが発生する。そこで、凝縮器25の冷却水量を調
節する流量調節弁33の開度信号に対し、凝縮器25,
27の入口温度を検出する温度検出器24の信号と媒体
タンク28の温度を検出する温度検出器30の信号との
偏差分をバイアス信号とて先行的に付加する。
Since the exhaust heat spent for driving the medium turbine 21 increases and decreases as the load of the medium turbine generator 22 changes, the temperature of the medium tank 28 also changes. Therefore, a secondary delay occurs with respect to heat exchange between the exhaust heat of the condenser 25 and the amount of cooling water. Therefore, in response to the opening signal of the flow rate control valve 33 that adjusts the amount of cooling water of the condenser 25, the condenser 25,
The deviation between the signal of the temperature detector 24 for detecting the inlet temperature of 27 and the signal of the temperature detector 30 for detecting the temperature of the medium tank 28 is added in advance as a bias signal.

【0031】これにより、凝縮器25,27の排熱の媒
体温度は、規定値となる様、タービン21からの排熱媒
体の量に追従して制御される。そして、凝縮器25,2
7の媒体と熱交換した冷却水は、冷却塔34に送られ冷
却塔ファンで冷却される。
As a result, the exhaust heat medium temperature of the condensers 25 and 27 is controlled so as to follow the amount of the exhaust heat medium from the turbine 21 so as to reach the specified value. And the condensers 25, 2
The cooling water that has exchanged heat with the medium of No. 7 is sent to the cooling tower 34 and cooled by the cooling tower fan.

【0032】この場合、凝縮器25,27の媒体との熱
交換量の変動に伴ない冷却温度が変動するため、凝縮器
25,27出口の冷却水温度を検出する温度検出器3
1,32の信号と冷却塔ファンで冷却した冷却水温度を
検出する温度検出器36の信号との偏差分が先行的にバ
イアス信号として調節弁33,38に付加され、媒体タ
ンク28の温度が規定値となる様制御される。
In this case, the cooling temperature fluctuates as the amount of heat exchange with the medium of the condensers 25 and 27 fluctuates, so the temperature detector 3 for detecting the cooling water temperature at the outlets of the condensers 25 and 27.
The deviation between the signal of 1, 32 and the signal of the temperature detector 36 for detecting the temperature of the cooling water cooled by the cooling tower fan is added to the control valves 33, 38 as a bias signal in advance, and the temperature of the medium tank 28 is It is controlled to reach the specified value.

【0033】次に、調節弁制御器42の構成を図2に基
き説明する。この図において、まず、熱水流量検出器2
の検出信号は開平演算器43でリニア信号にされ、電力
設定器44で設定値比較される。そして、その偏差信号
はPID調節計45で制御信号となり、加減演算器46
に送られる。
Next, the structure of the control valve controller 42 will be described with reference to FIG. In this figure, first, the hot water flow rate detector 2
The detection signal of is converted into a linear signal by the square root calculator 43, and the set value is compared by the power setter 44. Then, the deviation signal becomes a control signal in the PID controller 45, and the addition / subtraction calculator 46
Sent to.

【0034】一方、温度検出器14の信号を温度変換器
52で電流信号に変換した信号と、温度検出器17の信
号を温度変換器65で電流信号に変換した信号との偏差
が加減演算器66で演算され、さらに、バイアス器67
でバイアスされる。そして、加減演算器46で演算した
制御信号にこのバイアス信号を付加した後、これを電空
変換器47で空気信号に変換し、予熱器8の熱水流量を
電力設定値になる様に調節弁5の開度を制御している。
On the other hand, the deviation between the signal obtained by converting the signal of the temperature detector 14 into the current signal by the temperature converter 52 and the signal obtained by converting the signal of the temperature detector 17 into the current signal by the temperature converter 65 is adjusted. 66, and further the bias device 67
Biased at. Then, after adding this bias signal to the control signal calculated by the adder / subtractor calculator 46, the bias signal is converted into an air signal by the electropneumatic converter 47, and the hot water flow rate of the preheater 8 is adjusted to the power set value. The opening of the valve 5 is controlled.

【0035】また、電力設定器44の偏差信号を制限器
48でチェックし、制限値以上の場合にPID調節計4
9で得た制御信号が加減演算器50に送られる。このと
きバイアス器からのバイアス67信号も加減演算器50
に送られる。そして、その制御信号は電空変換器51で
空気信号に変換されて流量調節弁6に送られる。
Further, the deviation signal of the power setting unit 44 is checked by the limiter 48, and if it is equal to or more than the limit value, the PID controller 4
The control signal obtained in 9 is sent to the addition / subtraction calculator 50. At this time, the bias 67 signal from the bias unit is also added / subtracted by the addition / subtraction calculator
Sent to. Then, the control signal is converted into an air signal by the electropneumatic converter 51 and sent to the flow rate control valve 6.

【0036】媒体タービン21の入口媒体温度検出器1
4の検出信号は温度変換器52で電流信号に変換され、
媒体タービン入口温度設定器53で演算された設定値と
の偏差分がPID調節計54で制御信号となり、さらに
加減演算器55に送られる。
Inlet medium temperature detector 1 of medium turbine 21
The detection signal of 4 is converted into a current signal by the temperature converter 52,
The deviation from the set value calculated by the medium turbine inlet temperature setting device 53 becomes a control signal in the PID controller 54, and is sent to the addition / subtraction calculator 55.

【0037】一方、熱水ポンプ1の出口の熱水温度検出
器3の検出信号を温度変換器62で電流信号に変換した
信号と、予熱器9の出口熱水温度検出器10の検出信号
を温度変換器57で電流信号に変換した信号とが加減演
算器63に入力され、その演算信号をバイアス器64で
バイアスした信号も加減演算器55に送られる。そし
て、その演算信号は電空変換器56で空気信号に変換さ
れ、媒体流量調節弁41の制御信号となって媒体タービ
ン入口温度が設定値になる様その開度を制御する。
On the other hand, the detection signal of the hot water temperature detector 3 at the outlet of the hot water pump 1 is converted into a current signal by the temperature converter 62, and the detection signal of the outlet hot water temperature detector 10 of the preheater 9 is detected. The signal converted into the current signal by the temperature converter 57 is input to the addition / subtraction arithmetic unit 63, and the signal obtained by biasing the arithmetic signal by the bias unit 64 is also sent to the addition / subtraction arithmetic unit 55. Then, the calculated signal is converted into an air signal by the electropneumatic converter 56 and becomes a control signal of the medium flow rate control valve 41 to control the opening so that the medium turbine inlet temperature becomes a set value.

【0038】また、媒体温度設定器53からの制御偏差
信号が制限器58の制限値を越えた場合、偏差信号は、
PID調節計59で制御信号となり、加減演算器60に
送られる。
When the control deviation signal from the medium temperature setter 53 exceeds the limit value of the limiter 58, the deviation signal is
It becomes a control signal in the PID controller 59 and is sent to the addition / subtraction calculator 60.

【0039】このとき、温度変換器62からの電流信号
と、温度検出器13の検出信号を温度変換器70で電流
信号に変換した信号とが加減演算器71に送られ、その
偏差信号をバイアス器72でバイアスした信号も加減演
算器60に付加される。そして、その演算信号は制御信
号となって電空変換器61により空気信号に変換され、
予熱器12の入口熱媒流量調節弁40の開度を制御す
る。したがって、媒体タービン21の入口温度が設定値
になる様制御される。
At this time, the current signal from the temperature converter 62 and the signal obtained by converting the detection signal of the temperature detector 13 into the current signal by the temperature converter 70 are sent to the addition / subtraction calculator 71, and the deviation signal thereof is biased. The signal biased by the device 72 is also added to the addition / subtraction calculator 60. Then, the operation signal becomes a control signal and is converted into an air signal by the electropneumatic converter 61,
The opening degree of the inlet heat medium flow rate control valve 40 of the preheater 12 is controlled. Therefore, the inlet temperature of the medium turbine 21 is controlled to reach the set value.

【0040】温度検出器30の検出信号を温度変換器7
3で電流信号に変換した後温度設定器74で設定値と比
較して得た偏差信号はPID調節計75で制御信号とな
り、加減演算器76に入力される。
The detection signal of the temperature detector 30 is converted into the temperature converter 7
The deviation signal obtained after being converted into a current signal in 3 and compared with the set value in the temperature setter 74 becomes a control signal in the PID controller 75, and is input to the addition / subtraction calculator 76.

【0041】このとき、加減演算器46からの信号をバ
イアス器68でバイアスした信号も加減演算器76に入
力される。また、温度検出器31の検出信号を温度変換
器84で電流信号に変換した信号と、温度検出器36の
検出信号を温度変換器86で電流信号に変換した信号と
が加減演算器85に入力される。そして、その偏差信号
をバイアス器87でバイアスした信号も加減演算器76
に入力される。さらに、温度変換器73からの信号は加
減演算器78に送られているが、これには温度検出器2
4の検出信号を温度変換器79で変換した信号も送られ
てくる。そして、この温度変換器78からの信号も加減
演算器76に入力される。
At this time, the signal obtained by biasing the signal from the addition / subtraction arithmetic unit 46 by the bias unit 68 is also input to the addition / subtraction arithmetic unit 76. Further, a signal obtained by converting the detection signal of the temperature detector 31 into a current signal by the temperature converter 84 and a signal obtained by converting the detection signal of the temperature detector 36 into a current signal by the temperature converter 86 are input to the addition / subtraction calculator 85. To be done. The signal obtained by biasing the deviation signal by the bias device 87 is also added / subtracted by the addition / subtraction calculator
Entered in. Further, the signal from the temperature converter 73 is sent to the addition / subtraction calculator 78, which includes the temperature detector 2
A signal obtained by converting the detection signal of No. 4 by the temperature converter 79 is also sent. The signal from the temperature converter 78 is also input to the addition / subtraction calculator 76.

【0042】加減演算器76の演算信号は電空変換器7
7で空気信号に変換されて制御信号となり、媒体タンク
28内の温度が設定値となるように調節弁33の開度制
御を行なう。
The calculation signal of the addition / subtraction calculator 76 is the electropneumatic converter 7.
At 7, the air signal is converted into a control signal, and the opening degree of the control valve 33 is controlled so that the temperature in the medium tank 28 becomes a set value.

【0043】温度設定器74からの偏差信号は制限器8
0でチェックされ制限値を越えた場合、その偏差信号は
PID調節計81で制御信号となり、加減演算器82に
入力される。このとき、加減演算器50からの信号をバ
イアス器69でバイアスした信号と、加減演算器78か
らの信号も加減演算器82に入力されている。さらに、
加減演算器85からの信号は加減演算器89に送られて
いるが、これには温度検出器32の検出信号を温度変換
器88で変換した信号も送られている。そして、この加
減演算器89からの信号をバイアス器90でバイアスし
た信号も加減演算器82に入力される。
The deviation signal from the temperature setter 74 is the limiter 8
If it is checked at 0 and exceeds the limit value, the deviation signal becomes a control signal at the PID controller 81 and is input to the addition / subtraction calculator 82. At this time, the signal obtained by biasing the signal from the addition / subtraction calculator 50 by the bias device 69 and the signal from the addition / subtraction calculator 78 are also input to the addition / subtraction calculator 82. further,
The signal from the addition / subtraction calculator 85 is sent to the addition / subtraction calculator 89, and the signal obtained by converting the detection signal of the temperature detector 32 by the temperature converter 88 is also sent to this. A signal obtained by biasing the signal from the adder / subtractor 89 with the bias device 90 is also input to the adder / subtractor 82.

【0044】加減演算器82の演算信号は電空変換器8
3で空気信号に変換されて制御信号となり、媒体タンク
28の器内温度が設定値になる様、凝縮器27の冷却水
量調節弁38の開度を制御する。
The calculation signal of the addition / subtraction calculator 82 is an electropneumatic converter 8.
At 3, the air signal is converted into a control signal, and the opening degree of the cooling water amount control valve 38 of the condenser 27 is controlled so that the internal temperature of the medium tank 28 reaches a set value.

【0045】圧力検出器18の検出信号を媒体タービン
入口圧力設定器91で設定値と比較して得た偏差信号は
PID調節計92で制御信号となって加減演算器93に
入力される。このとき、バイアス器67からのバイアス
信号も加減演算器93に入力されている。
The deviation signal obtained by comparing the detection signal of the pressure detector 18 with the set value by the medium turbine inlet pressure setting device 91 becomes a control signal by the PID controller 92 and is input to the adjusting calculator 93. At this time, the bias signal from the bias device 67 is also input to the addition / subtraction calculator 93.

【0046】加減演算器93の演算信号は電空変換器9
4で空気信号に変換されて制御信号となり、媒体タービ
ン21の入口圧力が設定値になるようバイパス圧力調節
弁19の開度を制御する。
The calculation signal of the addition / subtraction calculator 93 is an electropneumatic converter 9.
In step 4, the air signal is converted into a control signal, and the opening degree of the bypass pressure control valve 19 is controlled so that the inlet pressure of the medium turbine 21 becomes a set value.

【0047】したがって、本実施例によれば媒体タービ
ンの電力負荷に対応して複数台の予熱器複数台の凝縮器
を負荷に追従して制御することができ、また、予熱器、
凝縮器の熱交換による二次遅れを防止して熱交換効率低
下の防止を図ることができる。
Therefore, according to the present embodiment, it is possible to control the plurality of preheaters and the plurality of condensers in accordance with the power load of the medium turbine, and to control the preheater and the preheater.
It is possible to prevent a secondary delay due to heat exchange of the condenser and prevent a decrease in heat exchange efficiency.

【0048】[0048]

【発明の効果】以上のように、本発明によれば、タービ
ンの駆動を、熱水源からの熱水により直接的に行うので
はなく、媒体を介在させて間接的に行うようにし、ま
た、熱水供給路、媒体循環流路、及び冷却水循環流路で
の所定個所における流量検出、温度検出及び圧力検出に
基いて、各流路の調節弁の制御弁の制御を行う構成とし
たので、熱水流量あるいは熱水温度が変化した場合で
も、発電機出力が安定となるように制御することができ
る。
As described above, according to the present invention, the turbine is not driven directly by the hot water from the hot water source, but indirectly by interposing a medium, and Based on the flow rate detection, temperature detection and pressure detection at a predetermined location in the hot water supply passage, the medium circulation passage, and the cooling water circulation passage, the control valve of the control valve of each passage is controlled. Even if the hot water flow rate or the hot water temperature changes, the generator output can be controlled to be stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of an exemplary embodiment of the present invention.

【図2】図1における調節弁制御器の構成を示すブロッ
ク図。
FIG. 2 is a block diagram showing a configuration of a control valve controller in FIG.

【符号の説明】[Explanation of symbols]

15 媒体循環流路(媒体系統) 16 媒体循環流路(媒体系統) 21 媒体タービン 22 発電機 1 熱水源(熱水ポンプ) 4 熱水供給路(熱水系統) 8〜12 予熱器 25 凝縮器 27 凝縮器 5 熱水流量調節弁 6 熱水流量調節弁 20 媒体循環量調節弁 40 媒体循環量調節弁 41 媒体循環量調節弁 33 冷却水量調節弁 38 冷却水量調節弁 42 調節弁制御器 15 medium circulation flow path (medium system) 16 medium circulation flow path (medium system) 21 medium turbine 22 generator 1 hot water source (hot water pump) 4 hot water supply path (hot water system) 8 to 12 preheater 25 condenser 27 Condenser 5 Hot water flow rate control valve 6 Hot water flow rate control valve 20 Medium circulation rate control valve 40 Medium circulation rate control valve 41 Medium circulation rate control valve 33 Cooling water rate control valve 38 Cooling water rate control valve 42 Control valve controller

Claims (1)

【特許請求の範囲】 【請求項1】媒体循環流路途中に設けられ、加熱媒体に
よって得られる回転力により発電機を駆動する媒体ター
ビンと、 前記媒体循環流路の前記媒体タービン上流側に設けら
れ、熱水源から熱水供給路を通って送られてくる熱水に
より媒体の予熱を行う予熱器と、 前記媒体循環流路の前記媒体タービン下流側に設けら
れ、冷却水循環流路を循環する冷却水により前記媒体の
凝縮を行う凝縮器と、 前記熱水供給路の前記予熱器上流側に設けられた熱水流
量調節弁と、 前記媒体循環流路の前記予熱器上流側、及び前記媒体タ
ービンのバイパス路に設けられた媒体循環量調節弁と、 前記冷却水循環流路に設けられた冷却水量調節弁と、 前記熱水供給路、媒体循環流路、及び冷却水循環流路の
所定個所での流量検出、温度検出、及び圧力検出に基い
て、前記各調節弁の制御を行う調節弁制御器と、を備え
た排熱利用発電制御装置。
Claim: What is claimed is: 1. A medium turbine which is provided in the middle of the medium circulation passage and drives a generator by a rotational force obtained by a heating medium, and a medium turbine upstream side of the medium circulation passage. And a preheater that preheats the medium with the hot water sent from the hot water source through the hot water supply passage, and is provided on the medium turbine downstream side of the medium circulation passage and circulates through the cooling water circulation passage. A condenser for condensing the medium with cooling water, a hot water flow rate adjusting valve provided on the preheater upstream side of the hot water supply passage, the preheater upstream side of the medium circulation flow path, and the medium. A medium circulation amount control valve provided in a bypass passage of a turbine, a cooling water amount control valve provided in the cooling water circulation passage, and a predetermined location of the hot water supply passage, the medium circulation passage, and the cooling water circulation passage. Flow rate detection, temperature detection And a control valve controller that controls each of the control valves based on pressure detection, and an exhaust heat utilization power generation control device.
JP17114891A 1991-07-11 1991-07-11 Waste heat utilizing power generation control device Pending JPH0518212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17114891A JPH0518212A (en) 1991-07-11 1991-07-11 Waste heat utilizing power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17114891A JPH0518212A (en) 1991-07-11 1991-07-11 Waste heat utilizing power generation control device

Publications (1)

Publication Number Publication Date
JPH0518212A true JPH0518212A (en) 1993-01-26

Family

ID=15917882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17114891A Pending JPH0518212A (en) 1991-07-11 1991-07-11 Waste heat utilizing power generation control device

Country Status (1)

Country Link
JP (1) JPH0518212A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202269A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Binary generator and control method for the same
JP2012526224A (en) * 2009-05-09 2012-10-25 ダイムラー・アクチェンゲゼルシャフト Use of exhaust gas heat from automobiles
JP2012217240A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Method of controlling local power system having power generation system, and local power system
JP2014194210A (en) * 2013-02-26 2014-10-09 Kobe Steel Ltd Binary power generator operation method and binary power generator
KR20150092195A (en) * 2012-12-03 2015-08-12 도쿄하쿠젠 가부시키가이샤 Cremation system
JP2015187440A (en) * 2014-03-10 2015-10-29 パナソニックIpマネジメント株式会社 Rankine cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526224A (en) * 2009-05-09 2012-10-25 ダイムラー・アクチェンゲゼルシャフト Use of exhaust gas heat from automobiles
JP2012202269A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Binary generator and control method for the same
JP2012217240A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Method of controlling local power system having power generation system, and local power system
KR20150092195A (en) * 2012-12-03 2015-08-12 도쿄하쿠젠 가부시키가이샤 Cremation system
JP2014194210A (en) * 2013-02-26 2014-10-09 Kobe Steel Ltd Binary power generator operation method and binary power generator
JP2015187440A (en) * 2014-03-10 2015-10-29 パナソニックIpマネジメント株式会社 Rankine cycle device

Similar Documents

Publication Publication Date Title
CN109812796B (en) Solar-assisted coal-fired power generation system participating in primary frequency modulation and control method thereof
CA1068492A (en) Combined gas turbine and steam turbine power plant
GB1101859A (en) Power generating units
JPH0518212A (en) Waste heat utilizing power generation control device
US20170254225A1 (en) Steam Turbine Plant
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
CN115263565A (en) Wide-load energy-saving control method for gas turbine
CN112855297B (en) Heat source shunting type waste heat power generation system and optimization control method thereof
CN109643086B (en) Method for controlling and/or regulating a solar thermal power plant and solar thermal power plant
JPH08135411A (en) Control device of exhaust heat using power plant
JPS61152916A (en) Binary cycle power generation plant
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPS61145305A (en) Control device for turbine plant using hot water
JPH07180979A (en) Power generating control device utilizing waste heat
JPH01267306A (en) Flow controller for heat exchanger
JPH06241007A (en) Waste heat utilization system controller
JPS59221410A (en) Starting method of combined plant
JP2676197B2 (en) Temperature control device for co-generation system
JPH1047013A (en) Control device for exhaust heat utilization generating plant
JPH0526055A (en) Gas turbine equipment
JP3112579B2 (en) Pressure control device
JPH10184316A (en) Power generation control device utilizing exhaust heat
JPH0749005A (en) Exhaust heat recovery power generation control device
JPS6112195B2 (en)