JPH10184316A - Power generation control device utilizing exhaust heat - Google Patents

Power generation control device utilizing exhaust heat

Info

Publication number
JPH10184316A
JPH10184316A JP34406796A JP34406796A JPH10184316A JP H10184316 A JPH10184316 A JP H10184316A JP 34406796 A JP34406796 A JP 34406796A JP 34406796 A JP34406796 A JP 34406796A JP H10184316 A JPH10184316 A JP H10184316A
Authority
JP
Japan
Prior art keywords
steam
pressure
signal
hot water
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34406796A
Other languages
Japanese (ja)
Inventor
Akio Wakao
明男 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34406796A priority Critical patent/JPH10184316A/en
Publication of JPH10184316A publication Critical patent/JPH10184316A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To always provide stable generator output irrespective of variation of exhaust heat amount and temperature by suppressing fluctuation of a steam to be flowed into a steam turbine through a steam flow amount control system in respect to an power set load of an exhaust heat utilizing generation plant, and suppressing fluctuation of steam pressure by a steam pressure control system. SOLUTION: Exhaust heated steam is flowed into high, medium, low pressure steam separators 2a, 2b, 2c whereby steam is separated from hot water. The separated hot water is introduced into a heat exchanger 17, while steam is introduced into a steam turbine 6. A flow amount of the steam is controlled such that an output of a generator 8 is in a set value. Outlet pressure values of the separators 2 are switched and adjusted according to pressure deviation thereof, so as to obtain set values. The hot water level of the steam separators 2 are controlled so as to obtain set values. The temperature of the excessive hot water in the heat separators 2 at the outlet of the heat exchanger is adjusted to obtain a set value by controlling an amount of cooling water to the heat exchanger 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工業用プラント等
の排熱蒸気あるいは地下の蒸気から得られる排熱(地
熱)を利用した排熱利用の発電制御装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation control device utilizing waste heat utilizing waste heat (geothermal) obtained from waste heat steam or underground steam of an industrial plant or the like.

【0002】[0002]

【従来の技術】一般に、発電の方式には、火力発電、水
力発電、原子力発電等の方式の他に、種々の特殊発電方
式がある。その特殊発電方式の一つとして、工業用プラ
ントあるいは地下から得られる排熱を利用した発電方式
がある。
2. Description of the Related Art In general, there are various types of power generation in addition to thermal power generation, hydroelectric power generation, nuclear power generation, and the like. As one of the special power generation methods, there is a power generation method using waste heat obtained from an industrial plant or an underground.

【0003】このような排熱利用の発電方式は、火力発
電と同様に、蒸気により蒸気タービンを駆動させて発電
を行うものであるが、排熱により蒸気を発生させるの
で、火力発電に比べ蒸気タービンを回転させるのに要す
る燃料費を大幅に節約出来る。このため、近年、資源活
用の面から注目され始めている。
[0003] In such a power generation system utilizing waste heat, similarly to thermal power generation, a steam turbine is driven by steam to generate power. However, since steam is generated by exhaust heat, steam is generated in comparison with thermal power generation. Significant savings in fuel costs to run the turbine. For this reason, in recent years, it has begun to attract attention in terms of resource utilization.

【0004】[0004]

【発明が解決しようとする課題】そして、この様な従来
の排熱利用の発電制御装置では、排熱の流量が常時一定
に定まっているものでないので、排熱の流量については
格別の制御を行っておらず、工業用プラント等から得ら
れる排熱の全てを蒸気タービンの駆動に用いるようにし
て、基本的には電力最大運転を行うようにしていた。
In such a conventional power generation control apparatus utilizing waste heat, the flow rate of the waste heat is not always fixed, so that the flow rate of the waste heat must be controlled particularly. Instead, all the exhaust heat obtained from an industrial plant or the like is used for driving the steam turbine, and basically, the electric power is maximally operated.

【0005】しかし、このような従来の排熱利用の発電
制御方式では、工業用プラント等からの排熱流量あるい
は排熱温度が変化すると、直ちに発電機出力も変動して
しまい、成り行きまかせの制御となる課題があった。
However, in such a conventional power generation control system using waste heat, when the flow rate or temperature of the waste heat from an industrial plant or the like changes, the output of the generator also changes immediately, so that it is possible to control the power generation by itself. There was a problem.

【0006】そこで、本発明の目的は、工業用プラント
等からの排熱流量あるいは排熱温度の変化にかかわら
ず、常に安定した発電機出力を得ることが可能な排熱利
用の発電制御装置を提供することにある。
Accordingly, an object of the present invention is to provide a power generation control device utilizing waste heat capable of always obtaining a stable generator output irrespective of changes in the flow rate or temperature of waste heat from an industrial plant or the like. To provide.

【0007】[0007]

【課題を解決するための手段】請求項1に対応する排熱
利用の発電制御装置は低圧,中圧,高圧の排熱蒸気を蒸
気と熱水とに分離する低圧,中圧,高圧の各蒸気分離器
と、この蒸気分離器からの蒸気により駆動される蒸気タ
ービンと、この蒸気タービンにより駆動されて発電する
発電機と、前記蒸気タービンで仕事をした後の蒸気を復
水に凝縮する復水器と、この復水を冷却塔ファンで冷却
してから前記各蒸気分離器からの熱水と熱交換器で熱交
換させる一方、この冷却水に補給水を補給する冷却塔
と、を有する排熱利用の発電制御装置において、前記発
電機の出力が予め定めた電力負荷設定値になるように前
記蒸気タービンに流入する蒸気流量を制御する蒸気流量
制御系と、前記蒸気タービンの入口圧力が予め定めた圧
力設定値になるように前記高圧,中圧,低圧の各蒸気分
離器の出口圧力の各偏差をバイアス信号として付加した
制御信号に基づいて前記蒸気タービンの入口圧力を制御
する蒸気圧力制御系と、前記各蒸気分離器の各熱水レベ
ルが予め定めた各レベル設定値になるように各レベル偏
差の高値側の信号に基づいて優先的に制御する熱水レベ
ル制御系と、高圧,中圧,低圧の各蒸気分離器の余剰熱
水の温度が前記熱交換器出口で予め定めた温度設定値に
なるように前記冷却塔の冷却水により冷却して制御する
熱水温度制御系と、前記復水器の水位レベルが予め定め
た水位レベル設定値になるように前記冷却水量をバイア
ス信号として付加した制御信号に基づいて制御する復水
器レベル制御系と、前記冷却塔の水位レベルが予め定め
たレベル設定値になるように前記高圧,中圧,低圧の熱
水分離器の水位レベルの高値側の信号と前記蒸気流量信
号をバイアス信号として付加した制御信号に基づいてこ
の冷却塔へ補給される補給水量を制御する補給水量制御
系と、前記冷却塔の冷却水温度が予め定められた温度設
定値になるように前記冷却塔ファンの単位時間当りの回
転数を制御する冷却塔の機内温度制御系と、を備えたこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a power generation control apparatus utilizing waste heat, which includes a low pressure, a medium pressure, and a high pressure for separating low pressure, medium pressure, and high pressure waste heat steam into steam and hot water. A steam separator, a steam turbine driven by steam from the steam separator, a generator driven by the steam turbine to generate power, and a condenser for condensing steam after working in the steam turbine into condensate. A cooling tower for cooling the condensed water with a cooling tower fan and then exchanging heat with the hot water from each of the steam separators in a heat exchanger, and replenishing the cooling water with makeup water. In a power generation control device utilizing waste heat, a steam flow control system that controls a flow rate of steam flowing into the steam turbine so that an output of the generator becomes a predetermined power load set value, and an inlet pressure of the steam turbine is increased. Set to a predetermined pressure set value A steam pressure control system for controlling the inlet pressure of the steam turbine based on a control signal obtained by adding each deviation of the outlet pressure of each of the high, medium and low pressure steam separators as a bias signal; A hot water level control system that preferentially controls each hot water level based on a signal on the higher value side of each level deviation so that each hot water level becomes a predetermined level set value, and a high-, medium-, and low-pressure steam separator. A hot water temperature control system for cooling and controlling the excess hot water with the cooling water of the cooling tower so that the temperature of the surplus hot water becomes a predetermined temperature set value at the heat exchanger outlet, and a water level level of the condenser A condenser level control system for controlling the cooling water amount based on a control signal added as a bias signal so as to be a predetermined water level level setting value, and a water level level of the cooling tower being a predetermined level setting value So the high pressure A replenishing water amount control system for controlling a replenishing water amount replenished to the cooling tower based on a signal on the high side of the water level of the medium pressure and low pressure hot water separators and a control signal obtained by adding the steam flow signal as a bias signal A cooling tower internal temperature control system that controls the number of rotations of the cooling tower fan per unit time so that the cooling water temperature of the cooling tower becomes a predetermined temperature set value. I do.

【0008】この発明によれば、高圧,中圧,低圧の各
蒸気分離器にそれぞれ流入した排熱蒸気は、これら蒸気
分離器で蒸気と熱水に分離され、熱水が熱交換器に導入
される一方、蒸気は蒸気タービンに導入される。蒸気タ
ービンに導入される蒸気流量は、蒸気流量制御系により
発電機の出力が予め定めた電力設定値になるように蒸気
タービンに流入する蒸気量が制御される。
According to the present invention, the exhaust heat steam flowing into each of the high-, medium-, and low-pressure steam separators is separated into steam and hot water by these steam separators, and the hot water is introduced into the heat exchanger. Meanwhile, the steam is introduced into a steam turbine. The amount of steam introduced into the steam turbine is controlled by a steam flow control system such that the output of the generator reaches a predetermined power set value.

【0009】蒸気タービンの入口蒸気圧力は、蒸気圧力
制御系により、予め定めた圧力設定値になるように高
圧,中圧,低圧の蒸気分離器の圧力偏差に応じて各蒸気
分離器の出口圧力を切替制御することによって制御され
る。
The steam pressure at the inlet of the steam turbine is controlled by a steam pressure control system according to the pressure deviations of the high, medium and low pressure steam separators so as to reach a predetermined pressure set value. Is controlled by switching control.

【0010】高圧,中圧,低圧の各蒸気分離器の熱水レ
ベルは、熱水レベル制御系により、予め定めた設定値に
なるように制御される。
[0010] The hot water level of each of the high-, medium-, and low-pressure steam separators is controlled by a hot-water level control system to a predetermined value.

【0011】高圧,中圧,低圧の各蒸気分離器の余剰熱
水の熱交換器出口における温度は、熱水温度制御系によ
り、予め定めた温度設定値になるように熱交換器への冷
却水量を制御することにより制御される。
The temperature at the heat exchanger outlet of the excess hot water of each of the high-, medium-, and low-pressure steam separators is cooled by the hot-water temperature control system so that the temperature becomes a predetermined temperature set value. It is controlled by controlling the amount of water.

【0012】冷却塔の冷却水の温度は予め定めた温度設
定値になるように冷却塔の冷却ファンの単位時間当りの
回転数を冷却水温度制御系により制御することにより制
御される。
The temperature of the cooling water of the cooling tower is controlled by controlling the number of rotations of the cooling fan of the cooling tower per unit time by a cooling water temperature control system so as to reach a predetermined temperature set value.

【0013】冷却塔の水位レベルは、補給水量制御系に
より、予め定めた冷却塔水位設定値になるように冷却塔
への補給水量を制御することにより制御される。
[0013] The water level of the cooling tower is controlled by controlling the amount of water supplied to the cooling tower by a make-up water amount control system so as to reach a predetermined cooling tower water level set value.

【0014】請求項2の発明は、蒸気圧力制御系は、高
圧,中圧,低圧の各蒸気分離器の各蒸気圧力偏差を各々
の偏差制限器で比較し、圧力偏差が大きい場合、即ち蒸
気タービン入口圧力が設定値よりも高い場合、前記偏差
制限器の比較信号に基づいて前記中圧,低圧の蒸気分離
器の出口圧力制御に自動的に切替えて先行的に蒸気ター
ビン入口圧力が設定値になるよう制御し、その逆に蒸気
タービン入口圧力が設定値よりも低い場合、前記偏差制
限器の比較信号に基づいて高圧,中圧の蒸気分離器の出
口圧力制御に自動的に切替えて先行的に蒸気タービン入
口圧力が設定値になるよう制御する制御系を備えている
ことを特徴とする。
According to a second aspect of the present invention, the steam pressure control system compares the steam pressure deviations of the high-pressure, medium-pressure, and low-pressure steam separators with the respective deviation limiters. When the turbine inlet pressure is higher than the set value, the pressure is automatically switched to the outlet pressure control of the medium-pressure and low-pressure steam separators based on the comparison signal of the deviation limiter, and the steam turbine inlet pressure is set in advance. If the steam turbine inlet pressure is lower than the set value, on the other hand, the pressure is automatically switched to the high-pressure / medium-pressure steam separator outlet pressure control based on the comparison signal of the deviation limiter, and A control system for controlling the steam turbine inlet pressure to a set value.

【0015】この発明によれば、蒸気圧力制御系によ
り、蒸気タービンの圧力は予め定めた設定値になるよう
に制御されるが、蒸気タービンの圧力が電力設定値の如
何により増減する場合、蒸気タービンの圧力制御方式を
高圧,中圧,低圧蒸気の3段階で圧力制御が行なわれ
る。その圧力制御の切替方式は、蒸気タービン入口圧力
設定値と蒸気タービン入口圧力の偏差信号を偏差制限器
の制限値と比較し、圧力偏差信号が大きい場合、(即ち
蒸気タービン圧力が非常に高い時)は低圧の蒸気分離器
の出口圧力で蒸気タービンの入口圧力を制御し、圧力偏
差が少し低下した場合は、中圧,低圧の蒸気分離器の圧
力制御に切替する。その逆に蒸気タービンの入口圧力が
低下傾向の時は、同様に蒸気タービン入口圧力設定値と
蒸気タービンの入口圧力の偏差信号を偏差制限値で制限
値と比較し、圧力偏差が大きい場合は高圧の蒸気分離器
の圧力制御に切替し、更に偏差信号が低下した場合は、
中圧,低圧の蒸気分離器に自動的に切替る。
According to the present invention, the steam pressure is controlled by the steam pressure control system so that the pressure of the steam turbine becomes a predetermined set value. Pressure control is performed in three stages of high-pressure, medium-pressure, and low-pressure steam. The pressure control switching method compares the deviation signal between the steam turbine inlet pressure set value and the steam turbine inlet pressure with the limit value of the deviation limiter, and when the pressure deviation signal is large (that is, when the steam turbine pressure is very high). ) Controls the inlet pressure of the steam turbine with the outlet pressure of the low-pressure steam separator, and switches to the medium-pressure / low-pressure steam separator pressure control when the pressure deviation decreases slightly. Conversely, when the inlet pressure of the steam turbine tends to decrease, the difference signal between the steam turbine inlet pressure set value and the steam turbine inlet pressure is similarly compared with the limit value using the deviation limit value. Switch to the pressure control of the steam separator, and if the deviation signal further decreases,
Automatically switches to medium- and low-pressure steam separators.

【0016】請求項3の発明は、熱水レベル制御系は、
各蒸気分離器の熱水レベルとその設定値との偏差信号を
高値優先回路で比較し、高値側の信号に基づいて優先的
に熱水レベルを制御し、蒸気タービンの蒸気流量の信号
を先行的にバイアスとして付加した制御信号に基づいて
電力負荷の増減に追従した熱水レベルに制御する制御系
を備えていることを特徴とする。
According to a third aspect of the present invention, the hot water level control system comprises:
The difference signal between the hot water level of each steam separator and its set value is compared by the high value priority circuit, and the hot water level is controlled preferentially based on the signal on the high value side, and the signal of the steam flow rate of the steam turbine is preceded. A control system for controlling the hot water level to follow an increase or a decrease in the power load based on a control signal added as a bias.

【0017】この発明によれば、各蒸気分離器の熱水レ
ベルは、その制御系により、予め設定された蒸気分離器
の熱水レベル設定値になるよう制御される。しかし、工
業用の排熱及び地熱から得られる蒸気は、蒸気の条件が
各々異なるので、これらの各蒸気の圧力条件により高
圧,中圧,低圧用の各蒸気分離器で蒸気と熱水分に分離
する。しかし、この熱水分が上昇すると蒸気タービンの
羽根がエロージョンにより損傷する。しかも、各蒸気分
離器の熱水レベルは、電力負荷設定値の如何によって変
動するので、これらの各熱水レベルと、高圧,中圧,低
圧蒸気分離器の各設定値との偏差を高値優先回路に取り
込み、その高値信号を優先させるために、蒸気タービン
の蒸気流量制御信号をバイアス信号とし先行的に付加し
た制御信号に基づいて高圧,中圧,低圧の各蒸気分離器
熱水レベルを制御する。これにより、蒸気タービンの羽
根のエロージョンを低減することができる。
According to the present invention, the hot water level of each steam separator is controlled by its control system so as to be a preset hot water level set value of the steam separator. However, the steam obtained from industrial waste heat and geothermal heat has different steam conditions, and the high-pressure, medium-pressure, and low-pressure steam separators convert the steam and hot moisture according to the pressure conditions of each steam. To separate. However, when the heat and moisture rise, the blades of the steam turbine are damaged by erosion. In addition, since the hot water level of each steam separator varies depending on the set value of the electric power load, the deviation between each of these hot water levels and each set value of the high-, medium-, and low-pressure steam separator has a higher priority. The high-pressure, medium-pressure, and low-pressure steam separator hot water levels are controlled based on the control signal added in advance by using the steam flow control signal of the steam turbine as a bias signal to give priority to the high value signal in the circuit. I do. Thereby, erosion of the blades of the steam turbine can be reduced.

【0018】請求項4の発明は、熱水温度制御系は、復
水器機内温度と熱交換器出口温度との偏差信号と、熱水
レベルの制御信号を各々バイアス信号として先行的に付
加した制御信号に基づいて冷却水量を制御する制御系を
備えていることを特徴とする。
According to a fourth aspect of the present invention, in the hot water temperature control system, a deviation signal between a condenser internal temperature and a heat exchanger outlet temperature, and a hot water level control signal are added in advance as bias signals. A control system for controlling the amount of cooling water based on the control signal is provided.

【0019】この発明によれば、高圧,中圧,低圧の蒸
気分離器の熱水レベル制御時の余剰熱水の温度は、その
制御手段により、予め設定された熱水温度設定値により
制御される。しかし、この熱水は、まず熱交換器で冷却
塔からの冷却水で熱交換されて冷却されてから冷却塔に
おくられる。そして、熱交換器で利用された冷却水は、
復水器に送られるが、その冷却水の温度が高いと、復水
器の冷却能力が低下し、復水器真空度の低下により発電
機出力が変動する。
According to the present invention, the temperature of the surplus hot water at the time of controlling the hot water level of the high-, medium-, and low-pressure steam separators is controlled by the control means in accordance with a preset hot-water temperature set value. You. However, this hot water is first heat-exchanged with cooling water from a cooling tower in a heat exchanger and cooled, and then sent to the cooling tower. And the cooling water used in the heat exchanger is
Although sent to the condenser, if the temperature of the cooling water is high, the cooling capacity of the condenser decreases, and the generator output fluctuates due to a decrease in the condenser vacuum.

【0020】そこで、復水器の機内温度と熱交換器出口
の温度との偏差信号と、熱水レベル制御信号をバイアス
信号として先行的に付加した制御信号に基づいて冷却塔
の冷却水量を制御することにより、復水器の機内温度の
上昇を抑制している。したがって、復水器真空度の低下
と、その低下による発電機出力の変動を低減ないし防止
することができる。
Therefore, the amount of cooling water in the cooling tower is controlled based on a deviation signal between the inside temperature of the condenser and the temperature at the outlet of the heat exchanger and a control signal to which a hot water level control signal is added in advance as a bias signal. By doing so, the rise in the internal temperature of the condenser is suppressed. Therefore, it is possible to reduce or prevent a decrease in the degree of vacuum of the condenser and a change in the generator output due to the decrease.

【0021】請求項5の発明は、冷却塔の機内温度制御
系は、熱交換器の出口温度と冷却塔の機内温度信号と、
蒸気分離器の余剰熱水量のレベル制御信号を先行的にバ
イアス信号として付加した制御信号に基づいて冷却塔フ
ァンの単位時間当りの回転数を制御する制御系を備えて
いることを特徴とする。
According to a fifth aspect of the present invention, there is provided a cooling tower internal temperature control system, comprising: a heat exchanger outlet temperature, a cooling tower internal temperature signal,
A control system for controlling the number of revolutions of the cooling tower fan per unit time based on a control signal to which a level control signal of an excess amount of hot water of the steam separator is added in advance as a bias signal is provided.

【0022】この発明によれば、冷却塔の冷却水の温度
は、その制御手段により、予め設定された冷却塔の冷却
水温度設定値により制御される。しかし、この冷却水の
温度が熱交換器の熱水の冷却のためや復水器の復水冷却
のために上昇した場合には、この冷却水による復水器の
性能低下となり、発電機出力の低下につながる。
According to the present invention, the temperature of the cooling water of the cooling tower is controlled by the control means in accordance with a preset cooling water temperature set value of the cooling tower. However, if the temperature of the cooling water rises due to the cooling of the hot water of the heat exchanger or the condensing cooling of the condenser, the performance of the condenser decreases due to the cooling water, and the generator output Leads to a decrease in

【0023】そこで、熱水レベル制御信号及び熱水温度
制御信号、復水器機内温度と冷却塔の冷却水温度偏差信
号をバイアス信号として先行的に付加した制御信号に基
づいて冷却塔の冷却ファンモータの単位時間当りの回転
数を制御することにより、冷却水の温度上昇を抑制す
る。これにより、復水器の温度上昇による性能低下を抑
制して発電機出力の低下を抑制ないし防止することがで
きる。
Therefore, the cooling fan of the cooling tower is controlled based on a control signal in which the hot water level control signal, the hot water temperature control signal, the condenser internal temperature and the cooling water temperature deviation signal of the cooling tower are added as bias signals in advance. By controlling the number of rotations of the motor per unit time, a rise in the temperature of the cooling water is suppressed. As a result, it is possible to suppress a decrease in performance due to a rise in the temperature of the condenser and suppress or prevent a decrease in generator output.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態を図1
〜図3に基づいて説明する。なお、これらの図中、同一
または相当部分には同一符号を付している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIG. In these figures, the same or corresponding parts are denoted by the same reference characters.

【0025】図1は本発明に係る一実施形態の排熱利用
の発電制御装置の要部ブロック図、図2は図1で示す要
部を含む本発明の一実施形態の全体構成を示す系統図で
ある。
FIG. 1 is a block diagram of a main part of a power generation control apparatus using waste heat according to one embodiment of the present invention, and FIG. 2 is a system showing an entire configuration of one embodiment of the present invention including main parts shown in FIG. FIG.

【0026】図2に示すように、排熱利用の発電制御装
置は、工業用プラントの排熱または地下の熱水層から得
られる排熱蒸気や排熱熱水を通す高圧排熱蒸気流路1
a、中圧排熱蒸気流路1b、低圧排熱流路1cを、高圧
蒸気分離器2a、中圧蒸気分離器2b、低圧蒸気分離器
2cにそれぞれ接続している。
As shown in FIG. 2, a power generation control device utilizing waste heat is provided with a waste heat of an industrial plant or waste heat steam obtained from an underground hot water layer or a high-pressure waste heat steam passage for passing waste heat water. 1
a, the medium-pressure exhaust heat steam channel 1b and the low-pressure exhaust heat channel 1c are connected to the high-pressure steam separator 2a, the medium-pressure steam separator 2b, and the low-pressure steam separator 2c, respectively.

【0027】高圧蒸気分離器2a、中圧蒸気分離器2
b、低圧蒸気分離器2cは蒸気と熱水に分離するもので
あり、分離された蒸気は、高圧圧力調節弁3a、中圧圧
力調節弁3b、低圧圧力調節弁3cをそれぞれ設けた流
路を介して蒸気ヘッダ4に導入される。
High pressure steam separator 2a, medium pressure steam separator 2
b, the low-pressure steam separator 2c separates steam and hot water, and the separated steam passes through a flow path provided with a high-pressure control valve 3a, a medium-pressure control valve 3b, and a low-pressure control valve 3c, respectively. Through the steam header 4.

【0028】蒸気ヘッダ4は排熱蒸気流路5を介して蒸
気タービン6の入口に接続され、排熱蒸気流路5には流
量調節弁7が介在されている。蒸気タービン6の回転軸
には発電機8が例えば直結等により接続され、発電機8
の回転により発電させることができる。
The steam header 4 is connected to an inlet of a steam turbine 6 through a waste heat steam passage 5, and a flow control valve 7 is interposed in the waste heat steam passage 5. A generator 8 is connected to the rotating shaft of the steam turbine 6 by, for example, a direct connection.
Can be generated by the rotation of.

【0029】蒸気タービン6の蒸気出口側は排熱流路9
を介して復水器10入口側に接続されている。復水器1
0の排水側は復水ポンプ11を介装している復水流路1
2を介して冷却塔13の復水入口に接続されている。
The steam outlet side of the steam turbine 6 is connected to the exhaust heat passage 9
Is connected to the inlet side of the condenser 10. Condenser 1
0 is a condensate flow path 1 with a condensate pump 11
2 is connected to the condensate inlet of the cooling tower 13.

【0030】冷却塔13はここに導入された復水を冷却
塔ファン14の送風で冷却して、冷却塔13のタンク内
に貯めるものである。
The cooling tower 13 cools the condensed water introduced therein by the blowing of a cooling tower fan 14 and stores it in a tank of the cooling tower 13.

【0031】冷却塔13の冷却水出口は、冷却水ポンプ
15を介装している冷却水流路16を介して熱交換器1
7の冷却水入口に接続され、この冷却水を熱交換器17
内で高圧蒸気分離器2a、中圧蒸気分離器2b、低圧蒸
気分離器2cからの出口熱水と熱交換する。ここで熱交
換されて冷却される熱水の出口は冷却流路18を介して
冷却塔13の熱水入口に接続される。
The cooling water outlet of the cooling tower 13 is connected to the heat exchanger 1 through a cooling water passage 16 provided with a cooling water pump 15.
7 is connected to a cooling water inlet of the heat exchanger 17.
Inside, heat exchange is performed with hot water exiting from the high-pressure steam separator 2a, the medium-pressure steam separator 2b, and the low-pressure steam separator 2c. Here, the outlet of the hot water to be cooled by heat exchange is connected to the hot water inlet of the cooling tower 13 through the cooling channel 18.

【0032】また、高圧蒸気分離器2a、中圧蒸気分離
器2b、低圧蒸気分離器2cの熱水出口は、排熱処理流
路19を介して上記熱交換器17の熱水入口に接続され
ている。一方、冷却塔13の補給水入口は、補給水ポン
プ20を介装している補給水流路21に接続され、冷却
塔13に補給水が補給されるようになっている。
The hot water outlets of the high-pressure steam separator 2a, the medium-pressure steam separator 2b, and the low-pressure steam separator 2c are connected to the hot water inlet of the heat exchanger 17 through a waste heat treatment channel 19. I have. On the other hand, the makeup water inlet of the cooling tower 13 is connected to a makeup water flow path 21 provided with a makeup water pump 20 so that makeup water is supplied to the cooling tower 13.

【0033】そして、このように構成された排熱利用の
発電プラントには図1,図3で示す制御装置22を設け
る一方、上記排熱蒸気流路5には排熱蒸気流量を検出す
る流量検出器23a、排熱蒸気の圧力を検出する圧力検
出器23bを設けている。また、高,中,低圧の各蒸気
分離器2a〜2cには高,中,低圧の圧力調節弁3a,
3b,3cと、蒸気圧力検出器24a,24b,24c
と、レベル検出器25a,25b,25cをそれぞれ設
けている。
The power generation plant utilizing waste heat configured as described above is provided with the control device 22 shown in FIGS. 1 and 3, while the exhaust heat steam flow path 5 has a flow rate for detecting the waste heat steam flow rate. A detector 23a and a pressure detector 23b for detecting the pressure of the exhaust heat steam are provided. The high, medium, and low pressure steam separators 2a to 2c have high, medium, and low pressure control valves 3a,
3b, 3c and steam pressure detectors 24a, 24b, 24c
And level detectors 25a, 25b, and 25c, respectively.

【0034】さらに、排熱処理流路19には余剰熱水の
流量を制御する熱水レベル調節弁26を設け、熱交換器
17の熱水出口側に熱水温度を検出する熱水温度検出器
27を設けている。冷却水流路16と復水流路12には
流量調節弁28,29をそれぞれ設け、冷却塔13にレ
ベル検出器30と温度検出器31を設け、補給水流路2
1に補給水流量調節弁32を設けている。また、復水器
10には復水温度検出器33aと復水レベル検出器33
bを設けている。
Further, a hot water level control valve 26 for controlling the flow rate of surplus hot water is provided in the waste heat treatment flow path 19, and a hot water temperature detector for detecting hot water temperature is provided at a hot water outlet side of the heat exchanger 17. 27 are provided. The cooling water flow path 16 and the condensing water flow path 12 are provided with flow control valves 28 and 29, respectively, the cooling tower 13 is provided with a level detector 30 and a temperature detector 31, and the makeup water flow path 2 is provided.
1 is provided with a makeup water flow control valve 32. The condenser 10 has a condenser temperature detector 33a and a condenser level detector 33a.
b is provided.

【0035】そして、図1、図3に示すように制御装置
22は、その信号入力側に、流量検出器23a、入口圧
力検出器23b、各蒸気分離器2a〜2cの各蒸気圧力
検出器24a〜24c、各熱水レベル検出器25a〜2
5c、熱水温度検出器27、冷却塔レベル検出器30、
温度検出器31、復水器10の温度検出器33aとレベ
ル検出器33bをそれぞれ接続している。
As shown in FIGS. 1 and 3, the control device 22 includes a flow rate detector 23a, an inlet pressure detector 23b, and a respective steam pressure detector 24a of each of the steam separators 2a to 2c on its signal input side. ~ 24c, each hot water level detector 25a ~ 2
5c, hot water temperature detector 27, cooling tower level detector 30,
The temperature detector 31, the temperature detector 33a of the condenser 10 and the level detector 33b are connected respectively.

【0036】一方、制御装置22の出力側には各電空変
換器34a,34b,34c…34hを介して流量調節
弁7、熱水レベル調節弁26、各蒸気分離器2a〜2c
の圧力調節弁3a〜3c、冷却水流量調節弁28、復水
流量調節弁29、補給水流量調節弁32を設け、さら
に、サイリスタスイッチ35を介して冷却塔ファン14
を電気的に接続している。
On the other hand, the flow control valve 7, the hot water level control valve 26, and the steam separators 2a to 2c are connected to the output side of the control device 22 via the electropneumatic converters 34a, 34b, 34c.
, A cooling water flow control valve 28, a condensed water flow control valve 29, and a make-up water flow control valve 32, and a cooling tower fan 14 through a thyristor switch 35.
Are electrically connected.

【0037】そして、制御装置22は蒸気流量制御系、
蒸気分離器レベル制御系、蒸気圧力制御系、熱交換器出
口の熱水温度制御系、復水器10の水位レベル制御系、
冷却塔13の水位レベル制御系、冷却塔13の機内温度
制御系とを有する。
The control device 22 includes a steam flow control system,
Steam separator level control system, steam pressure control system, hot water temperature control system at the heat exchanger outlet, water level control system of the condenser 10,
It has a water level control system for the cooling tower 13 and an internal temperature control system for the cooling tower 13.

【0038】蒸気流量制御系は、蒸気タービン6に導入
される蒸気流量が電力設定値になるように、蒸気タービ
ン6の入口の流量調節弁7の開度を調節する制御系であ
る。
The steam flow control system is a control system that adjusts the opening of the flow control valve 7 at the inlet of the steam turbine 6 so that the steam flow introduced into the steam turbine 6 becomes a power set value.

【0039】すなわち、排熱蒸気流路5を流れる蒸気流
量を流量検出器23aにより検出し、その検出信号を開
平演算器36で平滑し、その蒸気流量を、蒸気流量の関
数で演算された電力設定値と電力設定器37で比較し、
その偏差信号をPID調節器38でPID演算して制御
信号を得る。この制御信号をさらに電空変換器34aに
与え、ここで制御信号の電気信号を空気信号に変換す
る。この空気信号により空気圧作動型の流量調節弁7の
開度を制御する。これによって、蒸気タービン流入蒸気
量を発電機8の電力設定値に追従して制御することがで
きる。
That is, the flow rate of the steam flowing through the exhaust heat steam flow path 5 is detected by the flow rate detector 23a, the detection signal is smoothed by the square root calculator 36, and the steam flow rate is calculated by the power calculated by the function of the steam flow rate. The set value is compared with the power setter 37,
The deviation signal is subjected to PID calculation by a PID controller 38 to obtain a control signal. This control signal is further provided to the electropneumatic converter 34a, where the electric signal of the control signal is converted into an air signal. The opening of the pneumatically actuated flow control valve 7 is controlled by this air signal. Thus, the amount of steam flowing into the steam turbine can be controlled by following the power set value of the generator 8.

【0040】蒸気分離器レベル制御系は、各蒸気分離器
2a,2b,2cの熱水レベルと熱水レベル設定値との
偏差信号のうち、高値側の信号を優先して、各蒸気分離
器2a〜2cの熱水レベルを熱水レベル調節弁26の開
度を調節する制御系である。
The steam separator level control system gives priority to the higher value signal among the deviation signals between the hot water level of each of the steam separators 2a, 2b and 2c and the set value of the hot water level, and gives priority to each steam separator. This is a control system for adjusting the hot water level of 2 a to 2 c by adjusting the opening of the hot water level control valve 26.

【0041】すなわち、高圧排熱蒸気流路1aを流れる
排熱蒸気は、高圧蒸気分離器2aで熱水と蒸気に分離さ
れ、その熱水は高圧蒸気分離器2aの熱水レベル検出器
25aにより検出される。この検出信号はレベル設定器
39で、その設定値と比較され、両者の偏差信号が高値
優先回路40に入力される。
That is, the waste heat steam flowing through the high-pressure waste heat steam passage 1a is separated into hot water and steam by the high-pressure steam separator 2a, and the hot water is separated by the hot water level detector 25a of the high-pressure steam separator 2a. Is detected. This detection signal is compared with the set value by the level setting unit 39, and the difference signal between the two is input to the high value priority circuit 40.

【0042】同様に中圧排熱流路1bを流れる排熱蒸気
は、中圧蒸気分離器2bで熱水と蒸気に分離され、その
熱水は中圧蒸気分離器1bの熱水レベル検出器25bに
より検出される。この検出信号はレベル設定器41で、
その設定値と比較され、その偏差信号が高値優先回路4
0に入力される。
Similarly, the waste heat steam flowing through the medium pressure waste heat flow path 1b is separated into hot water and steam by the medium pressure steam separator 2b, and the hot water is separated by the hot water level detector 25b of the medium pressure steam separator 1b. Is detected. This detection signal is output from the level setting device 41.
The deviation signal is compared with the set value and the high-value priority circuit 4
Input to 0.

【0043】更に低圧排熱流路1cを流れる排熱蒸気
は、低圧蒸気分離器2cで熱水と蒸気に分離され、その
熱水は低圧蒸気分離器1cの熱水レベル検出器25cに
より検出される。この検出信号はレベル設定器42で、
その設定値と比較され、その偏差信号が高値優先回路4
0に入力される。
Further, the exhaust heat steam flowing through the low-pressure exhaust heat flow path 1c is separated into hot water and steam by the low-pressure steam separator 2c, and the hot water is detected by the hot water level detector 25c of the low-pressure steam separator 1c. . This detection signal is output from a level setting unit 42.
The deviation signal is compared with the set value and the high-value priority circuit 4
Input to 0.

【0044】高値優先回路40ではこれら入力信号のう
ちで高値側の信号が優先に選択され、加減演算器43に
入力される。この加減演算器43では、この高値側の信
号に、蒸気流量制御用PID調節器38からのPID演
算制御信号をバイアス器44でバイアスした信号を付加
した制御信号を得る。また、この制御信号をPID調節
器43aでPID演算して制御信号を得る。
In the high-value priority circuit 40, the signal on the high value side among these input signals is selected with priority and input to the addition / subtraction operation unit 43. The addition / subtraction operation unit 43 obtains a control signal obtained by adding a signal obtained by biasing the PID operation control signal from the steam flow rate control PID controller 38 by the bias unit 44 to the high value side signal. The control signal is PID-calculated by the PID controller 43a to obtain a control signal.

【0045】さらに、この制御信号を電空変換器34b
で電気信号から空気信号に変換する。この空気信号によ
り熱水レベル調節弁26の開度を制御することによっ
て、該当する高圧,中圧,低圧の各蒸気分離器2a〜2
cの熱水レベルが設定値を越えないように制御してい
る。
Further, this control signal is transmitted to the electropneumatic converter 34b.
Converts the electric signal into an air signal. By controlling the opening of the hot water level control valve 26 by this air signal, the corresponding high-pressure, medium-pressure, and low-pressure steam separators 2a to 2a
Control is performed so that the hot water level of c does not exceed the set value.

【0046】蒸気タービン入口圧力制御系は、蒸気ター
ビン6の入口圧力が設定値になるように高圧蒸気分離器
2aの圧力調節弁3a、中圧蒸気分離器2bの圧力調節
弁3b、低圧蒸気分離器2cの圧力調節弁3cの開度を
それぞれ調節する制御系である。
The steam turbine inlet pressure control system includes a pressure control valve 3a of the high-pressure steam separator 2a, a pressure control valve 3b of the medium-pressure steam separator 2b, and a low-pressure steam separator so that the inlet pressure of the steam turbine 6 becomes a set value. It is a control system for adjusting the opening of the pressure control valve 3c of the vessel 2c.

【0047】すなわち、蒸気タービン6の入口圧力検出
器23bの検出信号を圧力設定器45に入力し、その圧
力設定値との偏差信号を得て、切替器46に与える。一
方、入口圧力検出器23bの検出信号と、高圧蒸気圧力
検出器24aの検出信号とを加減演算器47に入力し、
その偏差信号を制限器48で制限値と比較する。
That is, the detection signal of the inlet pressure detector 23b of the steam turbine 6 is input to the pressure setting device 45, a deviation signal from the pressure setting value is obtained, and the signal is given to the switching device 46. On the other hand, the detection signal of the inlet pressure detector 23b and the detection signal of the high-pressure steam pressure detector 24a are input to the adjustment calculator 47,
The deviation signal is compared by a limiter 48 with a limit value.

【0048】この制限値がα1以下(−)の場合、切替
器46で図中b端子に切替し、入口圧力検出器23bの
検出信号を圧力設定器45に入力し、その偏差信号を加
減演算器49に入力し、ここで、バイアス器44からの
バイアス信号を付加してからさらにPID調節器50で
PID演算して制御信号を得る。
When the limit value is α1 or less (−), the signal is switched to the terminal b in the drawing by the switch 46, the detection signal of the inlet pressure detector 23 b is input to the pressure setting device 45, and the deviation signal is added / subtracted. The PID controller 49 inputs a bias signal from the bias unit 44 and then performs a PID operation in the PID controller 50 to obtain a control signal.

【0049】そして、この制御信号を電空変換器34c
で電気信号から空気信号に変換する。この空気信号によ
り、高圧蒸気分離器2aの出口圧力を制御する高圧の圧
力調節弁3aの開度を制御することによって蒸気タービ
ン入口圧力を圧力設定値に追従させて制御する。
The control signal is transmitted to the electropneumatic converter 34c.
Converts the electric signal into an air signal. By controlling the opening degree of the high-pressure control valve 3a for controlling the outlet pressure of the high-pressure steam separator 2a by the air signal, the steam turbine inlet pressure is controlled to follow the set pressure value.

【0050】一方、蒸気タービン6の入口圧力偏差が設
定器45の設定値と比較して、制限値がα1以上(+)
の場合、入口圧力検出器23bの検出信号と、中圧蒸気
分離器2bの蒸気圧力検出器24bの検出信号とを加減
演算器51に入力し、その偏差信号を制限器52で制限
値と比較する。
On the other hand, when the inlet pressure deviation of the steam turbine 6 is compared with the set value of the setter 45, the limit value is α1 or more (+)
In the case of, the detection signal of the inlet pressure detector 23b and the detection signal of the steam pressure detector 24b of the intermediate-pressure steam separator 2b are input to the adjustment calculator 51, and the deviation signal is compared with the limit value by the limiter 52. I do.

【0051】この制限値がα2以下の場合、切替器53
でb端子に切替し、蒸気タービン6の入口圧力検出器2
3bの検出信号を圧力設定器45に入力し、その偏差信
号を加減演算器54に入力し、ここで、バイアス器44
からのバイアス信号を付加してからさらにPID調節器
55でPID演算して制御信号を得る。
When the limit value is equal to or smaller than α2, the switch 53
To the terminal b, and the inlet pressure detector 2 of the steam turbine 6
3b is input to the pressure setting device 45, and the deviation signal is input to the addition / subtraction operation unit 54, where the bias unit 44
After adding the bias signal from, a PID operation is further performed by the PID controller 55 to obtain a control signal.

【0052】そして、この制御信号を電空変換器34d
で電気信号から空気信号に変換し、この空気信号によ
り、中圧蒸気分離器2bの出口圧力を制御する中圧の圧
力調節弁3bの開度を制御することによって蒸気タービ
ン入口圧力を圧力設定値に追従させて制御する。
The control signal is transmitted to the electropneumatic converter 34d.
Converts the electric signal into an air signal, and controls the opening degree of the medium-pressure pressure control valve 3b for controlling the outlet pressure of the medium-pressure steam separator 2b by the air signal, thereby setting the steam turbine inlet pressure to a pressure set value. Is controlled by following.

【0053】そして、蒸気タービン6の入口圧力偏差が
設定器45の設定値と比較して制限値がα2以上の場
合、蒸気タービン入口圧力検出器23bの検出信号と、
低圧蒸気分離器2cの蒸気圧力検出器24cの検出信号
を加減演算器56に入力し、その偏差信号を制限器57
で制限値と比較する。
When the inlet pressure deviation of the steam turbine 6 is larger than the set value of the setting device 45 and the limit value is equal to or more than α2, the detection signal of the steam turbine inlet pressure detector 23b is
The detection signal of the steam pressure detector 24c of the low-pressure steam separator 2c is input to an addition / subtraction calculator 56, and the deviation signal is input to a limiter 57.
To compare with the limit value.

【0054】この制限値がα3以下の場合、切替器58
でb端子に切替し、蒸気タービン6の入口圧力検出器2
3bの検出信号を圧力設定器45に入力して偏差信号を
得る。さらに、この偏差信号を加減演算器59に入力
し、ここで、バイアス器44からのバイアス信号を付加
してから、さらに、この信号を、PID調節器60でP
ID演算して制御信号を得る。
When the limit value is equal to or smaller than α3, the switch 58
To the terminal b, and the inlet pressure detector 2 of the steam turbine 6
The detection signal of 3b is input to the pressure setting device 45 to obtain a deviation signal. Further, the deviation signal is input to the addition / subtraction operation unit 59, where the bias signal from the bias unit 44 is added.
An ID operation is performed to obtain a control signal.

【0055】そして、この制御信号を電空変換器34e
で電気信号から空気信号に変換し、この空気信号によ
り、低圧蒸気分離器2cの出口圧力を制御する低圧の圧
力調節弁3cの開度を制御することによって蒸気タービ
ン入口圧力を圧力設定値に追従させて制御する。
The control signal is transmitted to the electropneumatic converter 34e.
Converts the electric signal into an air signal, and controls the opening degree of the low-pressure pressure control valve 3c for controlling the outlet pressure of the low-pressure steam separator 2c according to the air signal so that the steam turbine inlet pressure follows the pressure set value. Let control.

【0056】熱交換器出口の熱水温度制御系は、熱交換
器17の出口側の熱水温度が設定値になるように、熱交
換器17の冷却水入口側の冷却水流量調節弁28の開度
を調節するものである。
The hot water temperature control system at the heat exchanger outlet has a cooling water flow control valve 28 at the cooling water inlet side of the heat exchanger 17 so that the hot water temperature at the outlet side of the heat exchanger 17 has a set value. Is to adjust the degree of opening.

【0057】すなわち、排熱処理流路19を流れる熱交
換器17の出口側の熱水温度検出器27の検出信号を温
度変換器61で電気信号に変換し、この温度電気信号を
温度設定器62と加減演算器64とに与える。設定器6
2ではこの温度信号を設定値と比較し、その偏差信号を
加減演算器63に入力する。
That is, the detection signal of the hot water temperature detector 27 on the outlet side of the heat exchanger 17 flowing through the waste heat treatment flow path 19 is converted into an electric signal by the temperature converter 61, and this temperature electric signal is converted into a temperature setter 62. And the adder / subtractor 64. Setting device 6
In step 2, the temperature signal is compared with a set value, and the deviation signal is input to the adder / subtractor 63.

【0058】一方、加減演算器64は温度変換器61で
電気信号に変換された信号と、復水器10の復水温度検
出器33aの検出信号を温度変換器65で電気信号に変
換した信号との両信号の偏差を求める。
On the other hand, the adder / subtractor 64 is a signal obtained by converting the signal converted by the temperature converter 61 into an electric signal and the signal detected by the condensate temperature detector 33a of the condenser 10 into an electric signal by the temperature converter 65. And the deviation of both signals.

【0059】さらに、この偏差信号を制限器66で制限
値と比較し、この制限値がα4以上の場合、その偏差信
号をバイアス器67でバイアス信号として加減演算器6
3に与え、蒸気流量制御用のPID調節器38でPID
演算された制御信号をバイアス器44でバイアスした信
号を加減演算器63で付加し、さらにこの信号をPID
調節器68でPID演算して制御信号を得る。
Further, this deviation signal is compared with a limit value by a limiter 66, and when this limit value is equal to or more than α4, the deviation signal is used as a bias signal by a bias unit 67 to add / subtract an arithmetic unit 6
3 and a PID controller 38 for controlling the steam flow rate.
A signal obtained by biasing the calculated control signal by the bias unit 44 is added by the addition / subtraction unit 63, and this signal is further added to the PID
The control signal is obtained by performing the PID operation in the controller 68.

【0060】そして、この制御信号を電空変換器34f
で電気信号から空気信号に変換し、この空気信号により
冷却水流量調節弁28の開度を制御して、冷却水ポンプ
15の出口側の冷却水流量を制御する。これによって、
復水器10の復水温度が上昇しないよう冷却水量が調節
され、かつ熱交換器17の出口温度が設定値に追従して
冷却水量を制御することができる。
The control signal is transmitted to the electropneumatic converter 34f.
The electric signal is converted into an air signal by the air signal, the opening degree of the cooling water flow control valve 28 is controlled by the air signal, and the cooling water flow at the outlet side of the cooling water pump 15 is controlled. by this,
The cooling water amount is adjusted so that the condensing water temperature of the condenser 10 does not rise, and the outlet water temperature of the heat exchanger 17 can be controlled by following the set value.

【0061】復水器のレベル制御系は、復水器10の水
位レベルが設定値になるように復水器10の出口のレベ
ル調節弁29の開度を調節する制御系である。
The condenser level control system is a control system for adjusting the opening of the level control valve 29 at the outlet of the condenser 10 so that the water level of the condenser 10 becomes a set value.

【0062】すなわち、復水流路12を流れる復水は、
復水器10の水位レベル検出器33bからの検出信号を
復水器10のレベル設定器69でその設定値と比較さ
れ、その偏差信号が加減演算器70に与えられる。
That is, the condensate flowing through the condensate flow path 12
The detection signal from the water level detector 33b of the condenser 10 is compared with the set value by the level setter 69 of the condenser 10 and the deviation signal is given to the addition / subtraction calculator 70.

【0063】さらに、この加減演算器70には、蒸気流
量制御用のPID調節器38でPID演算した制御信号
をバイアス器44でバイアスした信号と熱交換器17の
冷却水量制御用のPID調節器68の制御信号をバイア
ス器72でバイアスした信号を付加してPID調節器7
3に与えてPID演算して制御信号を得る。
Further, the addition / subtraction arithmetic unit 70 includes a signal obtained by biasing the control signal PID-calculated by the PID controller 38 for controlling the steam flow rate by the bias unit 44 and a PID controller for controlling the cooling water amount of the heat exchanger 17. 68 to which a signal biased by the bias unit 72 is added to the PID controller 7
3 to obtain a control signal by performing a PID operation.

【0064】そして、この制御信号を電空変換器34g
で電気信号から空気信号に変換する。この空気信号によ
り復水ポンプ11の出口側の空気圧動作型のレベル調節
弁29の開度を制御する。これによって、復水器10の
復水器水位レベルが電力負荷及び各蒸気分離器2a,2
b,2cの排熱レベルの増減に対応して、復水器10の
レベル設定値に追従して復水流量を制御することができ
る。
Then, this control signal is transmitted to the electropneumatic converter 34g.
Converts the electric signal into an air signal. The opening of the pneumatically operated level control valve 29 on the outlet side of the condensate pump 11 is controlled by this air signal. As a result, the condenser water level of the condenser 10 is changed to the electric power load and the steam separators 2a and 2a.
The flow rate of the condensate water can be controlled by following the level set value of the condenser 10 in accordance with the increase or decrease in the exhaust heat levels b and 2c.

【0065】冷却塔13の水位レベル制御系は、補給水
ポンプ20の出口側の冷却塔13のレベル調節弁32の
開度を調節する制御系である。
The water level control system of the cooling tower 13 is a control system for adjusting the opening of the level control valve 32 of the cooling tower 13 on the outlet side of the makeup water pump 20.

【0066】すなわち、冷却塔13のレベル検出器30
からの検出信号を冷却塔13のレベル設定器74に与え
て、ここでレベル設定値と比較し、偏差信号を得る。さ
らに、この偏差信号を加減演算器75に与え、ここで蒸
気分離器2a,2b,2cの排熱熱水レベル制御用のP
ID調節器43aのバイアス器76でバイアスした信号
と、復水器水位レベルのPID調節器73のバイアス器
76のバイアス信号とを付加して得た信号をPID調節
器77でPID演算して制御信号を得る。
That is, the level detector 30 of the cooling tower 13
Is supplied to the level setting device 74 of the cooling tower 13, where it is compared with the level setting value to obtain a deviation signal. Further, this deviation signal is supplied to an addition / subtraction arithmetic unit 75, where a P for controlling the level of the exhaust heat hot water of the steam separators 2a, 2b, 2c is provided.
A signal obtained by adding a signal biased by the bias unit 76 of the ID adjuster 43a and a bias signal of the bias unit 76 of the PID adjuster 73 of the condenser water level is subjected to PID calculation by the PID adjuster 77 and controlled. Get the signal.

【0067】そして、この制御信号を電空変換器34h
で電気信号から空気信号に変換し、この空気信号によ
り、冷却塔13のレベル調節弁32の開度を制御する。
これによって、各蒸気分離器2a,2b,2cの排熱蒸
気量及び復水器10の復水水量の増減に対して、冷却塔
13のレベルを設定値に追従させて先行的に補給水量を
制御することができる。
The control signal is transmitted to the electropneumatic converter 34h.
Converts the electric signal into an air signal, and controls the opening of the level control valve 32 of the cooling tower 13 with the air signal.
Accordingly, the level of the cooling tower 13 follows the set value with respect to the increase / decrease of the exhaust heat steam amount of each of the steam separators 2a, 2b, and 2c and the condensed water amount of the condenser 10, so that the replenished water amount is set in advance. Can be controlled.

【0068】冷却塔13の機内温度制御系は、冷却塔1
3に流れる冷却流路18の排熱流量、復水流路12の復
水流量、補給水流路21の補給水流量、冷却塔13から
流出する冷却水流路12の冷却流量に対して、冷却塔1
3の機内温度が設定値になるように冷却塔ファン14の
単位時間当りの回転数を制御する制御系である。
The internal temperature control system of the cooling tower 13 includes the cooling tower 1
3, the flow rate of the exhaust heat from the cooling flow path 18, the flow rate of the condensed water in the condensate flow path 12, the flow rate of the make-up water flow in the make-up water flow path 21, and the flow rate of the cooling water flow out of the cooling tower 13.
3 is a control system for controlling the number of rotations of the cooling tower fan 14 per unit time so that the in-machine temperature becomes a set value.

【0069】すなわち、冷却塔13の機内温度検出器3
1で検出された検出信号を温度変換器78で電気信号に
変換する。さらに、この電気信号を冷却塔13の温度設
定器79と加減演算器71とにそれぞれ与える。温度設
定器79では温度検出器31からの検出値と温度設定値
と比較し、その偏差信号を加減演算器80に与える。
That is, the internal temperature detector 3 of the cooling tower 13
The detection signal detected in 1 is converted into an electric signal by the temperature converter 78. Further, the electric signal is given to the temperature setting device 79 and the adjustment calculator 71 of the cooling tower 13, respectively. The temperature setter 79 compares the detected value from the temperature detector 31 with the temperature set value, and provides a deviation signal to the addition / subtraction calculator 80.

【0070】この加減演算器80では、温度設定器79
からの偏差信号と、加減演算器71からの加減演算信号
を、バイアス器81でバイアス信号したものと、蒸気分
離器2a,2b,2cの排熱熱水レベルのPID調節器
43aのバイアス器76でバイアスした信号と、冷却水
量制御用のPID調節器68からの制御信号をバイアス
器72でバイアスした信号を各々付加して制御信号を得
る。
In the addition / subtraction unit 80, a temperature setting unit 79
And a bias signal of the addition / subtraction operation signal from the addition / subtraction unit 71 and a bias unit 76 of the PID controller 43a of the PID controller 43a of the exhaust heat water level of the steam separators 2a, 2b, 2c. And a control signal from the cooling water amount control PID controller 68 and a signal biased by the bias unit 72 are added to obtain a control signal.

【0071】そして、この制御信号を、冷却塔機内温度
のPID調節器82でPID演算してから、サイリスタ
スイッチ35に与える。
Then, the control signal is subjected to PID calculation by the PID controller 82 for the temperature inside the cooling tower, and then given to the thyristor switch 35.

【0072】これにより、サイリスタ35が冷却塔ファ
ン14の通電電流を制御する事によって単位時間当りの
回転数を制御して、冷却塔13の機内温度を設定値に追
従して制御している。
Thus, the thyristor 35 controls the number of revolutions per unit time by controlling the current supplied to the cooling tower fan 14, and controls the temperature inside the cooling tower 13 according to the set value.

【0073】[0073]

【発明の効果】以上説明したように本発明は、排熱利用
発電プラントの電力設定負荷に対して、蒸気流量制御系
により、蒸気タービンに流入する蒸気流量の変動を抑制
することができる一方、排熱蒸気流路の排熱蒸気流量や
圧力変動による蒸気タービン入口の蒸気圧力変動を蒸気
圧力制御系により低減ないし防止することができる。
As described above, according to the present invention, the steam flow control system can suppress the fluctuation of the steam flow rate flowing into the steam turbine with respect to the power setting load of the waste heat utilizing power plant. Fluctuations in steam pressure at the steam turbine inlet due to fluctuations in the flow rate and pressure of the exhaust heat steam in the exhaust heat steam passage can be reduced or prevented by the steam pressure control system.

【0074】さらに、排熱蒸気を蒸気条件により高圧
用、中圧用、低圧用の蒸気分離器に分け、蒸気タービン
の圧力変動に追従して安定圧力制御でき、かつ、高圧、
中圧、低圧の排熱蒸気を蒸気条件に対応した貯蔵ができ
排熱蒸気を有効利用できる。
Further, the exhaust heat steam is divided into high-pressure, medium-pressure, and low-pressure steam separators according to steam conditions, and stable pressure control can be performed in accordance with the pressure fluctuation of the steam turbine.
Medium- and low-pressure exhaust heat steam can be stored according to the steam conditions, and the exhaust heat steam can be used effectively.

【0075】また、熱水レベル制御系により、高圧、中
圧、低圧蒸気分離器の熱水レベルを、電力負荷変動及び
圧力変動によるレベル変動を高値優先回路で優先制御
し、蒸気分離器のレベルの急激な上昇を防止することが
できる。また、排熱余剰蒸気流量の増減による復水器の
機内温度変動防止のため、排熱の熱交換の排熱温度と復
水器の機内温度の偏差信号と蒸気発生器のレベル信号を
バイアス信号として先行的に付加し、復水器の機内温度
を安定に制御し復水器真空度の低下を防止している。
Further, the hot water level control system gives priority to the hot water level of the high-pressure, medium-pressure, and low-pressure steam separators by a high-priority circuit for the level fluctuation due to the power load fluctuation and the pressure fluctuation. Can be prevented from rising sharply. Also, in order to prevent fluctuations in the condenser's internal temperature due to fluctuations in the flow rate of the residual heat excess steam, a deviation signal between the exhaust heat temperature of the heat exchange of the exhaust heat and the condenser's internal temperature and the level signal of the steam generator are biased. In advance to stably control the inside temperature of the condenser to prevent a decrease in condenser vacuum.

【0076】さらに、復水器レベル制御系により、冷却
水量及び排熱熱交換器出口の温度と復水器機内温度の偏
差信号をバイアス信号として先行的に付加し、復水器の
レベルを安定して制御することができる。
Furthermore, a condenser level control system adds a deviation signal between the amount of cooling water, the temperature at the outlet of the exhaust heat exchanger and the temperature inside the condenser as a bias signal in advance to stabilize the condenser level. Can be controlled.

【0077】また、冷却塔のレベルの変動防止の為、復
水器のレベル制御信号と蒸気発生器の熱水レベルの制御
信号をバイアス信号として先行的に付加し、冷却塔のレ
ベルを安定して制御することができる。
To prevent fluctuations in the level of the cooling tower, a level control signal for the condenser and a control signal for the hot water level of the steam generator are added in advance as bias signals to stabilize the level of the cooling tower. Can be controlled.

【0078】さらに、冷却塔の機内温度制御系により、
復水器の機内温度と冷却塔の機内温度偏差信号と排熱余
剰熱水の冷却温度信号を各々バイアス信号として付加
し、先行的に冷却塔ファンの通電電流を制御して回転数
を制御することにより冷却塔の機内温度変動を低減ない
し防止することができる。従って、蒸気タービン発電機
の設定電力に追従して安定して制御することができ、か
つ蒸気タービンの入口圧力変動が極力小さくなるように
過渡的な負荷変動に対しても安定して制御することがで
き、排熱蒸気を有効に利用した高効率の運用を図ること
ができる。
Further, the cooling tower internal temperature control system
The internal temperature of the condenser, the internal temperature deviation signal of the cooling tower, and the cooling temperature signal of the waste heat surplus hot water are each added as a bias signal, and the rotational speed is controlled by controlling the current supplied to the cooling tower fan in advance. This can reduce or prevent the temperature fluctuation inside the cooling tower. Therefore, stable control can be performed by following the set power of the steam turbine generator, and stable control is performed even for transient load fluctuations so that the inlet pressure fluctuation of the steam turbine is minimized. Thus, high-efficiency operation using exhaust heat steam effectively can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係わる排熱利用の発電制
御装置の制御系の要部ブロック図。
FIG. 1 is a block diagram of a main part of a control system of a power generation control device using waste heat according to an embodiment of the present invention.

【図2】本発明が適用される排熱利用の発電プラントの
構成を示すブロック図。
FIG. 2 is a block diagram showing a configuration of a power generation plant using waste heat to which the present invention is applied.

【図3】図1で示す制御装置の入出力を示す模式図。FIG. 3 is a schematic diagram showing input and output of the control device shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1a,1b,1c 高,中,低圧の排熱蒸気流路 2a,2b,2c 高,中,低圧の蒸気分離器 3a,3b,3c 圧力調節弁 4 蒸気ヘッダ 5 排熱蒸気流路 6 蒸気タービン 7 流量調節弁 8 発電機 10 復水器 11 復水ポンプ 12 復水流路 13 冷却塔 14 冷却塔ファン 15 冷却水ポンプ 16 冷却水流路 17 熱交換器 18 冷却流路 19 排熱処理流路 20 補給水ポンプ 22 制御装置 23a 流量検出器 23b 入口圧力検出器 24a,24b,24c 各蒸気分離器の圧力検出器 25a,25b,25c 各蒸気分離器の熱水レベル検
出器 26 熱水レベル調節弁 27 熱水温度検出器 28 冷却水流量調節弁 29 復水流量調節弁 30 冷却塔レベル検出器 31 温度検出器 32 補給水流量調節弁 33a 復水器の温度検出器 33b 復水器のレベル検出器
1a, 1b, 1c High, medium, low pressure exhaust heat steam flow path 2a, 2b, 2c High, medium, low pressure steam separator 3a, 3b, 3c Pressure control valve 4 Steam header 5 Waste heat steam flow path 6 Steam turbine 7 Flow control valve 8 Generator 10 Condenser 11 Condenser pump 12 Condenser flow path 13 Cooling tower 14 Cooling tower fan 15 Cooling water pump 16 Cooling water flow path 17 Heat exchanger 18 Cooling flow path 19 Waste heat treatment flow path 20 Make-up water Pump 22 Controller 23a Flow rate detector 23b Inlet pressure detector 24a, 24b, 24c Pressure detector of each steam separator 25a, 25b, 25c Hot water level detector of each steam separator 26 Hot water level control valve 27 Hot water Temperature detector 28 Cooling water flow control valve 29 Condensate flow control valve 30 Cooling tower level detector 31 Temperature detector 32 Makeup water flow control valve 33a Condenser temperature detector 33b Condenser level detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01K 7/24 F01K 7/24 H 27/02 27/02 D F03G 4/00 511 F03G 4/00 511 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F01K 7/24 F01K 7/24 H 27/02 27/02 D F03G 4/00 511 F03G 4/00 511

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低圧,中圧,高圧の排熱蒸気を蒸気と熱
水とに分離する低圧,中圧,高圧の各蒸気分離器と、こ
の蒸気分離器からの蒸気により駆動される蒸気タービン
と、この蒸気タービンにより駆動されて発電する発電機
と、前記蒸気タービンで仕事をした後の蒸気を復水に凝
縮する復水器と、この復水を冷却塔ファンで冷却してか
ら前記各蒸気分離器からの熱水と熱交換器で熱交換させ
る一方、この冷却水に補給水を補給する冷却塔と、を有
する排熱利用の発電制御装置において、前記発電機の出
力が予め定めた電力負荷設定値になるように前記蒸気タ
ービンに流入する蒸気流量を制御する蒸気流量制御系
と、前記蒸気タービンの入口圧力が予め定めた圧力設定
値になるように前記高圧,中圧,低圧の各蒸気分離器の
出口圧力の各偏差をバイアス信号として付加した制御信
号に基づいて前記蒸気タービンの入口圧力を制御する蒸
気圧力制御系と、前記各蒸気分離器の各熱水レベルが予
め定めた各レベル設定値になるように各レベル偏差の高
値側の信号に基づいて優先的に制御する熱水レベル制御
系と、高圧,中圧,低圧の各蒸気分離器の余剰熱水の温
度が前記熱交換器出口で予め定めた温度設定値になるよ
うに前記冷却塔の冷却水により冷却して制御する熱水温
度制御系と、前記復水器の水位レベルが予め定めた水位
レベル設定値になるように前記冷却水量をバイアス信号
として付加した制御信号に基づいて制御する復水器レベ
ル制御系と、前記冷却塔の水位レベルが予め定めたレベ
ル設定値になるように前記高圧,中圧,低圧の熱水分離
器の水位レベルの高値側の信号と前記蒸気流量信号をバ
イアス信号として付加した制御信号に基づいてこの冷却
塔へ補給される補給水量を制御する補給水量制御系と、
前記冷却塔の冷却水温度が予め定められた温度設定値に
なるように前記冷却塔ファンの単位時間当りの回転数を
制御する冷却塔の機内温度制御系と、を備えたことを特
徴とする排熱利用の発電制御装置。
1. Low-, medium-, and high-pressure steam separators for separating low-, medium-, and high-pressure exhaust heat steam into steam and hot water, and a steam turbine driven by the steam from the steam separators A generator for generating power by being driven by the steam turbine, a condenser for condensing steam after working in the steam turbine into condensate, and cooling the condensate with a cooling tower fan. In a power generation control device utilizing waste heat, which has a cooling tower that replenishes the cooling water with make-up water while causing heat exchange with hot water from the steam separator and the heat exchanger, the output of the generator is predetermined. A steam flow control system for controlling a flow rate of steam flowing into the steam turbine so as to have a power load set value; and a high-pressure, medium-pressure, and low-pressure control so that an inlet pressure of the steam turbine has a predetermined pressure set value. Each deviation of the outlet pressure of each steam separator is covered. A steam pressure control system for controlling an inlet pressure of the steam turbine based on a control signal added as an EAS signal; and a level deviation for each of the hot water levels of the steam separators to be a predetermined level set value. A hot water level control system for controlling preferentially on the basis of a signal on the high value side, and a temperature set value determined at the outlet of the heat exchanger at a temperature of the excess hot water of each of the high-pressure, medium-pressure and low-pressure steam separators. And a hot water temperature control system for controlling by cooling with the cooling water of the cooling tower, and adding the cooling water amount as a bias signal so that the water level of the condenser becomes a predetermined water level set value. A condenser level control system for controlling the water level of the cooling tower to a predetermined level set value, and a high level of the water level of the high-, medium-, and low-pressure hot water separators. Side signal and the steam And replenishing water control system for controlling the replenishing amount of water to be supplied to the cooling tower based on a flow rate signal to the control signal added as a bias signal,
A cooling tower internal temperature control system that controls the number of rotations of the cooling tower fan per unit time so that the cooling water temperature of the cooling tower becomes a predetermined temperature set value. Power generation control device using waste heat.
【請求項2】 蒸気圧力制御系は、高圧,中圧,低圧の
各蒸気分離器の各蒸気圧力偏差を各々の偏差制限器で比
較し、圧力偏差が大きい場合、即ち蒸気タービン入口圧
力が設定値よりも高い場合、前記偏差制限器の比較信号
に基づいて前記中圧,低圧の蒸気分離器の出口圧力制御
に自動的に切替えて先行的に蒸気タービン入口圧力が設
定値になるよう制御し、その逆に蒸気タービン入口圧力
が設定値よりも低い場合、前記偏差制限器の比較信号に
基づいて高圧,中圧の蒸気分離器の出口圧力制御に自動
的に切替えて先行的に蒸気タービン入口圧力が設定値に
なるよう制御する制御系を備えていることを特徴とする
請求項1に記載の排熱利用の発電制御装置。
2. The steam pressure control system compares the steam pressure deviations of the high-pressure, medium-pressure, and low-pressure steam separators with respective deviation limiters, and when the pressure deviation is large, that is, the steam turbine inlet pressure is set. If the pressure is higher than the value, the pressure is automatically switched to the outlet pressure control of the medium-pressure and low-pressure steam separators based on the comparison signal of the deviation limiter, and the steam turbine inlet pressure is controlled in advance to the set value. On the contrary, when the steam turbine inlet pressure is lower than the set value, the steam turbine inlet pressure is automatically switched to the high pressure / medium pressure steam separator outlet pressure control based on the comparison signal of the deviation limiter. The power generation control device using waste heat according to claim 1, further comprising a control system that controls the pressure to be a set value.
【請求項3】 熱水レベル制御系は、各蒸気分離器の熱
水レベルとその設定値との偏差信号を高値優先回路で比
較し、高値側の信号に基づいて優先的に熱水レベルを制
御し、蒸気タービンの蒸気流量の信号を先行的にバイア
スとして付加した制御信号に基づいて電力負荷の増減に
追従した熱水レベルに制御する制御系を備えていること
を特徴とする請求項1または2に記載の排熱利用の発電
制御装置。
3. A hot water level control system compares a deviation signal between the hot water level of each steam separator and its set value by a high value priority circuit, and preferentially determines the hot water level based on the signal on the high value side. 2. A control system, comprising: a control system for controlling and controlling a hot water level following an increase or a decrease in an electric power load based on a control signal to which a signal of a steam flow rate of a steam turbine is preliminarily added as a bias. Or the power generation control device utilizing waste heat described in 2.
【請求項4】 熱水温度制御系は、復水器機内温度と熱
交換器出口温度との偏差信号と、熱水レベルの制御信号
を各々バイアス信号として先行的に付加した制御信号に
基づいて冷却水量を制御する制御系を備えていることを
特徴とする請求項1ないし3のいずれか1項に記載の排
熱利用の発電制御装置。
4. A hot water temperature control system based on a deviation signal between a condenser internal temperature and a heat exchanger outlet temperature, and a control signal to which a control signal of a hot water level is added in advance as a bias signal. The power generation control device using waste heat according to any one of claims 1 to 3, further comprising a control system for controlling a cooling water amount.
【請求項5】 冷却塔の機内温度制御系は、熱交換器の
出口温度と冷却塔の機内温度信号と、蒸気分離器の余剰
熱水量のレベル制御信号を先行的にバイアス信号として
付加した制御信号に基づいて冷却塔ファンの単位時間当
りの回転数を制御する制御系を備えていることを特徴と
する請求項1ないし4のいずか1項に記載の排熱利用の
発電制御装置。
5. The cooling tower internal temperature control system includes a control in which an outlet temperature of a heat exchanger, a cooling tower internal temperature signal, and a level control signal of a surplus hot water amount of a steam separator are added in advance as a bias signal. 5. The power generation control device utilizing waste heat according to claim 1, further comprising a control system for controlling the number of revolutions of the cooling tower fan per unit time based on the signal.
JP34406796A 1996-12-24 1996-12-24 Power generation control device utilizing exhaust heat Pending JPH10184316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34406796A JPH10184316A (en) 1996-12-24 1996-12-24 Power generation control device utilizing exhaust heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34406796A JPH10184316A (en) 1996-12-24 1996-12-24 Power generation control device utilizing exhaust heat

Publications (1)

Publication Number Publication Date
JPH10184316A true JPH10184316A (en) 1998-07-14

Family

ID=18366406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34406796A Pending JPH10184316A (en) 1996-12-24 1996-12-24 Power generation control device utilizing exhaust heat

Country Status (1)

Country Link
JP (1) JPH10184316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170730A (en) * 2005-12-21 2007-07-05 Rikiya Akaha Wood stove device
WO2014087864A1 (en) 2012-12-03 2014-06-12 東京博善株式会社 Cremation system
CN107956523A (en) * 2017-11-20 2018-04-24 清华大学 A kind of 50MW adiabatic compressions air energy storage method
CN109488544A (en) * 2018-12-14 2019-03-19 中国华能集团清洁能源技术研究院有限公司 A kind of geothermal energy and gas theory complementary power generation system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170730A (en) * 2005-12-21 2007-07-05 Rikiya Akaha Wood stove device
WO2014087864A1 (en) 2012-12-03 2014-06-12 東京博善株式会社 Cremation system
KR20150092195A (en) 2012-12-03 2015-08-12 도쿄하쿠젠 가부시키가이샤 Cremation system
US9822972B2 (en) 2012-12-03 2017-11-21 Tokyo Hakuzen Co., Ltd. Cremation system
CN107956523A (en) * 2017-11-20 2018-04-24 清华大学 A kind of 50MW adiabatic compressions air energy storage method
CN109488544A (en) * 2018-12-14 2019-03-19 中国华能集团清洁能源技术研究院有限公司 A kind of geothermal energy and gas theory complementary power generation system and method

Similar Documents

Publication Publication Date Title
CN111255530B (en) Thermal power unit load adjusting system and method with low-pressure cylinder butterfly valve assistance
JPH10184316A (en) Power generation control device utilizing exhaust heat
JP5192736B2 (en) Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP4102179B2 (en) Operation method of steam turbine of exhaust gas treatment system in waste treatment facility
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JPH08135411A (en) Control device of exhaust heat using power plant
JPH0445739B2 (en)
JP3085886B2 (en) Movable blade opening control circuit of circulation pump
CN111322126B (en) Control method, device and system for circulating water pump of heating network heater
JPH0518212A (en) Waste heat utilizing power generation control device
GB2176248A (en) Turbine control
CN114440655B (en) Circulating water flow regulating system of condenser of double back pressure turbine
CN116667383B (en) Heat pump and low-adding coupling thermal power generating unit frequency modulation system and method
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPH07269307A (en) Control device of exhaust heat utilizing power generating plant
SU1090899A1 (en) Method of operating heat-electric generation plant
JPH05340205A (en) Controller for combined power generation plant
JP2004169621A (en) Controller of extraction condensing turbine
JPH0146684B2 (en)
JPH05118203A (en) Power generation control device in exhaust heat utilization system
JPH11336509A (en) Governing valve control system in introducing cooled steam of steam turbine
JPH01276302A (en) Water supply controller
JPH09242508A (en) Method and device for stopping combined cycle plant
JPS6112195B2 (en)