JPH01276302A - Water supply controller - Google Patents

Water supply controller

Info

Publication number
JPH01276302A
JPH01276302A JP10590588A JP10590588A JPH01276302A JP H01276302 A JPH01276302 A JP H01276302A JP 10590588 A JP10590588 A JP 10590588A JP 10590588 A JP10590588 A JP 10590588A JP H01276302 A JPH01276302 A JP H01276302A
Authority
JP
Japan
Prior art keywords
water supply
exhaust gas
heat exchanger
temperature change
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10590588A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawara
浩 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10590588A priority Critical patent/JPH01276302A/en
Publication of JPH01276302A publication Critical patent/JPH01276302A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To ensure the stable control of water supply even in case the temperature of the exhaust gas supplied to an exhaust heat collecting heat exchanger is suddenly changed by cutting off the rotational frequency signal produced based on three elements and supplied to a driving device and supplying newly the rotational frequency signal obtained based on the temperature change rate. CONSTITUTION:A water supply pump 13 contains a driving device 14 and the rotational frequency of the pump 13 is controlled by the control signal produced based on three elements during a normal operation. In case the temperature of the exhaust gas flowing to an exhaust heat collecting heat exchanger 1 rises up and this temperature change rate exceeds a prescribed level, the supply of the rotational frequency signal is cut to the device 14. Then the device 14 is controlled by a new rotational frequency signal obtained through a prescribed arithmetic operation carried out based on the temperature change rate of the exhaust gas. As a result, the rotational frequency of the pump 13 increases and the water supply pressure is increased to a fuel economizer 2. Thus the supplied water never evaporates at a place near the outlet of the economizer 2.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は複合ザイクル発電プラントまたは熱併給β型プ
ラントに係り、より詳しくは排熱回収熱交換器の節炭器
に送られる給水の圧力を高く保ち、過渡的運転状況のも
とての給水制御を安定させるために用いられる給水制御
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a combined cycle power generation plant or a combined heat generation β-type plant, and more specifically, to a combined cycle power generation plant or a combined heat generation β type plant, and more specifically, to The present invention relates to a water supply control device used to maintain high pressure of water supply and stabilize water supply control under transient operating conditions.

(従来の技術) 複合サイクル発電プラントや熱併給発電プラントにおい
てはガスタービン等の排ガスを熱源として蒸気タービン
用の駆動蒸気やプロセス用の蒸気ないし熱水を生成する
排熱回収熱交換器が用いられる。この排熱回収熱交換器
の代表的な例として複合サイクル発電プラントに適用さ
れるものを採り上げ、従来技術を図面を参照して説明す
る。
(Prior art) In combined cycle power plants and combined heat and power generation plants, exhaust heat recovery heat exchangers are used that use exhaust gas from gas turbines, etc., as a heat source to generate driving steam for steam turbines and steam or hot water for processes. . As a typical example of this exhaust heat recovery heat exchanger, one applied to a combined cycle power plant will be taken up, and the conventional technology will be explained with reference to the drawings.

すなわち、第2図において、排熱回収熱交換器1は排ガ
スとの熱の授受を効率的に行なうために節炭器2、蒸発
器3および過熱器4からなる熱交換部を有し、このとき
、給水は節炭器2、蒸発器3、過熱器4の順に流れ、こ
の間に排ガスの熱を奪って飽和蒸気から過熱蒸気へと相
変化を遂げる。
That is, in FIG. 2, the exhaust heat recovery heat exchanger 1 has a heat exchange section consisting of a economizer 2, an evaporator 3, and a superheater 4 in order to efficiently exchange heat with the exhaust gas. At this time, the supplied water flows in the order of the economizer 2, the evaporator 3, and the superheater 4, during which it absorbs heat from the exhaust gas and undergoes a phase change from saturated steam to superheated steam.

一方、排ガスは過熱器4から節炭器2へと流れる間に温
度降下し、図示しない排ガスタクトを通って大気中に放
出される。
On the other hand, the temperature of the exhaust gas decreases while flowing from the superheater 4 to the economizer 2, and is discharged into the atmosphere through an exhaust gas tact (not shown).

また、排熱回収熱交換器1には蒸気ドラム5が設けられ
、節炭器2で加熱された給水がそこに溜められると共に
、蒸発器3とこの蒸気ドラム5との間を缶水(節炭器2
で加熱されて飽和水となった給水)が循環するようにな
っている。
In addition, the exhaust heat recovery heat exchanger 1 is provided with a steam drum 5, in which feed water heated by the energy saver 2 is stored, and canned water (saving water) is provided between the evaporator 3 and the steam drum 5. Charcoal maker 2
The water (supplied water that has been heated to become saturated water) is circulated.

一方、過熱器4で発生した蒸気は生蒸気管6を経て蒸気
タービン7に導かれ、そこで膨張して仕事を行なう。こ
のとき発電機8が回されて電気出力が取り出される。さ
らに、蒸気タービン7の排気は復水器9に排出され、そ
こで冷却水によって冷却されて復水となる。この後、復
水は復水器9から給水ポンプ10により抽出され、節炭
器2に給水として供給される。なお、図中符号1]は給
水流量を調節する調節弁を、また符号12はガスタービ
ンを各々示している。
On the other hand, steam generated in the superheater 4 is led to a steam turbine 7 via a live steam pipe 6, where it expands and performs work. At this time, the generator 8 is turned and electrical output is taken out. Further, the exhaust gas of the steam turbine 7 is discharged to a condenser 9, where it is cooled by cooling water and becomes condensed water. Thereafter, condensate is extracted from the condenser 9 by a water supply pump 10 and supplied to the energy saver 2 as water supply. Note that the reference numeral 1] in the figure represents a control valve for adjusting the flow rate of water supply, and the reference numeral 12 represents a gas turbine.

(発明が解決しようとする課題) ところで、上記の排熱回収熱交換器の給水制御方式は蒸
気ドラム5の水位、給水流量および蒸気流量の三要素制
御を基本としている。
(Problems to be Solved by the Invention) By the way, the above-described water supply control system of the exhaust heat recovery heat exchanger is based on three-element control of the water level of the steam drum 5, the water supply flow rate, and the steam flow rate.

すなわち、これらの検出された値と、目標となる水位及
び流量との間の制御偏差が調節計によって求められ、調
節弁11の開度が調節計がら出される制御信号によって
変えられ、給水量が調節される。しかしながら、排熱回
収熱交換器の熱源はガスタービン12の排ガスであり、
急激な排ガス温度の変化によりこの方式が充分な果たさ
なくなる場合がある。例えば、排ガスの温度が急激に上
昇すると、節炭器2の出口付近に達した給水はその圧力
の飽和温度近くに加熱されているために蒸気ドラム5に
流入する給水の一部が蒸発し、蒸気ドラムの水位が一時
的に上昇する。この水位の上昇に対して水位計が働き、
給水量が減少する方向に調節弁11の開度が絞られるが
、これは蒸気ドラム5内での蒸発作用が増加し、給水量
を増すようにしなければならない制御動作に対して逆の
動作に相当し、給水制御が一時的に不安定な状態になる
That is, the control deviation between these detected values and the target water level and flow rate is determined by the controller, the opening degree of the control valve 11 is changed by the control signal output from the controller, and the water supply amount is adjusted. adjusted. However, the heat source of the exhaust heat recovery heat exchanger is the exhaust gas of the gas turbine 12,
This method may not be effective due to sudden changes in exhaust gas temperature. For example, when the temperature of the exhaust gas rises rapidly, part of the feed water flowing into the steam drum 5 evaporates because the feed water that has reached the vicinity of the outlet of the economizer 2 has been heated close to its pressure saturation temperature. The water level in the steam drum temporarily rises. The water level gauge works to respond to this rise in water level.
The opening degree of the control valve 11 is reduced in the direction of decreasing the amount of water supplied, but this increases the evaporation action within the steam drum 5, which is the opposite of the control operation that should increase the amount of water supplied. Correspondingly, water supply control becomes temporarily unstable.

また、上記した排ガスの温度変化により節炭器2の出口
付近で給水の一部が蒸発すると、給水中に多量の気泡が
含まれるようになり、給水の流動侮 が極めて不安定な状態になる。この場合、気泡が給水中
から除かれないまま、給水圧力が上昇するようなことが
あると、節炭器2から蒸気ドラム2にかけての広範な部
分で水撃現象が発生し、機器が損傷を受ける可能性があ
る。
Furthermore, when a portion of the feed water evaporates near the outlet of the energy saver 2 due to the temperature change of the exhaust gas mentioned above, a large amount of air bubbles will be included in the feed water, making the flow of the feed water extremely unstable. . In this case, if the water supply pressure increases while the air bubbles are not removed from the water supply, a water hammer phenomenon will occur in a wide area from the economizer 2 to the steam drum 2, causing damage to the equipment. There is a possibility that you will receive it.

そこで、本発明の目的は排熱回収熱交換器に供給される
排ガスの温度が急激に変動する場合においても、給水制
御を安定に保ち得るようにした給水制御装置を提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a water supply control device that can maintain stable water supply control even when the temperature of exhaust gas supplied to an exhaust heat recovery heat exchanger fluctuates rapidly.

[発明の構成] (課題を解決するための手段) 本発明による給水制御装置は排熱回収熱交換器の節炭器
に給水を加圧して送る給水ポンプに付設された可変速形
の駆動装置と、節炭器に送られる給水流量を弁開度を変
えて調節する調節弁と、それぞれ検出された排熱回収熱
交換器の蒸気ドラム水位、節炭器へ供給される給水流量
および排熱回収熱交換器から蒸気タービンに流れる蒸気
流量の三要素に基づいて制御偏差を求め、給水ポンプの
駆動装置に対する回転数信号および調節弁に対する開度
信号を各々つくり出す装置と、排熱回収熱交換器に流れ
る排ガスの温度変化率に基づいて所定の演算を行ない、
駆動装置に対する回転数信号をつくり出す装置と、排熱
回収熱交換器に流れる排ガスの温度変化率が予め決めら
れた値に満たないとき、駆動装置に対し、三要素に基づ
く回転数信号を与える一方、排ガスの温度変化率が予め
決められた値を超えた場合に駆動装置への三要素に基づ
く回転数信号を断ち、温度変化率に基づく回転数信号を
与える装置とを備えることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The water supply control device according to the present invention includes a variable speed drive device attached to a water supply pump that pressurizes and sends water supply to the economizer of the exhaust heat recovery heat exchanger. , a control valve that adjusts the flow rate of water supplied to the economizer by changing the valve opening, the detected steam drum water level of the exhaust heat recovery heat exchanger, the flow rate of water supply supplied to the economizer, and the exhaust heat. A device that calculates a control deviation based on three elements of the steam flow rate flowing from the recovery heat exchanger to the steam turbine and generates a rotation speed signal for the feed water pump drive device and an opening degree signal for the control valve, and an exhaust heat recovery heat exchanger. A predetermined calculation is performed based on the temperature change rate of the exhaust gas flowing through the
A device that generates a rotation speed signal for the drive device, and a device that provides a rotation speed signal based on three elements to the drive device when the rate of temperature change of the exhaust gas flowing into the exhaust heat recovery heat exchanger is less than a predetermined value. , a device that cuts off the rotational speed signal based on the three elements to the drive device when the temperature change rate of the exhaust gas exceeds a predetermined value, and provides a rotational speed signal based on the temperature change rate. It is something.

(作用) 給水ポンプには可変速形の駆動装置か設けられ、通常運
転中従来の三要素に基づいてつくり出される制御信号に
より給水ポンプの回転数制御か行なわれる。排熱回収熱
交換器に流れる排ガスの温度が上昇して温度変化率が予
め決められた値を超えたとき、駆動装置に対する上記の
回転数信号か断たれ、排ガスの温度変化率から所定の演
算を行なって得られる回転数信号による制御に切換えら
れる。これにより、給水ポンプの回転数が上昇し、節炭
器に入る給水圧力が高められ、節炭器の出口付近で給水
が蒸発するのを防止する。
(Function) The water supply pump is provided with a variable speed drive device, and during normal operation, the rotation speed of the water pump is controlled by control signals generated based on the conventional three elements. When the temperature of the exhaust gas flowing into the exhaust heat recovery heat exchanger rises and the temperature change rate exceeds a predetermined value, the above rotation speed signal to the drive device is cut off, and a predetermined calculation is performed from the temperature change rate of the exhaust gas. The control is switched to the rotational speed signal obtained by performing the following steps. As a result, the rotation speed of the water supply pump increases, the pressure of the water supply entering the economizer is increased, and the water supply is prevented from evaporating near the outlet of the economizer.

(実施例) 本発明の一実施例を第1図を参照して説明する。なお、
図中、第2図に示される構成と同一のものには同一の符
号をイ・jしており、これらについては説明を省略する
(Example) An example of the present invention will be described with reference to FIG. In addition,
In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals, and the explanation thereof will be omitted.

第1図において、符号13は給水ポンプを示しており、
この給水ポンプ]3には可変速駆動装置、例えば可変速
電動機14が備えられ、その速度(回転数)が任意に変
えられるようになっている。
In FIG. 1, numeral 13 indicates a water supply pump,
This water supply pump] 3 is equipped with a variable speed drive device, for example, a variable speed electric motor 14, so that its speed (rotation speed) can be changed arbitrarily.

この可変速電動機14には次の二つの制御信号か導かれ
る。すなわち、第1の制御信号は従来から用いられてい
た調節計15から出力される信号であり、蒸気ドラム5
に備えられる水位発信器]6から与えられる水位信号、
主蒸気管6に設けられる流量発信器17から導かれる流
量信号および給水ポンプ13の吐出側に備えられる流量
発信器18から与えられる流量信号の三要素に基づいて
つくられる制御信号が接点1つを介して導かれるように
なっている。また、第2の制御信号はこの発明で新たに
加えられた信号であり、ガスタービン12の排ガスを導
く排ガスダクトに設けられる温度発信器20より与えら
れる温度信号に基づき、これを演算器21において温度
変化率を求め、さらに関数発生器22にてポンプ回転数
に変換し、接点23を介して与えられる。
The following two control signals are guided to the variable speed electric motor 14. That is, the first control signal is a signal output from the conventionally used controller 15, and is a signal output from the steam drum 5.
A water level signal given from [water level transmitter] 6,
A control signal is generated based on three elements: a flow rate signal derived from a flow rate transmitter 17 provided in the main steam pipe 6 and a flow rate signal given from a flow rate transmitter 18 provided on the discharge side of the water supply pump 13. It is designed to be guided through. Further, the second control signal is a signal newly added in this invention, and is based on the temperature signal given from the temperature transmitter 20 provided in the exhaust gas duct that guides the exhaust gas of the gas turbine 12, and is sent to the computing unit 21. The rate of temperature change is determined, further converted into a pump rotation speed by a function generator 22, and provided via a contact 23.

さらに、演算器21の出力は比較器24に導かれてそこ
で変化率設定信号と比較される。そして、演算器2]か
らの温度変化率が変化率設定信号を超えた場合、信号切
換器25に対して接点19側から接点23側に切換える
制御信号か出力されるようになっている。
Further, the output of the calculator 21 is led to a comparator 24 where it is compared with a rate of change setting signal. When the temperature change rate from the computing unit 2 exceeds the change rate setting signal, a control signal for switching from the contact 19 side to the contact 23 side is output to the signal switch 25.

一方、71号26は調節弁11の開度を全開に保つ全開
設定器を示しており、この全開設定器26からの制御信
号か接点27を介して調節弁1]の駆動部に導かれる。
On the other hand, No. 71 26 indicates a full-open setting device that keeps the opening degree of the control valve 11 fully open, and a control signal from this full-open setting device 26 is guided to the drive section of the control valve 1 via a contact 27.

また、従来と同様に構成される調節計15からの制御信
号が接点28を介して調節弁11の駆動部に与えられる
。そして、給水ポンプ13に設けられる回転数発信器2
9に基づき、これか一定の回転数を超えたときに信号切
換器30に対し、接点28側から接点27側に切換える
制御信号か141力されるようになっている。
In addition, a control signal from a controller 15 configured in the same manner as in the prior art is applied to the drive section of the control valve 11 via a contact 28. And a rotation speed transmitter 2 provided in the water supply pump 13
9, a control signal 141 is applied to the signal switch 30 to switch from the contact 28 side to the contact 27 side when the rotation speed exceeds a certain value.

次に、上記のように構成した給水制御装置の作用につい
て説明する。
Next, the operation of the water supply control device configured as described above will be explained.

通常運転中、ガスタービン12の排ガス温度は一定して
おり、演算器21によって求められた温度変化率は比較
器24に与えられる設定信号よりも小さく、このとき信
号切換器25により接点19か閉している。したかって
、可変速電動機14は調節計15から与えられる三要素
に基づく制御信号で制御される。給水ポンプ13の回転
数は、このときほぼ一定の値を取り、また調節弁11の
開度も一定している。
During normal operation, the exhaust gas temperature of the gas turbine 12 is constant, and the temperature change rate calculated by the calculator 21 is smaller than the setting signal given to the comparator 24, and at this time, the signal switch 25 switches the contact 19 to close. are doing. Therefore, the variable speed electric motor 14 is controlled by control signals based on three elements given from the controller 15. At this time, the rotational speed of the water supply pump 13 is approximately constant, and the opening degree of the control valve 11 is also constant.

一方、ガスタービン12の排ガス温度か、例えば燃焼器
(図示せず)に加えられる燃料の増加等により急激に変
化した場合、演算器2]から比較器24に出力される温
度変化率が急変する。そして、これが比較器24の設定
信号を超えると、信号切換器25に制御信号が出力され
、接点19か開かれると同時に接点23が閉じられる。
On the other hand, if the exhaust gas temperature of the gas turbine 12 changes suddenly due to, for example, an increase in fuel added to the combustor (not shown), the rate of temperature change output from the calculator 2 to the comparator 24 changes suddenly. . When this exceeds the set signal of the comparator 24, a control signal is output to the signal switch 25, and at the same time as the contact 19 is opened, the contact 23 is closed.

このため、演算器21によって求められた温度変化率に
従って回転数信号を出力している関数発生器22と、可
変速電動機]4とが接点23を介して結ばれ、例えば温
度変化率に比例して上昇する回転数信号が可変速電動機
14に出力され、これにより給水圧力がそれ以前と比べ
て高くなる。この給水圧力上昇によって節炭器2の出口
での給水の蒸発作用が抑えられ、蒸気ドラム5に運ばれ
る給水の温度か下がる結果、缶水の蒸発作用も抑制され
、蒸気ドラム5の水位制御も安定に推移する。
For this purpose, a function generator 22 that outputs a rotation speed signal according to the rate of temperature change determined by the calculator 21 and the variable speed electric motor 4 are connected via a contact 23, and the rotation speed signal is proportional to the rate of temperature change, for example. An increasing rotational speed signal is output to the variable speed electric motor 14, which causes the water supply pressure to be higher than before. This increase in water supply pressure suppresses the evaporation of the feed water at the outlet of the energy saver 2, lowers the temperature of the feed water conveyed to the steam drum 5, and as a result, the evaporation of canned water is also suppressed, and the water level of the steam drum 5 can also be controlled. It remains stable.

また、回転数信号が可変速電動機14に出力され、給水
ポンプ13の回転数が上昇しである回転数を超えたとき
に回転数発信器29から信号切換器30に制御信号が出
され、接点28が開かれ、同時に接点27が閉じられる
。このため、調節計15から調節弁11に対して出力さ
れていた制御信号は遮断され、これに代る制御信号とし
て全開設定器26による調節弁11の開度を全開に保つ
制御信号が接点27を介して与えられる。すなわち、三
要素制御は排ガスの温度が急激に変化するとき、給水制
御を安定に保つうえで逆の制御動作を取る危険性がある
ため、一定時間制御信号を退けるようにする。このよう
な方法によらないとき、つまり給水ポンプ13の回転数
によらないときはタイマを用いて三要素制御を遠ざける
時間を設け、その間は調節弁11の開度を全開に保持す
るようにしてもよい。
Further, a rotation speed signal is output to the variable speed electric motor 14, and when the rotation speed of the water supply pump 13 increases and exceeds a certain rotation speed, a control signal is output from the rotation speed transmitter 29 to the signal switch 30, and the contact 28 is opened and at the same time contact 27 is closed. Therefore, the control signal that was being output from the controller 15 to the control valve 11 is cut off, and as an alternative control signal, a control signal to keep the control valve 11 fully open by the full open setting device 26 is sent to the contact 27. given through. That is, in the three-element control, when the temperature of the exhaust gas changes rapidly, there is a risk that the control operation will be reversed in order to maintain stable water supply control, so the control signal is rejected for a certain period of time. When this method is not used, that is, when the rotational speed of the water supply pump 13 is not used, a timer is used to provide a time period in which the three-element control is moved away, and during that time, the opening degree of the control valve 11 is kept fully open. Good too.

なお、上述した給水圧力の上昇は大きい程有効であるが
、度を越した場合には所内動力によっているためにプラ
ント効率が下がる。そこで、圧力上昇はその時の節炭器
2出口における給水温度の飽和圧力よりも約10kg/
cd程度高い値を上限として定める。
It should be noted that the larger the above-mentioned increase in water supply pressure is, the more effective it is, but if it is exceeded, the efficiency of the plant decreases because it relies on internal power. Therefore, the pressure rise is approximately 10 kg/more than the saturation pressure of the feed water temperature at the exit of the economizer 2 at that time.
The upper limit is set to a value about cd higher.

また、排ガスの温度変化は起動、停止の各過程では通常
運転中の変化率と異なるために別の配慮が望まれる。例
えば、比較器24の出力が一定時間継続した場合に限っ
て信号切換器25に対する出力を生じさせることなどで
ある。
Further, since the temperature change of exhaust gas differs from the rate of change during the startup and shutdown processes from that during normal operation, different consideration is required. For example, an output to the signal switch 25 may be generated only when the output of the comparator 24 continues for a certain period of time.

さらに、上記実施例は可変速電動機14が適用された例
であるが、給水ポンプ13の回転数制御には原動機と組
合わされる流体継手、自動変速装置等の適用が可能であ
る。
Further, although the above embodiment is an example in which the variable speed electric motor 14 is applied, a fluid coupling, an automatic transmission device, etc. combined with the prime mover can be applied to control the rotation speed of the water supply pump 13.

[発明の効果コ 以上説明したように本発明においては排ガスの温度が急
激に変動する場合も排ガスの温度変化率に基づいてつく
られる回転数信号により給水ポンプの回転数が上昇し、
このため、節炭器に入る給水圧力を高くすることが可能
であり、節炭器の出口付近で給水が蒸発するのを防止で
きる。
[Effects of the Invention] As explained above, in the present invention, even when the temperature of the exhaust gas fluctuates rapidly, the rotation speed of the water supply pump is increased by the rotation speed signal generated based on the rate of change in temperature of the exhaust gas.
Therefore, it is possible to increase the pressure of the water supply entering the economizer, and it is possible to prevent the water supply from evaporating near the outlet of the economizer.

したがって、本発明によれば排熱回収熱交換器における
給水制御が安定に保持されるという効果を奏する。
Therefore, according to the present invention, the water supply control in the exhaust heat recovery heat exchanger can be stably maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による給水制御装置の一実施例を示す構
成図、第2図は従来技術による排熱回収熱交換器の給水
系を示す系統構成図である。 1・・・・・・・・・排熱回収熱交換器2・・・・・・
・・・節炭器 3・・・・・・・・・蒸発器 4・・・・・・・・・過熱器 5・・・・・・・・・蒸気ドラム 11・・・・・・・・・調節弁 13・・・・・・・・給水ポンプ 14・・・・・・・・・可変速電動機 15・・・・・・・・・調節計 20・・・・・・・・・温度発信器 21・・・・・・・・・演算器 22・・・・・・・・関数発生器 24・・・・・・・・・比較器 25.30・・・信号切換器 26・・・・・・・・・全開設定器 29・・・・・・・・・回転数発信器
FIG. 1 is a block diagram showing an embodiment of a water supply control device according to the present invention, and FIG. 2 is a system block diagram showing a water supply system of an exhaust heat recovery heat exchanger according to the prior art. 1...Exhaust heat recovery heat exchanger 2...
... Economizer 3 ... Evaporator 4 ... Superheater 5 ... Steam drum 11 ... ...Control valve 13...Water pump 14...Variable speed electric motor 15...Controller 20... Temperature transmitter 21... Arithmetic unit 22... Function generator 24... Comparator 25.30... Signal switch 26.・・・・・・Full open setting device 29・・・・・・Rotation speed transmitter

Claims (1)

【特許請求の範囲】[Claims] 排熱回収熱交換器の節炭器に給水を加圧して送る給水ポ
ンプに付設された可変速形の駆動装置と、前記節炭器に
送られる給水流量を弁開度を変えて調節する調節弁と、
それぞれ検出された排熱回収熱交換器の蒸気ドラム水位
、前記節炭器へ供給される給水流量および前記排熱回収
熱交換器から蒸気タービンに流れる蒸気流量の三要素に
基づいて制御偏差を求め、前記給水ポンプの駆動装置に
対する回転数信号および前記調節弁に対する開度信号を
各々つくり出す装置と、前記排熱回収熱交換器に流れる
排ガスの温度変化率に基づいて所定の演算を行ない、前
記駆動装置に対する回転数信号をつくり出す装置と、前
記排熱回収熱交換器に流れる排ガスの温度変化率が予め
決められた値に満たないとき、前記駆動装置に対し、三
要素に基づく回転数信号を与える一方、排ガスの温度変
化率が予め決められた値を超えた場合に前記駆動装置へ
の三要素に基づく回転数信号を断ち、温度変化率に基づ
く回転数信号を与える装置とを備えることを特徴とする
給水制御装置。
A variable speed drive device attached to a water supply pump that pressurizes and sends water to the economizer of the exhaust heat recovery heat exchanger, and an adjustment that adjusts the flow rate of the water supply sent to the economizer by changing the opening degree of the valve. valve and
A control deviation is determined based on three elements: the detected steam drum water level of the exhaust heat recovery heat exchanger, the flow rate of water supplied to the economizer, and the flow rate of steam flowing from the exhaust heat recovery heat exchanger to the steam turbine. , a device that generates a rotation speed signal for the drive device of the water supply pump and an opening signal for the control valve, and a device that performs a predetermined calculation based on the rate of temperature change of the exhaust gas flowing into the exhaust heat recovery heat exchanger, a device that generates a rotation speed signal for the device; and a device that provides a rotation speed signal based on three elements to the drive device when a temperature change rate of the exhaust gas flowing into the exhaust heat recovery heat exchanger is less than a predetermined value; On the other hand, it is characterized by comprising a device that cuts off the rotation speed signal based on the three elements to the drive device when the temperature change rate of exhaust gas exceeds a predetermined value, and provides a rotation speed signal based on the temperature change rate. water supply control device.
JP10590588A 1988-04-28 1988-04-28 Water supply controller Pending JPH01276302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10590588A JPH01276302A (en) 1988-04-28 1988-04-28 Water supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10590588A JPH01276302A (en) 1988-04-28 1988-04-28 Water supply controller

Publications (1)

Publication Number Publication Date
JPH01276302A true JPH01276302A (en) 1989-11-06

Family

ID=14419891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10590588A Pending JPH01276302A (en) 1988-04-28 1988-04-28 Water supply controller

Country Status (1)

Country Link
JP (1) JPH01276302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156991A (en) * 2013-02-18 2014-08-28 Nippon Thermoener Co Ltd Boiler supply water amount controlling system, and supply water amount controlling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156991A (en) * 2013-02-18 2014-08-28 Nippon Thermoener Co Ltd Boiler supply water amount controlling system, and supply water amount controlling method

Similar Documents

Publication Publication Date Title
JP5596606B2 (en) Power generator
JP2007064546A (en) Waste heat recovery facility
CN202032550U (en) Negative pressure control system of furnace cavity coal fired generating unit driven by small steam turbine of draft fan
JP5192736B2 (en) Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus
JPH0721362B2 (en) Waste heat recovery power generator
JPH01276302A (en) Water supply controller
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JP2918743B2 (en) Steam cycle controller
JPH10266812A (en) Electric power control method of steam supply power generating gas turbine combined plant
JPH10184316A (en) Power generation control device utilizing exhaust heat
SU1090899A1 (en) Method of operating heat-electric generation plant
JPH08135411A (en) Control device of exhaust heat using power plant
JP2001141286A (en) Heat recovery generating system and method of its operation
JP2000045791A (en) Gas turbine intake controller
JP2526773B2 (en) Power control device in refrigerant circulation power generation system
JPH04325703A (en) Feed water control device for combine cycle power generation plant
JP2656352B2 (en) Coal gasification power plant
JPH02204685A (en) Operating method for occean thermal energy generating set
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPH0235842B2 (en) NENSHOKIFUNSHAJOKISEIGYOSOCHI
JPH03199601A (en) Control of vapor temperature at superheater/reheater outlet of complex power plant
JPS5836163B2 (en) Steam turbine low pressure exhaust chamber temperature control method and device
JPH04103902A (en) Method and device for controlling feedwater to boiler
SU1617158A1 (en) Method of regulating district heating steam-turbine plant
JPS6222998A (en) Control equipment for operation of cooling water system