JPS6222998A - Control equipment for operation of cooling water system - Google Patents

Control equipment for operation of cooling water system

Info

Publication number
JPS6222998A
JPS6222998A JP16189785A JP16189785A JPS6222998A JP S6222998 A JPS6222998 A JP S6222998A JP 16189785 A JP16189785 A JP 16189785A JP 16189785 A JP16189785 A JP 16189785A JP S6222998 A JPS6222998 A JP S6222998A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
cooling tower
condenser
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16189785A
Other languages
Japanese (ja)
Inventor
Yuji Otsuka
祐司 大塚
Shizuka Mizuno
水野 静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP16189785A priority Critical patent/JPS6222998A/en
Publication of JPS6222998A publication Critical patent/JPS6222998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To make possible a stable control of operation of cooling water system, by inputting detected values of ambient conditions, cooling water conditions, and operating state values of a plant into an automatic arithmetic unit, and by combining the number of operating fans of a cooling tower and blade angle of cooling water pumps (or the number of pumps) with each other. CONSTITUTION:Provided on cooling-water lines for inlet and outlet of a condenser, are temperature transmitters 17, 18 to detect temperatures of cooling- water and discharge-pressure transmitters 19a, 19b to detect flow rate of cooling- water. Further, transmitters 20a-20e, 21a and 21b are provided for motors for cooling tower fans and cooling water pumps to detect number of those in operation. On the other hand, a transmitter 22 is provided to detect atmospheric temperatures and wet-bulb temperatures. An automatic arithmatic unit 24, into which signals from each transmitter are inputted, is provided to select economical means of operation from present operating conditions and optimum operating conditions so that the optimum operation of a cooling water system is attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、冷却塔を備えた発電プラントの冷却水系統に
おいて、冷却水温度制御及び水量制御を行なうことによ
り、冷却水系統の最適運用をはかるだめの運転制御装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention aims at optimal operation of a cooling water system in a power generation plant equipped with a cooling tower by controlling the temperature and quantity of cooling water. Regarding the operation control device.

〔発明の背景〕[Background of the invention]

一般に、火力・原子力発電プラントでは、蒸気タービン
内で膨張して仕事をした蒸気が復水器に導かれる。この
復水器は、蒸気タービンの排気を冷却凝縮して水にし、
高真空状態を作って指圧を下げ、蒸気タービン中の熱落
差を大にし、タービン出力および効率を増進させる装置
である。
Generally, in thermal or nuclear power plants, steam that has expanded and performed work in a steam turbine is led to a condenser. This condenser cools and condenses the steam turbine exhaust into water.
It is a device that creates a high vacuum state, lowers the finger pressure, increases the heat drop in the steam turbine, and increases the turbine output and efficiency.

この・1水器の冷却水には、一般に、海水が使用されて
いるが、発電プラントの立地条件等にょシ。
Seawater is generally used as the cooling water for this one-water tank, but this depends on the location of the power plant and other factors.

海水を匣用出来ない場合も多数ある。その際、工業用水
等の海水以外の水を冷却水として使用するが、復水器で
は、前述した蒸気タービン排気との熱交換を行なうため
、冷却水の温度が上昇する。
There are many cases where it is not possible to use seawater. At that time, water other than seawater, such as industrial water, is used as cooling water, but in the condenser, the temperature of the cooling water increases because it exchanges heat with the steam turbine exhaust gas described above.

温度上昇した冷却水を冷却するための装置として、一般
に冷却塔が使用されている。
Cooling towers are generally used as devices for cooling cooling water whose temperature has increased.

冷却塔を備えた一般的な冷却水系統を第3図に示す。ボ
イラからの発生蒸気は、蒸気タービン1に入力、膨張し
て仕事をしたタービン排気2は、復水器3で冷却水と熱
交換し、復水4となる。復水器3の復水4は、復水ポン
プ5により昇圧され、数段の給水加熱器6,7で加熱さ
れ、脱気器へ回収される。一方、冷却水は、貯水槽8か
ら冷却水ポンプ9により昇圧され、復水器3に送られる
A typical cooling water system equipped with a cooling tower is shown in Figure 3. Steam generated from the boiler is input to a steam turbine 1, and the turbine exhaust gas 2, which has expanded and performed work, exchanges heat with cooling water in a condenser 3 and becomes condensate 4. Condensate 4 in the condenser 3 is pressurized by a condensate pump 5, heated by several stages of feed water heaters 6 and 7, and recovered to a deaerator. On the other hand, the pressure of the cooling water is increased from the water storage tank 8 by the cooling water pump 9 and sent to the condenser 3.

復水器3でタービン排気2との熱交換により、一般的に
は、7°〜10C温度上昇する。温度上昇した冷却水は
、冷却塔10に送られ散水される。
Due to heat exchange with the turbine exhaust gas 2 in the condenser 3, the temperature generally rises by 7° to 10C. The cooling water whose temperature has increased is sent to the cooling tower 10 and sprinkled thereon.

冷却塔10では、冷却塔7アン11により、ルーパ12
から冷却塔10内に空気を導入し、散水された冷却水と
の接触により、冷却され、貯水槽8に貯水されて還流さ
れる。
In the cooling tower 10, the looper 12 is
Air is introduced into the cooling tower 10, cooled by contact with the sprayed cooling water, stored in the water storage tank 8, and refluxed.

冷却塔は前述のように、大気との熱交換であるため、外
気条件によって大きく冷却能力が左右される。例えば、
大気の温度が上昇する夏期には、れる事になる。又、逆
に、湿球温度の低い冬期には、冷却水温度も低く、比較
的高真空での運用となる。そのため、蒸気タービンの制
限真空度以上での運転を強いられる場合が数多く、蒸気
タービンにとって極めて苛酷な運転条件となシ、悪影響
(振動、エロージョン等)を及ぼす。この高真空運転は
、冬期とは限らずプラント運用上、タービン排気が少量
となる場合にも発生し、同様の問題がでてくる。
As mentioned above, since cooling towers exchange heat with the atmosphere, their cooling capacity is greatly influenced by outside air conditions. for example,
During the summer, when the atmospheric temperature rises, it will melt. Conversely, in the winter when the wet bulb temperature is low, the cooling water temperature is also low, resulting in operation in a relatively high vacuum. Therefore, there are many cases in which the steam turbine is forced to operate at a vacuum level higher than its limited vacuum level, resulting in extremely severe operating conditions for the steam turbine and having adverse effects (vibration, erosion, etc.). This high vacuum operation occurs not only in winter but also when the turbine exhaust gas is small during plant operation, and similar problems arise.

さらには、同じ夏期、又は、冬期中でも、日々の外気条
件により刻々と変化する。そのため、復水器真空度が変
化し、タービン効率に変動を及ぼしている。従って、常
に、効率の良い点での運転は、離しい。
Furthermore, even during the same summer or winter season, it changes from moment to moment depending on the daily outside air conditions. As a result, the degree of vacuum in the condenser changes, causing fluctuations in turbine efficiency. Therefore, it is always difficult to operate at an efficient point.

このような欠点は、海水を冷却とした場合も当然考えら
れる。しかし、冷却塔を備えた冷却水は前述のように、
外気条件の影響が直接冷却水に及ぼされるため、この欠
点の頻度・変化中・影響度が非常に多い。さらには、海
水に比べ冷却水温が高いため、タービン設計真空度も低
く設定されるのが通例(冷却塔の場合690 mHg、
海水の場合ld 722 mHg が一般的な設計真空
度)であシ、そのため、真空度制限にかかシやすくなっ
ている。
Such drawbacks can naturally be considered even when seawater is used for cooling. However, as mentioned above, cooling water equipped with a cooling tower
Since the influence of outside air conditions is directly exerted on the cooling water, the frequency, change and influence of this drawback are very high. Furthermore, because the cooling water temperature is higher than seawater, the turbine design vacuum is usually set low (690 mHg for cooling towers,
In the case of seawater, the general design vacuum level is ld 722 mHg), so it is easy to meet the vacuum level limit.

一方、冷却水系統における運転制御は1種々考案されて
おシ、代表的なものは負荷率に応じて、最良のタービン
効率となる復水器真空度を得るために、冷却水流量を制
御する装置や、環境問題よシ冷却水の取水と放水の温度
差を、ある規定値以内にする排水温度制御装置等がある
On the other hand, various types of operation control in the cooling water system have been devised, and a typical one is to control the cooling water flow rate in order to obtain the condenser vacuum degree that gives the best turbine efficiency according to the load factor. To prevent environmental problems, there are drainage temperature control devices that keep the difference in temperature between cooling water intake and discharged water within a certain specified value.

しかし、これらは冷却水量だけを調整するととKよる方
法であシ、手段としては、可動翼冷却水ポンプ及び、バ
タフライ弁による水量調節であシ、さらには、経済性ま
でを追求した冷却水系統の設備費低減には至っていない
However, these methods are based on adjusting only the amount of cooling water, and the means are a movable blade cooling water pump and a butterfly valve to adjust the water amount, and furthermore, a cooling water system that pursues economic efficiency. equipment costs have not been reduced.

なお、この種の装置として、関連するものKは、例えば
、特公昭59−53470号、同昭59−53471号
8報づよ嵩げちh−ス− 〔発明の目的〕 本発明の目的は、経済性を評価し、最適、かつ、安定に
した冷却水の運用を図る冷却水系統の運転制御装置を提
供することにある。
Related devices of this type are disclosed in, for example, Japanese Patent Publication Nos. 59-53470 and 59-53471. [Object of the Invention] The object of the present invention is to The object of the present invention is to provide an operation control device for a cooling water system that evaluates economic efficiency and achieves optimal and stable cooling water operation.

〔発明の概要〕[Summary of the invention]

復水器真空度は冷却水温度・流量・タービン負荷率によ
り変化するという基本的な考えに基やいて本発明では、
冷却塔のファン運転台数によって冷却能力を増減する事
により、冷却水温度を制御する。又、冷却水ポンプの翼
角度(又は台数)を調整する事により、冷却水流量を制
御する原理に基づき、外気条件、冷却水条件、プラント
運用状態値を検出し、その検出値を自動演算装置に入力
してこの演算装置により、最も、経済的な運転が可能な
るような、冷却塔のファン運転台数及び冷却水ポンプ員
角度(又は台数)を相互組み合わせを行なわしめ、最適
、かつ、安定した冷却水の運用となるための冷却水系統
の運転制御を特徴とする。
Based on the basic idea that the degree of vacuum in the condenser changes depending on the cooling water temperature, flow rate, and turbine load factor, the present invention
The cooling water temperature is controlled by increasing or decreasing the cooling capacity depending on the number of operating fans in the cooling tower. In addition, based on the principle of controlling the cooling water flow rate by adjusting the blade angle (or number) of the cooling water pump, outside air conditions, cooling water conditions, and plant operation status values are detected, and the detected values are transferred to an automatic calculation device. This calculation device mutually combines the number of operating cooling tower fans and the angle (or number of cooling water pumps) of the cooling tower to achieve the most economical operation. It is characterized by operation control of the cooling water system for operation of cooling water.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を第1図により説明する。第1
図は、本発明を実施するために構成した冷却水系統の運
転制御装置の一例を備えたシステム0構成図である。本
図の冷却水系統構成は、冷却塔のファン設置台数は、五
台、冷却水ポンプは二台とした場合の構成を一例として
説明する。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a configuration diagram of a system 0 that includes an example of an operation control device for a cooling water system configured to implement the present invention. The cooling water system configuration in this figure will be described by taking as an example a configuration in which the number of fans installed in the cooling tower is five and the number of cooling water pumps is two.

プラントの運用状態、冷却水運用状態、外気条件を各々
の検出器により、自動演算装置に入力し、最適経済運用
をするための、冷却塔ファンの運転台数、冷却水流量を
求め、かつ、それらの組み合わせ演算によ!Dl適経済
・点を求め、冷却塔ファン及び冷却水ポンプへ出力する
。プラントの運用は、発電機13に負荷信号発信器14
を設けて、発電機の負荷、すなわち、蒸気タービンの負
荷率を検出する。又、復水器3に圧力発信器15を設け
て、復水器内の圧力、すなわち、復水器真空度を検出す
る。又、復水ポンプ出口に、流量発信器16を設けて、
復水流量、すなわち、蒸気タービン排気流量を検出する
The plant operating status, cooling water operating status, and outside air conditions are input to an automatic calculation device using each detector, and the number of operating cooling tower fans and cooling water flow rate for optimal economical operation are calculated. By combinatorial operations! Determine the Dl appropriate economy/point and output it to the cooling tower fan and cooling water pump. The plant is operated using a load signal transmitter 14 in a generator 13.
is provided to detect the load of the generator, that is, the load factor of the steam turbine. Further, a pressure transmitter 15 is provided in the condenser 3 to detect the pressure inside the condenser, that is, the degree of vacuum of the condenser. Further, a flow rate transmitter 16 is provided at the condensate pump outlet,
The condensate flow rate, that is, the steam turbine exhaust flow rate is detected.

冷却水運転状態としては、復水器入口冷却水ラインに温
度発信器17を設けて、復水器入口冷却水温度、すなわ
ち、冷却塔出口水温を検出する。
As for the cooling water operating state, a temperature transmitter 17 is provided in the condenser inlet cooling water line to detect the condenser inlet cooling water temperature, that is, the cooling tower outlet water temperature.

又、復水器出口冷却水ラインに温度発信器18を設けて
、復水器出口冷却水温度、すなわち、冷却塔入口水温を
検出する。又、冷却水ポンプ9の吐出圧力発信器(19
a、19b)を設けて、冷却水流量を検出する。又、冷
却塔ファン及び冷却水ポンプの電動機に発信器(20a
〜20e。
Further, a temperature transmitter 18 is provided on the condenser outlet cooling water line to detect the condenser outlet cooling water temperature, that is, the cooling tower inlet water temperature. In addition, the discharge pressure transmitter (19) of the cooling water pump 9
a, 19b) are provided to detect the cooling water flow rate. In addition, a transmitter (20a) is installed on the motor of the cooling tower fan and cooling water pump.
~20e.

21a、21b)を設け、冷却塔ファン及び冷却水ポン
プ運転台数を検出する。
21a and 21b) to detect the number of operating cooling tower fans and cooling water pumps.

一方、大気温度及び湿球温度を検出する発信器22を設
ける。又、その他、制御選択モード23として、高真空
度制限防止運用及び最適真空度運用の2モ一ド選択発信
器を設ける。
On the other hand, a transmitter 22 is provided to detect atmospheric temperature and wet bulb temperature. In addition, as the control selection mode 23, a transmitter is provided to select two modes: high vacuum degree limit prevention operation and optimum vacuum degree operation.

各々の発信器の信号を入力する自動演算装置24を設け
、現状の運転状態と最適運用条件との比較演算をし、冷
却塔ファン運転台数と冷却水流量を求め、かつそれらの
組み合せ演算により、最も経済的な運用を決定し、冷却
塔ファン並びに冷却水ポンプの電動機に出力し、冷却水
系統の最適運用を図る。
An automatic calculation device 24 is provided that inputs the signals of each transmitter, performs a calculation to compare the current operating state and the optimum operating condition, calculates the number of operating cooling tower fans and the flow rate of cooling water, and calculates the combination of these. The most economical operation is determined and the output is sent to the cooling tower fan and cooling water pump motor to optimize the operation of the cooling water system.

第2図は、第1図の装置を用いて、本発明の方法を実施
した一例の制御厘理図である。
FIG. 2 is a control diagram of an example in which the method of the present invention is implemented using the apparatus shown in FIG.

自動演算装置24は、データ入力装置部251、運用別
真空度演算部26、冷却塔ファン運転台数及び動力演算
部27、冷却水流量及び冷却水ポン゛ブ動力演算部28
、総合演算部29.冷却塔ファン運転台数制御部30、
冷却水流量制御部31から構成されている。
The automatic calculation device 24 includes a data input device section 251 , an operation-based vacuum degree calculation section 26 , a cooling tower fan operating number and power calculation section 27 , a cooling water flow rate and cooling water pump power calculation section 28
, comprehensive calculation section 29. Cooling tower fan operation number control unit 30,
It is composed of a cooling water flow rate control section 31.

まず、各種発信器からの信号は、データ入力装置部25
に入力される。データ入力装置部25は、プラント運用
状態、冷却水運用状態、外気条件からなシ、プラント運
用状態へは、発電機負荷発信器14からの信号り及び復
水器゛圧力発信器15からの信号P3.復水流量発信器
16からの信号Fが入力される。又、冷却水運用状態へ
は、冷却塔出口水温発信器17からの信号T’s冷却塔
入口水温発信器1Bからの信号T’s及び冷却水ポンプ
吐出圧力発信器19a、19bからの信号Pt。
First, signals from various transmitters are sent to the data input device section 25.
is input. The data input device section 25 inputs signals from the generator load transmitter 14 and signals from the condenser pressure transmitter 15 to input the plant operation status, cooling water operation status, and outside air conditions. P3. A signal F from the condensate flow rate transmitter 16 is input. In addition, the cooling water operating state is determined by the signal T's from the cooling tower outlet water temperature transmitter 17, the signal T's from the cooling tower inlet water temperature transmitter 1B, and the signal Pt from the cooling water pump discharge pressure transmitters 19a, 19b. .

P、が入力される。又、外気条件へは、冷却塔廻りの大
気条件発信器(気温、湿球温度)22からの信号人が入
力される。これらのデータ入力装置部25への入力デー
タは、各演算部へ出力されている。
P is input. Furthermore, a signal from an atmospheric condition transmitter (air temperature, wet bulb temperature) 22 around the cooling tower is input to the outside air condition. The input data to these data input device sections 25 is output to each calculation section.

運用別真空度演算部26では、現状の冷却水運転状態で
、高真空度制限運用及び最適真空度運用によるそれぞれ
の規定復水器真空度を演算する。
The operation-specific vacuum degree calculation unit 26 calculates the prescribed condenser vacuum degrees for the high vacuum degree limited operation and the optimum vacuum degree operation, respectively, in the current cooling water operation state.

それぞれの運用側規定真空度を得るためには、冷却塔で
の冷却能力を調整し、冷却水温度を変える事によって規
定真空度を得る冷却塔ファン運転台数制御と冷却水ポン
プの運転点を変える冷却水流量制御との併用制御又は単
独制御により実施する。
To obtain the specified degree of vacuum on each operation side, adjust the cooling capacity of the cooling tower and change the cooling water temperature to obtain the specified degree of vacuum.Control the number of operating cooling tower fans and change the operating point of the cooling water pump. This is carried out by combined control with cooling water flow rate control or by independent control.

運用別真空度演算部26での規定真空度は、冷却塔ファ
ン運転台数及び動力演算部27並びに冷却水流量及び冷
却水ポンプ動力演算部28に同時に送られる。冷却塔フ
ァン運転台数及び動力演算部27では、冷却塔出口水温
演算部32により、タービン排気量から規定真空度とな
る様な復水器入口冷却水温、つまシ、冷却塔出口水温を
求める。
The specified degree of vacuum in the operation-specific vacuum degree calculating section 26 is simultaneously sent to the cooling tower fan operating number and power calculating section 27 and the cooling water flow rate and cooling water pump power calculating section 28 . In the cooling tower fan operating number and power calculating section 27, the cooling tower outlet water temperature calculating section 32 calculates the condenser inlet cooling water temperature, the shim, and the cooling tower outlet water temperature that will give a specified degree of vacuum from the turbine displacement amount.

さらに、実冷却水流量演算部33により、冷却水ポンプ
の吐出圧力、特性曲線とから冷却水流量を求める。又、
冷却塔入口水温演算部34により。
Furthermore, the actual cooling water flow rate calculating section 33 calculates the cooling water flow rate from the discharge pressure of the cooling water pump and the characteristic curve. or,
By the cooling tower inlet water temperature calculation unit 34.

復水器冷却水出入口温度差と、冷却塔出口水温との加算
により、冷却塔入口水温を求める。さらには、冷却塔フ
ァン運転台数演算部35により、冷却水流量、外気条件
に合ったファン台数による冷却塔性能計算を行ない、冷
却塔出入口水温に見あう、運転ファン台数を選定する。
The cooling tower inlet water temperature is determined by adding the temperature difference between the condenser cooling water inlet and outlet and the cooling tower outlet water temperature. Furthermore, the operating cooling tower fan number calculation unit 35 calculates the cooling tower performance using the number of fans that matches the cooling water flow rate and outside air conditions, and selects the number of operating fans that matches the cooling tower inlet/outlet water temperature.

その運転ファン台数により、ファン消費動力を動力演算
部36で行なう。
The power calculation unit 36 calculates the fan power consumption based on the number of operating fans.

一方、冷却水流量及び冷却水ポンプ動力演算部28では
、計画冷却水流量演算部37により、復水器規定真空度
を得るための計画冷却水流量を冷却塔出口水温と規定真
空度とにより求める。この計画冷却水流量と実冷却水流
量演算部33との流量偏差により、冷却水ポンプ翼角度
設定部38で、計画冷却水流量と実冷却水流量が等しく
なるよう、冷却水ポンプの運用を設定する。運用設定後
、動力演算部39で、冷却水ポンプの消費動力を求める
。尚、本例では、冷却水ポンプは、可変翼としたが、固
定翼ポンプの場合には1台数設定に置き換える事が出来
る。このようにして、求められた冷却塔ファン運転台数
、冷却水流量及びその消費動力は、総合演算部29に入
力される。この総合演算部29では、それぞれの制御法
による消費動力をもとに、動力比較を行ない、どちらか
一方の単独制御にするか、又は、両方の制御にょジ、フ
ァン運転台数と冷却水流量を糧々変化させ経済性よシ最
適組み合わせを見い出し、併用制御にするかどうかを総
合的に判断し、最適運用法を決定する。
On the other hand, in the cooling water flow rate and cooling water pump power calculation unit 28, the planned cooling water flow rate calculation unit 37 calculates the planned cooling water flow rate for obtaining the condenser specified vacuum degree from the cooling tower outlet water temperature and the specified vacuum degree. . Based on the flow rate deviation between the planned cooling water flow rate and the actual cooling water flow rate calculation unit 33, the cooling water pump blade angle setting unit 38 sets the operation of the cooling water pump so that the planned cooling water flow rate and the actual cooling water flow rate are equal. do. After setting the operation, the power calculation unit 39 calculates the power consumption of the cooling water pump. In this example, the cooling water pump is a variable blade pump, but in the case of a fixed blade pump, it can be replaced with one unit. In this manner, the number of operating cooling tower fans, the flow rate of cooling water, and the power consumption thereof are input to the comprehensive calculation unit 29. This comprehensive calculation unit 29 compares the power consumption based on the power consumption of each control method, and determines whether to control one of them alone, or to control both by changing the number of operating fans and the flow rate of cooling water. We make various changes to find the most economical combination, make a comprehensive judgment on whether or not to use combined control, and decide on the optimal operation method.

その最適運用法は、冷却塔ファン運転台数制御部30及
び冷却水流量制御部31にょシ、それぞれ、冷却塔ファ
ン、冷却水ポンプへ出方される。
The optimum operating method is outputted to the cooling tower fan operating number control unit 30 and the cooling water flow rate control unit 31, respectively, to the cooling tower fan and the cooling water pump.

以上の過程を実行する事により、冷却水系統の最適運用
法が出来る。
By carrying out the above process, the optimal operation method for the cooling water system can be achieved.

本実施例によれば。According to this example.

(1)冷却塔システムの特徴を生かした。冷却水温を変
化させる冷却塔ファン運転台数制御と冷却水流量制御と
の併用制御にょシ、復水器真空度を適切な値に維持する
ことができ、がっ、7レキシビリテイのある冷却水運用
が可能となった。
(1) Taking advantage of the features of the cooling tower system. Combined control of the number of operating cooling tower fans to change the cooling water temperature and cooling water flow rate control makes it possible to maintain the condenser vacuum at an appropriate value, allowing for flexible cooling water operation. It has become possible.

(2)冷却塔の冷却能力は、外気条件によって大きく影
響されるが、その外気条件に適応した冷却水系統の運用
が可能となった。
(2) Although the cooling capacity of a cooling tower is greatly affected by outside air conditions, it has become possible to operate a cooling water system that is adapted to the outside air conditions.

(3)自動演算装置による経済性を考慮した制御法(併
用制御か単独制御)にょシ、冷却水系統として、最も効
率がよく、かつ、経済的な最適運用を可能にした。又、
これにょシ冷却水系統の運転費低減が可能になった。
(3) An economical control method using an automatic calculation device (combined control or independent control) enables the most efficient and economical optimum operation of the cooling water system. or,
This has made it possible to reduce operating costs for the cooling water system.

(4)タービン効率向上と保護上の両面から制御モード
を高真空度制限運用と最適真空度運用との二つに分け、
運用範囲を広げる事が出来た。
(4) From the perspective of improving turbine efficiency and protecting the turbine, the control mode is divided into high vacuum limited operation and optimal vacuum operation.
We were able to expand our operational range.

(5)復水器以外の一般熱交換器の冷却水系統のうち、
冷却塔を備えたシステムであれば、本発明を適応する事
ができ、さらには、冷却塔のファン運転台数による制御
手段の応用例として、冷却塔の可動翼ファンによるもの
、又、固定翼ファンとの組み合せによる制御手段等、非
常に応用範囲、適用範囲の広い運転制御装置である。
(5) Among the cooling water systems of general heat exchangers other than condensers,
The present invention can be applied to any system equipped with a cooling tower.Furthermore, as an application example of the control means based on the number of operating fans of a cooling tower, a system using a movable wing fan of a cooling tower, a fixed wing fan, etc. It is an operation control device that has a very wide range of applications, such as control means in combination with

〔発明の効果〕〔Effect of the invention〕

本発明によれば、系統運用に必要を消費動力を低減する
ことができる。
According to the present invention, power consumption required for system operation can be reduced.

また、冷却水系統の運用状態を常時監視する事が出来、
又、運転員に対しても複雑な手動操作から解放され、安
定した系統運転が可能となる。気象条件に適応した冷却
塔の運用を行ない、かつ、その冷却能力を最大限まで活
用し、さらには、プラント運用上と連携により、冷却水
システム及び発電プラント全体の運転性能・信頼性が向
上する。
In addition, the operational status of the cooling water system can be constantly monitored.
In addition, operators are freed from complicated manual operations, and stable system operation is possible. By operating cooling towers that adapt to weather conditions, maximizing their cooling capacity, and collaborating with plant operations, the operational performance and reliability of the cooling water system and the power plant as a whole will be improved. .

【図面の簡単な説明】 第1図は、本発明による運転制御装置の一例を備えたシ
ステム構成図、第2図は、本発明における制御原理図、
第3図は、冷却塔を備えた一般的な冷却水系統図。 16・・・復水流量発信器、17・・・冷却塔出口水温
発信器、18・・・冷却塔入口水温発信器、19a。 19b・・・冷却水ポンプ吐出圧力発信器、20a〜2
0e・・・冷却塔ファン電動機、21a、21b・、。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a system configuration diagram including an example of an operation control device according to the present invention, and FIG. 2 is a diagram of the control principle in the present invention.
Figure 3 is a typical cooling water system diagram equipped with a cooling tower. 16... Condensate flow rate transmitter, 17... Cooling tower outlet water temperature transmitter, 18... Cooling tower inlet water temperature transmitter, 19a. 19b...Cooling water pump discharge pressure transmitter, 20a-2
0e...Cooling tower fan motor, 21a, 21b.

Claims (1)

【特許請求の範囲】 1、復水器と、その復水器との熱交換により温度上昇し
た冷却水を冷却するため複数台のファンを設置した冷却
塔と、前記冷却された水を前記復水器に送り、再び前記
冷却塔へ戻すための冷却水ポンプを備えた冷却水系統に
おいて、 前記冷却塔のファン運転台数及び前記冷却水ポンプの翼
角度又は、台数を制御する手段として、プラント運用状
態値、冷却水運用状態値、外気条件状態値を検出し、そ
の検出値により自動演算するための装置を設け、さらに
、その自動演算装置内には、前記復水器の真空度の演算
回路、又、その真空度を得るための冷却水温度と冷却水
流量及び前記冷却塔のファン運転台数の演算回路、さら
には、前記冷却塔の運転ファンの動力と前記冷却水ポン
プの動力を演算し、その消費動力により、最も効率がよ
く、かつ経済運転が可能となる前記冷却塔の運転ファン
台数と冷却水ポンプ運用との相互運転法を選定する演算
回路を設けたことを特徴とする冷却水系統の運転制御装
置。
[Scope of Claims] 1. A condenser, a cooling tower equipped with a plurality of fans to cool the cooling water whose temperature has increased due to heat exchange with the condenser, and a cooling tower that cools the cooled water to the condenser. In a cooling water system equipped with a cooling water pump for sending water to a water heater and returning it to the cooling tower, plant operation is performed as a means for controlling the number of operating fans of the cooling tower and the blade angle or number of the cooling water pumps. A device is provided to detect the state value, cooling water operation state value, and outside air condition state value, and automatically perform calculations based on the detected values, and further includes a calculation circuit for the degree of vacuum of the condenser in the automatic calculation device. , and a calculation circuit for calculating the cooling water temperature, the cooling water flow rate, and the number of operating fans of the cooling tower to obtain the degree of vacuum, and further calculating the power of the operating fan of the cooling tower and the power of the cooling water pump. , a cooling water system characterized by being provided with an arithmetic circuit that selects a mutual operation method between the number of operating fans of the cooling tower and the operation of the cooling water pump that enables the most efficient and economical operation according to the power consumption thereof. System operation control device.
JP16189785A 1985-07-24 1985-07-24 Control equipment for operation of cooling water system Pending JPS6222998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16189785A JPS6222998A (en) 1985-07-24 1985-07-24 Control equipment for operation of cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16189785A JPS6222998A (en) 1985-07-24 1985-07-24 Control equipment for operation of cooling water system

Publications (1)

Publication Number Publication Date
JPS6222998A true JPS6222998A (en) 1987-01-31

Family

ID=15744088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16189785A Pending JPS6222998A (en) 1985-07-24 1985-07-24 Control equipment for operation of cooling water system

Country Status (1)

Country Link
JP (1) JPS6222998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100669A (en) * 2017-12-06 2019-06-24 三菱重工業株式会社 Auxiliary machine power determining device, plant, auxiliary machine power determining method, and program
JP2020134128A (en) * 2019-02-15 2020-08-31 株式会社中部プラントサービス Coolant system facility and controller of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939680A (en) * 1982-08-30 1984-03-05 三菱電機株式会社 Handrail device of curve escalator
JPS6029596A (en) * 1983-07-27 1985-02-14 Osaka Gas Co Ltd Automatic temperature control for circulating type water cooling tower

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939680A (en) * 1982-08-30 1984-03-05 三菱電機株式会社 Handrail device of curve escalator
JPS6029596A (en) * 1983-07-27 1985-02-14 Osaka Gas Co Ltd Automatic temperature control for circulating type water cooling tower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100669A (en) * 2017-12-06 2019-06-24 三菱重工業株式会社 Auxiliary machine power determining device, plant, auxiliary machine power determining method, and program
JP2020134128A (en) * 2019-02-15 2020-08-31 株式会社中部プラントサービス Coolant system facility and controller of the same
JP2021105516A (en) * 2019-02-15 2021-07-26 株式会社中部プラントサービス Cooling water system facility, control device, control method, and control program for cooling water system facility, and control device, control method, and control program for cooling tower

Similar Documents

Publication Publication Date Title
US20110190946A1 (en) Method And System Of Energy-Efficient Control For Central Chiller Plant Systems
US6588499B1 (en) Air ejector vacuum control valve
CN101413709B (en) Cooling water flow control method for optimizing total energy consumption of refrigerating machine and cooling water pump
US6446448B1 (en) Cooling tower for automatically adjusting flow rates of cooling water and cooling air with variations of a load
CN105026873A (en) Device for controlling cooling system
EP1206634A1 (en) Supercharging system for gas turbines
CN110332656B (en) Ventilation air-conditioning system of underground water power station factory building and operation control method thereof
CN111396301A (en) Double-frequency-conversion energy-saving control system and method for circulating water pump of seaside power plant
CN113221373A (en) Method and system for optimizing circulating water cold-end system configured with multiple mechanical ventilation cooling towers
US3413805A (en) Method of and apparatus for controlling plural fluid medium thermal power plants
CN113626291A (en) Liquid cooling monitoring method and device
JPS6222998A (en) Control equipment for operation of cooling water system
CN110953684B (en) Control method of air conditioner cooling system and air conditioner
JPH0721362B2 (en) Waste heat recovery power generator
CN106642857A (en) System and method for controlling cooling tower fan by using thermodynamic properties of refrigerant
JPS63248931A (en) Deicing method for compressor inlet air moisture
JPS5818098A (en) Method of controlling operation of cooling tower
CN207247639U (en) A kind of intelligence condenser system
RU2773622C1 (en) Adaptive control system for the power elements of the condensation loop of the refrigeratory unit
JPH0742509A (en) Movable blade control device for ciculating water pump
JPH0451746B2 (en)
JPH08135411A (en) Control device of exhaust heat using power plant
CN217501856U (en) Wind generating set
JPS6139046Y2 (en)
CN207161160U (en) A kind of classification series connection cooling system of low temperature hot fluid