JPS63248931A - Deicing method for compressor inlet air moisture - Google Patents

Deicing method for compressor inlet air moisture

Info

Publication number
JPS63248931A
JPS63248931A JP8291987A JP8291987A JPS63248931A JP S63248931 A JPS63248931 A JP S63248931A JP 8291987 A JP8291987 A JP 8291987A JP 8291987 A JP8291987 A JP 8291987A JP S63248931 A JPS63248931 A JP S63248931A
Authority
JP
Japan
Prior art keywords
compressor
steam
inlet
air
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8291987A
Other languages
Japanese (ja)
Inventor
Seiichi Kirikami
桐上 清一
Isao Sato
勲 佐藤
Fumiyuki Hirose
文之 広瀬
Nobuyuki Iizuka
飯塚 信之
Michio Kuroda
黒田 倫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8291987A priority Critical patent/JPS63248931A/en
Publication of JPS63248931A publication Critical patent/JPS63248931A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/02De-icing means for engines having icing phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To make suction air temperature rise and dissolve the freezing of moisture in the atmosphere as well as to prevent any damage to a compressor due to the freezing from occurring, by leading steam by bleed air out of a steam turbine into a compressor inlet of a gas turbine, and mixing this steam with the atmosphere to be sucked in to the compressor. CONSTITUTION:A compound power plate is provided with a gas turbine 1, a generator 2, a steam turbine 3 and a waste head recovery steam generator 4. And, the gas turbine 1 is provided with a compressor 5, a combustor 6 or the like, and the atmosphere 8 is sucked into the compressor 5 from an inlet casting 9. In addition, in this inlet casing 9, there is provided with an inlet guide vane 10 which is opened or closed when a temperature of exhaust gas is regulated. In this case, the specified amount of steam 23 is sprayed to the inside of the inlet casting 9 from a nozzle 13 on the basis of a detection signal out of the temperature sensor 14 installed in the downstream of the guide vane 10. With this constitution, when the guide vane 10 is throttled, such fear of moisture in the atmosphere 8 being frozen and damaging a blade 11 of the compressor 5 is obrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンの軸流圧;縮機に係わり特に、
冬場にインレットガイドベーンを絞った場合、空気中の
水分が氷結することを防止する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an axial flow pressure compressor of a gas turbine, and in particular,
This invention relates to a method for preventing moisture in the air from freezing when the inlet guide vane is squeezed in winter.

〔従来の技術〕[Conventional technology]

従来、寒冷地において、圧縮機入口空気中の水分が氷結
することを防止するためには、圧縮機出口の高温(25
0〜350℃)空気を一部抽気し、インレットフィルタ
ー前面まで導き、インレットフィルターに吸入される大
気と混合させ、大気の平均温度を高くすることにより、
水分の氷結防止を図っていた。
Conventionally, in order to prevent moisture in the air at the compressor inlet from freezing in cold regions, high temperatures at the compressor outlet (25
By extracting some of the air (0 to 350℃), guiding it to the front of the inlet filter, and mixing it with the air sucked into the inlet filter, increasing the average temperature of the air,
It was intended to prevent water from freezing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、ガスタービンの熱効率を、大きく、低
下させるため、現在の省エネ時代の要求にあわない点が
、問題であった。
The problem with the above conventional technology is that it does not meet the demands of the current energy saving era because it significantly reduces the thermal efficiency of the gas turbine.

本発明の目的は、ガスタービンの熱効率を、低下させず
、またプラントとしての熱効率も、比較的高く保持でき
るガスタービン圧縮機入口空気中の水分の氷結防止法を
堤供することにある。
An object of the present invention is to provide a method for preventing water from freezing in the air at the inlet of a gas turbine compressor, which does not reduce the thermal efficiency of the gas turbine and can maintain the thermal efficiency of the plant at a relatively high level.

特に、本発明の方法は、ガスタービン低Noつ燃焼器を
用いる複合発電所に適している。低NOx燃焼器は、燃
空比変化をなるべく少なく制御することが必要であり、
これは、インレノ1−ガイドベーンの広域操作により達
成できる。
In particular, the method of the invention is suitable for combined power plants using gas turbine low-number combustors. For low NOx combustors, it is necessary to control the fuel-air ratio changes as much as possible.
This can be achieved by wide area operation of the Inreno 1 guide vanes.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、現在建設が進められているガスタービンと
蒸気タービンの複合発電所において、廃熱回収熱交換器
または蒸気タービンから抽気して得られる高温の蒸気を
圧縮機入口空気と混合させることにより達成される。
The above purpose is achieved by mixing high-temperature steam extracted from a waste heat recovery heat exchanger or steam turbine with compressor inlet air in a gas turbine and steam turbine combined power plant currently under construction. achieved.

〔作用〕[Effect]

複合発電所においては、ガスタービンと蒸気タービンの
出力比率は、普通約2=1であり、例えば、ガスタービ
ンより1%の空気流量を抽気すると、約2/3%のプラ
ント効率低下がある。蒸気タービンより1%の抽気を行
なうと1/3%のプラント効率低下がある。
In a combined power plant, the output ratio between the gas turbine and the steam turbine is typically about 2=1, and for example, if 1% of the air flow is extracted from the gas turbine, there is a reduction in plant efficiency of about 2/3%. If 1% of air is extracted from the steam turbine, the plant efficiency will decrease by 1/3%.

ところで、空気と蒸気の比熱の比率は、1:2であり、
空気2%の抽気と蒸気1%の抽気のカロリーは同じであ
る。すなわち、蒸気タービン1%の抽気は、ガスタービ
ン2%の抽気に対応し、プラント効率低下として、前者
の1%のプラント効率低下は、後者の4%の効率低下に
対応する。
By the way, the ratio of specific heats of air and steam is 1:2,
The calories of 2% air bleed and 1% steam bleed are the same. That is, 1% of steam turbine bleed air corresponds to 2% of gas turbine bleed air, and a 1% decrease in plant efficiency in the former corresponds to a 4% decrease in efficiency in the latter.

蒸気を圧縮機入口空気に混合することは、プラント効率
低下を防ぐ方法として、圧縮機吐出空気を用いる方法よ
り優れている。
Mixing steam with compressor inlet air is superior to using compressor discharge air as a method of preventing plant efficiency loss.

〔実施例〕〔Example〕

以下1本発明を、一実施例により説明する。第1図は、
複合発電所の構成を示す。1はガスタービンであり、2
は発電機、3は蒸気タービンであり、4は、廃熱回収蒸
気発生器(HR5G)を示す。この方式は、−軸形と呼
ばれ、一つのガスタービン1と一つの蒸気タービン3が
1つの発電機2に直結されていることが特徴である。他
に、多軸方式があり、複数のガスタービンと一つの蒸気
タービンを組合せるものであり、本発明は、複合発電所
の方式に依らない。ガスタービン1は、圧縮機5.燃焼
器6.タービンより構成されており、人気8は、圧縮機
入口ケーシング9より圧縮機5に吸入される。
The present invention will be explained below by way of an example. Figure 1 shows
The configuration of a combined power plant is shown. 1 is a gas turbine; 2
is a generator, 3 is a steam turbine, and 4 is a waste heat recovery steam generator (HR5G). This system is called a -shaft type, and is characterized in that one gas turbine 1 and one steam turbine 3 are directly connected to one generator 2. There is also a multi-shaft system in which multiple gas turbines and one steam turbine are combined, and the present invention does not rely on the combined power plant system. The gas turbine 1 includes a compressor 5. Combustor 6. Composed of a turbine, the compressor 8 is sucked into the compressor 5 through a compressor inlet casing 9.

この入口ケーシング9には、取付角が可変のインレット
ガイドベーン10が存在し、ガスタービンの起動、停止
時、および、HR8G4へ流入するガスタービン排ガス
11の温度調節するとき、開閉する。冬場においては、
大気中の水分が、インレットガイドベーン10を絞った
とき、その下流で、静圧低下のため、氷結し圧縮機5の
翼11に当り、翼11を変形させるおそれがある。これ
を防ぐため、圧縮機入口空気(大気)8は、加熱する必
要があり、蒸気12を、圧縮機入口ケーシング9内ヘス
プレーし、氷結防止を図る。入口ケーシング9には、そ
の周囲に複数のスプレーノズル13があり、大気温度が
例えば、5℃以下になれば、蒸気12をスプレーする。
This inlet casing 9 has an inlet guide vane 10 with a variable installation angle, which opens and closes when starting and stopping the gas turbine and when adjusting the temperature of the gas turbine exhaust gas 11 flowing into the HR8G4. In winter,
When moisture in the atmosphere squeezes the inlet guide vane 10, there is a risk that the moisture in the atmosphere will freeze and hit the blades 11 of the compressor 5 due to the drop in static pressure downstream thereof, causing the blades 11 to become deformed. To prevent this, the compressor inlet air (atmosphere) 8 needs to be heated and steam 12 is sprayed into the compressor inlet casing 9 to prevent freezing. The inlet casing 9 has a plurality of spray nozzles 13 around it, which spray steam 12 when the atmospheric temperature falls below, for example, 5°C.

スプレー量は、インレットガイドベーン10の下流の温
度センサー14による温度を監視することにより決める
The amount of spray is determined by monitoring the temperature by a temperature sensor 14 downstream of the inlet guide vane 10.

これらのフィードバック機構により、大気が変動しても
、インレットガイドベーン10の広域操作が可能となる
These feedback mechanisms enable wide-area operation of the inlet guide vane 10 even when the atmosphere changes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蒸気を圧縮機入口空気に混合させるこ
とにより、空気中の水分の氷結防止を行なうことができ
る。特に、燃焼器の燃空比制御を行なうためインレット
ガイドベーンを、従来よりも広域まで、氷結することな
く、絞ることができる。
According to the present invention, by mixing steam with compressor inlet air, moisture in the air can be prevented from freezing. In particular, in order to control the fuel-air ratio of the combustor, the inlet guide vane can be narrowed over a wider area than before without freezing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明を実施した複合発電所の系統図、第2
図は、本発明の他の実施例の系統図である。 1・・・ガスタービン、2・・・発電所、3・・・蒸気
タービン、4・・・HR8G、10・・・インレットガ
イドベーン、13・・・蒸気ノズル、14・・・温度セ
ンサー、15・・・復水器、16・・・復水ポンプ、1
7・・・補給水。  、り・ミ1−11ユ。 代理人 弁理士 小川勝男  °′:パ・′P−\21
./ 苓λ図
Figure 1 is a system diagram of a combined power plant in which the present invention has been implemented;
The figure is a system diagram of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Gas turbine, 2... Power plant, 3... Steam turbine, 4... HR8G, 10... Inlet guide vane, 13... Steam nozzle, 14... Temperature sensor, 15 ... Condenser, 16 ... Condensate pump, 1
7...Supplementary water. , Ri Mi 1-11 Yu. Agent Patent attorney Katsuo Ogawa °': Pa・'P-\21
.. / Rei λ figure

Claims (1)

【特許請求の範囲】 1、ガスタービン、蒸気タービン、発電機、廃熱回収熱
交換器からなる複合発電所において蒸気タービンの抽気
または廃熱回収熱交換器の抽気による蒸気を、前述ガス
タービン圧縮機入口において、圧縮機に吸入される大気
と混合することにより、反縮機入口空気温度を上昇させ
て水分の永結を防止する圧縮機入口空気水分の氷結防止
法。 2、圧縮機入口ガイドベーンの下流に、温度センサーを
設け、空気温度が規定値より低くなつたとき、蒸気を供
給する制御を行なう特許請求の範囲第1項記載の圧縮機
入口空気水分の氷結防止法。
[Scope of Claims] 1. In a combined power plant consisting of a gas turbine, a steam turbine, a generator, and a waste heat recovery heat exchanger, steam from the steam turbine's extracted air or the extracted air from the waste heat recovery heat exchanger is compressed by the gas turbine. A method to prevent moisture from freezing at the compressor inlet by mixing it with the air sucked into the compressor at the machine inlet, increasing the air temperature at the recondenser inlet and preventing moisture from permanently condensing. 2. Freezing of air moisture at the compressor inlet as set forth in claim 1, wherein a temperature sensor is provided downstream of the compressor inlet guide vane, and control is performed to supply steam when the air temperature becomes lower than a specified value. Prevention method.
JP8291987A 1987-04-06 1987-04-06 Deicing method for compressor inlet air moisture Pending JPS63248931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8291987A JPS63248931A (en) 1987-04-06 1987-04-06 Deicing method for compressor inlet air moisture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8291987A JPS63248931A (en) 1987-04-06 1987-04-06 Deicing method for compressor inlet air moisture

Publications (1)

Publication Number Publication Date
JPS63248931A true JPS63248931A (en) 1988-10-17

Family

ID=13787653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291987A Pending JPS63248931A (en) 1987-04-06 1987-04-06 Deicing method for compressor inlet air moisture

Country Status (1)

Country Link
JP (1) JPS63248931A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043530A1 (en) * 1996-05-14 1997-11-20 The Dow Chemical Company Process and apparatus for achieving power augmentation in gas turbines via wet compression
US5930990A (en) * 1996-05-14 1999-08-03 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
US6378284B1 (en) * 1995-12-28 2002-04-30 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
GB2442967A (en) * 2006-10-21 2008-04-23 Rolls Royce Plc Anti-icing / de-icing system in an engine utilizing jets of hot air
JP2009041567A (en) * 2007-08-07 2009-02-26 General Electric Co <Ge> Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine
JP2009197797A (en) * 2008-02-19 2009-09-03 General Electric Co <Ge> System and method for exhaust gas recirculation (egr) in turbine engine
EP2781698A1 (en) * 2013-03-20 2014-09-24 Siemens Aktiengesellschaft Gas turbine and method for operating the gas turbine
CN103758588B (en) * 2014-02-19 2015-09-09 襄阳三鹏航空科技有限公司 A kind of shell mechanism of aircraft turbosupercharger and manufacturing process thereof
JP2016102415A (en) * 2014-11-27 2016-06-02 東京電力株式会社 Turbine plant and intake air cooling method for turbine plant
CN108454786A (en) * 2017-01-16 2018-08-28 诺沃皮尼奥内技术股份有限公司 The method of pontoon and operation pontoon

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378284B1 (en) * 1995-12-28 2002-04-30 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US6581368B2 (en) 1995-12-28 2003-06-24 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US6598401B1 (en) * 1995-12-28 2003-07-29 Hitachi, Ltd. Gas turbine combined cycle plant and compressor
US7404287B2 (en) 1995-12-28 2008-07-29 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US7441399B2 (en) 1995-12-28 2008-10-28 Hitachi, Ltd. Gas turbine, combined cycle plant and compressor
US5867977A (en) * 1996-05-14 1999-02-09 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
US5930990A (en) * 1996-05-14 1999-08-03 The Dow Chemical Company Method and apparatus for achieving power augmentation in gas turbines via wet compression
EP1108870A3 (en) * 1996-05-14 2003-12-17 The Dow Chemical Company Process and apparatus for achieving power augmentation in gas turbines via wet compression
WO1997043530A1 (en) * 1996-05-14 1997-11-20 The Dow Chemical Company Process and apparatus for achieving power augmentation in gas turbines via wet compression
GB2442967B (en) * 2006-10-21 2011-02-16 Rolls Royce Plc An engine arrangement
GB2442967A (en) * 2006-10-21 2008-04-23 Rolls Royce Plc Anti-icing / de-icing system in an engine utilizing jets of hot air
US8011172B2 (en) 2006-10-21 2011-09-06 Rolls-Royce Plc Engine arrangement
JP2009041567A (en) * 2007-08-07 2009-02-26 General Electric Co <Ge> Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbine
US8601821B2 (en) 2007-08-07 2013-12-10 General Electric Company Method and apparatus for supplying pressure for spray inlet temperature suppressor of gas turbines
JP2009197797A (en) * 2008-02-19 2009-09-03 General Electric Co <Ge> System and method for exhaust gas recirculation (egr) in turbine engine
DE102009003481B4 (en) * 2008-02-19 2019-03-28 General Electric Co. Exhaust gas recirculation (EGR) system and process for turbines
EP2781698A1 (en) * 2013-03-20 2014-09-24 Siemens Aktiengesellschaft Gas turbine and method for operating the gas turbine
WO2014146854A1 (en) * 2013-03-20 2014-09-25 Siemens Aktiengesellschaft Gas turbine and method for operating the gas turbine
US9915166B2 (en) 2013-03-20 2018-03-13 Siemens Aktiengesellschaft Gas turbine and method for operating the gas turbine
CN103758588B (en) * 2014-02-19 2015-09-09 襄阳三鹏航空科技有限公司 A kind of shell mechanism of aircraft turbosupercharger and manufacturing process thereof
JP2016102415A (en) * 2014-11-27 2016-06-02 東京電力株式会社 Turbine plant and intake air cooling method for turbine plant
CN108454786A (en) * 2017-01-16 2018-08-28 诺沃皮尼奥内技术股份有限公司 The method of pontoon and operation pontoon
JP2018158713A (en) * 2017-01-16 2018-10-11 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. Floating vessel and method for navigating floating vessel

Similar Documents

Publication Publication Date Title
EP1225306B2 (en) Control system and method for gas turbine inlet-air water-saturation and supersaturation system
JP4571273B2 (en) How to operate an industrial gas turbine for optimum performance.
JP5154822B2 (en) Gas turbine intake air conditioning system and method
CA2682865C (en) A system and method for changing the efficiency of a combustion turbine
US8172521B2 (en) Compressor clearance control system using turbine exhaust
JP2002357320A (en) System and method for deciding firing temperature and combustion reference temperature of gas turbin having corrected moisture content in combustion air
US4907406A (en) Combined gas turbine plant
US4576008A (en) Turbine protection system for bypass operation
JPH0587651B2 (en)
JP3713173B2 (en) Method for preventing freezing of gas turbine
JP3526433B2 (en) Steam injection type gas turbine device
JP2013160233A (en) System and method for gas turbine inlet air heating
JPS63248931A (en) Deicing method for compressor inlet air moisture
CN203892024U (en) Gas turbine inlet gas anti-icing dehumidifier
CN207178041U (en) A kind of OTC cooling systems for Combined cycle gas-steam turbine
JP5142886B2 (en) Compressor
JP2000337107A (en) Closed gas turbine plant
CN216111019U (en) Novel combustion engine TCA cooling system
US6705073B2 (en) Gas turbine plant and process for limiting a critical process value
JP2003138949A (en) Gas turbine intake device
JPS60113034A (en) Antifreezing device for gas turbine
CN217501766U (en) Heating system capable of supplying heat and expanding energy
JPH0932508A (en) Combined cycle plant
JP2002174128A (en) Anti-icing device and method for gas turbine air compressor
JP2017031862A (en) Humid air utilization gas turbine system and method for operating the same