JPH0721362B2 - Waste heat recovery power generator - Google Patents

Waste heat recovery power generator

Info

Publication number
JPH0721362B2
JPH0721362B2 JP59082586A JP8258684A JPH0721362B2 JP H0721362 B2 JPH0721362 B2 JP H0721362B2 JP 59082586 A JP59082586 A JP 59082586A JP 8258684 A JP8258684 A JP 8258684A JP H0721362 B2 JPH0721362 B2 JP H0721362B2
Authority
JP
Japan
Prior art keywords
heat
storage tank
temperature
heat storage
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59082586A
Other languages
Japanese (ja)
Other versions
JPS60224959A (en
Inventor
貞夫 森田
Original Assignee
株式会社明電舍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舍 filed Critical 株式会社明電舍
Priority to JP59082586A priority Critical patent/JPH0721362B2/en
Publication of JPS60224959A publication Critical patent/JPS60224959A/en
Publication of JPH0721362B2 publication Critical patent/JPH0721362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 《技術分野》 この発明は、内燃機関を原動機として発電機を駆動して
発電し、その電力を電気負荷に供給するとともに、上記
原動機の運転によって発生する熱を回収して貯熱槽に貯
え、その熱を熱負荷に供給する廃熱回収式発電機装置に
関する。
TECHNICAL FIELD The present invention drives an electric generator using an internal combustion engine as a prime mover to generate electric power, supplies the electric power to an electric load, and recovers heat generated by the operation of the prime mover. The present invention relates to a waste heat recovery type generator device that stores heat in a heat storage tank and supplies the heat to a heat load.

《従来技術と問題点》 この種の廃熱回収式発電装置の従来の代表的な構成を第
1図に示している。原動機1はディーゼルエンジンやガ
スエンジンなどの内燃機関であり、これで発電機2が回
転駆動され、その発電出力は電気負荷3に供給される。
原動機1の冷却機4の冷却水循環系路には廃熱回収用の
水−水形熱交換器5が設けられており、これの2次側温
水が貯熱槽6に導かれる。また、原動機1の排気管7の
途中には排気ガスボイラ8が設けられ、これにより排気
ガスの熱で温水が作られ、貯熱槽6に導かれる。なお、
冷却器4の入口の冷却水温度が設定値より低いとき、電
磁弁9が開、電磁弁10が閉である。この冷却入口温度が
設定値を越えると、電磁弁9が閉,電磁弁10が開とな
り、冷却水はもう一つの水−水形熱交換器11も通過す
る。この熱交換器11の2次側には冷却塔12が設けられて
おり、冷却水の冷却を促進する。
<< Conventional Technology and Problems >> FIG. 1 shows a typical conventional configuration of this type of waste heat recovery type power generator. The prime mover 1 is an internal combustion engine such as a diesel engine or a gas engine, by which the generator 2 is rotationally driven, and its generated output is supplied to the electric load 3.
A water-water heat exchanger 5 for recovering waste heat is provided in the cooling water circulation passage of the cooler 4 of the prime mover 1, and the secondary side hot water thereof is guided to the heat storage tank 6. Further, an exhaust gas boiler 8 is provided in the middle of the exhaust pipe 7 of the prime mover 1, whereby hot water is produced by the heat of the exhaust gas and introduced into the heat storage tank 6. In addition,
When the cooling water temperature at the inlet of the cooler 4 is lower than the set value, the solenoid valve 9 is open and the solenoid valve 10 is closed. When the cooling inlet temperature exceeds the set value, the solenoid valve 9 is closed and the solenoid valve 10 is opened, and the cooling water also passes through another water-water heat exchanger 11. A cooling tower 12 is provided on the secondary side of the heat exchanger 11 to promote cooling of cooling water.

このように原動機1の冷却器4の系統および排気管7の
系統から廃熱が回収され、貯熱槽6に温水の形で貯えら
れる。回収された廃熱は、貯熱槽6から熱負荷13に供給
される。
In this way, the waste heat is recovered from the system of the cooler 4 and the system of the exhaust pipe 7 of the prime mover 1 and stored in the heat storage tank 6 in the form of hot water. The recovered waste heat is supplied from the heat storage tank 6 to the heat load 13.

熱負荷13で消費される熱量と貯熱槽6に回収される廃熱
量とが釣り合っていれば、貯熱槽6の温度がほぼ一定に
保たれ、安定な定常運転の状態になる。貯熱槽6に回収
される熱量は、当然原動機1の発熱量に依存する。原動
機1の発熱量は電気負荷3の変動により変化する。つま
り、電気負荷3が大きくなると原動機1の機械負荷が大
きくなり、その出力が増して発熱量が増大する。
If the amount of heat consumed by the heat load 13 and the amount of waste heat recovered in the heat storage tank 6 are in balance, the temperature of the heat storage tank 6 is kept substantially constant, and a stable steady operation state is achieved. The amount of heat recovered in the heat storage tank 6 naturally depends on the amount of heat generated by the prime mover 1. The heat generation amount of the prime mover 1 changes according to the fluctuation of the electric load 3. That is, when the electric load 3 increases, the mechanical load of the prime mover 1 also increases, the output increases, and the amount of heat generation increases.

したがって従来の装置では、電気負荷3が変動すると、
貯熱槽6内の温度が変化する。このことは、熱負荷13を
貯熱槽6からの熱でのみ作動させる場合には大きな問題
となる。例えば吸収冷凍機などを熱負荷13とし、これを
貯熱槽6からの熱でのみ運転する場合、貯熱槽6の温度
を85〜90℃程度に維持する必要があるが、電気負荷3が
定格値より低下して原動機1の発熱量が減少すると、貯
熱槽6の温度が低下してしまい、吸収冷凍機などの運転
効率を甚しく低下させてしまう。この問題のため従来の
装置では、貯熱槽6の温度を所定値に維持するには、電
気負荷3の変動に合わせて熱負荷13の消費熱量(供給熱
量)を変えなければならず、実用上非常に不便であっ
た。
Therefore, in the conventional device, when the electric load 3 changes,
The temperature in the heat storage tank 6 changes. This becomes a serious problem when the heat load 13 is operated only by the heat from the heat storage tank 6. For example, if an absorption refrigerator is used as the heat load 13 and it is operated only by the heat from the heat storage tank 6, it is necessary to maintain the temperature of the heat storage tank 6 at about 85 to 90 ° C. When the heat generation amount of the prime mover 1 decreases below the rated value, the temperature of the heat storage tank 6 decreases, and the operation efficiency of the absorption refrigerating machine and the like greatly decreases. Due to this problem, in the conventional device, in order to maintain the temperature of the heat storage tank 6 at a predetermined value, the consumed heat amount (heat supply amount) of the heat load 13 must be changed according to the fluctuation of the electric load 3, It was very inconvenient.

《発明の目的》 この発明の目的は、電気負荷および熱負荷が相当広い範
囲にわたって変動しても、貯熱槽の温度を効果的に安定
化させることができるようにした廃熱回収式発電装置を
提供することにある。
<Object of the Invention> An object of the present invention is to enable a temperature of a heat storage tank to be effectively stabilized even if an electric load and a heat load fluctuate over a considerably wide range. To provide.

《発明の概要》 この発明の装置では、原動機の発生する熱を回収して貯
熱槽に貯える系路に発電機出力で動作するモータによっ
て駆動されるヒートポンプを設け、これで熱媒体を加熱
できる構成とした。また、電気負荷の変動を発電機の出
力側に設けた電力センサで検知するとともに、貯熱槽の
温度を温度センサで検知し、これらの検出出力に基づい
て上記ヒートポンプによる加熱量を上記モータを介して
制御し、貯熱槽の温度を有効に制御することにより、熱
負荷の変動にも影響されず、貯熱槽の温度安定化をより
確実にする。
<< Outline of the Invention >> In the device of the present invention, a heat pump driven by a motor operated by a generator output is provided in a system path for collecting the heat generated by a prime mover and storing it in a heat storage tank, which can heat a heat medium. It was configured. In addition, the change in the electric load is detected by the electric power sensor provided on the output side of the generator, the temperature of the heat storage tank is detected by the temperature sensor, and the amount of heating by the heat pump is detected by the motor based on the detected output. By controlling the temperature of the heat storage tank effectively by controlling the temperature of the heat storage tank, the temperature of the heat storage tank is stabilized more reliably without being affected by the fluctuation of the heat load.

《実施例》 第2図はこの発明の一実施例装置の構成を示すもので、
第1図の従来装置と同一ないし対応部分には同一の符号
を付している。
<< Embodiment >> FIG. 2 shows the construction of an embodiment of the present invention.
The same or corresponding parts as those of the conventional apparatus shown in FIG. 1 are designated by the same reference numerals.

第2図の装置において、ディーゼルエンジンやガスエン
ジンなどの原動機1で発電機2が駆動され、発電出力が
電気負荷3に供給されるとともに、原動機1の冷却器4
の系統および排気管7の系統から廃熱が回収されて貯熱
槽6に貯えられ、その熱が貯熱槽6から熱負荷13に供給
されるという基本的な構成は従来と同じである。従来と
同一部分の詳細説明は省略する。
In the apparatus shown in FIG. 2, a generator 2 is driven by a prime mover 1 such as a diesel engine or a gas engine, a power generation output is supplied to an electric load 3, and a cooler 4 of the prime mover 1 is supplied.
The waste heat is recovered from the system of 1 and the system of the exhaust pipe 7 and stored in the heat storage tank 6, and the heat is supplied to the heat load 13 from the heat storage tank 6 is the same as the conventional one. Detailed description of the same parts as the conventional one will be omitted.

この実施例の装置では、原動機1の冷却器4の冷却水熱
を回収する水−水形熱交換器5の2次側、すなわち回収
した熱を貯熱槽6に導く熱媒体の系路中にヒートポンプ
14が設けられ、このヒートポンプ14で貯熱槽6の熱媒体
(水)を加熱するようになっている。
In the device of this embodiment, the secondary side of the water-water heat exchanger 5 that recovers the cooling water heat of the cooler 4 of the prime mover 1, that is, in the system path of the heat medium that guides the recovered heat to the heat storage tank 6. To heat pump
14 is provided, and the heat pump 14 heats the heat medium (water) in the heat storage tank 6.

すなわち、ヒートポンプ14は、水−水熱交換器5の出力
側に入力側が接続された水−空気熱交換機14aと、この
水−空気熱交換機14aの出力側に接続された圧縮機14bお
よび圧縮器14bの圧縮出力側に入力側が接続された空気
−水熱交換器14cによって構成され、空気−水熱交換機1
4cの出力側は貯熱槽6に連通している。
That is, the heat pump 14 includes a water-air heat exchanger 14a having an input side connected to an output side of the water-water heat exchanger 5, a compressor 14b and a compressor connected to an output side of the water-air heat exchanger 14a. The air-water heat exchanger 14c has an input side connected to the compression output side of 14b.
The output side of 4c communicates with the heat storage tank 6.

ここで、ヒートポンプ14の水−空気熱交換器14aの入力
側には水−水熱交換器5によって熱交換された水が流通
する。これにより水−空気熱交換器14aの出力側に流通
する空気は熱交換された後に圧縮機14bによって圧縮さ
れる。圧縮された空気は空気−水熱交換機14cの入力側
に高温となって吐出され、その出力側を流通する水は加
熱される。
Here, the water that has undergone heat exchange by the water-water heat exchanger 5 circulates on the input side of the water-air heat exchanger 14a of the heat pump 14. As a result, the air flowing to the output side of the water-air heat exchanger 14a is heat-exchanged and then compressed by the compressor 14b. The compressed air has a high temperature and is discharged to the input side of the air-water heat exchanger 14c, and the water flowing through the output side is heated.

ヒートポンプ14は可変速モータ15で駆動され、可変速モ
ータ15は制御回路16によって制御される。ヒートポンプ
の加熱能力はモータ15の速度制御によって調整可能であ
る。モータ15は発電機2の出力によって駆動され、か
つ、モータ制御回路16によって速度制御がなされる。
The heat pump 14 is driven by the variable speed motor 15, and the variable speed motor 15 is controlled by the control circuit 16. The heating capacity of the heat pump can be adjusted by controlling the speed of the motor 15. The motor 15 is driven by the output of the generator 2, and the speed is controlled by the motor control circuit 16.

発電機2の出力系には電力センサ17が付加されており、
これにより発電電力(消費電力)が検出される。つまり
電力センサ17で電気負荷3の変動が検出される。
A power sensor 17 is added to the output system of the generator 2,
As a result, the generated power (power consumption) is detected. That is, the electric power sensor 17 detects a change in the electric load 3.

また貯熱槽6には内部の温度を検出する温度センサ18が
設けられており、熱負荷13の変動などによる貯熱槽6内
の温度変化が検出される。
Further, the heat storage tank 6 is provided with a temperature sensor 18 for detecting the internal temperature, and the temperature change in the heat storage tank 6 due to the fluctuation of the heat load 13 or the like is detected.

電力センサ17および温度センサ18の検出出力は制御回路
16の入力信号となり、これら検出出力に基づいてモータ
15の速度制御、つまりヒートポンプ14による加熱量制御
がなされる。
The detection outputs of the power sensor 17 and the temperature sensor 18 are control circuits.
16 input signals, and based on these detection outputs, the motor
The speed control of 15, that is, the heating amount control by the heat pump 14 is performed.

モータ制御回路16は、第3図の動作フローに示すよう
に、ステップS1で電力センサ17の電力信号と、温度セン
サ17の温度信号を取り込み、ステップS2に進み電気負荷
3の消費電力が設定値よりも減少しているか否かを判断
する。消費電力が設定値よりも減少しておれば、ステッ
プS3に進みモータ15の回転速度を増速させる。モータ15
の回転速度が大きくなれば圧縮機14bの圧縮圧が大きく
なり、空気−水熱交換器14cの入力側の空気の温度が上
昇し、これによりその出力側の水の温度も上昇して貯熱
槽6内の水の温度も上昇する。ステップS3でモータ15が
増速した後に、ステップS4に進み貯熱槽6内の温度が設
定値よりも低いかどうかを判断し、低くなければ動作を
終了する。また、ステップS2において、電気負荷3の消
費電力が設定値よりも減少していなければ、ステップS5
に進み、貯熱槽6の温度が設定値よりも低いかどうかを
判断し、低ければステップS3に戻り、低くなければステ
ップS2に戻る。さらに、ステップS4で貯熱槽6の温度が
設定値よりも低ければステップS3に戻る。
As shown in the operation flow of FIG. 3, the motor control circuit 16 fetches the power signal of the power sensor 17 and the temperature signal of the temperature sensor 17 in step S1, and proceeds to step S2 to set the power consumption of the electric load 3 to the set value. To determine whether or not it is decreasing. If the power consumption is lower than the set value, the process proceeds to step S3, and the rotation speed of the motor 15 is increased. Motor 15
If the rotation speed of the air is increased, the compression pressure of the compressor 14b is increased, the temperature of the air on the input side of the air-water heat exchanger 14c rises, and the temperature of the water on the output side of the air-water heat exchanger 14c also rises. The temperature of the water in the tank 6 also rises. After the speed of the motor 15 is increased in step S3, the process proceeds to step S4, and it is determined whether the temperature in the heat storage tank 6 is lower than the set value. If the power consumption of the electric load 3 is not less than the set value in step S2, step S5
Then, it is determined whether the temperature of the heat storage tank 6 is lower than the set value, and if it is lower, the process returns to step S3, and if not lower, the process returns to step S2. Furthermore, if the temperature of the heat storage tank 6 is lower than the set value in step S4, the process returns to step S3.

温度センサ18により検出される貯熱槽6内の温度が設定
温度より低くなると、制御回路16は、設定温度との差に
応じてモータ15の回転速度を上昇させ、ヒートポンプ14
による加熱量を増加させ、貯熱槽6に導入される温水の
温度を高める。これにより貯熱槽6の温度が設定温度に
近づく。貯熱槽6の温度が設定値になると、制御回路16
はモータ15を停止させるかあるいは最低速度で運転す
る。
When the temperature in the heat storage tank 6 detected by the temperature sensor 18 becomes lower than the set temperature, the control circuit 16 increases the rotation speed of the motor 15 according to the difference from the set temperature, and the heat pump 14
The amount of heating due to is increased to raise the temperature of the hot water introduced into the heat storage tank 6. As a result, the temperature of the heat storage tank 6 approaches the set temperature. When the temperature of the heat storage tank 6 reaches the set value, the control circuit 16
Stops the motor 15 or runs it at the lowest speed.

また、電力センサ17で検出される消費電力が定格電力以
上である場合、制御回路16はモータ15を停止させるかあ
るいは最低速度で運転する。電気負荷3が減少すると、
消費電力が減少し、前述のように原動機1の機械的負荷
も減少し、原動機1の発熱量が減少し、貯熱槽6に回収
される熱量も減少する傾向になる。そこで、本発明の装
置では、電気負荷3の減少が電力センサ17で検出され、
制御回路16に伝わる。これを受けて制御回路16は、定格
電力に対する消費電力の減少量に応じてモータ15の回転
速度を増加させる。これによりヒートポンプ14の加熱量
が増加し、原動機1の発熱量減少による回収熱量の減少
が補われ、貯熱槽6に導入される温水の温度低下が防止
される。つまり電気負荷3の変動をもとに制御が行わ
れ、貯熱槽6の温度変化が未然に防止される。
When the power consumption detected by the power sensor 17 is equal to or higher than the rated power, the control circuit 16 stops the motor 15 or operates it at the lowest speed. When the electric load 3 decreases,
The power consumption decreases, the mechanical load of the prime mover 1 also decreases, the heat generation amount of the prime mover 1 decreases, and the heat amount recovered in the heat storage tank 6 also tends to decrease. Therefore, in the device of the present invention, the decrease of the electric load 3 is detected by the power sensor 17,
It is transmitted to the control circuit 16. In response to this, the control circuit 16 increases the rotation speed of the motor 15 according to the amount of decrease in power consumption with respect to rated power. As a result, the heating amount of the heat pump 14 is increased, the reduction of the recovered heat amount due to the reduction of the heat generation amount of the prime mover 1 is compensated, and the temperature drop of the hot water introduced into the heat storage tank 6 is prevented. That is, the control is performed based on the fluctuation of the electric load 3, and the temperature change of the heat storage tank 6 is prevented in advance.

この制御によるモータ15の回転数Nは、定格電力をPo、
センサ17で検出される消費電力をP、適宜な定数をa,b
とすると、 N=a p/po+b で表される。なお、この制御式は一実施例であり、制御
系全体の特性に合わせて他の制御アルゴリズムを採用し
ても良い。
The rotation speed N of the motor 15 under this control is the rated power Po,
The power consumption detected by the sensor 17 is P, and appropriate constants are a and b
Then, it is represented by N = ap / po + b. It should be noted that this control formula is an example, and other control algorithms may be adopted according to the characteristics of the entire control system.

ところで、モータ15が発電機2の出力で駆動されている
ので、ヒートポンプ14の加熱量を増加させるときにはモ
ータ15の消費電力が増加し、これが原動機1自体の発熱
量を増加させることとなり、非常に合理的,効率的であ
る。
By the way, since the motor 15 is driven by the output of the generator 2, when increasing the heating amount of the heat pump 14, the power consumption of the motor 15 increases, which increases the heat generation amount of the prime mover 1 itself. Reasonable and efficient.

《発明の効果》 以上詳細に説明したように、この発明に係る廃熱回収式
発電装置によれば、電気負荷および熱負荷が相当広い範
囲にわたって変動しても、貯熱槽の温度は安定し、吸収
冷凍機のような一定した温度を必要とする熱負荷でも、
貯熱槽からの給熱のみでも効率よく運転することができ
る。特に電気負荷の変動に対してもヒートポンプが有効
に作用して有効な制御が可能にして貯熱槽の温度変化が
効果的に防止される。
<< Effects of the Invention >> As described in detail above, according to the waste heat recovery power generator of the present invention, the temperature of the heat storage tank is stable even if the electric load and the heat load fluctuate over a considerably wide range. , Even for heat loads that require constant temperature, such as absorption refrigerators,
It is possible to operate efficiently only by supplying heat from the heat storage tank. In particular, the heat pump effectively acts even when the electric load fluctuates to enable effective control, and the temperature change of the heat storage tank is effectively prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来装置の構成図、第2図はこの発明の一実施
例装置の構成図、第3図はモータ制御回路の動作フロー
である。 1…原動機、2…発電機、3…電気負荷、4…冷却器、
5…熱交換器、6…貯熱槽、7…排気管、8…排気ガス
ボイラ、13…熱負荷、14…ヒートポンプ、14a…水−水
も熱交換器、14b…圧縮機、14c…空気−水熱交換器、15
…モータ、16…モータ制御回路、17…電力センサ、18…
温度センサ。
FIG. 1 is a block diagram of a conventional device, FIG. 2 is a block diagram of a device of one embodiment of the present invention, and FIG. 3 is an operation flow of a motor control circuit. 1 ... motor, 2 ... generator, 3 ... electric load, 4 ... cooler,
5 ... Heat exchanger, 6 ... Heat storage tank, 7 ... Exhaust pipe, 8 ... Exhaust gas boiler, 13 ... Heat load, 14 ... Heat pump, 14a ... Water-water heat exchanger, 14b ... Compressor, 14c ... Air- Water heat exchanger, 15
… Motor, 16… Motor control circuit, 17… Power sensor, 18…
Temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内燃機関を原動機として発電機を駆動して
発電し、その電力を電気負荷に供給するとともに、上記
原動機の運転によって発生する熱を回収して貯熱槽に貯
え、その熱を熱負荷に供給する装置であって、上記原動
機の発生する熱を上記貯熱槽に導く廃熱回収経路に介在
され、この系路の熱媒体を加熱するヒートポンプと、上
記発電機の出力によって動作して上記ヒートポンプを駆
動するモータと、上記発電機の出力増減を検出する電力
センサと、上記貯熱槽内の温度を検出する温度センサ
と、上記電力センサの電力検出信号および上記温度セン
サの温度検出信号に基づいて上記モータを制御して上記
ヒートポンプによる加熱量を制御し、上記貯熱槽内の温
度を安定化させる制御手段を備えた廃熱回収式発電装
置。
Claim: What is claimed is: 1. An internal combustion engine is used as a prime mover to drive a generator to generate electric power, which is supplied to an electric load. At the same time, heat generated by the operation of the prime mover is recovered and stored in a heat storage tank. A device for supplying heat load, the heat pump being interposed in a waste heat recovery path for guiding the heat generated by the prime mover to the heat storage tank, and operated by a heat pump for heating a heat medium in this system and the output of the generator. A motor for driving the heat pump, an electric power sensor for detecting an increase / decrease in output of the generator, a temperature sensor for detecting a temperature in the heat storage tank, an electric power detection signal of the electric power sensor, and a temperature of the temperature sensor. A waste heat recovery power generator comprising control means for controlling the motor based on a detection signal to control the amount of heating by the heat pump to stabilize the temperature in the heat storage tank.
JP59082586A 1984-04-24 1984-04-24 Waste heat recovery power generator Expired - Fee Related JPH0721362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082586A JPH0721362B2 (en) 1984-04-24 1984-04-24 Waste heat recovery power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082586A JPH0721362B2 (en) 1984-04-24 1984-04-24 Waste heat recovery power generator

Publications (2)

Publication Number Publication Date
JPS60224959A JPS60224959A (en) 1985-11-09
JPH0721362B2 true JPH0721362B2 (en) 1995-03-08

Family

ID=13778579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082586A Expired - Fee Related JPH0721362B2 (en) 1984-04-24 1984-04-24 Waste heat recovery power generator

Country Status (1)

Country Link
JP (1) JPH0721362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071589A3 (en) * 2009-12-09 2011-08-04 Caterpillar Inc. A method for controlling a pump and motor system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230953A (en) * 1987-03-20 1988-09-27 Mitsubishi Heavy Ind Ltd Cogeneration system for internal combustion engine
JPH01163781U (en) * 1988-05-10 1989-11-15
JPH0346165U (en) * 1989-09-08 1991-04-26
JPH03181302A (en) * 1989-12-12 1991-08-07 Hitachi Ltd Distilling apparatus
AU2002244045A1 (en) * 2001-02-19 2002-09-04 Rosemount Analytical Inc. Improved generator monitoring, control and efficiency
JP3871193B2 (en) * 2001-07-03 2007-01-24 本田技研工業株式会社 Engine exhaust heat recovery device
JP2009281649A (en) * 2008-05-21 2009-12-03 Daikin Ind Ltd Heating system
JP5286104B2 (en) 2009-02-19 2013-09-11 パーパス株式会社 Waste heat recovery method, waste heat recovery device and cogeneration system
CN102720600A (en) * 2012-06-28 2012-10-10 宝鸡石油机械有限责任公司 Waste heat power generation system of oil rig
JP2015068333A (en) * 2013-10-01 2015-04-13 ヤンマー株式会社 Cogeneration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071589A3 (en) * 2009-12-09 2011-08-04 Caterpillar Inc. A method for controlling a pump and motor system

Also Published As

Publication number Publication date
JPS60224959A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
JPH0721362B2 (en) Waste heat recovery power generator
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JP2004340535A (en) Heat pump water heater
NO152384B (en) HEAT PUMP.
JP6817908B2 (en) Compressed air storage power generation equipment and method
JPS6310349B2 (en)
JPS6256427B2 (en)
JP3527867B2 (en) Heat recovery power generation system and operation method thereof
JP2000282895A (en) Intake air cooling device and method for gas turbine
JPH0893553A (en) Control method and device for heat supply using cogeneration system
JPS6256428B2 (en)
JPH074758A (en) Cooling device
JP2906507B2 (en) Heat pump water heater
JP2918648B2 (en) Variable flow control device for cold / hot water / cooling water in absorption chiller / hot / cold water machine
JPH02301651A (en) Co-generation system
JPH06281289A (en) Cogeneration apparatus
JP3874262B2 (en) Refrigeration system combining absorption and compression
JPH06280563A (en) Control method for cooling water temperature of engine and device thereof
JPH09310933A (en) Waste heat recovering device for engine
JPS6152914B2 (en)
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPH06281283A (en) Absorption refrigerator and controlling method therefor
JPH05263608A (en) Cooling water supply device in steam power generating plant
JPH07280380A (en) Chilled water supply system
JPH01134178A (en) Air-cooled absorption water cooler and heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees