JPS6256427B2 - - Google Patents

Info

Publication number
JPS6256427B2
JPS6256427B2 JP55137366A JP13736680A JPS6256427B2 JP S6256427 B2 JPS6256427 B2 JP S6256427B2 JP 55137366 A JP55137366 A JP 55137366A JP 13736680 A JP13736680 A JP 13736680A JP S6256427 B2 JPS6256427 B2 JP S6256427B2
Authority
JP
Japan
Prior art keywords
load
temperature
heat
heat exchanger
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55137366A
Other languages
Japanese (ja)
Other versions
JPS5762373A (en
Inventor
Shinji Yosomya
Yasuo Ogawa
Seiji Sanada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP55137366A priority Critical patent/JPS5762373A/en
Publication of JPS5762373A publication Critical patent/JPS5762373A/en
Publication of JPS6256427B2 publication Critical patent/JPS6256427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市ガスや灯油等の燃焼エネルギー
を原動力とする熱機関を用いて圧縮機を駆動して
暖房を行う暖房装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heating device that performs heating by driving a compressor using a heat engine powered by combustion energy such as city gas or kerosene. .

〔従来技術〕[Prior art]

近年、省エネルギー的観点等より、都市ガスや
灯油等の燃焼エネルギーによるヒートポンプによ
り冷暖房を行う冷暖房装置の開発が盛んである。
このヒートポンプは燃焼エネルギーによりエンジ
ン等を運転し、これによりヒートポンプ用圧縮機
を駆動して冷暖房を行うものであり、暖房時エン
ジンの排熱を暖房に利用することができるので、
電動式ヒートポンプより、省エネルギーである。
BACKGROUND ART In recent years, from the viewpoint of energy conservation, there has been active development of air-conditioning devices that perform air-conditioning and heating using heat pumps that use combustion energy such as city gas or kerosene.
This heat pump uses combustion energy to operate the engine, etc., which drives the heat pump compressor to perform heating and cooling, and the exhaust heat of the engine during heating can be used for heating.
It is more energy efficient than an electric heat pump.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来のエンジン駆動の排熱回収式
ヒートポンプにおいては次の如き問題点があつ
た。
However, conventional engine-driven exhaust heat recovery heat pumps have the following problems.

即ち、従来のヒートポンプにおいては、外気温
度が非常に低い時や、降雪時には、外気側熱交換
器における蒸発温度が低下し、冷媒ガスの比体積
が著しく増大して冷媒循環量が激減して暖房能力
が異常に低下し、また着霜を生じて使用不可能に
なることがある。このような場合にヒートポンプ
による負荷温水の加熱ができなくなるばかりでな
く、ヒートポンプ負荷が小なることによりエンジ
ンを定格回転数で回転せしめることができず、圧
縮機を止めた場合は、その排熱を利用することが
できず、また、エンジンのみ回転せしめるとして
も負荷がないのでアイドリング運転となるため、
排熱量も減少し、結局、暖房容量は、汲み上げる
べき外気の熱が減少した分だけの熱にとどまら
ず、ヒートポンプが運転できないことによるヒー
トポンプ加熱分の減少とエンジンの排熱量の減少
とが相まつて暖房容量の低下が甚だしい、という
問題点があつた。
In other words, in conventional heat pumps, when the outside air temperature is very low or when it snows, the evaporation temperature in the outside air side heat exchanger decreases, the specific volume of refrigerant gas increases significantly, and the amount of refrigerant circulated is drastically reduced, resulting in heating. The capacity may drop abnormally and frost may form, making it unusable. In such a case, not only will the heat pump not be able to heat the load hot water, but the heat pump load will be so small that the engine will not be able to rotate at the rated speed, and if the compressor is stopped, the exhaust heat will be It is not possible to use the engine, and even if only the engine is rotated, there is no load and the engine is idling.
The amount of exhaust heat also decreases, and in the end, the heating capacity is not only due to the decrease in the heat of the outside air that should be pumped, but also due to a combination of the decrease in heat pump heating due to the inability of the heat pump to operate, and the decrease in the amount of exhaust heat from the engine. The problem was that the heating capacity was severely reduced.

また、このような外気温異常低下時の対策とし
て、実公昭51―35632号公報に示された技術も知
られているが、この場合には、外気温が異常に低
下したときのエンジンの排熱の利用は、外気を介
して、蒸発器を加熱するにとどまり、放熱損が大
きく、また負荷流体である車内空気を排熱で加熱
せず、しかもさらに、外気からの熱の汲み上げを
並行して行うこともできず、それだけ負荷流体の
加熱量が少なく、また、外気温が通常であるとき
にはエンジンの排熱を利用するものではなく、排
熱回収が良好に行われていない、という問題点が
あつた。
In addition, as a countermeasure against such an abnormal drop in outside temperature, the technology disclosed in Publication of Utility Model Publication No. 51-35632 is also known. The use of heat is limited to heating the evaporator via outside air, which causes large heat radiation loss, and does not heat the interior air, which is the load fluid, with exhaust heat. The problem is that the amount of heating of the load fluid is small, and the engine exhaust heat is not used when the outside temperature is normal, so exhaust heat recovery is not performed well. It was hot.

また、実公昭52―22735号公報に示された如き
ものもあるが、外気温が通常の場合において外気
からの熱の汲み上げが行われておらず、熱の回収
量が少なく、また、外気温が異常に低下した場合
においては、エンジンの排熱の利用はヒートポン
プの蒸発器を熱するにとどまり、負荷流体である
室内空気を加熱せず、しかも外気からの熱の汲み
上げを並行して行うことができず、それだけ室内
空気の加熱量が少ない、という問題点があつた。
There is also a system like the one shown in Utility Model Publication No. 52-22735, but when the outside temperature is normal, heat is not pumped up from the outside air, and the amount of heat recovered is small. If the engine's exhaust heat drops abnormally, the use of engine exhaust heat is limited to heating the heat pump's evaporator, without heating the indoor air, which is the load fluid, and at the same time pumping heat from the outside air. The problem was that the amount of heating of the indoor air was small.

さらに、これらの問題点を解決するために、外
気側熱交換器と並列に補助蒸発器を配備したもの
が提案されているが、補助蒸発器に導かれる冷媒
が必要以上に多くなり、蒸発量が増大することに
より蒸発温度、蒸発圧力が上昇し、外気との温度
差がなくなり外気からの熱の取り入れが不足して
成積係数(COP)が低下する、という問題点が
あつた。
Furthermore, in order to solve these problems, it has been proposed to install an auxiliary evaporator in parallel with the outside air side heat exchanger, but the amount of refrigerant led to the auxiliary evaporator is larger than necessary, resulting in As a result, the evaporation temperature and evaporation pressure rise, and the temperature difference with the outside air disappears, leading to insufficient heat intake from the outside air, resulting in a decrease in the coefficient of product production (COP).

本発明は、従来のものの上記の問題点を解決し
て外気温が異常に低下したときにもヒートポンプ
サイクルを作動せしめ、かつ着霜を防ぎ、負荷流
体を加熱すると共に排熱によつても作動流体を加
熱し、COPを最良となし、なお不足熱量を回転
数の上昇で補つて暖房容量の低下を防ぎ、かつ、
外気温が通常の温度である場合においてもヒート
ポンプと共に熱機関の排熱により負荷流体を加熱
し、熱利用効率を向上せしめる暖房装置を提供す
ることを目的とするものである。
The present invention solves the above-mentioned problems of the conventional ones, allows the heat pump cycle to operate even when the outside temperature drops abnormally, prevents frost formation, heats the load fluid, and also operates using waste heat. Heats the fluid to achieve the best COP, and compensates for the lack of heat by increasing the rotational speed to prevent a decrease in heating capacity, and
The object of the present invention is to provide a heating device that heats a load fluid using exhaust heat from a heat engine together with a heat pump even when the outside air temperature is normal, thereby improving heat utilization efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、熱機関により駆動される圧縮機、外
気側熱交換器、負荷側熱交換器、膨張装置及びこ
れらの機器を接続する冷媒経路よりなるヒートポ
ンプと、前記熱機関からの排熱を回収する排熱回
収装置とを備えた暖房装置において、前記冷媒経
路に前記外気側熱交換器に並列に配備された補助
蒸発器と、前記排熱回収装置及び前記負荷側熱交
換器に負荷流体を導く負荷流体経路と、前記補助
蒸発器に負荷流体又は排熱媒体を導く補助熱源経
路と、外気温を直接的又は間接的に検出する外気
温度検出装置と、得られた検出値を設定値と比較
し、かつ、外気温が所定の異常低温度以下である
ときに、該検出値に基づいて、前記外気側熱交換
器と前記補助蒸発器とへの冷媒流量比を制御する
流量比制御装置と、負荷を検出する負荷検出装置
と、得られた検出値を設定値と比較し、かつ、負
荷が過大であるときに、該検出値に基づいて、前
記熱機関の回転数を制御する回転数制御装置とを
備えたことを特徴とする暖房装置である。
The present invention provides a heat pump consisting of a compressor driven by a heat engine, an outside air side heat exchanger, a load side heat exchanger, an expansion device, and a refrigerant path connecting these devices, and a heat pump that recovers exhaust heat from the heat engine. an auxiliary evaporator disposed in parallel to the outside air side heat exchanger in the refrigerant path; and a heating device including a load fluid to the exhaust heat recovery device and the load side heat exchanger. a load fluid path to guide the load fluid or the waste heat medium to the auxiliary evaporator, an outside air temperature detection device that directly or indirectly detects the outside temperature, and the obtained detected value as a set value. a flow rate ratio control device that compares and controls a refrigerant flow rate ratio to the outside air side heat exchanger and the auxiliary evaporator based on the detected value when the outside air temperature is below a predetermined abnormally low temperature; a load detection device that detects the load; and a rotation device that compares the detected value obtained with a set value and controls the rotation speed of the heat engine based on the detected value when the load is excessive. This heating device is characterized by being equipped with a numerical control device.

〔実施例〕〔Example〕

本発明を実施例につき図面を用いて説明する。
図面に示された冷房兼用の暖房装置において、1
は圧縮機、3は外気側熱交換器、7は負荷側熱交
換器、9は膨張装置としての膨張弁で、各機器を
冷媒経路で接続してヒートポンプが形成されてい
る。なお、冷媒経路には四方弁2、膨張弁6、チ
エツキ弁4,8が配備されて冷房運転に切換可能
に形成されている。5はレシーバーである。
The present invention will be explained with reference to the drawings based on examples.
In the cooling/heating device shown in the drawing, 1
3 is a compressor, 3 is an outside air side heat exchanger, 7 is a load side heat exchanger, 9 is an expansion valve as an expansion device, and a heat pump is formed by connecting each device with a refrigerant path. Note that a four-way valve 2, an expansion valve 6, and check valves 4 and 8 are provided in the refrigerant path to enable switching to cooling operation. 5 is a receiver.

ヒートポンプには、さらに外気側熱交換器3と
並列に補助蒸発器23が配備されている。本実施
例ではレシーバー5と膨張弁9との間の冷媒経路
から外気側熱交換器3と四方弁2との間に冷媒経
路を接続する冷媒経路が外気側熱交換器3をバイ
パスするバイパス経路37として分岐配備され、
該バイパス経路37にバイパス弁21と膨張弁2
2と補助蒸発器23が配備されている。
The heat pump is further provided with an auxiliary evaporator 23 in parallel with the outside air side heat exchanger 3. In this embodiment, the refrigerant path connecting the refrigerant path between the receiver 5 and the expansion valve 9 and the outside air side heat exchanger 3 and the four-way valve 2 is a bypass path that bypasses the outside air side heat exchanger 3. Branched out as 37,
A bypass valve 21 and an expansion valve 2 are provided in the bypass path 37.
2 and an auxiliary evaporator 23 are provided.

25は圧縮機1を駆動する熱機関として用いら
れているエンジンで、エンジン25からの排熱を
回収する排熱回収装置として例えばジヤケツト1
1や排ガス熱交換器14を備えている。
Reference numeral 25 denotes an engine used as a heat engine for driving the compressor 1. For example, a jacket 1 is used as an exhaust heat recovery device for recovering exhaust heat from the engine 25.
1 and an exhaust gas heat exchanger 14.

負荷流体を負荷側熱交換器7に導く負荷流体経
路には負荷側熱交換器7をバイパスする負荷流体
経路がバイパス経路19として分岐配備されてい
る。バイパス経路19はエンジン25のジヤケツ
ト11、冷却媒体冷却器10、排ガス熱交換器1
4を通過するように設けられているが、冷却媒体
冷却器10をバイパスし補助蒸発器23を通過す
る補助熱源経路16が分岐配備されている。12
はポンプ、13は三方弁、15,17,18は三
方切換弁、20は電磁弁である。
A load fluid path that bypasses the load side heat exchanger 7 is branched into a load fluid path that leads the load fluid to the load side heat exchanger 7 as a bypass path 19 . The bypass path 19 connects the jacket 11 of the engine 25, the coolant cooler 10, and the exhaust gas heat exchanger 1.
4, an auxiliary heat source path 16 that bypasses the coolant cooler 10 and passes through the auxiliary evaporator 23 is branched. 12
is a pump, 13 is a three-way valve, 15, 17, 18 are three-way switching valves, and 20 is a solenoid valve.

上述の如く形成された暖房装置はさらに外気温
を直接的又は間接的に検出する外気温検出装置
と、得られた検出値を設定値と比較し、かつ、外
気温が所定の異常低温度以下であるときに、該検
出値に基づいて、外気側熱交換器3と補助蒸発器
23とへの冷媒流量比を制御する流量比制御装置
と、負荷を検出する負荷検出装置と、得られた検
出値を設定値と比較し、かつ、負荷が過大である
ときに、該検出値に基づいて、エンジン25の回
転数を制御する回転数制御装置とが備えられてい
る。外気温検出装置としては、外気温度(温度検
出器27)、蒸発圧力(圧力検出器28)又は蒸
発温度(温度検出器30)などの如き外気温度関
連物理量の検出装置、即ち外気温を直接的又は間
接的に検出する検出装置が用いられ、負荷検出装
置としては負荷の検出即ち負荷量の検出を行うも
のであればよく、負荷流体(温水)の入口温度、
出口温度(温度検出器26)又は出入口温度差な
どの検出装置が用いられる。流量比制御装置は制
御機構とバイパス弁21とからなり、回転数制御
装置は制御機構と回転数調節装置38とからなつ
ている。流量比制御装置の制御機構及び回転数制
御装置の制御機構は、前者は外気温検出装置、後
者は負荷検出装置により得られた検出値を設定値
と比較し、前者は外気温が所定の異常低温度以下
であるときに後者は負荷が過大であるときに、検
出値に基づいて、流量比又は回転数を制御するも
のである。即ち検出装置からの信号を、予め定め
られた設定値と比較し、フイードバツクを行うか
或いは予め定められたプログラムに従つて、入力
信号に対応する信号を出力し、この出力信号によ
り、それぞれバイパス弁21又は回転数調節装置
38を所定の流量比又は回転数とする制御を行う
ものである。回転数制御装置としては、例えば、
検出された負荷温度の温度信号を電圧信号に変換
する制御機構と、この電圧信号をガバナーに送
り、ガバナナモータによりエンジン25のスロツ
トルバルブを操作する回転数調節装置38とが設
けられ、負荷温度が一定になるように制御するよ
うにしてある。
The heating device formed as described above further includes an outside temperature detection device that directly or indirectly detects the outside temperature, and compares the obtained detected value with a set value, and determines whether the outside temperature is below a predetermined abnormally low temperature. , a flow rate ratio control device that controls the refrigerant flow rate ratio to the outside air side heat exchanger 3 and the auxiliary evaporator 23 based on the detected value, and a load detection device that detects the load. A rotation speed control device is provided that compares the detected value with a set value and controls the rotation speed of the engine 25 based on the detected value when the load is excessive. The outside temperature detection device is a device for detecting physical quantities related to outside air temperature, such as outside air temperature (temperature detector 27), evaporation pressure (pressure detector 28), or evaporation temperature (temperature detector 30), that is, a device that directly detects outside temperature. Alternatively, a detection device that detects indirectly is used, and the load detection device only needs to detect the load, that is, the amount of load, and the inlet temperature of the load fluid (hot water),
Detection devices such as outlet temperature (temperature detector 26) or inlet/outlet temperature difference are used. The flow ratio control device consists of a control mechanism and a bypass valve 21, and the rotation speed control device consists of a control mechanism and a rotation speed adjustment device 38. The control mechanism of the flow rate ratio control device and the control mechanism of the rotation speed control device compare the detected value obtained by the outside temperature detection device in the former and the load detection device in the latter with a set value, and the former compares the detected value obtained by the outside temperature detection device with a set value. In the latter case, when the load is excessive when the temperature is below low temperature, the flow rate ratio or the rotation speed is controlled based on the detected value. That is, the signal from the detection device is compared with a predetermined setting value, and a signal corresponding to the input signal is output according to feedback or a predetermined program, and this output signal is used to activate the bypass valve. 21 or the rotational speed adjusting device 38 to a predetermined flow rate ratio or rotational speed. As the rotation speed control device, for example,
A control mechanism that converts a temperature signal of the detected load temperature into a voltage signal, and a rotation speed adjustment device 38 that sends this voltage signal to a governor and operates a throttle valve of the engine 25 by a governor motor are provided. It is controlled so that it remains constant.

しかして、ヒートポンプサイクルの通常時は一
般の電動式空気熱源ヒートポンプと同様である。
即ち夏期冷房時においては、冷媒は圧縮機1→四
方弁2→外気側熱交換器3(凝縮器として作動)
→チエツキ弁4→レシーバー5→膨張弁6→負荷
側熱交換器7(蒸発器として作動)→四方弁2→
圧縮機1の順序で循環し、負荷側熱交換器7にお
いて冷水を冷却する。
Therefore, the normal heat pump cycle is similar to that of a general electric air source heat pump.
In other words, during summer cooling, the refrigerant flows through the compressor 1 → four-way valve 2 → outside air side heat exchanger 3 (operates as a condenser)
→ Check valve 4 → Receiver 5 → Expansion valve 6 → Load side heat exchanger 7 (operates as an evaporator) → Four-way valve 2 →
The cold water is circulated in the order of the compressor 1 and cooled in the load side heat exchanger 7.

暖房時においては四方弁2を切り換えて冷媒の
経路を変え、圧縮機1→四方弁2→負荷側熱交換
器7(凝縮器として作用)チエツキ弁8→レシー
バー5→膨張弁9→外気側熱交換器3(蒸発器と
して作用)→四方弁2→圧縮機1の順序で循環
し、負荷側熱交換器7において温水を加熱するよ
うになつている。
During heating, the four-way valve 2 is switched to change the refrigerant path, compressor 1 → four-way valve 2 → load side heat exchanger 7 (acts as a condenser) check valve 8 → receiver 5 → expansion valve 9 → outside air side heat The hot water is circulated in the order of exchanger 3 (acting as an evaporator) → four-way valve 2 → compressor 1, and the hot water is heated in the load-side heat exchanger 7.

一方エンジン25側サイクルは次のようになつ
ている。冷房時、ジヤケツト11よりの排熱は冷
却媒体冷却器10により外気により冷却される。
即ち、ジヤケツト11を冷却して加熱された冷却
媒体はポンプ12により吸込まれ、冷却媒体冷却
器10に送られ、ここで冷却される。そして三方
弁13を経由して、再びジヤケツト11に供給さ
れる。なお、温度検出器24によりこの冷却媒体
の温度が検出され、三方弁13により排ガス熱交
換器14のバイパス量が制御され、適温の冷却水
が、ジヤケツト11に供給される。
On the other hand, the cycle on the engine 25 side is as follows. During cooling, the exhaust heat from the jacket 11 is cooled by the outside air by the cooling medium cooler 10.
That is, the coolant that has been heated by cooling the jacket 11 is sucked by the pump 12, sent to the coolant cooler 10, and cooled there. The water is then supplied to the jacket 11 again via the three-way valve 13. The temperature of the cooling medium is detected by the temperature detector 24, the bypass amount of the exhaust gas heat exchanger 14 is controlled by the three-way valve 13, and cooling water at an appropriate temperature is supplied to the jacket 11.

暖房時は三方切替弁15,17,18が切替え
られ、また電磁弁20が開となりエンジン25よ
りの排熱は温水加熱に供せられる。即ちジヤケツ
ト11を冷却して加熱された冷却水(負荷温水の
一部)はポンプ12によりバイパス経路19に吸
い込まれ、三方切替弁15、補助熱源経路16を
通り補助蒸発器23を通過し、その後、三方切替
弁17を介して、排ガス熱交換器14に送られ、
排ガスにより更に加熱される。
During heating, the three-way switching valves 15, 17, and 18 are switched, and the solenoid valve 20 is opened so that the exhaust heat from the engine 25 is used to heat the hot water. That is, the cooling water (part of the load hot water) heated by cooling the jacket 11 is sucked into the bypass path 19 by the pump 12, passes through the three-way switching valve 15, the auxiliary heat source path 16, and the auxiliary evaporator 23, and then , sent to the exhaust gas heat exchanger 14 via the three-way switching valve 17,
It is further heated by exhaust gas.

加熱された温水は三方切替弁18を介して、負
荷側熱交換器7よりの温水と合流して、負荷加熱
に供せられる。温度の下つた負荷温水は電磁弁2
0を通り、再びジヤケツト11の冷却に供せられ
る。なお負荷が少ないとき、ジヤケツト11に供
給される温水温度が高過ぎる場合があるので、こ
の供給温度は温度検出器24により検出され、三
方調節弁13により、大略一定温度になるように
調節される。
The heated hot water joins the hot water from the load-side heat exchanger 7 via the three-way switching valve 18, and is used for heating the load. Solenoid valve 2 handles the load hot water when the temperature drops.
0, and the jacket 11 is cooled again. Note that when the load is light, the temperature of the hot water supplied to the jacket 11 may be too high, so this supply temperature is detected by the temperature detector 24 and adjusted by the three-way control valve 13 so that the temperature is approximately constant. .

通常暖房負荷は冷暖負荷より小さいので、暖房
時は、冷房時に比べてエンジン25の回転数を低
く設定するようにしてもよい。
Since the heating load is normally smaller than the cooling load, the rotational speed of the engine 25 may be set lower during heating than during cooling.

このようにすれば、後述の如く異常低温時に回
転数を上昇せしめるための余裕を持たせることが
容易となる。
In this way, as will be described later, it is easy to provide a margin for increasing the rotational speed at abnormally low temperatures.

暖房時に、外気温が十分高い通常時には、バイ
パス弁21を閉じ、冷媒の全量を外気側熱交換器
3に導き、ヒートポンプの熱源を外気のみより取
る。外気温が或る程度低下すると暖房能力が低下
するので、回転数制御装置により、即ち、負荷流
体の温度の検出値に基づいてエンジン25の回転
数を回転数調節装置38により自動的に制御し
て、上昇せしめる。前述の如く、暖房時の回転数
を冷房時の回転数より低く設定するようにした装
置においても、この場合はその設定回転数より回
転数を上昇せしめる。
During heating, when the outside temperature is normally high enough, the bypass valve 21 is closed, the entire amount of refrigerant is guided to the outside air side heat exchanger 3, and the heat source of the heat pump is taken only from the outside air. Since the heating capacity decreases when the outside temperature drops to a certain degree, the rotation speed of the engine 25 is automatically controlled by the rotation speed control device 38 based on the detected value of the temperature of the load fluid. and let it rise. As described above, even in a device in which the rotational speed during heating is set lower than the rotational speed during cooling, in this case the rotational speed is increased above the set rotational speed.

さらに外気温が低下して、外気温が所定の異常
低温度例えば外気側熱交換器3に着霜が頻繁に現
れるようになる温度以下であることが検出される
と、着霜を防ぐために流量比制御装置が作動し、
外気側熱交換器3と補助蒸発器23とがそれぞれ
負担する負荷の負荷比の制御を行つてヒートポン
プに必要な熱を、外気から優先して取り込み、こ
れにより、その外気温度条件における成積係数を
最良のものとし、不足する熱を補助蒸発器23に
おいて温水から取り込み、こられの熱により蒸発
作用を行うことにより形成されるヒートポンプに
より負荷温水を加熱し、同時にエンジン排熱によ
り負荷温水を加熱する。そこでなお過大な負荷に
対し不足する熱は、回転数制御装置によりエンジ
ン25の回転数を通常時より上昇せしめて得られ
た余剰の出力又は排熱を直接又は間接的に利用し
て補充して取り込む。
Furthermore, when it is detected that the outside temperature is lower than a predetermined abnormally low temperature, for example, a temperature at which frost frequently appears on the outside air side heat exchanger 3, the flow rate is increased to prevent frost formation. The ratio control device operates,
By controlling the load ratio of the loads borne by the outside air side heat exchanger 3 and the auxiliary evaporator 23, the heat required for the heat pump is taken in from the outside air with priority, thereby improving the product growth coefficient under the outside air temperature condition. By taking the insufficient heat from the hot water in the auxiliary evaporator 23, and using this heat to perform the evaporation action, the load hot water is heated by the heat pump formed, and at the same time, the load hot water is heated by the engine exhaust heat. do. Therefore, the heat that is still insufficient due to the excessive load is supplemented by directly or indirectly using the surplus output or exhaust heat obtained by increasing the rotation speed of the engine 25 from the normal speed using the rotation speed control device. take in.

外気温度が極度に異常低下した場合には、バイ
パス弁21は全開となり、殆んどの負荷は補助蒸
発器23が負担することになる。外気側熱交換器
3の経路にも開閉弁を設けてもよい。
If the outside air temperature drops extremely abnormally, the bypass valve 21 will be fully open, and most of the load will be borne by the auxiliary evaporator 23. An on-off valve may also be provided in the path of the outside air side heat exchanger 3.

以上の如く、必要熱量を外気から優先して取り
込むように流量比制御装置により流量比を制御
し、不足分を補助蒸発器23において温水から取
り込み、さらに不足分をエンジン25の回転数の
上昇により取り込むようにすることにより、着霜
を防ぎ、COPの良好な暖房サイクル運転を行
い、しかも暖房能力の低下を生じないようにする
ことができる。即ちCOPを最良にするために
は、熱は外気からできるだけ取り入れるのがよい
が、外気温が低い場合には異常着霜を生ずるの
で、着霜が異常状態にならない程度の最低の温度
となるように冷媒流量を外気側熱交換器3と補助
蒸発器23とに分配するのである。
As described above, the flow rate ratio is controlled by the flow rate ratio control device so that the required amount of heat is taken in from the outside air with priority, the insufficient amount is taken in from the hot water in the auxiliary evaporator 23, and the insufficient amount is further taken in by increasing the rotation speed of the engine 25. By taking in the heat, it is possible to prevent frost formation, perform a good heating cycle operation of the COP, and prevent a decrease in the heating capacity. In other words, in order to achieve the best COP, it is better to take in as much heat as possible from the outside air, but if the outside temperature is low, abnormal frost formation will occur, so it is necessary to keep the temperature at the lowest level without causing abnormal frost formation. The refrigerant flow rate is distributed between the outside air side heat exchanger 3 and the auxiliary evaporator 23.

制御方式の例につき説明する。図面には各種の
制御方式が示されているが、これは全部同時に設
けられ、又は作動するという意味ではなく、便宜
上同一図面に記入したものであり、各制御方式が
単独、又は適宜組み合わされて使用されるもので
ある。
An example of a control method will be explained. Although various control methods are shown in the drawings, this does not mean that they are all provided or operated at the same time, but are drawn on the same drawing for convenience, and each control method may be used alone or in combination as appropriate. It is used.

回転数制御装置により負荷に応じて暖房能力を
適合させる制御は、例えば、負荷検出装置とし
て、戻り経路の温水温度の温度検出器26を用
い、その信号に基づいて制御機構39と回転数調
節装置38によりエンジン25の回転数を制御し
て戻り温水温度をほぼ一定に保つようにする。
The control to adapt the heating capacity according to the load by the rotation speed control device uses, for example, the temperature detector 26 of the hot water temperature in the return path as the load detection device, and based on the signal, the control mechanism 39 and the rotation speed adjustment device 38 controls the rotational speed of the engine 25 to keep the return hot water temperature almost constant.

流量比制御装置による外気側熱交換器3と補助
蒸発器23との負担負荷の負荷比制御、即ち両者
の流量比制御は、バイパス弁21の流量制御によ
り行われ、例えば次の如き方式で行われる。
The load ratio control of the load between the outside air side heat exchanger 3 and the auxiliary evaporator 23, that is, the flow rate ratio control of both, by the flow rate ratio control device is performed by controlling the flow rate of the bypass valve 21, and is performed, for example, in the following manner. be exposed.

外気温検出装置として温度検出器27を用いた
ときは制御機構40により、圧力検出器28を用
いたときは制御機構42により、温度検出器30
を用いたときは制御機構41により、蒸発圧力又
は蒸発温度がそのときの外気温度に対し着霜を生
じない蒸発温度を与え、かつCOPが最大となる
ような所定の値となるようにバイパス弁21の流
量制御を行う。
When the temperature detector 27 is used as an outside temperature detection device, the temperature detector 30 is controlled by the control mechanism 40, and when the pressure detector 28 is used, the control mechanism 42
When using the bypass valve, the control mechanism 41 controls the bypass valve so that the evaporation pressure or evaporation temperature reaches a predetermined value that will give an evaporation temperature that does not cause frosting relative to the outside air temperature at that time and will maximize the COP. 21 flow rate control is performed.

或いは別の制御方式として、予め組まれたプロ
グラムにより制御を行つてもよい。例えば、外気
温度(温度検出器27)とバイパス弁21の開度
との間のプログラム、蒸発圧力(圧力検出器2
8)とバイパス弁21の開度との間のプログラ
ム、負荷(温度検出器32、エンジン回転数検出
器又は冷却水の温度検出器31)と外気温度(温
度検出器27)との信号の組み合わせとバイパス
弁21の開度との間のプログラム(制御機構33
又は34を用いる)、負荷(温度検出器32、エ
ンジン回転数検出器又は冷却水の温度検出器3
1)と蒸発圧力(圧力検出器29)との信号の組
み合わせとバイパス弁21の開度との間のプログ
ラム(制御機構35を用いる)などによる制御で
ある。
Alternatively, as another control method, control may be performed using a preset program. For example, a program between the outside air temperature (temperature detector 27) and the opening degree of the bypass valve 21, evaporation pressure (pressure detector 27), etc.
8) and the opening degree of the bypass valve 21, a combination of signals between the load (temperature detector 32, engine speed detector or cooling water temperature detector 31) and outside air temperature (temperature detector 27) and the opening degree of the bypass valve 21 (control mechanism 33
or 34), load (temperature sensor 32, engine speed sensor or cooling water temperature sensor 3
1), evaporation pressure (pressure detector 29), and the opening degree of the bypass valve 21 using a program (using the control mechanism 35).

或いは別の制御方式として、外気温度(温度検
出器27)と蒸発温度(温度検出器30)との温
度差を検出し制御機構36によりバイパス弁21
の開度を、プログラムにより、或いは、蒸発温度
又は蒸発圧力が前述の如き所定の値になるように
制御してもよい。こ方式が他の方式より一層好ま
しい。
Alternatively, as another control method, the temperature difference between the outside air temperature (temperature detector 27) and the evaporation temperature (temperature detector 30) is detected, and the bypass valve 21 is activated by the control mechanism 36.
The opening degree may be controlled by a program or so that the evaporation temperature or evaporation pressure becomes a predetermined value as described above. This method is more preferable than other methods.

以上に述べた種々の外気温検出装置(温度検出
器27,31、圧力検出器28,29)は外気温
度に関連する外気温度関連物理量を検出、即ち外
気温を直接的又は間接的に検出するものであり、
このほか、例えば圧縮機1の吸込み圧(蒸発圧力
とほぼ同じ)を検出してもよい。
The various outside temperature detection devices (temperature detectors 27, 31, pressure detectors 28, 29) described above detect outside temperature-related physical quantities related to outside air temperature, that is, directly or indirectly detect outside temperature. It is a thing,
In addition, for example, the suction pressure of the compressor 1 (approximately the same as the evaporation pressure) may be detected.

補助蒸発器23の加熱源は、上述のほか直接排
熱を利用してもよく、また、負荷側熱交換器7
(凝縮器)の入口又は出口の温水により加熱して
もよい。即ち、補助熱源経路16に直接排熱媒体
を導いたり、直接温水を導いたりすることもでき
る。
In addition to the above, the heat source of the auxiliary evaporator 23 may be direct exhaust heat, or the heat exchanger 7 on the load side.
It may be heated by hot water at the inlet or outlet of the condenser. That is, it is also possible to directly introduce the waste heat medium or hot water to the auxiliary heat source path 16.

以上の実施例は、上記の如く構成され作用する
ので、外気温が異常に低下しても、外気側熱交換
器3に着霜を生じたり、COPの低下を招いて能
力低下を来たすようなことはなく、しかも特別に
ボイラなどの加熱設備を必要としない利点があ
る。
The above embodiment is configured and operates as described above, so that even if the outside temperature drops abnormally, frost will not form on the outside air side heat exchanger 3, or the COP will decrease, resulting in a decrease in capacity. Moreover, it has the advantage of not requiring special heating equipment such as a boiler.

なお、本装置は、その発明の目的より暖房装置
であるが、図示の実施例の如く冷房暖房兼用機で
あつてもよい。しかし、広義のヒートポンプの一
つである冷房専用機とは無関係である。
Although this device is a heating device according to the purpose of the invention, it may also be a heating and cooling device as in the illustrated embodiment. However, it has nothing to do with a cooling-only machine, which is a type of heat pump in a broad sense.

〔発明の効果〕〔Effect of the invention〕

本発明により、次の如き特別顕著な効果を有す
る暖房装置を提供することができる。
According to the present invention, it is possible to provide a heating device having the following particularly remarkable effects.

(1) 外気温が異常に低下した場合に、 (a) 通常の外気温の場合に用いる外気側熱交換
器と並列に挿入された補助蒸発器に負荷流体
と冷媒とを同時に導いた状態となし、冷媒を
負荷流体により加熱して蒸発せしめ比体積の
小なる冷媒ガスを発生せしめると共に着霜を
防止してヒートポンプサイクルの動作を可能
となし、このヒートポンプサイクルにより負
荷側熱交換器において負荷流体を加熱し、補
助蒸発器で奪われた熱以上の多量の熱を負荷
流体に与え、負荷流体を有効に加熱する。
(1) When the outside temperature drops abnormally, (a) the load fluid and refrigerant are simultaneously introduced into the auxiliary evaporator inserted in parallel with the outside air side heat exchanger used in the case of normal outside temperatures; None, the refrigerant is heated by the load fluid and evaporated to generate a refrigerant gas with a small specific volume, preventing frost formation and enabling the operation of the heat pump cycle. The auxiliary evaporator heats the load fluid and provides the load fluid with a larger amount of heat than the heat removed by the auxiliary evaporator, effectively heating the load fluid.

(b) 負荷流体の一部が熱機関の排熱により直接
加熱されるようになつているので、負荷流体
の加熱量は一層大となり、また回収熱の放散
も少ない。
(b) Since a part of the load fluid is directly heated by the exhaust heat of the heat engine, the amount of heating of the load fluid is further increased, and less recovered heat is dissipated.

(c) (a)の如く、ヒートポンプサイクルの作動を
可能とすることにより、熱機関をアイドリン
グ状態ではなく定格負荷或いはそれに近い状
態で運転せしめるので、排熱量は多量とな
り、(a)と合わせて負荷流体の加熱量は大とな
る。
(c) As shown in (a), by enabling the operation of the heat pump cycle, the heat engine is operated at or near the rated load rather than in an idling state, so the amount of waste heat is large, and in combination with (a) The amount of heating of the load fluid becomes large.

(d) 補助蒸発器で負荷流体から加熱されると同
時に、外気側熱交換器においても外気からの
熱の汲み上げが可能であり、ヒートポンプに
おける負荷流体の加熱量を増大せしめ得る。
(d) At the same time that the auxiliary evaporator heats the load fluid, it is also possible to pump up heat from the outside air in the outside air side heat exchanger, which can increase the amount of heating of the load fluid in the heat pump.

(e) 熱機関の回転数を上昇せしめ、ヒートポン
プの容量、即ち、ヒートポンプの加熱量と、
排熱による加熱量とを増大せしめる。
(e) Increase the rotation speed of the heat engine to increase the capacity of the heat pump, that is, the amount of heat pumped,
This increases the amount of heat generated by waste heat.

(f) このように負荷流体の加熱をできるだけ行
つて、暖房容量の低下を防止する。
(f) In this way, the load fluid is heated as much as possible to prevent a decrease in heating capacity.

(g) しかも着霜が防止できて安定した運転を行
なう。
(g) Furthermore, frost formation can be prevented and stable operation can be achieved.

(h) COPを最良の値に保つことができる。 (h) COP can be maintained at the best value.

(2) 外気温が通常の温度である場合 (a) 外気から熱を汲み上げてヒートポンプサイ
クルを作動せしめて負荷流体を加熱すると同
時に、熱機関の排熱により負荷流体の一部を
加熱して熱利用率の向上をはかることができ
る。
(2) When the outside temperature is normal (a) Heat is pumped up from the outside air to activate the heat pump cycle to heat the load fluid, and at the same time heats a part of the load fluid using the exhaust heat of the heat engine to generate heat. It is possible to improve the utilization rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のフロー図である。 1…圧縮機、2…四方弁、3…外気側熱交換
器、4…チエツキ弁、5…レシーバー、6…膨張
弁、7…負荷側熱交換器、8…チエツキ弁、9…
膨張弁、10…冷却器、11…ジヤケツト、12
…ポンプ、13…三方弁、14…排ガス熱交換
器、15…三方切替弁、16…補助熱源経路、1
7…三方切替弁、18…三方切替弁、19…バイ
パス経路、20…電磁弁、21…バイパス弁、2
2…膨張弁、23…補助蒸発器、24…温度検出
器、25…エンジン、26,27…温度検出器、
28,29…圧力検出器、30,31,32…温
度検出器、33,34,35,36…制御機構、
37…バイパス経路、38…回転数調節装置、3
9,40,41,42…制御機構。
FIG. 1 is a flow diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Compressor, 2...Four-way valve, 3...Outside air side heat exchanger, 4...Check valve, 5...Receiver, 6...Expansion valve, 7...Load side heat exchanger, 8...Check valve, 9...
Expansion valve, 10... Cooler, 11... Jacket, 12
...Pump, 13...Three-way valve, 14...Exhaust gas heat exchanger, 15...Three-way switching valve, 16...Auxiliary heat source path, 1
7... Three-way switching valve, 18... Three-way switching valve, 19... Bypass path, 20... Solenoid valve, 21... Bypass valve, 2
2... Expansion valve, 23... Auxiliary evaporator, 24... Temperature detector, 25... Engine, 26, 27... Temperature detector,
28, 29... Pressure detector, 30, 31, 32... Temperature detector, 33, 34, 35, 36... Control mechanism,
37... Bypass path, 38... Rotation speed adjustment device, 3
9, 40, 41, 42...control mechanism.

Claims (1)

【特許請求の範囲】 1 熱機関により駆動される圧縮機、外気側熱交
換器、負荷側熱交換器、膨張装置及びこれらの機
器を接続する冷媒経路よりなるヒートポンプと、
前記熱機関からの排熱を回収する排熱回収装置と
を備えた暖房装置において、前記冷媒経路に前記
外気側熱交換器に並列に配備された補助蒸発器
と、前記排熱回収装置及び前記負荷側熱交換器に
負荷流体を導く負荷流体経路と、前記補助蒸発器
に負荷流体又は排熱媒体を導く補助熱源経路と、
外気温を直接的又は間接的に検出する外気温検出
装置と、得られた検出値を設定値と比較し、か
つ、外気温が所定の異常低温度以下であるとき
に、該検出値に基づいて、前記外気側熱交換器と
前記補助蒸発器とへの冷媒流量比を制御する流量
比制御装置と、負荷を検出する負荷検出装置と、
得られた検出値を設定値と比較し、かつ、負荷が
過大であるときに、該検出値に基づいて、前記熱
機関の回転数を制御する回転数制御装置とを備え
たことを特徴とする暖房装置。 2 前記負荷検出装置が、負荷流体の温度を検出
する温度検出器である特許請求の範囲第1項記載
の装置。
[Scope of Claims] 1. A heat pump consisting of a compressor driven by a heat engine, an outside air side heat exchanger, a load side heat exchanger, an expansion device, and a refrigerant path connecting these devices;
an auxiliary evaporator disposed in the refrigerant path in parallel with the outside air side heat exchanger; a load fluid path that leads the load fluid to the load side heat exchanger; an auxiliary heat source path that leads the load fluid or the waste heat medium to the auxiliary evaporator;
An outside temperature detection device that directly or indirectly detects the outside temperature, and compares the obtained detected value with a set value, and when the outside temperature is below a predetermined abnormally low temperature, a flow rate ratio control device that controls a refrigerant flow rate ratio to the outside air side heat exchanger and the auxiliary evaporator; and a load detection device that detects the load;
A rotation speed control device that compares the obtained detected value with a set value and controls the rotation speed of the heat engine based on the detected value when the load is excessive. heating equipment. 2. The device according to claim 1, wherein the load detection device is a temperature detector that detects the temperature of the load fluid.
JP55137366A 1980-10-01 1980-10-01 Air conditioner Granted JPS5762373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55137366A JPS5762373A (en) 1980-10-01 1980-10-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55137366A JPS5762373A (en) 1980-10-01 1980-10-01 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5762373A JPS5762373A (en) 1982-04-15
JPS6256427B2 true JPS6256427B2 (en) 1987-11-25

Family

ID=15196994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55137366A Granted JPS5762373A (en) 1980-10-01 1980-10-01 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5762373A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924159A (en) * 1982-07-31 1984-02-07 ヤンマーディーゼル株式会社 Annunciator for abnormality of engine driving heat pump system
JPS5924160A (en) * 1982-07-31 1984-02-07 ヤンマーディーゼル株式会社 Monitor device for engine driving heat pump system
JP2730934B2 (en) * 1988-11-18 1998-03-25 三洋電機株式会社 Heat pump refrigeration system
JP2002089992A (en) * 2000-09-20 2002-03-27 Aisin Seiki Co Ltd Engine-driven heat pump
JP5069952B2 (en) * 2007-06-08 2012-11-07 三洋電機株式会社 AIR CONDITIONER AND CONTROL METHOD FOR AIR CONDITIONER
JP2009079813A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Heat source-side unit, air conditioning device and air conditioning system
JP6422363B2 (en) * 2015-02-13 2018-11-14 大阪瓦斯株式会社 Air conditioning system
KR101592270B1 (en) * 2015-07-21 2016-02-18 (주)정인하이테크 Refrigeration cycle apparatus and control method thereof

Also Published As

Publication number Publication date
JPS5762373A (en) 1982-04-15

Similar Documents

Publication Publication Date Title
US4770000A (en) Defrosting of refrigerator system out-door heat exchanger
US5050394A (en) Controllable variable speed heat pump for combined water heating and space cooling
JPS622241Y2 (en)
CA2536757C (en) Boosted air source heat pump
CN101788214A (en) Air conditioning condenser
KR102560048B1 (en) High-efficiency integrated absorption cooling system using fuel cell exhaust heat
CN110736276B (en) Control method of natural cooling refrigeration system
JPS6256427B2 (en)
JPS6310349B2 (en)
JPH0721362B2 (en) Waste heat recovery power generator
US6749016B2 (en) Brine temperature control apparatus using a three-way proportional valve
CN201047687Y (en) Hot gas bypass back-out concurrent heating defrost constant temperature hot-water system
JPS6325265B2 (en)
JPS6256428B2 (en)
JPS6152914B2 (en)
CN112178843A (en) Air conditioning unit with heat storage function and control method thereof
JP2004116931A (en) Gas heat pump type refrigeration device and its control method
JPH09138024A (en) Air conditioner
JPH025319Y2 (en)
JPH0260950B2 (en)
CN2819111Y (en) Multiple throttling hot-pumping water heater set
CN113864926B (en) Air conditioner and dehumidification method
CN109764517A (en) A kind of air-conditioning heat recovery system
JPS6256430B2 (en)
CN114812008B (en) Air-cooled heat pump, control method and device of air-cooled heat pump and readable storage medium