JPH074758A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH074758A
JPH074758A JP14211093A JP14211093A JPH074758A JP H074758 A JPH074758 A JP H074758A JP 14211093 A JP14211093 A JP 14211093A JP 14211093 A JP14211093 A JP 14211093A JP H074758 A JPH074758 A JP H074758A
Authority
JP
Japan
Prior art keywords
refrigerator
refrigerant
circuit
load
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14211093A
Other languages
Japanese (ja)
Inventor
Hiroshi Ota
廣 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14211093A priority Critical patent/JPH074758A/en
Publication of JPH074758A publication Critical patent/JPH074758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To delicately regulate temp. over a wide prescribed temp. range without using well water. CONSTITUTION:The refrigerant in a refrigerator circuit 21 is cooled by a refrigerator 29 with a variable-speed driving motor 29a as a driving source, the refrigerant in a load circuit 2 is cooled by the refrigerant in the refrigerator circuit 21 through a heat exchanger 5, the amount of the refrigerant flowing into the heat exchanger 5 from the refrigerator circuit 21 is controlled by a flow amount control device 32 according to the temp. of the refrigerant in the load circuit 2 and the cooling output of the refrigerator 29 is controlled by a refrigerator control device 33 according to the temp. of the refrigerant in the refrigerator circuit 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば加速器や化学
反応装置などの熱発生源を冷却するために使用される冷
却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device used for cooling a heat source such as an accelerator or a chemical reaction device.

【0002】[0002]

【従来の技術】図15は従来の冷却装置の一例を示す構
成図である。図において、1は熱発生源(負荷)、2は
熱発生源1を冷却するための冷媒が循環する負荷回路で
あり、3は負荷回路配管、4は負荷回路循環ポンプであ
る。5は負荷回路2の途中に設けられた熱交換器、6は
井戸、7は井戸6からの井水(冷却水)を熱交換器5に
流すための井水配管、8は井水配管7の途中に設けられ
た井水ポンプ、9は排水溝である。
2. Description of the Related Art FIG. 15 is a block diagram showing an example of a conventional cooling device. In the figure, 1 is a heat generation source (load), 2 is a load circuit in which a refrigerant for cooling the heat generation source 1 circulates, 3 is load circuit piping, and 4 is a load circuit circulation pump. 5 is a heat exchanger provided in the middle of the load circuit 2, 6 is a well, 7 is well water piping for flowing well water (cooling water) from the well 6 to the heat exchanger 5, and 8 is well water piping 7 Well water pump provided in the middle of the, and 9 is a drain.

【0003】10は熱交換器5をバイパスして井水を流
すバイパス配管、11は井水配管7とバイパス配管10
との合流部分に設けられた三方弁、12は負荷回路配管
3の途中に設けられた温度検出制御器であり、この温度
検出制御器12は、負荷回路2の冷媒温度を検出し、そ
の温度に応じて三方弁11を制御する。
Reference numeral 10 is a bypass pipe for bypassing the heat exchanger 5 and flowing well water. Reference numeral 11 is a well water pipe 7 and a bypass pipe 10.
Is a three-way valve provided at the confluence part of the load circuit 2 and a temperature detection controller 12 provided in the middle of the load circuit pipe 3. The temperature detection controller 12 detects the refrigerant temperature of the load circuit 2 and detects the temperature. The three-way valve 11 is controlled accordingly.

【0004】次に、動作について説明する。熱発生源1
で発生した熱は、負荷回路循環ポンプ4により負荷回路
配管3中を流れる冷媒によって吸収される。受熱し温度
上昇した負荷回路2の冷媒は、井水ポンプ8により井水
配管7中を圧送された井水と熱交換器5で熱交換し冷却
される。このとき、熱交換器5に流入する井水の流量
は、三方弁11で調節されている。また、三方弁11
は、温度検出制御器12により制御されており、これに
より負荷回路2の冷媒温度が一定に保たれている。
Next, the operation will be described. Heat source 1
The heat generated in 1 is absorbed by the refrigerant flowing through the load circuit pipe 3 by the load circuit circulation pump 4. The refrigerant in the load circuit 2 that has received the heat and has increased in temperature is cooled by exchanging heat with the well water pumped through the well water pipe 8 by the well water pump 8 in the heat exchanger 5. At this time, the flow rate of the well water flowing into the heat exchanger 5 is adjusted by the three-way valve 11. Also, the three-way valve 11
Is controlled by the temperature detection controller 12, whereby the refrigerant temperature of the load circuit 2 is kept constant.

【0005】[0005]

【発明が解決しようとする課題】上記のように構成され
た従来の冷却装置においては、井水を利用して負荷回路
2の冷媒を冷却しているが、地下水には汲み上げ規制が
あるため、十分な井水を利用するのは難しく、またたと
え井水を利用できても、その温度以下には負荷回路2の
冷媒を冷却できず、十分な冷却効果が得られないという
問題点があった。また、0.1℃級の微細温度制御を行
うためには、負荷容量を大きく上回る多量の井水を垂れ
流さなければならないという問題点もあった。
In the conventional cooling device configured as described above, well water is used to cool the refrigerant in the load circuit 2, but groundwater has a pumping restriction, so that There is a problem that it is difficult to use sufficient well water, and even if well water can be used, the refrigerant in the load circuit 2 cannot be cooled below that temperature, and a sufficient cooling effect cannot be obtained. . In addition, there is a problem that a large amount of well water that greatly exceeds the load capacity must be drained in order to perform fine temperature control in the 0.1 ° C. class.

【0006】この発明は、上記のような問題点を解決す
ることを課題としてなされたものであり、井水を使用す
ることなく、幅広い温度設定域に渡って微細な温度制御
を行うことができる冷却装置を得ることを目的とする。
The present invention has been made to solve the above problems, and it is possible to perform fine temperature control over a wide temperature setting range without using well water. The purpose is to obtain a cooling device.

【0007】[0007]

【課題を解決するための手段】請求項1の発明に係る冷
却装置は、可変速駆動モータを駆動源とする冷凍機によ
り冷凍機回路の冷媒を冷却し、この冷凍機回路の冷媒に
より熱交換器を介して負荷回路の冷媒を冷却し、また熱
交換器に流入する冷凍機回路の冷媒流量を流量制御装置
により負荷回路の冷媒温度に応じて制御するとともに、
冷凍機の冷却出力を冷凍機制御装置により冷凍機回路の
冷媒温度に応じて制御するようにしたものである。
According to another aspect of the present invention, there is provided a cooling device for cooling a refrigerant in a refrigerator circuit by a refrigerator having a variable speed drive motor as a drive source, and exchanging heat with the refrigerant in the refrigerator circuit. The refrigerant of the load circuit is cooled through the cooler, and the refrigerant flow rate of the refrigerator circuit flowing into the heat exchanger is controlled according to the refrigerant temperature of the load circuit by the flow rate control device,
The cooling output of the refrigerator is controlled by the refrigerator controller according to the refrigerant temperature in the refrigerator circuit.

【0008】請求項2の発明に係る冷却装置は、熱交換
器に流入する冷凍機回路の冷媒流量を調節するために、
冷凍機回路配管に熱交換器と並列にバイパス配管を接続
し、熱発生源の熱負荷の変動速度が大きいときには、冷
凍機の冷却出力を上げ、主に流量制御装置により弁を調
節して熱負荷の変動を抑え、熱負荷の変動速度が小さい
ときには、バイパス配管に流入する冷媒流量を減少さ
せ、主に冷凍機制御装置により熱負荷の変動を抑えるよ
うにしたものである。
The cooling device according to the second aspect of the present invention adjusts the refrigerant flow rate of the refrigerator circuit flowing into the heat exchanger,
Bypass piping is connected in parallel with the heat exchanger to the refrigerator circuit piping, and when the fluctuation rate of the heat load of the heat generation source is large, the cooling output of the refrigerator is increased and the valve is mainly adjusted by the flow control device to control the heat. When the fluctuation of the load is suppressed and the fluctuation speed of the heat load is small, the flow rate of the refrigerant flowing into the bypass pipe is reduced, and the fluctuation of the heat load is suppressed mainly by the refrigerator controller.

【0009】請求項3の発明に係る冷却装置は、可変速
駆動モータを駆動源とする冷凍機を冷凍機回路に複数台
設け、冷凍機の運転台数及び各冷凍機の冷却出力を冷凍
機制御装置により冷凍機回路の冷媒温度に応じて制御す
るようにしたものである。
According to the third aspect of the present invention, a plurality of refrigerators having a variable speed drive motor as a drive source are provided in the refrigerator circuit, and the number of operating refrigerators and the cooling output of each refrigerator are controlled by the refrigerator. The device controls the refrigerating circuit according to the refrigerant temperature.

【0010】請求項4の発明に係る冷却装置は、可変速
駆動モータを駆動源とする冷凍機を冷凍機回路に複数台
設け、冷凍機制御装置によって、冷凍機の運転台数及び
各冷凍機の冷却出力を冷凍機回路の冷媒温度に応じて制
御するとともに、各可変速駆動モータと各冷凍機の総合
の運転効率が最大となるように冷凍機の運転台数及び各
冷凍機の冷却出力を制御するようにしたものである。
In the cooling device according to the invention of claim 4, a plurality of refrigerators having a variable speed drive motor as a drive source are provided in the refrigerator circuit, and the number of operating refrigerators and the number of refrigerators are controlled by the refrigerator controller. The cooling output is controlled according to the refrigerant temperature of the refrigerator circuit, and the number of operating refrigerators and the cooling output of each refrigerator are controlled to maximize the total operating efficiency of each variable speed drive motor and each refrigerator. It is something that is done.

【0011】[0011]

【作用】請求項1の発明においては、冷凍機を用いて冷
凍機回路の冷媒を冷却し、この冷凍機回路の冷媒により
熱交換器を介して負荷回路の冷媒を冷却することによ
り、幅広い温度設定域に渡る熱発生源の温度制御を可能
とし、また可変速駆動モータを駆動源とする冷凍機を用
いることにより、微細な温度制御を可能とする。
According to the first aspect of the present invention, the refrigerator is used to cool the refrigerant in the refrigerator circuit, and the refrigerant in the refrigerator circuit is used to cool the refrigerant in the load circuit through the heat exchanger, so that a wide range of temperatures can be obtained. It is possible to control the temperature of the heat generation source over the set range, and fine temperature control is possible by using a refrigerator that uses a variable speed drive motor as a drive source.

【0012】請求項2の発明においては、熱発生源の熱
負荷の変動速度が大きいときには、冷凍機の冷却出力を
上げ、分流による無駄を生じさせつつも、応答の速い弁
で熱負荷の変動を抑え、熱負荷の変動速度が小さいとき
には、バイパス配管に流入する冷媒流量を減少させ、分
流による無駄を最小限にしつつ熱負荷の変動を抑える。
According to the second aspect of the present invention, when the rate of change of the heat load of the heat generation source is large, the cooling output of the refrigerator is increased to cause waste due to the shunting, but the valve with quick response changes the heat load. When the fluctuation speed of the heat load is small, the flow rate of the refrigerant flowing into the bypass pipe is reduced, and the fluctuation of the heat load is suppressed while minimizing the waste due to the diversion.

【0013】請求項3の発明においては、最低冷却出力
の小さい冷凍機を含む複数台の冷凍機を使用し、運転台
数を増減させることにより、熱交換器に流入しない冷凍
機回路の冷媒流量を減らし、運転効率を向上させる。
According to the third aspect of the present invention, a plurality of refrigerators including a refrigerator having a small minimum cooling output is used, and the number of operating refrigerators is increased or decreased so that the refrigerant flow rate of the refrigerator circuit that does not flow into the heat exchanger is reduced. Reduce and improve driving efficiency.

【0014】請求項4の発明においては、各可変速駆動
モータができるだけ最大効率で運転されるように冷凍機
の運転台数を制御することにより、冷却装置全体として
の運転効率を向上させる。
According to the fourth aspect of the present invention, the operating efficiency of the entire cooling device is improved by controlling the number of operating refrigerators so that each variable speed drive motor is operated at the maximum efficiency possible.

【0015】[0015]

【実施例】以下、この発明の実施例を図について説明す
る。 実施例1.図1は請求項1及び請求項2の発明の第1の
実施例による冷却装置を示す構成図であり、図15と同
一又は相当部分には同一符号を付し、その説明を省略す
る。図において、21は熱交換器5を通り負荷回路2の
冷媒を冷却するための冷媒が循環する冷凍機回路であ
り、22は冷凍機回路配管、23は冷凍機回路循環ポン
プ、24は冷媒の温度変化による膨張収縮を吸収するた
めの熱膨張タンクである。
Embodiments of the present invention will be described below with reference to the drawings. Example 1. FIG. 1 is a configuration diagram showing a cooling device according to a first embodiment of the inventions of claims 1 and 2, and the same or corresponding parts to those in FIG. 15 are designated by the same reference numerals and the description thereof will be omitted. In the figure, 21 is a refrigerator circuit in which a refrigerant for cooling the refrigerant of the load circuit 2 circulates through the heat exchanger 5, 22 is a refrigerator circuit pipe, 23 is a refrigerator circuit circulation pump, and 24 is a refrigerant. A thermal expansion tank for absorbing expansion and contraction due to temperature changes.

【0016】25は熱交換器5をバイパスするように冷
媒を流すためのバイパス配管、26は冷凍機回路配管2
2とバイパス配管25との分岐部分に設けられ熱交換器
5に流入する冷媒流量を調節するための弁である三方
弁、27は負荷回路2に設けられ熱交換器5を出た冷媒
の温度を検出する負荷回路温度検出器、28は三方弁2
6と負荷回路温度検出器27とに接続されている三方弁
用制御器であり、この三方弁用制御器28は、負荷回路
温度検出器27により検出された温度に応じて三方弁2
6を制御する。
Reference numeral 25 is a bypass pipe for flowing a refrigerant so as to bypass the heat exchanger 5, and 26 is a refrigerator circuit pipe 2.
2 is a three-way valve which is a valve provided at a branch portion between the bypass pipe 25 and the heat exchanger 5 for adjusting the flow rate of the refrigerant flowing into the heat exchanger 5, and 27 is a temperature of the refrigerant exiting the heat exchanger 5 provided in the load circuit 2. Load circuit temperature detector for detecting the temperature, 28 is a three-way valve 2
6 is a controller for a three-way valve connected to the load circuit temperature detector 27. The three-way valve controller 28 is a three-way valve 2 according to the temperature detected by the load circuit temperature detector 27.
Control 6

【0017】29は冷凍機回路21の途中に設けられ冷
凍機回路21の冷媒を冷却する冷凍機であり、この冷凍
機29は、可変速駆動モータ29aを駆動源としてい
る。30は冷凍機回路21に設けられ冷凍機29を出た
冷媒の温度を検出する冷凍機回路温度検出器、31は冷
凍機29と冷凍機回路温度検出器30とに接続されてい
る冷凍機用制御器であり、この冷凍機用制御器31は、
冷凍機回路温度検出器30により検出された温度に応じ
て冷凍機29の冷却出力を制御する。
A refrigerating machine 29 is provided in the middle of the refrigerating machine circuit 21 to cool the refrigerant in the refrigerating machine circuit 21. The refrigerator 29 uses a variable speed drive motor 29a as a drive source. Reference numeral 30 is a refrigerator circuit temperature detector that is provided in the refrigerator circuit 21 and detects the temperature of the refrigerant that has left the refrigerator 29. Reference numeral 31 is for a refrigerator that is connected to the refrigerator 29 and the refrigerator circuit temperature detector 30. The controller 31 for the refrigerator is
The cooling output of the refrigerator 29 is controlled according to the temperature detected by the refrigerator circuit temperature detector 30.

【0018】また、32はバイパス配管25,三方弁2
6,負荷回路温度検出器27及び三方弁用制御器28か
らなる流量制御装置、33は冷凍機回路温度検出器30
及び冷凍機用制御器31からなる冷凍機制御装置であ
る。
Further, 32 is a bypass pipe 25, a three-way valve 2
6, a flow rate control device including a load circuit temperature detector 27 and a three-way valve controller 28, and 33 is a refrigerator circuit temperature detector 30
And a refrigerator controller 31 including a refrigerator controller 31.

【0019】ここで、図1の制御系の応答速度は、負荷
回路2>熱発生源1、負荷回路2>冷凍機回路21であ
り、かつ三方弁26>熱発生源1>冷凍機29>冷凍機
回路21(冷凍機回路冷媒の循環速度)となっている。
Here, the response speed of the control system of FIG. 1 is load circuit 2> heat generation source 1, load circuit 2> refrigerator circuit 21, and three-way valve 26> heat generation source 1> refrigerator 29> It is the refrigerator circuit 21 (the circulation speed of the refrigerator circuit refrigerant).

【0020】次に、動作について説明する。まず、図2
は図1の冷凍機29についての必要冷却能力と熱吸収出
力との関係を示す関係図である。冷凍機29は、冷凍機
回路温度検出器30で検出された温度に応じて冷凍機用
制御器31により制御され、必要な冷却出力を出すよう
に回転数を変えて運転される。このため、冷凍機回路2
1の冷媒は、常に適正な温度に保たれる。即ち、必要な
冷却能力と冷却出力との関係が図2のように制御される
ので、冷凍機回路21の冷媒温度t2は時間的に大きな
変化のない安定した状態になる。
Next, the operation will be described. First, FIG.
[Fig. 3] is a relational diagram showing a relation between a required cooling capacity and a heat absorption output for the refrigerator 29 of Fig. 1. The refrigerator 29 is controlled by the refrigerator controller 31 according to the temperature detected by the refrigerator circuit temperature detector 30, and is operated by changing the rotation speed so as to output a required cooling output. Therefore, the refrigerator circuit 2
The refrigerant No. 1 is always kept at an appropriate temperature. That is, since the relationship between the required cooling capacity and the cooling output is controlled as shown in FIG. 2, the refrigerant temperature t 2 of the refrigerator circuit 21 is in a stable state with no large temporal change.

【0021】また、三方弁26の開度は、負荷回路温度
検出器27で検出された温度に応じて三方弁用制御器2
8により制御される。このとき、熱交換器5に流入する
冷凍機回路21の冷媒の温度が安定しているため、熱発
生源1に供給される負荷回路2の冷媒温度t1は、図3
に示すように安定した状態になる。従って、この実施例
1の装置では、従来のように井水を使用することなく、
冷凍機29の能力に応じた幅広い温度設定域に渡り、
0.1℃級の微細な温度制御が可能となる。
The opening degree of the three-way valve 26 depends on the temperature detected by the load circuit temperature detector 27.
Controlled by 8. At this time, since the temperature of the refrigerant in the refrigerator circuit 21 flowing into the heat exchanger 5 is stable, the refrigerant temperature t 1 of the load circuit 2 supplied to the heat generation source 1 is as shown in FIG.
It becomes stable as shown in. Therefore, in the device of the first embodiment, without using well water as in the conventional case,
Over a wide temperature setting range according to the capacity of the refrigerator 29,
Fine temperature control of 0.1 ° C class is possible.

【0022】ここで、図4は図1の冷凍機29における
回転速度と効率との関係を示す関係図であり、一般的な
CVCFの場合を示している。また、図5は図1の冷凍
機29における回転速度と冷却能力との関係を示す関係
図である。図4に示すように、冷凍機29では、通常、
効率の良い回転速度及び回転速度の制御可能範囲が限ら
れている。また、冷凍機29の冷却能力は、図5に示す
ように、回転速度の変化に対して直線的な変化とはなら
ない。
FIG. 4 is a relational diagram showing the relation between the rotation speed and the efficiency in the refrigerator 29 of FIG. 1, showing the case of a general CVCF. FIG. 5 is a relationship diagram showing the relationship between the rotation speed and the cooling capacity of the refrigerator 29 of FIG. As shown in FIG. 4, in the refrigerator 29, normally,
The effective rotation speed and the controllable range of the rotation speed are limited. Further, the cooling capacity of the refrigerator 29 does not change linearly with respect to the change in rotation speed, as shown in FIG.

【0023】図6は図1の冷凍機29における回転速度
と効率との関係の他の例を示す関係図であり、正確には
Y軸の効率は、COP≡成績係数=冷却出力/消費電力
を示している。また、冷却出力を1kWh=860kc
alで換算すると、COPは通常3倍程度となる。通
常、可変速で冷凍機29を駆動するのに、可変速駆動モ
ータとしてCVCF装置により三相誘導電動機を用い、
かつ滑りを一定とすると、電源周波数と回転速度とは比
例する。従って、図6に示すように、冷凍機29は、電
源周波数により効率が変化することになるので、効率が
最大となる周波数で運転するのが好ましい。
FIG. 6 is a relational diagram showing another example of the relation between the rotation speed and the efficiency in the refrigerator 29 of FIG. 1. To be precise, the efficiency of the Y axis is COP≡coefficient of performance = cooling output / power consumption. Is shown. Moreover, the cooling output is 1 kWh = 860 kc.
When converted by al, the COP is usually about 3 times. Normally, in order to drive the refrigerator 29 at a variable speed, a three-phase induction motor is used by a CVCF device as a variable speed drive motor,
Moreover, if the slip is constant, the power supply frequency is proportional to the rotation speed. Therefore, as shown in FIG. 6, since the efficiency of the refrigerator 29 changes depending on the power supply frequency, it is preferable to operate the refrigerator 29 at a frequency that maximizes the efficiency.

【0024】次に、図7は図1の熱発生源1における冷
却負荷の時間変化の一例を示す関係図である。この図の
ように、冷却負荷の大きさ、変動周波数、及び変動周波
数幅等が時間とともに変化する場合には、この変化に応
じて流量制御装置32及び冷凍機制御装置33の制御の
方法も変化させるのが好ましい。
Next, FIG. 7 is a relationship diagram showing an example of the change over time of the cooling load in the heat generation source 1 of FIG. As shown in this figure, when the magnitude of the cooling load, the fluctuating frequency, the fluctuating frequency width, etc. change with time, the control methods of the flow rate control device 32 and the refrigerator control device 33 also change according to this change. Preferably.

【0025】即ち、図8は熱負荷の変動が大きいときの
必要冷却能力と冷凍機29の冷却出力との関係を示す関
係図であり、熱負荷の変動速度が大きいときには、冷凍
機29の応答速度では十分に対応できないため、冷凍機
29の冷却出力を上げ、主に流量制御装置32により熱
負荷の変動を抑えるようにする。これにより、バイパス
配管25へ流入する冷媒流量が大きくなり、冷却出力に
ロスが生じるものの、熱負荷の変動をより確実に抑える
ことができる。
That is, FIG. 8 is a relational diagram showing the relationship between the required cooling capacity and the cooling output of the refrigerator 29 when the fluctuation of the heat load is large, and the response of the refrigerator 29 when the fluctuation speed of the heat load is large. Since the speed cannot sufficiently cope with this, the cooling output of the refrigerator 29 is increased and the fluctuation of the heat load is suppressed mainly by the flow rate control device 32. As a result, although the flow rate of the refrigerant flowing into the bypass pipe 25 increases and a loss occurs in the cooling output, the fluctuation of the heat load can be suppressed more reliably.

【0026】一方、図9は熱負荷の変動が小さいときの
必要冷却能力と冷凍機29の冷却出力との関係を示す関
係図であり、熱負荷の変動速度が小さいときには、バイ
パス配管25に流入する冷媒流量をできるだけ減少さ
せ、主に冷凍機制御装置33により熱負荷の変動を抑え
るようにする。これにより、冷凍機29の最低冷却出力
以上での冷却出力のロスを小さくすることができる。
On the other hand, FIG. 9 is a relationship diagram showing the relationship between the required cooling capacity and the cooling output of the refrigerator 29 when the fluctuation of the heat load is small, and when the fluctuation speed of the heat load is small, it flows into the bypass pipe 25. The flow rate of the refrigerant used is reduced as much as possible, and the fluctuation of the heat load is suppressed mainly by the refrigerator controller 33. As a result, it is possible to reduce the loss of the cooling output above the minimum cooling output of the refrigerator 29.

【0027】このように、冷凍機29の応答速度より速
い熱負荷の変動周波数成分の変化分の大小により、バイ
パス配管25に分流させる冷媒流量を加減することによ
り、熱負荷の変動を抑えつつ、冷却出力のロスを小さく
することができる。
As described above, by controlling the flow rate of the refrigerant to be diverted to the bypass pipe 25 depending on the magnitude of the change in the fluctuating frequency component of the heat load that is faster than the response speed of the refrigerator 29, the fluctuation of the heat load can be suppressed, The loss of cooling output can be reduced.

【0028】実施例2.なお、上記実施例1では冷凍機
回路配管22とバイパス配管25との分岐部分に三方弁
26を設けたが、分岐部分ではなく、図10に示すよう
に集合部分に設けてもよい。
Example 2. Although the three-way valve 26 is provided at the branch portion between the refrigerator circuit pipe 22 and the bypass pipe 25 in the first embodiment, the three-way valve 26 may be provided not at the branch portion but at the gathering portion as shown in FIG.

【0029】実施例3.また、上記実施例1,2では熱
交換器5に流入する冷媒流量を三方弁26により調節す
るものを示したが、例えば流量が比較的大きい場合な
ど、用途によっては、図11に示すように開度調節可能
な2個の開閉弁34a,34bを一対として使用しても
よい。
Example 3. Further, in the first and second embodiments, the flow rate of the refrigerant flowing into the heat exchanger 5 is adjusted by the three-way valve 26. However, depending on the application, for example, when the flow rate is relatively large, as shown in FIG. Two opening / closing valves 34a and 34b whose opening can be adjusted may be used as a pair.

【0030】実施例4.さらに、図12は請求項1及び
請求項2の発明の第4の実施例による冷却装置を示す構
成図である。図において、35は負荷回路2に設けられ
熱発生源1をバイパスする負荷回路バイパス配管、36
は負荷回路配管3と負荷回路バイパス配管35との分岐
部分に設けられ熱発生源1に流入する冷媒の流量を調節
する負荷回路三方弁、37は負荷回路配管3の熱発生源
1の出口部分に設けられた負荷出口温度検出器、38は
負荷回路三方弁36と負荷出口温度検出器37とに接続
された負荷回路三方弁用制御器であり、この負荷回路三
方弁用制御器38は、負荷出口温度検出器37により検
出された温度に応じて負荷回路三方弁36を制御する。
Example 4. Further, FIG. 12 is a configuration diagram showing a cooling device according to a fourth embodiment of the invention of claims 1 and 2. In the figure, 35 is a load circuit bypass pipe that is provided in the load circuit 2 and bypasses the heat generation source 1,
Is a load circuit three-way valve provided in a branch portion between the load circuit pipe 3 and the load circuit bypass pipe 35 for adjusting the flow rate of the refrigerant flowing into the heat generation source 1, and 37 is an outlet portion of the heat generation source 1 of the load circuit pipe 3. Is a load outlet three-way valve controller connected to the load circuit three-way valve 36 and the load outlet temperature detector 37. The load circuit three-way valve controller 38 is The load circuit three-way valve 36 is controlled according to the temperature detected by the load outlet temperature detector 37.

【0031】上記実施例1〜3の装置は、熱発生源1に
常に一定流量の冷媒を流すものであるが、流量が変わっ
ても負荷回路2の冷却出力のみを制御すればよい場合に
は、この実施例4のような構成とすることにより、負荷
変動に対してより素早く応答することが可能となる。
The devices of Examples 1 to 3 flow a constant flow rate of the refrigerant into the heat generation source 1, but when the flow rate changes, it is only necessary to control the cooling output of the load circuit 2. By adopting the configuration of the fourth embodiment, it becomes possible to respond more quickly to the load change.

【0032】実施例5.次に、図13は請求項3及び請
求項4の発明の一実施例による冷却装置を示す構成図で
ある。図において、41は冷凍機回路21に互いに並列
に設けられている複数台(図では2台)の冷凍機であ
り、それぞれ可変速駆動モータ41aを有している。ま
た、これらの冷凍機41は、上記実施例1の冷凍機29
よりも最低冷却出力の小さい小形のものである。
Example 5. Next, FIG. 13 is a configuration diagram showing a cooling device according to an embodiment of the inventions of claims 3 and 4. In the figure, reference numeral 41 denotes a plurality of (two in the figure) refrigerators provided in parallel with each other in the refrigerator circuit 21, each having a variable speed drive motor 41a. In addition, these refrigerators 41 are the refrigerators 29 of the first embodiment.
It has a smaller minimum cooling output than the small one.

【0033】42は各冷凍機41と冷凍機回路温度検出
器30とに接続されている冷凍機用制御器であり、この
冷凍機用制御器42は、冷凍機回路温度検出器30によ
り検出された温度に応じて冷凍機41の運転台数及び各
冷凍機41の冷却出力を制御する。43は冷凍機回路温
度検出器30及び冷凍機用制御器42からなる冷凍機制
御装置である。
Reference numeral 42 denotes a refrigerator controller connected to each refrigerator 41 and the refrigerator circuit temperature detector 30. The refrigerator controller 42 is detected by the refrigerator circuit temperature detector 30. The number of operating refrigerators 41 and the cooling output of each refrigerator 41 are controlled according to the temperature. Reference numeral 43 denotes a refrigerator controller including the refrigerator circuit temperature detector 30 and the refrigerator controller 42.

【0034】次に、図14はこの実施例5のように冷凍
機41を複数台用いた場合の必要冷却能力と冷却出力と
の関係を示す関係図であり、各冷凍機41の冷却出力だ
けでなく、冷凍機41の運転台数を制御することにより
全体としての冷却出力を増減させている。これにより、
各冷凍機41は、上記実施例1の冷凍機29よりも小形
にすることができ、1台当たりの最低冷却出力を低くす
ることができる。この結果、熱負荷の変動速度が小さ
く、主に冷凍機制御装置43により熱負荷の変動を抑え
る場合に、バイパス配管25への分流ロスを小さくする
ことができる。
Next, FIG. 14 is a relationship diagram showing the relationship between the required cooling capacity and the cooling output when a plurality of refrigerators 41 are used as in the fifth embodiment. Only the cooling output of each refrigerator 41 is shown. Instead, the cooling output as a whole is increased or decreased by controlling the number of operating refrigerators 41. This allows
Each refrigerator 41 can be made smaller than the refrigerator 29 of the first embodiment, and the minimum cooling output per unit can be lowered. As a result, the fluctuation speed of the heat load is small, and when the fluctuation of the heat load is mainly suppressed by the refrigerator control device 43, the diversion loss to the bypass pipe 25 can be reduced.

【0035】また、各冷凍機41には図6に示したよう
な運転効率の特性があるが、この実施例5では、冷凍機
制御装置43により各可変速駆動モータ41aと冷凍機
41の総合の運転効率が最大となるように冷凍機41の
運転台数及び各冷凍機41の冷却出力が制御される。即
ち、各冷凍機41の冷却出力は必要冷却能力の増減に応
じて増減させるが、この増減により各冷凍機41の運転
効率が低下する場合には運転台数を増減させ、稼働して
いる冷凍機41ができるだけ最大の効率で運転されるよ
うにする。これにより、装置全体の省エネを図り経済性
を向上させることができる。
Further, although each refrigerator 41 has the characteristic of operation efficiency as shown in FIG. 6, in the fifth embodiment, the refrigerator controller 43 controls the combination of each variable speed drive motor 41a and the refrigerator 41. The number of operating refrigerating machines 41 and the cooling output of each refrigerating machine 41 are controlled so as to maximize the operating efficiency of That is, the cooling output of each refrigerator 41 is increased / decreased in accordance with the increase / decrease in the required cooling capacity. However, if the increase / decrease in operating efficiency of each refrigerator 41 decreases the operating number of the refrigerators, the operating refrigerators are operated. Ensure that 41 operates at the highest efficiency possible. As a result, it is possible to save energy in the entire device and improve economy.

【0036】なお、冷凍機41の台数は特に限定される
ものではなく、必要に応じて3台以上設けてもよい。ま
た、上記実施例5では複数台の冷凍機41を互いに並列
に冷凍機回路21に設けたが、互いに直列に設けてもよ
い。
The number of refrigerators 41 is not particularly limited, and three or more refrigerators may be provided if necessary. Further, although the plurality of refrigerators 41 are provided in parallel with each other in the refrigerator circuit 21 in the fifth embodiment, they may be provided in series with each other.

【0037】[0037]

【発明の効果】以上説明したように、請求項1の発明の
冷却装置は、可変速駆動モータを駆動源とする冷凍機に
より冷凍機回路の冷媒を冷却し、この冷凍機回路の冷媒
により熱交換器を介して負荷回路の冷媒を冷却し、また
熱交換器に流入する冷凍機回路の冷媒流量を流量制御装
置により負荷回路の冷媒温度に応じて制御するととも
に、冷凍機の冷却出力を冷凍機制御装置により冷凍機回
路の冷媒温度に応じて制御するようにしたので、井水を
使用することなく、幅広い温度設定域に渡って微細な温
度制御を行うことができるという効果を奏する。
As described above, in the cooling device of the invention of claim 1, the refrigerant in the refrigerator circuit is cooled by the refrigerator using the variable speed drive motor as a drive source, and the refrigerant in the refrigerator circuit heats the refrigerant. The refrigerant in the load circuit is cooled via the exchanger, and the flow rate of the refrigerant in the refrigerator circuit flowing into the heat exchanger is controlled by the flow controller according to the refrigerant temperature in the load circuit, and the cooling output of the refrigerator is frozen. Since the machine control device controls the refrigerating machine circuit in accordance with the refrigerant temperature, it is possible to perform fine temperature control over a wide temperature setting range without using well water.

【0038】また、請求項2の発明の冷却装置は、熱交
換器に流入する冷凍機回路の冷媒流量を調節するため
に、冷凍機回路配管に熱交換器と並列にバイパス配管を
接続し、熱発生源の熱負荷の変動速度が大きいときに
は、冷凍機の冷却出力を上げ、主に流量制御装置により
弁を調節して熱負荷の変動を抑え、熱負荷の変動速度が
小さいときには、バイパス配管に流入する冷媒流量を減
少させ、主に冷凍機制御装置により熱負荷の変動を抑え
るようにしたので、上記請求項1の発明と同様の効果に
加えて、熱負荷の変動をより確実に抑えつつ、冷媒の分
流による冷却出力のロスを抑えることができ、信頼性及
び経済性を向上させることができるという効果を奏す
る。
In the cooling device of the second aspect of the present invention, in order to adjust the refrigerant flow rate of the refrigerator circuit flowing into the heat exchanger, a bypass pipe is connected to the refrigerator circuit pipe in parallel with the heat exchanger, When the fluctuation rate of the heat load of the heat generation source is large, the cooling output of the refrigerator is increased and the valve is mainly adjusted by the flow rate control device to suppress the fluctuation of the heat load.When the fluctuation rate of the heat load is small, the bypass piping is used. Since the flow rate of the refrigerant flowing in is reduced and the fluctuation of the heat load is suppressed mainly by the refrigerator control device, in addition to the same effect as the invention of claim 1, the fluctuation of the heat load can be suppressed more reliably. At the same time, it is possible to suppress the loss of the cooling output due to the split flow of the refrigerant, and it is possible to improve the reliability and the economical efficiency.

【0039】さらに、請求項3の発明の冷却装置は、可
変速駆動モータを駆動源とする冷凍機を冷凍機回路に複
数台設け、冷凍機の運転台数及び各冷凍機の冷却出力を
冷凍機制御装置により冷凍機回路の冷媒温度に応じて制
御するようにしたので、上記請求項1の発明と同様の効
果に加えて、最低冷却出力の小さい冷凍機を使用するこ
とができ、必要冷却能力が低いときの冷却出力のロスを
小さくすることができ、経済性及び運転効率を向上させ
ることができるという効果を奏する。
Further, in the cooling apparatus of the third aspect of the invention, a plurality of refrigerators having a variable speed drive motor as a drive source are provided in the refrigerator circuit, and the number of operating refrigerators and the cooling output of each refrigerator are determined by the refrigerator. Since the control device is controlled according to the refrigerant temperature of the refrigerator circuit, in addition to the same effect as the invention of claim 1, a refrigerator with a minimum cooling output can be used, and the required cooling capacity is required. It is possible to reduce the loss of the cooling output when the temperature is low and to improve the economical efficiency and the operation efficiency.

【0040】さらにまた、請求項4の発明の冷却装置
は、可変速駆動モータを駆動源とする冷凍機を冷凍機回
路に複数台設け、冷凍機制御装置によって、冷凍機の運
転台数及び各冷凍機の冷却出力を冷凍機回路の冷媒温度
に応じて制御するとともに、各可変速駆動モータと各冷
凍機の総合の運転効率が最大となるように冷凍機の運転
台数及び各冷凍機の冷却出力を制御するようにしたの
で、上記請求項3の発明と同様の効果に加えて、装置全
体としての運転効率を一層向上させ、経済性を向上させ
ることができるという効果を奏する。
Further, in the cooling device of the invention of claim 4, a plurality of refrigerators having a variable speed drive motor as a drive source are provided in the refrigerator circuit, and the number of operating refrigerators and each refrigerator are controlled by the refrigerator controller. The cooling output of the refrigerator is controlled according to the refrigerant temperature of the refrigerator circuit, and the number of operating refrigerators and the cooling output of each refrigerator are maximized so that the total operating efficiency of each variable speed drive motor and each refrigerator is maximized. Therefore, in addition to the effect similar to that of the invention of claim 3, the operation efficiency of the entire apparatus can be further improved and the economical efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1及び請求項2の発明の第1の実施例に
よる冷却装置を示す構成図である。
FIG. 1 is a configuration diagram showing a cooling device according to a first embodiment of the inventions of claims 1 and 2. FIG.

【図2】図1の冷凍機についての必要冷却能力と熱吸収
出力との関係を示す関係図である。
FIG. 2 is a relationship diagram showing a relationship between a required cooling capacity and a heat absorption output for the refrigerator of FIG.

【図3】図1の装置における経過時間と冷媒温度との関
係を示す関係図である。
FIG. 3 is a relationship diagram showing a relationship between elapsed time and refrigerant temperature in the apparatus of FIG.

【図4】図1の冷凍機における回転速度と効率との関係
を示す関係図である。
FIG. 4 is a relationship diagram showing a relationship between a rotation speed and efficiency in the refrigerator of FIG.

【図5】図1の冷凍機における回転速度と冷却能力との
関係を示す関係図である。
5 is a relationship diagram showing a relationship between a rotation speed and a cooling capacity in the refrigerator of FIG.

【図6】図1の冷凍機における電源周波数と効率との関
係を示す関係図である。
6 is a relationship diagram showing a relationship between power supply frequency and efficiency in the refrigerator of FIG.

【図7】図1の熱発生源における冷却負荷の時間変化の
一例を示す関係図である。
FIG. 7 is a relationship diagram showing an example of a temporal change of a cooling load in the heat generation source of FIG.

【図8】図1の装置の熱負荷の変動が大きいときの必要
冷却能力と冷凍機の冷却出力との関係を示す関係図であ
る。
8 is a relationship diagram showing the relationship between the required cooling capacity and the cooling output of the refrigerator when the heat load of the device of FIG. 1 varies greatly.

【図9】図1の装置の熱負荷の変動が小さいときの必要
冷却能力と冷凍機の冷却出力との関係を示す関係図であ
る。
9 is a relationship diagram showing the relationship between the required cooling capacity and the cooling output of the refrigerator when the fluctuation of the heat load of the device of FIG. 1 is small.

【図10】請求項1及び請求項2の発明の第2の実施例
による冷却装置を示す構成図である。
FIG. 10 is a configuration diagram showing a cooling device according to a second embodiment of the inventions of claims 1 and 2.

【図11】請求項1及び請求項2の発明の第3の実施例
による冷却装置を示す構成図である。
FIG. 11 is a configuration diagram showing a cooling device according to a third embodiment of the inventions of claims 1 and 2.

【図12】請求項1及び請求項2の発明の第4の実施例
による冷却装置を示す構成図である。
FIG. 12 is a configuration diagram showing a cooling device according to a fourth embodiment of the inventions of claims 1 and 2.

【図13】請求項3及び請求項4の発明の一実施例によ
る冷却装置を示す構成図である。
FIG. 13 is a configuration diagram showing a cooling device according to an embodiment of the inventions of claims 3 and 4.

【図14】図13のように冷凍機を複数台用いた場合の
必要冷却能力と冷却出力との関係を示す関係図である。
14 is a relationship diagram showing a relationship between a required cooling capacity and a cooling output when a plurality of refrigerators are used as in FIG.

【図15】従来の冷却装置の一例を示す構成図である。FIG. 15 is a configuration diagram showing an example of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 熱発生源 2 負荷回路 5 熱交換器 21 冷凍機回路 25 バイパス配管 26 三方弁 29 冷凍機 29a 可変速駆動モータ 32 流量制御装置 33 冷凍機制御装置 41 冷凍機 41a 可変速駆動モータ 43 冷凍機制御装置 1 heat generation source 2 load circuit 5 heat exchanger 21 refrigerator circuit 25 bypass piping 26 three-way valve 29 refrigerator 29a variable speed drive motor 32 flow rate control device 33 refrigerator control device 41 refrigerator 41a variable speed drive motor 43 refrigerator control apparatus

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱発生源を冷却するための冷媒が循環す
る負荷回路と、この負荷回路の途中に設けられている熱
交換器と、この熱交換器を通り上記負荷回路の冷媒を冷
却するための冷媒が循環する冷凍機回路と、この冷凍機
回路の途中に設けられているとともに、可変速駆動モー
タにより駆動され、上記冷凍機回路を循環する冷媒を冷
却する冷凍機と、上記熱交換器に流入する上記冷凍機回
路の冷媒流量を上記負荷回路の冷媒温度に応じて制御す
る流量制御装置と、上記冷凍機の冷却出力を上記冷凍機
回路の冷媒温度に応じて制御する冷凍機制御装置とを備
えていることを特徴とする冷却装置。
1. A load circuit in which a refrigerant for cooling a heat generating source circulates, a heat exchanger provided in the middle of the load circuit, and a refrigerant in the load circuit that passes through the heat exchanger. And a refrigerator circuit for circulating the refrigerant for cooling the refrigerant circulating in the refrigerator circuit, driven by a variable speed drive motor and provided in the middle of the refrigerator circuit. Flow control device for controlling the refrigerant flow rate of the refrigerator circuit flowing into the refrigerator according to the refrigerant temperature of the load circuit, and the refrigerator control for controlling the cooling output of the refrigerator according to the refrigerant temperature of the refrigerator circuit. And a cooling device.
【請求項2】 熱発生源を冷却するための冷媒が循環す
る負荷回路と、この負荷回路の途中に設けられている熱
交換器と、この熱交換器を通り上記負荷回路の冷媒を冷
却するための冷媒が循環する冷凍機回路と、この冷凍機
回路の途中に設けられているとともに、可変速駆動モー
タにより駆動され、上記冷凍機回路を循環する冷媒を冷
却する冷凍機と、上記熱交換器に並列に上記冷凍機回路
に設けられているバイパス配管と、このバイパス配管と
上記熱交換器との流量配分を調節するための弁を有し、
上記負荷回路の冷媒温度に応じて上記弁を調節して上記
熱交換器に流入する上記冷凍機回路の冷媒流量を制御す
る流量制御装置と、上記冷凍機の冷却出力を上記冷凍機
回路の冷媒温度に応じて制御する冷凍機制御装置とを備
え、上記熱発生源の熱負荷の変動速度が大きいときに
は、上記冷凍機の冷却出力を上げ、主に上記流量制御装
置により上記熱負荷の変動を抑え、上記熱負荷の変動速
度が小さいときには、上記バイパス配管に流入する冷媒
流量を減少させ、主に上記冷凍機制御装置により上記熱
負荷の変動を抑えるようになっていることを特徴とする
冷却装置。
2. A load circuit in which a refrigerant for cooling a heat generating source circulates, a heat exchanger provided in the middle of the load circuit, and a refrigerant in the load circuit that passes through the heat exchanger and is cooled. And a refrigerator circuit for circulating the refrigerant for cooling the refrigerant circulating in the refrigerator circuit, driven by a variable speed drive motor and provided in the middle of the refrigerator circuit. A bypass pipe provided in the refrigerator circuit in parallel with the heat exchanger, and a valve for adjusting the flow distribution between the bypass pipe and the heat exchanger,
A flow rate control device that controls the refrigerant flow rate of the refrigerator circuit flowing into the heat exchanger by adjusting the valve according to the refrigerant temperature of the load circuit, and the cooling output of the refrigerator to the refrigerant of the refrigerator circuit. With a refrigerator control device that controls according to the temperature, when the fluctuation speed of the heat load of the heat generation source is large, the cooling output of the refrigerator is increased, and the fluctuation of the heat load is mainly controlled by the flow control device. When the fluctuation speed of the heat load is small, the flow rate of the refrigerant flowing into the bypass pipe is reduced, and the fluctuation of the heat load is mainly suppressed by the refrigerator control device. apparatus.
【請求項3】 熱発生源を冷却するための冷媒が循環す
る負荷回路と、この負荷回路の途中に設けられている熱
交換器と、この熱交換器を通り上記負荷回路の冷媒を冷
却するための冷媒が循環する冷凍機回路と、この冷凍機
回路の途中に設けられているとともに、それぞれ可変速
駆動モータにより駆動され、上記冷凍機回路を循環する
冷媒を冷却する複数台の冷凍機と、上記熱交換器に流入
する上記冷凍機回路の冷媒流量を上記負荷回路の冷媒温
度に応じて制御する流量制御装置と、上記冷凍機の運転
台数及び各冷凍機の冷却出力を上記冷凍機回路の冷媒温
度に応じて制御する冷凍機制御装置とを備えていること
を特徴とする冷却装置。
3. A load circuit in which a refrigerant for cooling a heat generating source circulates, a heat exchanger provided in the middle of the load circuit, and a refrigerant in the load circuit that passes through the heat exchanger and is cooled. A refrigerator circuit in which a refrigerant circulates, and a plurality of refrigerators that are provided in the middle of the refrigerator circuit and are driven by variable speed drive motors to cool the refrigerant circulating in the refrigerator circuit, respectively. A flow rate control device for controlling the refrigerant flow rate of the refrigerator circuit flowing into the heat exchanger according to the refrigerant temperature of the load circuit, the operating number of the refrigerator and the cooling output of each refrigerator, and the refrigerator circuit. And a refrigerating machine control device that controls the refrigerating machine in accordance with the refrigerant temperature.
【請求項4】 熱発生源を冷却するための冷媒が循環す
る負荷回路と、この負荷回路の途中に設けられている熱
交換器と、この熱交換器を通り上記負荷回路の冷媒を冷
却するための冷媒が循環する冷凍機回路と、この冷凍機
回路の途中に設けられているとともに、それぞれ可変速
駆動モータにより駆動され、上記冷凍機回路を循環する
冷媒を冷却する複数台の冷凍機と、上記熱交換器に流入
する上記冷凍機回路の冷媒流量を上記負荷回路の冷媒温
度に応じて制御する流量制御装置と、上記冷凍機の運転
台数及び各冷凍機の冷却出力を上記冷凍機回路の冷媒温
度に応じて制御する冷凍機制御装置とを備え、上記冷凍
機制御装置は、上記各可変速駆動モータと冷凍機の総合
の運転効率が最大となるように上記冷凍機の運転台数及
び各冷凍機の冷却出力を制御するようになっていること
を特徴とする冷却装置。
4. A load circuit in which a refrigerant for cooling a heat generation source circulates, a heat exchanger provided in the middle of the load circuit, and a refrigerant in the load circuit that passes through the heat exchanger and is cooled. A refrigerator circuit in which a refrigerant circulates, and a plurality of refrigerators that are provided in the middle of the refrigerator circuit and are driven by variable speed drive motors to cool the refrigerant circulating in the refrigerator circuit, respectively. A flow rate control device for controlling the refrigerant flow rate of the refrigerator circuit flowing into the heat exchanger according to the refrigerant temperature of the load circuit, the operating number of the refrigerator and the cooling output of each refrigerator, and the refrigerator circuit. And a refrigerator control device that controls according to the refrigerant temperature of the refrigerator, the refrigerator controller, the number of operating the refrigerator to maximize the overall operating efficiency of the variable speed drive motor and the refrigerator and Cooling output of each refrigerator A cooling device characterized by being adapted to control force.
JP14211093A 1993-06-14 1993-06-14 Cooling device Pending JPH074758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14211093A JPH074758A (en) 1993-06-14 1993-06-14 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14211093A JPH074758A (en) 1993-06-14 1993-06-14 Cooling device

Publications (1)

Publication Number Publication Date
JPH074758A true JPH074758A (en) 1995-01-10

Family

ID=15307657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14211093A Pending JPH074758A (en) 1993-06-14 1993-06-14 Cooling device

Country Status (1)

Country Link
JP (1) JPH074758A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951527A (en) * 1989-01-11 1990-08-28 Kenneth Klazura Transmission assembly
WO2006075592A1 (en) * 2005-01-13 2006-07-20 Daikin Industries, Ltd. Refrigerating device
JP2010255985A (en) * 2009-04-28 2010-11-11 Taikisha Ltd Method of operating heat source system and heat source system
JP5709838B2 (en) * 2010-03-16 2015-04-30 三菱電機株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951527A (en) * 1989-01-11 1990-08-28 Kenneth Klazura Transmission assembly
WO2006075592A1 (en) * 2005-01-13 2006-07-20 Daikin Industries, Ltd. Refrigerating device
JP2010255985A (en) * 2009-04-28 2010-11-11 Taikisha Ltd Method of operating heat source system and heat source system
JP5709838B2 (en) * 2010-03-16 2015-04-30 三菱電機株式会社 Air conditioner
US9285128B2 (en) 2010-03-16 2016-03-15 Mitsubishi Electric Corporation Air-conditioning apparatus with multiple outdoor, indoor, and multiple relay units

Similar Documents

Publication Publication Date Title
JP2010175136A (en) Geothermal heat pump device
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JPH074758A (en) Cooling device
JPH0721362B2 (en) Waste heat recovery power generator
JP3241550B2 (en) Double effect absorption chiller / heater
JP7068861B2 (en) Chiller system
JPH09196477A (en) Compression type refrigerator and method for controlling the operation thereof
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
JPH09236352A (en) Hot water heating absorption refrigerating machine
JP2777471B2 (en) Absorption chiller / heater controller
JP3112596B2 (en) Absorption refrigerator and control method thereof
JPH06280563A (en) Control method for cooling water temperature of engine and device thereof
JPH0226152B2 (en)
JPH05223390A (en) Controlling method for solution flow rate of absorption cold/warm water device
JPS6256428B2 (en)
JP3874262B2 (en) Refrigeration system combining absorption and compression
JP2004028374A (en) Refrigerating equipment combined with absorption type and compression type
JPH10176873A (en) Heat pump device and control method therefor
JPS6256430B2 (en)
JP3824441B2 (en) Absorption refrigeration equipment
JPH0886531A (en) Dual-effect absorption refrigerator as well as hot and chilled water generator
JPS6152914B2 (en)
JP3880333B2 (en) Absorption refrigeration equipment
JPH02166361A (en) Absorption refrigerator